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1 Motivation and Introduction

Methods that treat related networks to be independent over time are not well-suited for networks observed over mul-

tiple time points. By modeling the temporal networks as different instances of static networks, we lose important

information about network evolution. Instead, modeling them as a continous process that accounts for time depen-

dencies helps us understand the evolution of the underlying network structure. In this work, we propose a state space

modeling approach for evolution of temporal networks using a class of latent variable models called latent space net-

work models Hoff et al. (2002). We assume that network dynamics in time are direct functions of evolutions in the

latent positions of the nodes. More specifically we focus on stationary vector autoregressive (VAR) representation of

the evolution rather than random walk process to model a stable and stationary evolution process that is commonly

seen in real world social networks.

We account for different possibilities of forming ties in temporal network data by extending the static latent space

model (LSM). The LSM for social networks was introduced by Hoff et al. (2002); while Hoff and Ward (2004);

Handcock et al. (2007); Raftery et al. (2012) have explored methodological and computational aspects of the static

latent space models. LSM represents the underlying network structure by the positions of nodes in a continuous

(Euclidean) latent space and thus allows for basic network properties like reciprocity and transitivity of the nodes,

with possible extension to clusterability. We extend the ideas of reciprocity and transitivity in a static LSM to the

temporal network setting. Nodes with ties at previous time points are more likely to have ties in the future, indicating

that they will lie close to each other in the future latent space. Similary, if the nodes i and j, and the nodes i and k have

ties at time t, the nodes i and k are more likely to have a tie at t+ 1. Furthermore, a network can evolve in time by the

expansion of the latent positions making the network sparser, by the shrinkage of the latent positions which makes the
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network denser, or by no change in the latent positions which implies no substantive change in the network structure,

after accounting for a common feature of the networks that do not change over time.

Existing temporal methods for latent space model focus on random walk evolution of latent positions (Sarkar and

Moore, 2005; Sewell and Chen, 2014). While these models are a good starting point they do not necessarily account

for many types of dynamics that we see in real world networks. Variance of the latent positions are increasing with

time in random walk models thus implying that the network gets sparser with time, as demontrated in Figure 1. This

assumption is not realistic in social networks, for example advice seeking network of teachers, where while the nodes

move around in the space they do not necessarily keep moving away from each other. [[TODO:CITE]]

In this paper, we introduce an alternative way to specify the evolution of the latent positions as a stable and stationary

process. We also present an MCMC algorithm to draw samples from the posterior distribution of the parameters.

Latent space positions are identifiable in this model only upto the class of distance preserving transformations. This

unidentifiability in the latent space positions also contributes to unidentifiability of the VAR parameter. Novel contribu-

tion of this work is in specifying the identifiable component of the VAR parameter and its significance in understanding

the evolution of networks with time.

Recently, there has been some work on extending existing network methods to account for temporal networks, for

example by Robins and Pattison (2001), Hanneke and Xing (2007),Hanneke et al. (2010), Westveld and Hoff (2011),

Xing et al. (2010), Sarkar and Moore (2005) and Sewell and Chen (2014). Robins and Pattison (2001), Hanneke and

Xing (2007) and Hanneke et al. (2010) have studied the networks observed over discrete time points in Exponential

Random Graph Model (ERGM) settings, also known as temporal ERGMs or TERGMs. TERGMs make standard

Markov assumption on the evolution of a network graph such that Yt is independent of Y1, . . . , Yt−2 given Yt−1 (Han-

neke and Xing, 2007), with an additional assumption that P (Yt|Yt−1) has an ERGM representation [[TODO:CITE

ERGM PAPER HERE]]. Example of network statistics can include statistics representing stability, density, overall

reciprocity, etc observed in the networks at time t and t − 1. Similar to the static ERGM, assumptions on the depen-

dence structure of ties for a network at time t conditional on the network at time t − 1 will influence the potential

network statistics that can be included in the model. As the assumption on the tie dependence deviates from inde-

pendence, the model gets more and more complicated. Snijders (1996) have also developed stochastic actor oriented

models using a continuous time Markov processes, the class of models that is very similar to ERGMs. Westveld

and Hoff (2011) extended the static model for directed networks with sender and receiver random effects and fixed

covariate effects, introduced by Gill and Swartz (2001) and later implemented by Hoff and Ward (2004), to account

for temporal dependencies in mixed effects temporal model. They assume autoregressive dependence structure on the

sender-receiver effects and the overall residual, and hence account for additional correlation in random error (random

effects) introduced by temporal dependencies. Xing et al. (2010) extended mixed membership stochastic block model

(MMSBM) (Airoldi et al., 2006) to account for the temporal nature of networks, and called it the dynamic mixed
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Figure 1: Networks simulated under random walk plus noise evolution of the latent positions

membership stochastic block model (dMMSBM). Xing et al. (2010) developed a Bayesian state-space approach for

modeling the evolution of the underlying roles of entities in a network, such that a network evolves in time through

the random walk dependence structure on the hyperparameters of the prior distribution of the membership vectors and

the block probabilities. Sarkar and Moore (2005) introduced a predictive latent space model for temporal networks.

We also note that similar work is being developed independently by Sewell and Chen (2014). Both Sarkar and Moore

(2005) and Sewell and Chen (2014) focus on random walk plus noise evolution.

Organization of the paper is as follows. We present the proposed model in section 2. We discuss the estimation of

the model parameters using MCMC in section 3. We demonstrate the performance of the model in simulated data in

section 4, and end with summary and conclusion in section 5.

2 Model

The latent space network model (LSM) introduced by Hoff et al. (2002) is characterized by the positions of the nodes

in a low-dimensional latent space. Hoff et al. (2002) describe the latent space as a social space containing unobserved

characteristics of the network, where nodes with similar latent characteristics will have nearby latent positions. First,

it is assumed that conditional on the latent positions ties in the network are assumed to form independently. Secondly,

probability of a tie between nodes i and j is inversely related to the interdistance between their latent positions.

Implications of the assumption are: i. if two nodes share a tie, they lie close to each other in the latent space and,
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ii. if two ties in a network share a common node, then the two remaining nodes will lie close to each other in the

latent space hence increasing the probability of a tie between them. Thus, LSM accounts for the two basic network

properties, reciprocity and transitivity, which is described in more detail in Hoff et al. (2002).

Let Y denote a random variable representing a network graph with n nodes. It is usually represented by a n× n socio

matrix, with entries Yij , where Yij measures the strength of a relationship from node i to node j, and can be either

discrete or continuous. We use upper-case Y to denote a random variable, and lower-case y to denote its realization.

For simplicity, we will consider a discrete and undirected network Y such that

Yij =

 1 if there is a tie between i and j

0 if there is no tie.

However, these models can be easily extended to ordinal and continuous valued ties based on the techniques used for

generalized linear models. We will use Z to denote a n× d matrix of the latent positions, such that its ith row Zi is a

vector representing the position of a node i in a d dimensional latent space. Let pij denote the probability of forming

a tie between nodes i and j and d(Zi, Zj) denote the distance (for example, Euclidean) between the latent positions

Zi and Zj .

LSM can then be written in notation as

Yij ∼ Bernoulli(pij)

ηij := logit (pij) = β0 − ||Zi − Zj ||

Zi ∼MVN(0,Σ).

(1)

Further, likelihood of the observed network y conditional on the latent positions Z and the intercept β0 is then given

by

P (Y = y|Z, β0) =
∏
i 6=j

exp[ηijYij − log (1 + exp(ηij))]. (2)

The intercept β0 in the model can be seen as an overall fixed network effect, whereas the latent positions Zis are the

random effects. Further, it is evident from the model presented above that if two nodes i and j have the same latent

position, then log-odds of forming a tie between i and j is β0. LSM is a useful and appealing method for network

analysis because it implicitly models different network features while making fewer assumptions about the dependence

structure of the ties.
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In this paper, we combine ideas from the latent space model of Hoff et al. (2002) and the state-space modeling approach

[[TODO:CITE]] to model evolution of networks in time through the changes in latent positions. We allow stationary

autoregressive dependence of order 1 in the nodal positions as a function of the previous latent positions.

Define Yt as a sociomatrix of the network at time t with entries Yijt measuring a relationship from node i to j at that

time point. Further, we will use Y1:T := [Y1Y2 . . . YT ] to denote a block matrix of socio-matrices upto T time point,

and Z1:T := [Z1Z2 . . . ZT ] to denote the block matrix of latent positions upto time T . Yt is a n × n matrix of ties,

with NA along the diagonal. Zt is a n × d matrix of d dimensional latent space, with Zit denoting the ith row of Zt.

Finally, β0 is an overall intercept of the model.

LSM for static model can be extended to account for temporal dependence as

Yijt ∼ Bernoulli(pijt) for i 6= j

logit(pijt) = β0 − ||Zit − Zjt||

Zi,1 ∼MVN(0,Σ0), for i = 1, . . . , n

Zi,t = ΦZi,t−1 + εt for t = 2, . . . , T

εt ∼MVN(0,Σ).

(3)

Further, assuming stationary VAR model we can compute the covariance matrix of each Zi,t as

vec(Σ0) := vec(var(Zi,t)) = var(Zi,1) = (I − Φ ∗ Φ)−1vec(Σ).

[[TODO:CITE]]

Here, A ∗B is a Kronecker Delta product of two matrices A and B, I is an identity matrix of dimension d2 × d2 and

vec(Σ) is a vector formed by stacking columns of Σ together.

Now lets look closely at the stationarity condition of centered VAR of order p, which is defined in Equation 4 as,

Zit = Φ1Zi(t−1) + Φ2Zi(t−2) + . . .+ ΦpZ(i(t−p) + εit

Zit −
p∑

j=1

ΦjZi(t−j) = εit

Zit −
p∑

j=1

ΦjB
jZit = εit

(I −
p∑

j=1

ΦjB
j)Zit = εit.

(4)
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Here, B is the backshift operator and I is d × d identity matrix. Then we have the condition that Zit is a stationary

VAR(p) process if the roots of the det{I −
∑p

j=1 ΦjB
j} are all outside the unit circle or equivalently all are greater

than 1 in absolute value. For V AR(1) process this condition is satisfied if the eigenvalues of Φ are less than 1 in

absolute value.

3 Estimation

We use Metropolis Hastings within Gibbs algorithm to draw samples from the posterior distribution of the parameters,

namely, β0, Z1:T , Φ and Σ. First, lets look at the joint likelihood of Y , Z, β0 and Φ under the model illustrated in

Equation 3. The joint likelihood of the data and the parameters in the model can be written as

P (Y,Z, β0,Φ) = P (Y |Z1, . . . , ZT , β0,Φ)P (Z1, . . . , ZT , β0,Φ)

=

T∏
t=1

P (Yt|Zt, β0)× P (Z1|0,Σ,Φ)×
T∏

t=2

P (Zt|Φ, Zt−1,Σ)× P (β0)× P (Φ)× P (Σ).

=

T∏
t=1

∏
i 6=j

P (Yi,j,t|Zi,t, Zj,t, β0)×
n∏

i=1

P (Zi,1|0,Σ,Φ)

×
T∏

t=2

n∏
i=1

P (Zi,t|Φ, Zi,t−1,Σ)× P (β0)× P (Φ)× P (Σ)

(5)

The priors in the model for drawing samples from the poseterior distribution of the parameters using Metropolis

Hastings within Gibbs algortihm can be specified as,

β0 ∼ Normal(µ0, σ
2
0)

Σii ∼ InverseGamma(A,B)

Φij ∼ Normal(µ, τ)I{|λii| < 1}∀ii

where, Φij is the i, jth entry of Φ and λii is the iith eigen value of Φ. µz ,Σ0,µ0,σ2
0 are hyperparameters of the model

specifying mean and variance of the prior distribution of latent positions at time t = 1 and intercept respectively.

A and B are shape and rate parameters of the Inverse-Gamma prior distribution on the iith diagonal element of the

variance of the error term in the latent space positions.

Likelihood of the network is related to the latent positions, Zt’s, only through inter-distance of the nodes in the latent

space. Any isometric transformations in Zt’s will not change the first term representing the network likelihood in

Equation 5. However, multivariate Normal density function, which is a prior density on latent positons, is not invariant

6
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to the isometric transformation unless the variance covariance matrix is diagonal representing a spherical distribution

(Tong, 2012). These properties makes estimation of Zts and Φ non-identifiable. In the rest of the section, we discuss

our approach to estimating identifiable component of Φ and its role in inference of the network dynamics.

We first show that the rotation in the latent positions is an issue only when drawing samples for the initial time point

in Monte Carlo run in Theorem 3.1.

Theorem 3.1 [[TODO:CITE/ Acknowledge Cosma for this proof]] Let Zt and Xt be two isometric latent configura-

tions. We may fix, within a single Monte Carlo run, the previous latent configuration Zt−1, the evolution operator Φ,

and the noise variance of the latent evolution Σ. Claim: If Σ−1 is strictly positive definite, then for Lebesgue-almost-all

Xt isometric to Zt, Pr(Xt|Zt−1,Φ,Σ) 6= Pr(Zt|Zt−1,Φ,Σ).

Proof The two probabilities are equal iff their logarithms are equal. After canceling constant terms which are the

same between the two probabilities, the logs are equal iff

(Xt − ΦZt−1)T Σ−1(Xt − ΦZt−1) = (Zt − ΦZt−1)T Σ−1(Zt − ΦZt−1).

Since (by assumption) Σ−1 is positive-definite, the quadratic forms appearing on either side of the equation are both

≥ 0. If only one is zero, there can’t be equality, so either they’re both zero or they’re both positive. If they are both

zero, then (again by positive-definiteness of the matrix) Xt − ΦZt−1 = 0 = Zt − ΦZt−1, implying Xt = Zt, which

contradicts the assumption that they are distinct.

Then, we are left with the case where both the quadratic forms equal the same positive number, lets call it c. The

set of points in the latent space where the quadratic form is equal to c is an ellipsoid, centered at ΦZt−1, where the

directions of the axes come from the eigenvectors of Σ and their widths from the eigenvalues. An important point here

is the center, and the fact that, because the eigenvalues are all positive, the surface extends through all dimensions of

the latent space.

Our concern is thatXt might be an -arbitrary- isometry ofZt. But sinceXt andZt must both lie on the ellipsoid, which

is centered at ΦZt−1, they cannot be related through arbitrary translations. Thus we only need to concern ourselves

with the case Xt = RZt, for an arbitrary rotation-reflection isometry R. But the set of such Xt consists of a sphere

centered at the origin, which cannot coincide with, or even be a subset of, an ellipsoid centered elsewhere. There

may be a set of intersection between the sphere and the ellipsoid, but (being the intersection of two low-dimensional

surfaces) it will have Lebesgue measure 0. �

Thus, from the above proof we observe that while rotation of the latent positions at the first time point for each Monte

Carlo draw is a potential concern for identification of Φ, the orientation of the positions for the subsequent time points

7
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at that draw will only depend on the orientation of the first one. We attempt to fix for the rotational effect by using

Procustean transformation of the latent positions at the first time point to a fixed target for each MCMC draws.

Next we use results on how this tranformation affects the estimation of Φ parameter. Let us begin by rewriting the

evolution model (state equation) that relates latent space positions at time t and time t− 1:

Zt = Zt−1ΦT + εt (6)

We will frequently refer to 6 as an equation relating true underlying relationship between latent positions over time.

Our goal in the estimation is to recover and understand this relationship. However, rotational invariance of the model

while sampling the latent positions in this setup leads to unidentifiability in the Φ parameter. We now show that Φ can

be identified only up to a class of similar matrix.

Let us consider the Kth draw of the latent positions for all T times points in MCMC estimation. We will denote it by

ˆZ1:T
K

. The latent positions at t = 1 can only be estimated upto an isometry as the latent distance is invariant to such

transformation. The orientation of Ẑ1 also determines the orientation of Ẑts for t > 1.

Denote ẐK
1:T as an isometric transformation of the true positionsZt that satisfies the relationship in 6, upto Monte Carlo

error. Let LK
t denote the transformation operator at each time t during the estimation. Also, note that LK

t = LK
t−1∀t.

However, internodal distance is preserved during these transformations (upto MCMC error). If we use D(.) to denote

the Euclidean distance operator for a matrix . then we can write:

D(LK
t (Zt)) = D(Zt)∀t.

Further, since Z1:T are unknown (latent) parameters, LK
1:T are also unknown. We attempt to fix this problem by using

procrustes transformation of the latent space positions, ẐK
1 , at each step of the Monte Carlo draw.

Let Z00 denote a fixed set of positions for n nodes in a d dimensional Euclidean space. We will call Z00 our target

positions. Then, at each step of MCMC we do procrustes transformation on ẐK
1 such that they are as close to Z00 as

possible while preserving the interdistances between the nodes. Lets denote this isometric transformation in the Kth

MCMC draw by PK
1 . Note that P1(.)K is a function of Z00 and ẐK

1 , as the transformation matrix for each time point

depends on target Z00 and ẐK
1 .

In the next two Lemmas, we first show that doing procrustes transformation on ẐK
1 produces the same set of positions

as does the procrustes transformation on Z1 directly. This fact justifies the use of procrustes transformation within our

estimation method. Next, we show how the VAR parameter in the transformed positions are related to the true Φ.

8
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Theorem 3.2 Let Z00 be an arbitrary (centered) positions. For each ẐK
1 , let PK

1 denote a isometric transformation

such that:

PK
1 := argminT tr(Z00 − ẐK

1 T )(Z00 − ẐK
1 T )T .

For each Z1, let T ∗1 denote a isometric transformation such that:

T ∗1 = argminT tr(Z00 − Z1T )(Z00 − Z1T )T .

Then, T ∗1 = LK
1 P

K
1 .

Proof Let SV D(ZT
00Z1) = UΛV T .

Then, T ∗1 := argminT tr(Z00 − Z1T )(Z00 − Z1T )T = V UT .

Also,

ZT
00Z1L

K
1 = SV D(ZT

00Z1)LK
1

= UΛV TLK
1

= UΛV ∗KT
1

(V ∗KT
t is an orthogonal matrix)

= SV D(ZT
00Z1L

K
1 ).

Then, PK
1 := argminT tr(Z00 − TZ1L

K
1 ) = V ∗K1 UT = LTK

1 V UT .

Finally note that: LK
1 P

K
1 = LK

1 L
KT
1 V UT = V UT = T ∗1 .

Theorem 3.3 Let SV D(Φ) = UΛV T and SV D(Φ∗K) = U∗KΛ∗KV ∗TK where, U , V , U∗K and V ∗K are orthogo-

nal matrices and Λ and Λ∗K are diagonal matrices of singular values.

If ẐK
t = ẐK

t−1(Φ∗K)T + ε∗Kt , then Φ and Φ∗K are similar matrices. Further, Λ = Λ∗K .

Proof The new dependence equation between transformed latent space positions up to Monte Carlo error can be

written as:

9
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Pt(W
K
t ) = Pt−1(WK

t−1)Φ∗KT + ε∗Kt

Pt(Lt(Zt)) = Pt−1(Lt−1(Zt−1))Φ∗T + ε∗Kt

Zt(P
K
t LK

t )T = Zt−1(Pt−1KL
K
t−1)T Φ∗KT + ε∗Kt

Zt = Zt−1(PK
t−1L

K
t−1)T Φ∗KT (PK

t LK
t ) + ε∗Kt PK

t LK
t .

The above equations give us tools to relate Φ∗ and Φ such that:

Φ = (PK
t−1L

K
t−1)T Φ∗K(PK

t LK
t ). (7)

First note that, Pt−1Lt−1 and PtLt are both rotation matrices. Also,

(PK
t−2L

K
t−2)T Φ∗KPK

t−1L
K
t−1 = (PK

t−1L
K
t−1)T Φ∗K(PK

t LK
t )

⇒ Φ∗K = (PK
t−2L

K
t−2)(PK

t−1L
K
t−1)T Φ∗K(PK

t LK
t )(PK

t−1L
K
t−1)T .

Thus we have that,

(PK
t−2L

K
t−2)(PK

t−1L
K
t−1)T = I

⇒ PK
t−2L

K
t−2 = ((PK

t−1L
K
t−1)T )−1

= ((PK
t−1L

K
t−1)T )T

= (PK
t−1L

K
t−1).

We can similarly show that PK
t LK

t = PK
t−1L

K
t−1 = CK for all t = 1, . . . , T , where CK is an orthogonal matrix.

Putting this all together we can rewrite 7 as:

Φ = CKT Φ∗KCK = (CK)−1Φ∗KCK .

10



520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

Thus, we showed that Φ and Φ∗K are similar matrices.

Next, denote SV D(Φ) = UΛV T where U and V are orthogonal matrices. Also, denote SV D(Φ∗) by U∗Λ∗V ∗T .

Since, SV D(Φ) is unique given some regulatory conditions on Φ we can show that Λ = Λ∗. Further,

(Pt−1Lt−1)TU∗ = U

and

(PtLt)V
∗T = V T

Further, the variance covariance matrix of ε∗t is also transformed such that COV (ε∗itPtLt) = (PtLt)Σ
∗(PtLt)

T =

COV (εit). In some ways, this equation gives us a way to define a distribution of εt.

3.1 Estimation with Missing Nodes

The first term in the product in Equation 5 can be easily obtained from Equation 2 for each time point t since the

networks are independent over time conditional on the latent positions and the intercept. However, we need to account

for the changing number of the nodes over time while computing the likelihood of the latent positions. We will assume

that nodes are missing at random. Further, once a node exits a network there is a very less chance that it will re-enter.

Thus, if a node enters the network after t = 1 we will use the time point as its initial time and assume that its latent

position has the same prior as Zi1. Let {Nt−1} denote set of nodes at time t that were also present at t− 1.

The likelihood in Equation 5 can be re-written as

P (Y,Z, β0,Φ) =

T∏
t=1

∏
i6=j

P (Yi,j,t|zi,t, zj,t, β0)×
n1∏
i=1

P (zi,1|0,Σ0(Φ))

×
T∏

t=2

nt∏
i=1

[P (zi,t|Φ, zi,t−1,Σ)I(i ∈ {Nt−1}) + P (zi,t|0,Σ0(Φ))I(i ∈ {Nt−1})]

× P (β0)× P (Φ)× P (Σ).

(8)

3.2 Prediction and Model Comparision

One of the goals of this work is to develop a systematic approach to predict future ties at T1 given the networks upto

time T . We can use the posterior MCMC draws of Z1:T to estimate Ẑ1:T . Observe that, for VAR(1) evolution model:
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P (ZT+1|Y1:T =

∫
P (ZT+1|Z1:T , β0,Φ,Σ)P (Z1:T |Y1:T , β0,Φ,Σ)dZ1:T dβ0dΦdΣ

≈ 1

L

L∑
l=1

nT+1∏
i=1

[N(Zi(T+1)|ΦZl
iT ,Σ

l)I(i ∈ {NT }) +N(Zi(T+1)|µz,Σ
l
0(Φl))I(i /∈ {NT })]

(9)

Then,

ẐT+1 = E(ZT+1) =


1
L

∑L
l=1(ΦlZl

iT ) if(i ∈ {NT })

µz else
.

And finally the predictive probability of tie between nodes i and j at time T + 1 is

p̂ij(T+1) = β̂0 − ||Ẑi(T+1) − Ẑj(T+1)||.

We use similar method for prediction using estimates of latent space positions from random walk model.

To make latent space model comparable with other longitudinal data we use Y1:T to draw intercept and Σ in the

following way:

4 Simulation

5 Summary and Discussion
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