
3 Preliminary Work

Todorova and Ventura (to be cited) showed that searching the minimum prediction risk model
over a large class of models can double the efficientcy of a common Kalman filter decoder in
offline reconstruction of arm reaches of a Rhesus macaque monkey.

Details of their work will be in the Lit sec. Waiting for the work to be published

Based on the same idea we want to provide an efficient model selection procedures that
allow us to include non-linear transformation of the spike counts and multiple observation
equations per neuron.

3.1 Generalized Weighed Least Squares (GWLS)

Let us recall that the generative model can be written as

z = Hv + ε (1)

with covariance matrix Σ ∈ RN×N , where we removed subscript t for the sake of notation.
In the first part of this section we will “forget” about the temporal prior specification and
think to estimate the velocity only from equation (1).

The GLSE(Generalized Least Square Estimator) for v can be computed as

v̂ = (HTΣ−1H)−1HTΣ−1z, (2)

where v̂ is the BLUE(Best Linear Unbiased Estimator) when Σ is known.
Based on Todorova and Ventura (2016) results, we do not believe that model (2) is correct

for all neurons at the sime time, instead we want to derive a new estimator that weight the
different observation equations based on “how good they are”. This problem is apparently
common in survey analysis where units could be sampled with unequal probability and it is
necessary to give them unequal weight, Lumely [1].

If we let W be the weight matrix W = diag(w1, . . . , wn), where n represents the total
number of neurons, we suggest a new estimator

v̂W = (HTΛ−1H)−1HTΛ−1z, (3)

where Λ = W−1/2ΣW−1/2 is a scaled version of the covariance matrix. In practice, the new
estimator downweights the “worst” neurons.

Letting n = 2, and θi = 1/wi for all i = 1, . . . n, Λ can be visualized as

Λ =

( √
1/w1 0

0
√

1/w2

)(
σ11 σ12

σ21 σ22

)( √
1/w1 0

0
√

1/w2

)
=

(
θ1σ11

√
θ1θ2σ12√

θ1θ2σ21 θ2σ22

)
.

(4)
H and Σ are estimated in the ecoding step, as usual in the Kalman Filter procedure,

while W is estimated by minimizing the mean square error between the true velocity v and
the estimated velocity v̂W , which can be written as

Ŵ = arg min{w1,..,wn:
∑

wi=1}MSE(v,vW) = arg min{w1,..,wn:
∑

wi=1}(v̂W−v)T (v̂W−v). (5)
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We can possibly apply other convex penalties but at the moment we will focus on differentiate
the expression in equation (5) and possibly prove its convexity with respect with the weights.
Notice that adding convex penalties would preserve the convexity of the Penalized MSE.

If we let Γ = Λ−1, miniming equation (5) corresponds to solve the following system of
equations 

H(HTΓH)−1HTΓ = I(n,n)

HTH(HTΓH)−1HTΓ = HT

HTΓ = HT (HTΓH)(HTH)−1.

(6)

3.2 Boosting Approach

3.3 Leave One Neuron Out Approach

3.4 Forward Approach: minimizing the Penalized MSE through direct
regression
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A Minimization of the MSE

Let’s recap that the new estimator for v is

v̂W = ((HTΛ−1H)−1HTΛ−1z)(p,1) = S(p,n)z(n,1), (7)

where Λ = W−1/2ΣW−1/2. This estimator is unbiased, in fact

E(v̂W ) = E((HTΛ−1H)−1HTΛ−1Hv) = vW .

Let’s now specify the dimensions for the matrix involved: B(n,p), B
T
(p,n), (BBT )(n,n), (BTB)(p,p),

and let’s define Λ−1 = Γ.

MSE(v̂W ,v) = Tr(V(v̂W )) = Tr(V(Sz) = Tr(SΣST )

= Tr
[
(HTΓ1H)−1HTΓ2ΣΓ3H(HTΓ4H)−1

]
.

(8)

We basically need to differentiate equation (8) wrt Γ, where Γ appears 4 times. The
subscript is to keep track of which one we are differentiating wrt.

2. =
∂(tr

[
(HTΓ1H)−1HTΓ2ΣΓ3H(HTΓ4H)−1

]
)

∂Γ2
=
∂(tr

[
Γ2ΣΓ3H(HTΓ4H)−2HT

]
)

∂Γ2
= ΣΓ3H(HTΓ4H)−2HT

3. =
∂(tr

[
(HTΓ1H)−1HTΓ2ΣΓ3H(HTΓ4H)−1

]
)

∂Γ3
=
∂(tr

[
Γ3H(HTΓ4H)−2HTΓ2Σ

]
)

∂Γ3
= H(HTΓ4H)−2HTΓ2Σ

(9)

For 1. and 4. things are more complicated so let’s do it separately. Let’s define

C = HTΓΣΓH(HTΓH)−1

and
D = (HTΓH)−1HTΓΣΓH.

Then we can rewrite the above as Tr((HTΓ1H)−1C), when we want to differentiate with
respect to Γ1 and as Tr((HTΓ4H)−1D), when we want to differentiate with respect to Γ4.
We can now differentiate using the same strategy for 1. and 4., that is

1. =
∂tr((HTΓ1H)−1C)

∂Γ1
= −H(HTΓH)−1C(HTΓH)−1HT

4. =
∂tr((HTΓ4H)−1D)

∂Γ4
= −H(HTΓH)−1D(HTΓH)−1HT .

(10)

Combining all of them we get these 4 parts, where each term is in fact a n× n matrix
1. = −H(HTΓH)−1HTΓΣΓH(HTΓH)−2HT = −P (Γ)

2. = +ΣΓH(HTΓH)−2HT = Q(Γ)

3. = +H(HTΓH)−2HTΓΣ = Q(Γ)T

4. = −H(HTΓH)−2HTΓΣΓH(HTΓH)−1HT = −P (Γ)T .

(11)
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For minimizing our problem, we want to find Γ such that

0(nxn) = −P (Γ)− P (Γ)T +Q(Γ) +Q(Γ)T

= −H(HTΓH)−1HTΓΣΓH(HTΓH)−2HT + ΣΓH(HTΓH)−2HT

+H(HTΓH)−2HTΓΣ−H(HTΓH)−2HTΓΣΓH(HTΓH)−1HT

(12)

We could start by solving P (Γ) = Q(Γ). In fact if P (Γ) = Q(Γ) then P (Γ)T = Q(Γ)T , which
implies (12) satisfied.
Let’s define UΓ = H(HTΓH)−1HT and VΓ = H(HTΓH)−2HT , then

Q(Γ) = ΣΓVΓ

P (Γ) = UΓΓΣΓVΓ = UΓΓQ(Γ).
(13)

Therefore we need to solve
Q(Γ) = UΓΓQ(Γ). (14)

Q(Γ)(n,n) is not full rank, but if we find Γ that satisfies UΓΓ = I(n,n), then we have equation
(14) satisfied as well. It seems that we can just solve the following identity

UΓΓ = I(n,n)

H(HTΓH)−1HTΓ = I(n,n).
(15)

From the equation above we get that the sytstem of equations
H(HTΓH)−1HTΓ = I(n,n)

HTH(HTΓH)−1HTΓ = HT

HTΓ = HT (HTΓH)(HTH)−1.

(16)
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