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Abstract

Real data often contain anomalous cases, also known as outliers. These may spoil the
resulting analysis but they may also contain valuable information. In either case, the
ability to detect such anomalies is essential. A useful tool for this purpose is robust
statistics, which aims to detect the outliers by first fitting the majority of the data and
then flagging data points that deviate from it. We present an overview of several robust
methods and the resulting graphical outlier detection tools. We discuss robust procedures
for univariate, low-dimensional, and high-dimensional data, such as estimating location and
scatter, linear regression, principal component analysis, classification, clustering, and
functional data analysis. Also the challenging new topic of cellwise outliers is introduced.
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INTRODUCTION

In real data sets it often happens that some cases behave differently from the majority. Such

data points are called anomalies in machine learning, and outliers in statistics. Outliers may

be caused by errors, but they could also have been recorded under exceptional circumstances,

or belong to another population. It is very important to be able to detect anomalous cases,

which may (a) have a harmful effect on the conclusions drawn from the data, or (b) contain

valuable nuggets of information.

In practice one often tries to detect outliers using diagnostics starting from a classical

fitting method. However, classical methods can be affected by outliers so strongly that the

resulting fitted model may not allow to detect the deviating observations. This is called the

masking effect. Additionally, some good data points might even appear to be outliers, which

is known as swamping. To avoid these effects, the goal of robust statistics is to find a fit

which is close to the fit we would have found without the outliers. We can then identify the

outliers by their large ‘deviation’ (e.g. its distance or residual) from that robust fit.

First we describe some robust procedures for detecting anomalies in univariate location

and scale, as well as in multivariate data and in the linear regression setting. For more

details on this part see1–3. Next we discuss principal component analysis (PCA) and some

available robust methods for classification, clustering, and functional data analysis. Finally

we introduce the emerging research topic of detecting cellwise anomalies.

ESTIMATING UNIVARIATE LOCATION AND SCALE

As an example of univariate data, suppose we have five measurements of a length:

6.27, 6.34, 6.25, 6.31, 6.28 (1)

and we want to estimate its true value. For this, one usually computes the sample mean

x̄ = 1
n

∑n
i=1 xi which in this case equals x̄ = (6.27 + 6.34 + 6.25 + 6.31 + 6.28)/5 = 6.29 .

Let us now suppose that the fourth measurement has been recorded wrongly and the data

become

6.27, 6.34, 6.25, 63.1, 6.28 . (2)
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In this case we obtain x̄ = 17.65, which is far off. Alternatively, we could also compute the

median of these data. For this we sort the observations in (2) from smallest to largest:

6.25 6 6.27 6 6.28 6 6.34 6 63.10 .

The median is the middle value, here yielding 6.28, which is still reasonable. We say that

the median is more robust against an outlier.

More generally, the location-scale model states that the n univariate observations xi are

independent and identically distributed (i.i.d.) with distribution function F ((x−µ)/σ) where

F is known. Typically F is the standard gaussian distribution function Φ. We then want to

find estimates for the unknown center µ and the unknown scale parameter σ.

The classical estimate of location is the mean. As we saw above, the mean is very sensitive

to aberrant values among the n observations. In general, replacing even a single observation

by a very large value can change the mean completely. We say that the breakdown value 4,5

of the sample mean is 1/n, so it becomes 0% for large n. In general, the breakdown value

is the smallest proportion of observations in the data set that need to be replaced to carry

the estimate arbitrarily far away. A breakdown value of 0% is thus the worst possible. See6

for precise definitions and extensions. The robustness of an estimator is also measured by

its influence function 7 which measures the effect of a single outlier. The influence function

of the mean is unbounded, which again illustrates that the mean is not robust.

For the general definition of the median, we denote the ith ordered observation as x(i).

The median is defined as x((n+1)/2) if n is odd and (x(n/2) + x(n/2+1))/2 if n is even. Its

breakdown value is about 50%, meaning that the median can resist almost 50% of outliers.

This is the best possible breakdown value since the clean data need to be in the majority.

The situation for the scale parameter σ is similar. The classical estimator is the standard

deviation s =
√∑n

i=1(xi − x̄)2/(n− 1). Since a single outlier can already make s arbitrarily

large, its breakdown value is 0%. For instance, for the clean data (1) above we have s = 0.035,

whereas for the data (2) with the outlier we obtain s = 25.41 !

A robust measure of scale is the median of all absolute deviations from the median

(MAD), given by

MAD = 1.4826 median
i=1,...,n

|xi −median
j=1,...,n

(xj)| . (3)
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The constant 1.4826 is a correction factor which makes the MAD consistent at gaussian

distributions. The MAD of (2) is the same as that of (1), namely 0.044. We can also use

the Qn estimator8, defined as

Qn = 2.2219 {|xi − xj|; i < j}(k)

with k =
(
h
2

)
≈
(
n
2

)
/4 and h = bn

2
c+ 1. Here b. . .c rounds down to the nearest integer. This

scale estimator is thus the first quartile of all pairwise distances between two data points.

The breakdown value of both the MAD and the Qn estimator is 50%.

Also the (normalized) interquartile range (IQR) can be used, given by IQR = 0.7413(Q3−

Q1) where Q1 = xbn/4c is the first quartile of the data and Q3 = xd3n/4e is the third quartile.

The IQR has a simple expression but its breakdown value is only 25%, so it is less robust

than the MAD and Qn.

The robustness of the median (and the MAD) comes at a price: at the gaussian model

it is less efficient than the mean. Many robust procedures have been proposed that strike a

balance between robustness and efficiency, such as location M-estimators9. They are defined

implicitly as the solution of the equation

n∑
i=1

ψ
(xi − µ̂

σ̂

)
= 0 (4)

for a given real function ψ . The denominator σ̂ is an initial robust scale estimate such

as Qn . A solution µ̂ to (4) can be found by an iterative algorithm, starting from the

initial location estimate µ̂(0) = mediani(xi). Popular choices for ψ are the Huber function

ψ(x) = xmin(1, c/|x|) and Tukey’s bisquare function ψ(x) = x(1− (x/c)2)2I(|x| 6 c). These

M-estimators contain a tuning parameter c which needs to be chosen in advance. Also

M-estimators for the scale parameter σ exist.

People often use rules to detect outliers. The classical rule is based on the z-scores of the

observations, given by

zi =
xi − x̄
s

(5)

where s is the standard deviation of the data. More precisely, the rule flags xi as outlying if

|zi| exceeds 2.5, say. But in the above example (2) with the outlier, the z-scores are

−0.45, −0.45, −0.45, 1.79, −0.45
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so none of them attains 2.5. The largest value is only 1.79, which is quite similar to the

largest z-score for the clean data (1), which equals 1.41. The z-score of the outlier is small

because it subtracts the nonrobust mean (which was drawn toward the outlier) and because

it divides by the nonrobust standard deviation (which the outlier has made much larger than

in the clean data). Plugging in robust estimators of location and scale such as the median

and the MAD yields the robust scores

xi −medianj(xj)

MADj(xj)
(6)

which yield a much more reliable outlier detection tool. Indeed, in the contaminated example

(2) the robust scores are

−0.22, 1.35, −0.67, 1277.5, 0.0

where that of the outlier greatly exceeds the 2.5 cutoff.

Also Tukey’s boxplot is often used to pinpoint possible outliers. In this plot a box is

drawn from the first quartile Q1 of the data to the third quartile Q3 . Points outside the

interval [Q1 − 1.5 IQR, Q3 + 1.5 IQR], called the fence, are traditionally marked as outliers.

Note that the boxplot assumes symmetry, since we add the same amount to Q3 as what

we subtract from Q1. At asymmetric distributions the usual boxplot typically flags many

regular data points as outliers. The skewness-adjusted boxplot10 corrects for this by using

a robust measure of skewness11 in determining the fence.

MULTIVARIATE LOCATION AND COVARIANCE ESTI-

MATION

From now on we assume that the data are d-dimensional and are stored in an n × d data

matrix X = (x1, . . . ,xn)T with xi = (xi1, . . . , xid)
T the ith data point. Classical measures

of location and scatter are given by the empirical mean x̄ = 1
n

∑n
i=1 xi and the empirical

covariance matrix SX =
∑n

i=1(xi − x̄)(xi − x̄)T/(n − 1). As in the univariate case, both

classical estimators have a breakdown value of 0%, that is, a small fraction of outliers can

completely ruin them.
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As an illustration we consider a bivariate dataset (from page 59 in2) containing the

logarithms of body weight and brain weight of 28 animal species, with scatterplot in Figure 1.

Any point x has a so-called Mahalanobis distance (or ‘generalized distance’)

MD(x, µ̂, Σ̂) =

√
(x− µ̂)T Σ̂−1(x− µ̂) (7)

to the mean µ̂ = x̄ , taking the covariance matrix Σ̂ = SX into account. The MD is constant

on ellipsoids. The so-called 97.5% tolerance ellipsoid is given by MD(x) 6
√
χ2
d,0.975 where

χ2
d,0.975 is the 0.975 quantile of the chi-squared distribution with d degrees of freedom. In

this bivariate example d = 2, and the resulting ellipse is drawn in red. We see that it is

inflated in the direction of the three outliers 6, 16, and 26 which are dinosaurs having low

brain weight and high body weight. As a result these data points fall near the boundary of

the tolerance ellipse, i.e. their MD(xi) are not very high.
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Figure 1: Animal data: tolerance ellipse of the classical mean and covariance matrix (red),

and that of the robust location and scatter matrix (blue).
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Alternatively we can compute robust estimates of location and scatter (covariance), for

instance by the Minimum Covariance Determinant (MCD) method12,13. The MCD looks for

those h observations in the data set (where the number h is given by the user) whose classical

covariance matrix has the lowest possible determinant. The MCD estimate of location µ̂ is

then the average of these h points, whereas the MCD estimate of scatter Σ̂ is their covariance

matrix, multiplied by a consistency factor. (By default this is then followed by a reweighting

step to improve efficiency at gaussian data.) Instead of Mahalanobis distances we can then

compute robust distances, again given by (7) but now with the robust estimates µ̂ and Σ̂ .

This yields the robust tolerance ellipse shown in blue in Figure 1. This ellipse exposes the

three dinosaurs, and we see two species near the upper boundary, 17 (rhesus monkey) and

14 (human).
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Figure 2: Animal data: Robust distance versus classical Mahalanobis distance.

In dimension d = 4 or higher it becomes infeasible to visualize the tolerance ellipsoid,

but we still have the distances. The distance-distance plot (DD-plot) in Figure 2 shows the
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robust distance RD(xi) of each data point versus its classical Mahalanobis distance MD(xi) .

The horizontal and vertical cutoff lines are at
√
χ2
d,0.975 and the dashed line is where classical

and robust distances coincide. We see that the RD(xi) flag all the outliers in this dataset,

while the MD(xi) don’t. For a dataset in which they are very similar we can trust classical

statistical methods, but when they differ much (like here) the DD-plot detects the outlying

data points. This does not imply we should somehow delete them, but rather that they

should be investigated and understood. Outliers are not necessarily ‘errors’: they can also

correspond to unusual circumstances or be members of a different population.

The MCD estimator, as well as its weighted version, has a bounded influence function

and breakdown value (n − h + 1)/n, hence the number h determines the robustness of the

estimator. The MCD has its highest possible breakdown value when h = b(n + p + 1)/2c.

When a large proportion of contamination is expected, h should thus be chosen close to 0.5n.

Otherwise an intermediate value for h, such as 0.75n, is recommended to obtain a higher

finite-sample efficiency. Reference14 gives a more detailed overview of the MCD estimator

and its properties.

The computation of the MCD estimator is non-trivial and naively requires an exhaustive

investigation of all h-subsets out of n. Fortunately a much faster algorithm was constructed,

called FastMCD15. It starts by randomly drawing many p + 1 observations from the data

set. Based on these subsets, h-subsets are obtained by means of so-called C-steps (see15 for

details). More recently an even faster algorithm called DetMCD was devised16 which carries

out a deterministic computation instead of random sampling.

The MCD assumes that n > d, so there must be more data points than dimensions, and

it works best when n > 5d. When there are more than, say, 20 dimensions and/or d > n

other methods are needed. One is to compute robust principal components as described in a

section below. Another is to use the minimum regularized covariance determinant (MRCD)

method17. This approach minimizes det{ρT+(1−ρ)SH} where T is a positive definite target

matrix and SH is the covariance matrix of a subset H with h data points. The combined

matrix is always positive definite, whereas det{SH} = 0 when d > n.

Many other robust estimators of location and scatter have been presented in the literature.

The first such estimator was proposed by Stahel18 and Donoho19 (see also21). They defined
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the so-called Stahel-Donoho outlyingness of a data point xi as

outl(xi) = max
u

|xT
i u−medianj=1,...,n(xT

j u)|
MADj=1,...,n(xT

j u)
(8)

where the maximum is over all directions (i.e., all d-dimensional unit length vectors u), and

xT
j u is the projection of xj on the direction u. In each direction this uses the robust z-scores

(6). Recently a version of (8) suitable for skewed distributions was proposed20.

Multivariate M-estimators22 have a low breakdown value due to possible implosion of

the estimated scatter matrix. More recent robust estimators of multivariate location and

scatter with high breakdown value include S-estimators2,23, MM-estimators24, and the OGK

estimator25.

LINEAR REGRESSION

The multiple linear regression model assumes that there are d ‘explanatory’ x-variables as

well as a response variable y which can be approximated by a linear combination of the

x-variables. More precisely, the model says that for all data points (xi, yi) it holds that

yi = β0 + β1xi1 + · · ·+ βdxid + εi i = 1, . . . , n (9)

where the errors εi are assumed to be independent and identically distributed with zero

mean and constant variance σ2. Applying a regression estimator to the data yields d + 1

regression coefficients, combined as β̂ = (β̂0, . . . , β̂d)
T . The residual ri of case i is defined as

the difference between the observed response yi and its estimated value ŷi .

The classical least squares (LS) method to estimate β minimizes the sum of the squared

residuals. It is popular because it allows to compute the regression estimates explicitly, and it

is optimal if the errors have a gaussian distribution. Unfortunately LS is extremely sensitive

to outliers, i.e. data points that do not obey the linear pattern formed by the majority of

the data.

For instance, Figure 3 shows the Hertzsprung-Russell diagram of the star cluster CYG

OB1, containing 47 stars. The x-coordinate of each star is the logarithm of its surface tem-

perature, and the y-coordinate is the logarithm of its light intensity. Most of the stars belong
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to the so-called main sequence, whereas 11, 20, 30, 34 are giant stars and 7 is intermediate.

The least squares line is shown in red, and has a negative slope although the main sequence

slopes upward. It has been pulled away by the leverage exerted by the four giant stars. As

an unfortunate side effect, the giant stars do not have larger absolute residuals than some of

the main sequence stars, so only looking at residuals would not allow to detect them.
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Figure 3: Stars data: Classical least squares line (red) and robust line (blue).

The blue line on the other hand is the result of a robust regression method, the Least

Trimmed Squares (LTS) estimator proposed by Rousseeuw12. The LTS is given by

minimize
β

h∑
i=1

(r2)(i) (10)

where (r2)(1) 6 (r2)(2) 6 · · · 6 (r2)(n) are the ordered squared residuals. (They are first

squared, and then ordered.) By not adding all the squared residuals the LTS makes it

possible to fit the majority of the data, whereas the outliers can have large residuals. In

Figure 3 the blue line indeed fits the main sequence stars, and stays far from the four giant
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stars so the latter will have large residuals from that line. (Note that the giant stars are not

‘errors’ but correct observations of members of a different population.)

The value h in (10) plays the same role as in the MCD estimator. For h ≈ n/2 we find a

breakdown value of 50%, whereas for larger h we obtain roughly (n−h)/n. A fast algorithm

for the LTS estimator (FAST-LTS) has been developed26. The scale of the errors σ can be

estimated by σ̂2
LTS = c2h,n

∑h
i=1(r

2)(i)/h where ri are the residuals from the LTS fit, and ch,n

is a constant that makes σ̂LTS consistent at gaussian error distributions, as described in27.

We can then identify outliers by their large standardized LTS residuals ri/σ̂LTS. We can also

use the standardized LTS residuals to assign a weight to every observation. The weighted

LS estimator with these LTS weights inherits the nice robustness properties of LTS, but is

more efficient and yields all the usual inferential output such as t-statistics, F-statistics, an

R2 statistic, and the corresponding p-values. Alternatively, inference for LTS can be based

on the fast robust bootstrap proposed in28,29.
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In most situations we have more than one explanatory variable, and for dimension d = 3

and higher it is no longer possible to perceive the linear patterns by eye. It is in those cases

that robust regression becomes the most useful. To flag and interpret the outliers we can use

the outlier map of30 which plots the standardized LTS residuals versus robust distances (7)

based on (for instance) the MCD estimator applied to the x-variables only. Figure 4 is the

outlier map of the stars data. The tolerance band on the standardized LTS residuals is

given by the horizontal lines at 2.5 and −2.5 , and the vertical line corresponds to the cutoff

value
√
χ2
d,0.975 on the robust distances of the xi. Data points (xi, yi) whose residuals fall

outside the horizontal tolerance band are called regression outliers. On the other hand, data

points (xi, yi) whose robust distance RD(xi) exceeds the cutoff are called leverage points,

irrespective of their response yi. So, the outlier map diagnoses 4 types of data points. Those

with small |ri| and small RD(xi) are considered regular observations, and most points in

Figure 4 fall in that rectangle. Those with large residuals ri (positive or negative) and small

RD(xi) are called vertical outliers (there are none in this figure). Those with small |ri|

but large RD(xi) (like point 14) are called good leverage points because they improve the

accuracy of the fit. And finally, regression outliers that are also leverage points are called

bad leverage points, like the 4 giant stars in this example. Note that the outlier map permits

nuanced statements, for instance point 7 is a leverage point but only slightly bad.

The main benefit of the outlier map is when the data has more dimensions. For instance,

the stackloss data31 is a benchmark data set with 21 points with d = 3 explanatory variables,

an intercept term and a response variable yi. We cannot easily interpret such 4-dimensional

data, but we can still look at the outlier map in the right panel of Figure 5. We see that 4 is

a vertical outlier, 1, 3, and 21 are bad leverage points, and 2 is a good leverage point. Note

that the left panel of Figure 5 does not flag any of these points because it uses the classical

LS residuals and the classical distances MD(xi), both of which tend to mask atypical points.
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Figure 5: Stackloss data: (left) standardized nonrobust LS residuals of y versus nonrobust

distances of x; (right) same with robust residuals and robust distances.

It should be stressed that flagging atypical points with the outlier map (as in the right

panel of Figure 5) is not the end of the analysis, but rather a new start. The next step

should be to try to figure out why these points are atypical and/or to improve the model

by things like data transformation, model selection, higher order terms, etc. For variance

selection in robust regression see32. When the dimension is very high one needs to resort to

sparse methods, for instance by penalization. The first sparse methods for robust regression

were developed in33,34.

Historically, the earliest attempts at robust regression were least absolute deviations

(LAD, also called L1), M-estimators35, R-estimators36, and L-estimators37. The breakdown

value of all these methods is 0% because of their vulnerability to bad leverage points. Gen-

eralized M-estimators (GM-estimators)7 were the first to attain a positive breakdown value,

which unfortunately still went down to zero for increasing p.

The low finite-sample efficiency of LTS can be improved by replacing its objective function

by a more efficient scale estimator applied to the residuals ri. This approach has led to the

introduction of high-breakdown regression S-estimators38 and MM-estimators39.
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PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a popular dimension reduction method. It tries to

explain the covariance structure of the data by means of a (hopefully small) number of

components. These components are linear combinations of the original variables, and often

allow for an interpretation and a better understanding of the different sources of variation.

PCA is often the first step of the data analysis, followed by other multivariate techniques.

In the classical approach, the first principal component corresponds to the direction in

which the projected data points have the largest variance. The second component is then

taken orthogonal to the first and must again maximize the variance of the data points pro-

jected on it (subject to the orthogonality constraint). Continuing in this way produces all

the principal components. It turns out that the classical principal components correspond

to the eigenvectors of the empirical covariance matrix. Unfortunately, both the classical

variance (which is being maximized) and the classical covariance matrix (which is being de-

composed) are very sensitive to anomalous observations. Consequently, the first components

from classical PCA are often attracted towards outlying points, and may not capture the

variation of the regular observations.

A first group of robust PCA methods is obtained by replacing the classical covariance

matrix by a robust covariance estimator, such as the weighted MCD estimator or MM-

estimators40,41. Unfortunately the use of these covariance estimators is limited to small to

moderate dimensions since they are not defined when d > n.

A second approach to robust PCA uses Projection Pursuit techniques. These methods

maximize a robust measure of spread to obtain consecutive directions on which the data

points are projected, see42,43.

The ROBPCA44 approach is a hybrid, which combines ideas of projection pursuit and

robust covariance estimation. The projection pursuit part is used for the initial dimension re-

duction. Some ideas based on the MCD estimator are then applied to this lower-dimensional

data space.
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Figure 6: Illustration of PCA: (left) types of outliers; (right) outlier map: plot of orthogonal

distances versus score distances.

In order to diagnose outliers we can draw an outlier map for PCA44, similar to the outlier

map for regression in the previous section. A stylized example of such a PCA outlier map

is shown in the right panel of Figure 6, which corresponds to the three-dimensional data in

the left panel which is fitted by two principal components. On the vertical axis of the PCA

outlier map we find the orthogonal distance of each data point to the PCA subspace. This

is just the Euclidean distance of the data point to its projection. The orthogonal distance

is highest for the points 3, 4, and 5 in the example. On the horizontal axis we see the score

distance of each data point, which is just the robust distance (7) of its projection relative to

all the projected data points. The score distance is rather high for the points 1, 2, 4, and 5

in the figure.

By combining both distance measures the outlier map allows to distinguish between four

types of data points. Regular observations have both a small orthogonal distance and a small

score distance. Points with a high score distance but a small orthogonal distance, such as

points 1 and 2 in Figure 6, are called good leverage points as they can improve the accuracy

of the fitted PCA subspace. Orthogonal outliers have a large orthogonal distance but a small
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score distance, like point 3. Bad leverage points have both a large orthogonal distance and a

large score distance, like points 4 and 5. They lie far from the space spanned by the robust

principal components, and after projection on that space they lie far from most of the other

projected data. They are called ‘bad’ because they typically they have a large influence on

classical PCA, as the eigenvectors will be tilted towards them.
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Figure 7: Glass data: (left) spectra; (right) outlier map.

As a real example we take the glass data45 consisting of spectra of 180 archaeological

glass vessels from the 16th–17th centuries. They have 750 wavelengths so d > n. The spectra

are shown in Figure 7 with their outlier map based on ROBPCA, which clearly indicates

a substantial number of bad leverage points and several orthogonal outliers. An analogous

plot based on classical PCA (not shown) did not reveal the outliers, because they tilted the

PCA subspace toward them. Also the plots of the first few principal components looked

quite different.

Other proposals for robust PCA include spherical PCA46 which first projects the data

onto a sphere with a robust center, and then applies PCA to these projected data. To obtain

sparse loadings, a robust sparse PCA method is proposed in47. When linear models are not

appropriate, one may use support vector machines (SVM) which are powerful tools for han-

dling nonlinear structures48. A kernelized version of ROBPCA (KROBPCA) is introduced

in49. For a review of robust versions of principal component regression and partial least

squares see1.
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OTHER MODELS

Classification

The goal of classification, also known as discriminant analysis or supervised learning, is to

obtain rules that describe the separation between known groups Gj of d-dimensional data

points, with an eye toward assigning new data points to one of the groups. We write pj for

the membership probability, i.e. the probability for any observation to come from Gj.

For low-dimensional data, a popular classification rule results from maximizing the Bayes

posterior probability. At gaussian distributions this yields quadratic discriminant analysis

(QDA), i.e. choosing the j for which x has the highest quadratic score dQj (x) given by

dQj (x) = −1

2
ln|Σj| −

1

2
(x− µj)

TΣ−1j (x− µj) + ln(pj) . (11)

When all the covariance matrices are assumed to be equal, these scores can be simplified to

dLj (x) = µT
j Σ−1x− 1

2
µT

j Σ−1µj + ln(pj) (12)

where Σ is the common covariance matrix, yielding linear discriminant analysis (LDA).

Robust classification rules can be obtained by replacing the classical covariance matrices by

robust alternatives such as the MCD estimator or S-estimators, as in50–53.

When the data are high-dimensional, this approach cannot be applied because the robust

covariance estimators are no longer computable. One approach is to first apply robust PCA to

the entire data set. Alternatively, one can also apply a PCA method to each group separately.

This is the idea behind the SIMCA (Soft Independent Modeling of Class Analogy) method54.

A robustification of SIMCA is obtained by first applying robust PCA to each group, and then

constructing a classification rule for new observations based on their orthogonal distance to

each subspace and their score distance within each subspace55.

An SVM classifier with an unbounded kernel, e.g. a linear kernel, is not robust and suffers

the same problems as traditional linear classifiers. But when a bounded kernel is used, the

resulting non-linear SVM classification handles outliers quite well48. As an alternative, one

can apply KROBPCA combined with LDA to the scores49.
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Clustering

Cluster analysis (also known as unsupervised learning) is an important methodology when

handling large data sets. It searches for homogeneous groups in the data, which afterwards

may be analyzed separately. Partitioning (non-hierarchical) clustering methods search for

the best clustering in k groups.

For spherical clusters, the most popular method is k-means which minimizes the sum

of the squared Euclidean distances of the observations to the mean of their group56. This

method is not robust as it uses averages. To overcome this problem, one of the first robust

proposals was the Partitioning Around Medoids method57. It searches for k observations

(called medoids) such that the sum of the unsquared distances of the observations to the

medoid of their group is minimized. The CLARA algorithm57 implemented this method for

large datasets, and was extended to CLARANS58 for spatial data mining.

Later on the more robust trimmed k-means method has been proposed59, inspired by

the trimming ideas in the MCD and the LTS. It searches for the h-subset (with h as in the

definition of MCD) such that the sum of the squared distances of the observations to the

mean of their group is minimized. Consequently, not all observations need to be classified, as

n− h cases can be left unassigned. To perform the trimmed k-means clustering an iterative

algorithm60 has been developed, using C-steps like those in the FAST-MCD algorithm. For

non-spherical clusters, constrained maximum likelihood approaches61,62 were developed.

Functional data

In functional data analysis, the cases are not data points but functions. A functional data set

typically consists of n curves observed on a set of gridpoints t1, . . . , tT . These curves can have

smoothness properties, numerical derivatives and so on. Standard references on functional

data are the books63,64. A functional data set can be analyzed by principal components,

for which robust methods are available65. To classify functional data, a recent approach is

presented in66.

The literature on outlier detection in functional data is rather young, and several graph-

ical tools have been developed67–69, mainly for univariate functions. In70 also multivariate
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functions are discussed and a taxonomy of functional outliers is set up, with on the one hand

functions that are outlying on most of their domain, such as shift and magnitude outliers

as well as shape outliers, and on the other hand isolated outliers which are only outlying on

a small part of their domain. The proposed heatmap and functional outlier map are tools

to flag outliers and detect their type. This work is expanded in20 to functional data with

bivariate domains, such as images and video.

Other applications

Robust statistics has many other uses apart from outlier detection. For instance, robust

estimation can be used in automated settings such as computer vision71,72. Another aspect is

statistical inference, such as the construction of robust hypothesis tests, p-values, confidence

intervals, and model selection (e.g. variable selection in regression). This aspect is studied

in3,7 and in other works they reference.

DETECTING OUTLYING CELLS

Until recently people have always considered outliers to be cases (data points), i.e. rows of the

n×d data matrix X. But recently the realization has grown that this paradigm is no longer

sufficient for the high-dimensional data sets we are often faced with nowadays. Typically

most data cells (entries) in a row are regular and a few cells are anomalous. The first paper

to formulate the cellwise paradigm was73, which showed how such outlying cells propagate

in computations. In more than a few dimensions, even a small percentage of outlying cells

can spoil a large percentage of rows. This is fatal for rowwise robust methods, which require

at least 50% of the rows to be clean.

Detecting cellwise outliers is a hard problem, since the outlyingness of a cell depends on

the relation of its column to the other columns of the data, and on the values of the other

cells in its row (some of which may be outlying themselves). The DetectDeviatingCells74

algorithm addresses these issues, and apart from flagging cells it also provides a graphical

output called a cellmap.
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Figure 8: Male mortality in France in 1816–2010: (left) detecting outlying rows by a robust

PCA method; (right) detecting outlying cells by DetectDeviatingCells. After the analysis,

the cells were grouped in blocks of 5× 5 for visibility.

As an example we consider the mortality by age for males in France from 1816 to 2010,

obtained from http://www.mortality.org . Each row corresponds to the mortalities in a

given calendar year. The left panel in Figure 8 shows the result of the ROBPCA method

described in the section on principal components. Outlying rows are shown in black and

regular rows in yellow. The analysis was carried out on the data set with the individual

years and the individual ages, but as this resolution would be too high to fit on the page we
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have combined the cells into 5 × 5 blocks afterward. The combination of some black rows

with some yellow ones has led to gray blocks. We can see that there were outlying rows in

the early years, the most recent years, and during two periods in between. Note that a black

row doesn’t provide information about its cells.

By contrast, the result of DetectDeviatingCells in the right panel in Figure 8 identifies

a lot more information. Cells with higher values than predicted are shown in red, and

those with lower values in blue, after which the colors were averaged in the 5 × 5 blocks.

The outlying early years saw a high infant mortality. During the Prussian war and both

world wars there was a higher mortality among young adult men. And in recent years

mortality among middle-aged and older men has decreased substantially, perhaps due to

medical advances.
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Figure 9: Cell map of the glass data. The positions of the deviating cells reveal the chemical

contaminants.

We also return to the glass data from the section on PCA. The top panel in Figure 9

shows the rows detected by the ROBPCA method. The lower panel is the cell map obtained
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by DetectDeviatingCells on this 180 × 750 dataset. After the analysis, the cells were again

grouped in 5× 5 blocks. We now see clearly which parts of each spectrum are higher/lower

than predicted. The wavelengths of these deviating cells reveal the chemical elements re-

sponsible.

Ideally, after runningDetectDeviatingCells the user can look at the deviating cells and

whether their values are higher or lower than predicted, and make sense of what is going on.

This may lead to a better understanding of the data pattern, to changes in the way the data

are collected/measured, to dropping certain rows or columns, to transforming variables, to

changing the model, and so on. If the data set is too large for visual inspection of the results,

or the analysis is automated, the deviating cells can be set to missing after which the data

set is treated by a method appropriate for incomplete data. A good rowwise robust method

of this type is75.

SOFTWARE AVAILABILITY

All the examples in this paper were produced with the free software R76. The publicly

available CRAN package robustbase contains Qn, covMcd, ltsReg, and lmrob, whereas

rrcov has many robust covariance estimators, robust principal components, and robust LDA

and QDA classification. ROBPCA and its extensions are available in rospca and robust

SIMCA in rrcovHD. Robust clustering can be performed with the cluster and tclust

packages. The package mrfDepth contains tools for functional data and cellWise provides

cellwise outlier detection and cellmaps.

Matlab functions for many of these methods are available in the LIBRA toolbox77,78,

which can be downloaded from http://wis.kuleuven.be/stat/robust .

The MCD and LTS methods are also built into S-PLUS as well as SAS (version 11 or

higher) and SAS/IML (version 7 or higher).
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CONCLUSIONS

We have surveyed the utility of robust statistical methods and their algorithms for detecting

anomalous data. These methods were illustrated on real data, in frameworks ranging from

covariance matrices, the linear regression model and principal component analysis, with

references to methods for many other tasks such as supervised and unsupervised classification

as well as the analysis of functional data. For high-dimensional data, sparse and regularized

robust methods were developed recently.

We have described methods to detect anomalous cases (rowwise outliers) but also newer

work on the detection of anomalous data cells (cellwise outliers). An important topic for

future research is to further improve the efficiency of the robust methodologies, in terms of

both predictive accuracy and computational cost.
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60. L.A. Garćıa-Escudero, A. Gordaliza, and C. Matrán. Trimming tools in exploratory data

analysis. Journal of Computational and Graphical Statistics, 12:434–449, 2003.

61. M.T. Gallegos and G. Ritter. A robust method for cluster analysis. The Annals of

Statistics, 33:347–380, 2005.
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