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1 Introduction

Galaxy morphology refers to the two-dimensional appearance of a galaxy as projected
onto the sky. Astronomers are interested in galaxy morphology because it contains im-
portant information about the evolution of the universe and can help constrain theoretical
models in cosmology.

Though we have vast amount of image data of the galaxy population we are inter-
ested in, direct use of images turns out to be statistically and computationally intractable.
Some dimensionality reduction method is needed to enable further analysis in the con-
text of morphology evolution.

Classification is the dimensionality reduction method astronomers have long used
in order to divide galaxies into discrete groups. The Hubble sequence (Figure 1) was
among the early well-received attempts. Approaching galaxy morphology with classi-
fication methods, however, has several drawbacks. Discretization of continuous data
obviously leads to loss of information. Also, classification schemes are usually defined
based on galaxies in the local universe and do not extrapolate well to older galaxies,
since the universe evolves and the galaxy population changes over cosmic time. More-
over, Using human annotators brings problem to the inferential accuracy since a lot of
non-expert annotators are used in the labeling process.

Adopting a continuous approach in depicting galaxy morphology can help us avoid
these drawbacks, as large-scale sky surveys such as the Sloan Digital Sky Survey! pro-
gram accumulated vast amount of data to support the measure of galaxy morphology
on a continuous scale. Various continuous quantitative measures, i.e. feature statistics
of galaxy morphology have been proposed that extract low-dimensional features from
galaxy images and in principle retain the information present in images. So the question
we wish to answer becomes: how do these statistics evolve with time?
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Figure 1: Hubble’s tuning fork diagram for galaxy morphology classification.

The standard way of measuring cosmic time in cosmology is redshift (usually de-
noted by Z). Redshift refers to the increase in wavelength of a light source when it is
moving away from the observer. It is defined as following,

o Aobserved - Aemitted
Aemitted
where Aemisred and Appservea are the wavelengths of a given photon when it was first
emitted by a galaxy and when it was observed, respectively.

The faster a galaxy appears to be moving away from us due to expansion of the
universe, the greater its redshift is. The redshift-measured velocity of the galaxy is
positively correlated to their distance from the earth. And since light from faraway
galaxies takes longer to reach Earth, the images of high redshift galaxies are snapshots
indicating how galaxies appeared early in the Universe’s history. In other words, as
redshift increases, we are going deeper into space and looking at a younger universe.

Therefore, the evolution of galaxy morphology over cosmic time reflects in the
change in distribution of morphological feature statistics as a function of redshift. In
particular, we want to explore methods to estimate the conditional distribution of mor-
phological statistics given the redshift. We want to see whether there is notable trend in
the statistics and whether our estimates are robust to different form of redshift input and
image data sources.

Our major challenge comes from the form of data. For large scale sky surveys like
the one we are working with, it is not feasible to obtain spectroscopy for all galaxies.
Astronomers have to get photometric redshift measurement using broad band filters
instead. The photometric redshift in this case is a measurement with uncertainty instead
of a precise value. Also, since the images are taken under several different filters, we
have several sets of feature statistics for each galaxy. It is not trivial how and when to
use each version of the feature statistics.

We illustrate the challenges brought by the particular dataset using some simulated
data points in Figure 2. Typically, we should have predictor-response pairs (z;,y;), as
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in the plot (a). But the precise single value redshift measurement requires taking full
spectroscopy of a galaxy and isn’t feasible in large scale surveys. Our data set has
the photometric redshift measurement. The z-coordinate has a probability distribution
instead of a single precise value, as shown in plot (b). Moreover, the image of each
galaxy is taken in different filters, leaving us with several correlated sets of image feature
statistics for each galaxy, as shown in plot (c).
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Figure 2: Illustration of challenges in analyzing our dataset. These data points are
simulated just to illustrate the form of data we have.

Previously, astronomers used what we call the discrete bin approach, mapping galax-
ies to ranges in redshift associated with band filters and comparing the morphology of
galaxies in different ranges. We extended the estimation of morphology evolution to a
continuous redshift scale. In other words, we tried to model the conditional distribu-
tion of morphological feature statistics of galaxies given any value of its redshift within
appropriate range.

This paper is organized as follows: Section 2 describes the origin and necessary pre-
processing of our data. Section 3 introduces the challenges and our strategy in estimat-
ing how the distribution of feature statistics changes over cosmic time. In particular, we
describe the discrete bin approach and then propose our continuous redshift approach.
The results are presented in Section 4, and Section 5 contains our conclusion and further
discussion about problems in the current analysis and further steps.

2 Data description

2.1 Data source and preprocessing

The data are galaxies from five fields that were observed by the Hubble Space Telescope
as part of the CANDELS program (Koekemoer et al. (2011),Grogin et al. (2011)): COS-
MOS, EGS, GOODS-North (GOODSN), GOODS-South (GOODSS), and UDS. Galax-
ies are retained for analysis only if one has a magnitude ? in the H band less than 25 and

ZMagnitude is a logarithmic measure of brightness. A smaller magnitude value means a brighter
object.



an estimated zero-redshift mass greater than 101°M,.> Image data are taken from differ-
ent wavelength ranges also known as photometric bands. Figure 3 shows the probability
for light to be transmitted at each wavelength in each band as a function of wavelength.
Table 1 summarizes the dataset available to us.

Only GOODSN and GOODSS field have image data from all five filters available.
Also, we notice that images taken in Y, J and H filters are from camera WFC3 while
V and i filters are from camera ACS. Exploratory analysis shows discordance between
images of the same galaxy from different cameras. Therefore, we will use the images
taken in filters Y, J and H for galaxies in field GOODSN and GOODSS.

Table 1: Summary of available cosmic fields

Field Number of Number of Galaxies Filters for
Catalogued Objects After Cuts Available Images

COSMOS 38671 3970 V,i,J,H

EGS 41457 4237 V,i,J,H

GOODSN 35451 3899 V,i,Y,J,H

GOODSS 34930 3385 V,i’,Y,],H

UDS 35932 4181 V,i,J,H

Hubble ACS and WFC3 Band Filter Curve
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Figure 3: Filter curves for the V, 1, H, J and Y Band. 4

2.2 Redshift measurement for galaxies

The indicator of cosmic time is the redshift Z of a galaxy. The greater the redshift, the
farther away the galaxy is from us, and the longer it takes the light it emits to reach our
telescope, and thus the older the galaxy is.

3M_, is one solar mass.
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Two primary ways of estimating redshift are spectroscopic redshift measurement
and photometric redshift measurement. Spectroscopic redshift measurement uses sig-
nature spikes and troughs resulting from atomic transitions in spectra of galaxies to
infer redshifts of galaxies. Spectroscopic redshifts are usually very precise. However,
spectroscopic redshift measurements are costly in terms of time and thus not feasible
for large scale sky surveys. A photometric redshift measurement, on the other hand,
uses broad-band observations and is much more affordable. The measurement does not
have high precision. In fact, photometric redshift measurement provides us with only a
probability distribution of a galaxy’s redshift. Redshift estimation techniques often fall
into two categories: empirical techniques that utilize machine learning algorithms and
template fitting algorithms that use a dictionary of representative galaxy spectra.

The data available include redshift measurements from different methods. In the
GOODSS field, we have access to the discretized distribution function of each galaxy’s
redshift on interval [0, 10]. In other words, we know the value [} OOl & (1)dr for n =
0,0.01,0.02,---, 10, where fz(t) is the estimated probability density function for the
redshift of a galaxy.

In the other four fields, we have point estimates for the redshifts of galaxies. These
point estimates could come either from spectroscopic redshift measurements or photo-
metric measurements. The difference in measurement techniques for this key variable
poses an interesting challenge to our analysis, and provides an opportunity for testing
the robustness of our methodology.
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Figure 4: The redshift of most galaxies have only one mode, yet some galaxies do
exhibit bimodality or other irregular shapes in the distribution of their redshift estimates.

2.3 feature statistics of galaxy morphology

Instead of using the image pixel data directly, we extract several feature statistics depict-
ing the morphological characteristics of the galaxies. Among the statistics are the Mul-
timode (M), Intensity (I), and Deviation (D) statistics proposed in Freeman et al. (2013)
are sensitive to the signatures of two galaxies merging. Gini (G) and M», described in



Lotz et al. (2004), measure the concentration of light within a galaxy. Concentration
(C), which also measures the concentration of a galaxy’s stellar light distribution and
Asymmetry (A), which measures the degree of asymmetry of a galaxy, are defined in
Conselice (2003). Mathematical details for these statistics are given in the Appendix.
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Figure 5: Several statistics are asymmetric. It is apparent that M,, I D are skewed.
Outliers exist for all these statistics.

Figure 5 shows boxplots of the feature statistics for galaxies in the GOODS-South
field calculated using images from the H band filter. Distributions of these statistics in
the other bands look very similar to the H-band distribution.

2.4 Summary of our use of the data

As shown in Table 2, we have the full photometric redshift measurement for galaxies in
field GOODSS, but only point estimates for the other four fields. For only the GOODSS
and GOODSN fields, we have feature statistics taken in all 3 bands from the WFC3
camera available. A comparison between analyses on these two fields will be good
robustness check for our method.

Table 2: Available redshift measurement and filter bands by field

Field Available Redshift Measurement Awvailable Filter Bands
COSMOS Point estimate V,i,J,H
EGS Point estimate V,i,J,H
GOODSN Point estimate V,,Y,],H
GOODSS Probability density V,1’,Y,J,H
UDS Point estimate V,1,J, H




3 Methods

Galaxy morphology evolution denotes a change in population of galaxies’ appearances
in universe over cosmic time. As mentioned earlier, galaxy morphology is depicted by
the image feature statistics and cosmic time is measured via redshift. Therefore, galaxy
morphology evolution is reflected in the change in conditional distribution of feature
statistics given redshift.

The major challenge in our analysis is the fact that redshift measurements are not
precise (in other words, they contain measurement error), and there are several sets of
feature statistics for each galaxy, due to correlated images taken in different filter bands.
In the discrete bin approach often used by astronomers, we associate a range in redshift
(we will call them redshift bins) to each filter band and map galaxies to these ranges.
Then we compare the statistics of galaxies in each bin taken in the corresponding filter
band. With the uncertainty in explanatory variable, we instead map galaxies to wider
ranges in redshift and compare the conditional distribution of feature statistics between
the redshift ranges. In the continuous approach, we treat each galaxy as a weighted
observation with the point estimate of its redshift (the point estimate is either given
in the dataset or obtained by us) and feature statistics taken in different filter bands
weighted by its probability of falling in each band’s corresponding redshift bin. We can
then use kernel regression and quantile regression to model the continuous change in
distribution of the feature statistics.

We explore the discrete bin approach previously used by astronomers and our con-
tinuous redshift approach. We describe our method for recovering continuous density
function for z given its discretized version in 3.1. We describe the discrete bin approach
comparisons in 3.2 and continuous redshift approach in 3.3.

3.1 Recovering the continuous distribution function for redshift

As mentioned in 2.2, we have the discretized probability density function for redshift of
every galaxy in the GOODSS field. Since we want to treat redshift (Z) as a continuous
variable with some uncertainty in measurement, we infer its full probability density
function using the information in its discretized version. We achieve the goal with
reasonable accuracy due to some properties of probability distributions.

The following steps help us in recovering first the cumulative density function and
then the probability density function.

1. We calculate the cumulative sum of the discretized distribution function and get
point values of the cumulative distribution function Fz(z):

x+0.01
o= Y [ pod

x+0.01<z
we get Fz(z) for z=0,0.01,---,10 from this step.

2. We fit a monotonically increasing cubic spline for Fz(z) over z € [0, 10] using the
method described in Fritsch and Carlson (1980), and get the probability density
function fz(z) via differentiation:

2(e) = S Fale).



3.2 Uncovering Morphology Evolution via Discrete Bin Approach
3.2.1 Mapping galaxies to discrete redshift bins

We want to map galaxies to several different groups according to their redshift. In

particular, we fix a wavelength value at which the morphologies are most interesting to

us. Then we find the band filter most likely to observe the light at this wavelength for

each galaxy. Some galaxies can then be mapped to a band filter (and its correpsonding

redshift range), while some are discarded since they are not mapped to any band filter.
Recall the definition of redshift,

o lobserved - )'emitted
)Lemitted
After some small rearrangement it becomes

)L()bserved = (1 + Z) : )Lemitted

The redshift z and observed light wavelength A,ps.veq are linearly related if we as-
sume fixed emitted light wavelength (also known as the rest-frame wavelength). Further
recall the filters described in 2.1: each band filter is associated with a certain range of
observed light wavelength. Therefore assuming a fixed rest-frame wavelength (45004
here), each filter is associated with a certain range in redshift.

)vmin_lrf A«max_lrf]
My ey

Afobserved € [Afminalmax] = Z € [

In other words, assuming a A,r = 4500A rest-frame wavelength, there is one band in
which photons emitted at 45004 are most likely to be observed. Assuming A = 45004 as
the rest-frame wavelength, the Y band is associated with redshift range z € [1.05,1.63],
J band is associated with z € [1.46,2.09] , and H band is associated to z € [2.12,2.71].

For every galaxy, we compute the probability that 45004 photons are observed in
each band. If the band with the highest probability, has a probability of more than 0.8
(or 0.6), then we select the band or else we throw out the galaxy completely.

For galaxies in field GOODSN, we only have a point estimate for each galaxy’s
redshift. Therefore we would identify a galaxy with a redshift band if its redshift point
estimate is within that band’s redshift range. And when the point estimate falls within
the overlap of two redshift bins, we pick the redshift bin with its center closest to the
point estimate measured by scaled distance (distance divided by width of the redshift
bin). About a third of the galaxies are left without falling into one of the five bins in
these fields.

Table 3 summarizes the result of binning galaxies in GOODSN and GOODSS field.

3.2.2 Comparing different redshift bins

After assigning galaxies to discrete redshift bins, we can compare the distribution of
morphological statistics across them.

As we mentioned in 3.2.1, a galaxy belongs to a redshift bin implies that its 45004
light is mostly likely to be observed in the corresponding filter band. So for any galaxy,
the morphological statistics taken in that filter would reflect the morphology at 4500A.
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Figure 6: Illustration of mapping galaxies to redshift bins based on photometric redshift
measurement. The curve is density function of redshift given by photometric redshift
measurement, while shaded areas are probability of the redshift being in the redshift
range of each filter band. Here the galaxy on the left is not mapped to any redshift bins
while the galaxy on the right is mapped to the J band. We set the probability threshold
at 0.8 here.

Table 3: Binning results for galaxies in GOODSN, GOODSS field

. Redshift Number of galaxies
Field measurement Total Not mapped
Y band Jband H band PP
after cuts to a band
GOODSN | Point estimate 3852 579 740 806 1774
GOODSS Photometric 3385 425 524 534 1902

Hence the morphologies of different galaxies become comparable. The three groups of
feature statistics reflect the morphology of galaxies at 45004 in redshift range [1.05,1.63],
[1.46,2.09], and [2.12,2.71]

We can compare the statistics of galaxies in different bins by looking at their re-
spective summary statistics. For example, the M and I statistics are both zero-inflated.
Comparing the portion of 0’s in different bins would show how frequency of galaxy
mergers changed over cosmic time. In general, an exploratory comparison can be easily
achieved by showing side-by-side boxplots of statistics within each bin.

3.2.3 Significance test for the bin comparison

We test for significance in the redshift bin comparisons using a bootstrap analog of
the ANOVA F test described in Zhou and Wong (2011). We can not use any of the
commonly used methods as the distribution of feature statistics include abundance of
outliers and so the assumption of normality is violated. The null hypothesis of the test
is that the feature statistics in different redshift bins come from the same underlying
distribution and the alternative hypothesis is that at least one of the redshift bins differ
significantly from the rest.



Under the null hypothesis, feature statistics of galaxies from different redshift bins
come from the same distribution, so we pool them together and sample with replacement
from the pooled data three new sets of feature statistics {Yi(l) }, {Yi(z)}, {Yi(3) }, which
correspond to the feature statistics of galaxies in band Y, J and H respectively. We then
calculate the following analog of F-statistic, which measures how much of the total
variance in the feature statistics is explained by the variance between different redshift
bins,

L (PW-1)2/G3-1)

3 _
Yy —v0)2/(vN-1)
=11

F =

where N = 1483 is the total number of galaxies associated with Y, J and H band.

Repeat this resampling and calculation enough times, we can obtain the approximate
null distribution of this test statistic. Compare this null distribution with the test statistic
calculated with original data, we have a significance test for the comparison between
redshift bins.

3.3 Continuous redshift approach

The discrete bin approach is not very satisfactory for several reasons. First, as is shown
in Table 3 over one thousand galaxies in each field are not mapped to any bin. In other
words, at least one third of our data are not utilized in the discrete bin comparison.
Second, the comparison does not extrapolate to redshift ranges outside the redshift bins.
We will not be able to make general statements about the change in feature statistics
as a function of redshift. Third, no information can be obtained about the trend of
feature statistics within the range of a redshift bin. However, these local trends could
be interesting for astronomers, since the redshift bins are wide in terms of cosmic time
(usually ranging billions of years).

Therefore, we would want to estimate the distribution of morphological statistics
over a wide continuous redshift range. For a galaxy with photometric redshift mea-
surements, we identify the mode of its redshift probability distribution and treat that
its redshift value. We can then use regression methods to obtain conditional distribu-
tion of feature statistics over a continuous redshift range. We describe our method of
identifying significant modes in 3.3.1.

The correct set of feature statistics to use in this approach is not obvious as in 3.2,
since we are trying to retain all galaxies in the analysis, including the thousands of them
which do not correspond to any specific filter band. One natural way to think is to
weigh different feature statistics taken in different filters with probability of being in the
corresponding redshift bins. We outline the method in 3.3.2.

3.3.1 Finding modes for photometric redshifts

As a starting point, we ignore the uncertainty in photometric redshift Z. Instead, we

use the most significant mode in each galaxy’s redshift probability distribution as its

real redshift value, i.e. consider z; = argmax fz(z). Then the data can be considered
Z

as (z*,Y) pairs, where Y represents the feature statistics of the galaxy. The change in
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conditional distribution of feature statistics ¥ can be estimated using standard nonpara-
metric regression methods. We pay special attention to the mode because the estimated
distribution function for redshift is less reliable at other points.

Given the probability density functions for photometric redshift recovered in 3.1,
we proceed to identify nontrivial modes of each distribution following the steps as de-
scribed below.Presence of noise in redshift measurement leads to lots of spurious peaks
in density function. So we first smooth the density function and then identify the modes
by following the steps given below.

1. We convolve the estimated density function for redshift Z, fz(z), with the density
function of distribution N(0,0.05?) to get smoothed density function of redshift

f2(2): 0
f2(2) = | 29 (z—n)dr

where ¢ (x) = — exp(—%).

2no

2. We find the local maxima of fz(z) by checking the first-order conditions:

d%fz(z) =0
d2
d_szZ(Z) <0

3. We retain only those z;’s with amplitudes of at least 30% of the global maximum
of fz(z).”

4. We record the local maxima z;’s and their corresponding function value fz(z;)’s.

For example, Figure 7 shows the original and smoothed density function for redshift
of galaxy number 42. Two significant modes are identified for this galaxy using the
method described above.

Table 4: Number of modes identified in each galaxy by count
Number of modes | 1 2 3 4 5 6
Count 3266 90 25 3 0 1

When we apply this algorithm to all 3385 galaxies in the GOODSS field, 118 of
them have more than one mode. The largest number of modes is six for galaxy number
848. For galaxies with more than one mode identified, we take the most significant
mode (the local maximum of density function with the greatest amplitude) as its point
estimate of redshift.

>The purpose of thresholding the value of f7(z) is to eliminate spurious peak points in regions with
very low density.
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Figure 7: Noise leads to many spurious peaks in the density function for redshift of
galaxy number 42. The smoothed version of the density function, however, helps us
easily identify the two significant modes at z = 2.62 and z = 3.83.

3.3.2 Getting weighted statistics for galaxies

Since now we are retaining all galaxies in our analysis, including the ones not mapped
to any redshift bins as in 3.2.1. There is no longer one particular filter for which the
observed statistics are natural choices to represent a galaxy. One way of addressing the
problem is to treat each galaxy as a weighted observation under different filters. We use
the probabilities of the galaxy falling into corresponding redshift bins as weights. For
galaxies in GOODSS field, the probabilities can be calculated easily using the contin-
uous density function obtained as in 3.1. For galaxies in the GOODSN field, we get
the weights by assuming its redshift is has a normal distribution centered at its point
estimate with standard deviation 0.27.

Table 5 illustrates how we transform the dataset into a weighted data set with redshift
on a continuous scale. Here the binning probability is the probability of a 45004 photon
of a galaxy being observed by a given band filter, as described in section 3.2.1. For
example, if the probability density function for a galaxy’s redshift is fz(z), its binning
probability for Y band is

1.63

P(Galaxy falls in Y band) = / fz(2)dz
1.05

3.3.3 Estimating E(Y|Z) using kernel regression

To estimate the conditional mean E(Y|Z) we perform a standard univariate regression
for each component of the feature vector Y. There is a rich literature covering vari-
ous methods of nonparametric conditional mean estimation, such as Wasserman (2006).
Frequently used methods include local polynomial regression, kernel regression, regres-
sion splines, etc. For kernel regression, data-driven approaches have emerged to pick

12
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Figure 8: These are some multimodal galaxies identified in the procedure described
above. Most of the spurious modes are eliminated.

the optimal tuning parameter (bandwidth /#). We use kernel regression in our modeling
here.

We pick the optimal bandwidth by 10-fold cross validation. We randomly split the
dataset into ten portions of equal size. Given each bandwidth value, we train ten ker-
nel regression models for each variable, leaving one portion out each time. Then we
calculate the L? loss of the regression function as

1 10 A(_,) ) 12
(B — D70y _y@)
L = 55 X |71 ) -1},

j:1727"'77

where f}gﬂ.) (z®) is the vector of predicted values for redshift values in the i™ portion,

h 1s the bandwidth used, and Yj(i) 18 the vector of true values of the jth statistic in the i
portion.

We minimize this function with respect to 4 to get the optimal bandwidth for each
statistic.

3.3.4 Confidence bands for kernel regression

We used design matrix bootstrap to get confidence bands for kernel regression. We
sampled with replacement from the original data matrix a data matrix with the same

13



Table 5: Illustration of getting weighted M statistics for Galaxy No. 42

Galaxy No. 42 Z | M Statistic | Weight
Band | M Statistic | Binning Probability : : :
Y 0.0756 0.119 => 2.62 0.0756 | 0.119
J 0.0167 0.234 2.62 0.0167 | 0.234
H 0.0028 0.646 2.62 0.0028 | 0.646
Principal mode of redshift: Z* =2.62 : : :

number of rows. We then fitted the kernel regression model with the resampled data set,
made predictions and obtained confidence interval for prediction at each redshift value
by taking percentiles at 2.5% and 97.5% of its repeated predictions.

3.3.5 Significance test for kernel regression

In order to make a formal statement about morphology evolution, we need to test
whether the conditional distributions of feature statistics vary significantly with redshift.
Given the kernel regression results we obtained, we would want to know whether
the change in conditional mean of feature statistics over redshift is significant. We use
the simulation based significance test introduced in Racine (1997).
Here the null and alternative hypothesis are:

IE(Y|Z)

Ho: A =E[— ?=0
HA:A:E[%]2>O

In other words, we want to test whether the feature statistics ¥ change with Z at all
in the whole range of redshift Z € [0,10]. If the null hypothesis holds and Y doesn’t
vary with Z, then the partial derivative should be uniformly 0. Otherwise the partial
derivative should be different from O at some point.

The test statistic is constructed as the sample analog of E [M] :

3 1 ﬁh Zi 2
where A = ,Zl hZJ[SE(m, <z,)>]

ﬁh(zi) is the partial derivative estimate given by kernel regression at the i-th data
point. The derivative estimate is summed over different bandwidth values so that the
choice of bandwidth won’t affect the outcome: if Y does change with Z, the estimate
of derivative will be different from 0 at least under appropriate smoothing; if Y doens’t
change with Z, the estimate of derivative should be 0 no matter the smoothing.

The standard deviation of A is obtained through bootstrap. From the sample used
to compute the test statistic, resample is drawn and A is calculated again. Repeat this
enough times (1000 in our case) and we can have an estimate of SE (A ) and perform the
one-sided test on 7.

14



3.3.6 Quantile regression for the interval estimate of feature statistics

As can be seen from Figure 5, most of the feature statistics we are interested in do not
have ideal bell-shape distributions. They tend to be heavily skewed and have lots of out-
liers. Moreover, the range limits on several statistics such as M,, makes common interval
estimate methods quite useless. We hence consider nonparametric quantile regression
methods to get the conditional quantile estimates of these statistics.

In contrast to ordinary regression, which focuses its interest on conditional expecta-
tion, quantile regression helps us get precise information about the conditional quantiles
of the response variable. It gives more detailed information about the response variable
and is very useful for analyzing data with heteroskedasticity and/or non-Gaussian errors.

The method we use here is developed in Koenker et al. (1994) and the implementa-
tion is described in Koenker and Ng (2005). The model estimate is determined by total
variation regularization. In other words, it is the solution to

‘ n 10 "
min )" (i ~4(2) + A /0 1¢(2)\dx)

where pz(y) = y(t—I(y <0)), 7 is the desired quantile for the regression.

Three quantiles we are especially interested in is the 25th percentile, the median,
and the 75th percentile, since they are usually the benchmark quantiles of a distribution.
Also, they correspond directly to the quantiles shown in box plots.

3.3.7 Confidence intervals for quantile regression

We used design matrix bootstrap for obtaining error estimates for the quantile regression
predictions. In other words, given a fixed band filter (H, J, or Y), for any redshift level Z,
we draw a sample of the same size from the empirical distribution of our data points. Get
anew model estimate along with its fitted value g*(Z), and then repeat. This process can
be repeated B (500 in our case) times, to yield bootstrap sample g* (D)) s g (2)(B)-
We can then estimate the variance of the fitted value and thus give a confidence
interval using the pivotal method, or we can simple get the percentiles at 2.5% and
97.5% to get the 95% confidence interval of the fitted value at each redshift level.

4 Results

4.1 Discrete bin approach
4.1.1 Comparison between two binning methods

As we mentioned in 3.2, since different data are available for different fields, we used
different methods for mapping galaxies into redshift bins. For GOODSS galaxies whose
photometric redshift measurements are entirely available, we associate a galaxy with a
bin if the probability of its redshift being within that bin exceeds a certain threshold
(either 80% or 60%). For the GOODSN field, since we only have a point estimate
for redshift, a galaxy is associated with a redshift bin if the point estimate is within
its redshift range. For the overlapping redshift range between Y band and J band, we
scale the distance of the point estimate to the center of the band by the width of the
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band’s redshift range and put the galaxy into the closest redshift bin. One might wonder
whether using these two methods will lead to significantly different results. And since
we also have access to point estimates of redshift for galaxies in field GOODSS, we have
a natural way of testing whether the two methods give similar binning results using the
GOODSS field galaxy redshift measurements.

We bin each galaxy in GOODSS field just as we described in 3.2.1. We also bin
each galaxy in GOODSS field using the most significant mode identified as in 3.3.1 and
associate a galaxy with a redshift bin if its most significant mode is within the redshift
range of that bin. We show the confusion matrix between the two binning methods
below in Table 6.

Table 6: Comparison between binning results

Binpoint \Binppoto | Y J H No bins
Y 423 0 0 75

J 2 524 0 63

H 0 0 534 183

No Bins 0 0 0 1581

Note: Bin e, refers to the binning result given by the method using the whole distribution and
Bin,yin, represents the result of binning using only the point estimate of a galaxy. Here Bin o0
are determined using threshold 0.8.

Bintpoin: \Binphoo | Y J  H  No bins
Y 476 1 0 21
J 3571 0 15
H 0 0 651 66
No Bins 0 1 0 1580

Note: Binp, refers to the binning result given by the method using the whole distribution and
Bin,yin represents the result of binning using only the point estimate of a galaxy. Here Bin oz
are determined using threshold 0.6.

Most of the binning results match for the two methods since both confusion matrices
are diagonally dominant. When using the 0.8 threshold, 3062 out of 3385 galaxies
remain in the same bin (or do not belong to any bin). When using the 0.6 threshold,
3278 galaxies have the same binning result between the two methods. Moreover, most
of the discrepancies between two methods are galaxies that are not assigned a redshift
bin by the point estimate method but are assigned ones by the photometric method.

4.1.2 GOODSS field

For GOODSS field galaxies, we group the galaxies into redshift bins and then compare
the statistics in each bin through exploratory visualization. Figure 10 shows the bin
approach comparisons using the 0.8 threshold. The difference is very small between
the results using 0.8 threshold and those using 0.6 threshold, which indicates the bin
approach is quite robust to change in the threshold used in our binning step.

We summarize the significant test as described in Section 3.2.3 in Table 7 and Figure
9.

As is believed in cosmology, the younger universe is more chaotic than the current
one in the sense that there are more galaxy mergers in it. Both M and I statistics are
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Figure 9: Bootstrap ANOVA for feature statistics in GOODSS field. The histogram
is approximate null distribution of the test statistic. The red vertical line represent the
statistic value calculated with the observed data.

expected to increase with redshift. Also, proportion of zeroes is expected to decrease in
both statistics from band V to band H. The illustrated comparison met all these expec-
tations.

4.1.3 GOODSN field

GOODSN is another field where we have statistics taken under all five filter bands avail-
able. We map all galaxies to five redshift bins using their redshift point estimate and
compare the conditional distributions of feature statistics amongst these redshift bins.
Figure 11 shows the comparison. The significance test result is also summarized in
Table 7.

4.2 Continuous redshift approach

We show results of bandwidth selection and significance test as described in Section
3.3.3 and 3.3.5 in Table 8.
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Table 7: Bootstrap ANOVA test results for discrete bin approach

Statistic P-value in bootstrap ANOVA test
GOODSS field GOODASN field

M 0.954 0.849

I 0.117 0.307

D 0 0.022

Gini 0 0
My 0 0.046

C 0.444 0

A 0.142 0

Table 8: Bandwidth selection and significance test results for kernel regression

Statistic | Optimal Bandwidth P-value in Significance Test
M 0.218 0.01

I 0.184 0.005

D 0.218 <1071

Gini 0.0545 <10712
My 0.179 <10712

C 0.109 0.058

A 0.065 <10712

Beyond the summary statistic C, where test is borderline significant, all tests have
very low P-values. Put in context, we know the evolution in morphology over cosmic
time is significant shown by the evolution of the seven feature statistics.

4.3 Comparison between our two estimation approaches

An important question we are interested in answering is whether the two approaches
would give quantitatively similar results. Since discrete bin approach is standard prac-
tice in astronomy, it is important that our method gives consistent results in the same
range.

We compare the our approaches by showing their results in the same plot in Figure
12 and Figure 16. In the redshift range of each redshift bins, the predicted conditional
mean, the conditional median, and the conditional 25th and 75th percentiles roughly
match the mean, median, 25th and 75th percentiles. Trends in all features statistics are
captured by the continuous redshift approach.

Looking at conditional expectation predictions first, Figure 13 shows comparison
between kernel regression predictions with confidence bands and means of each filter
band from the discrete bin approach. The 95% confidence intervals cover the bin means
most of the time. The same is true for the comparison using data in GOODSN field
from Figure 15.

The result obtained by design matrix bootstrap is shown in Figure 14. The 95% in-
tervals cover the quantiles obtained from discrete bin approach most of the time. Also,
as redshift increase to high values (~ 4) the confidence bands become very large, indi-
cating the conditional quantile estimates in high redshift region are no longer reliable.
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In the GOODSN field, we make the similar comparison between two approaches.
And similarly, the two approaches do not match well using all five band filters, yet they
match well using only Y, J, H bands, in Figure 16. And as in GOODSS field, kernel
regression shows high prediction power in estimating the conditional mean of feature
statistics over different redshift value, as shown in Figure 15.

Similarly we compare the confidence bands obtained by bootstrap in the GOODSN
field with conditional quantiles obtained via discrete bin approach. The result is shown
in Figure 17.

In brief, the above results indicate the continuous redshift approach gives largely
consistent results compared to the discrete bin approach. We could rely on the result
from the continuous redshift approach as an extension of the discrete bin approach.

5 Conclusion

5.1 Conclusion in the context of galaxy morphology evolution

As shown by both discrete bin approach and continuous redshift approach, we detect
significant sign of galaxy morphology evolution over cosmic time. In other words, the
distributions of feature statistics do evolve as a function of redshift.

The M, I and D statistics all increase significantly with redshift, indicating merger
activity is more frequent in earlier universe. However, the conditional 25th percentile
and the median do not rise much with redshift increasing, only the 75th percentile rise
significantly with redshift, indicating a relatively small portion of galaxies are driving
the trend in M, I and D via their merging activities. The Gini, M>y and C statistics
first rise in the low redshift (Z < 0.5) area and then fall slowly, which might mean
the galaxies in the early time universe have their light more evenly spread out. The A
statistic decreases with redshift, indicating galaxies in the early time universe are more
symmetric compared to galaxies in later time.

5.2 Conclusion in terms of methodology

Our results show that when we have access to photometric redshift measurements, we
can extend the discrete bin approach to a continuous estimate of the distributions of
feature statistics as a function of redshift. This method retains all data points, gives
more powerful test results while yielding consistent results compared to the discrete
bin approach. Also, we can depict the change in the distributions beyond the redshift
bins associated with band filters. We consider this our most important contribution in
this work, since with the same data set we are able to give a more detailed depiction of
galaxy morphology evolution.

In the continuous redshift approach, we tried to use feature statistics calculated with
images from all three filters available. That requires essentially combining three values
to get a true value of a galaxy’s feature statistic. For example, when we are estimating
the conditional expectation of feature statistics, the value of a galaxy’s M statistic would
be the average of its M statistic calculated with images in three filters, weighted by the
probability its redshift falls in the range of each filter. This combining process would
require the following two implicit assumptions.
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First, there has to be a certain linearity in the feature statistic of galaxies. Otherwise,
the weighted average of feature statistics calculated from images taken in different filters
wouldn’t be a plausible approximation for a galaxy’s true feature statistic in rest-frame
wavelength. Figure 13 shows that the conditional expectation estimates differ the least
between two approaches for feature statistic M, I, and D, which indicates these statistics
fit the linearity requirement better than the other statistics.

Second, the weight obtaining process requires reliable photometric redshift mea-
surement over the entire range of redshift, otherwise inaccurate weights would make
the results systematically wrong. Figure 12 shows that the continuous approach in gen-
eral deviate farther from the discrete bin approach in the H band redshift range. This
indicates there might be systematic bias in the photometric redshift measurements we
have.

In short, the consistency of our continuous redshift approach is roughly satisfying
yet the degree of consistency varies from statistic to statistic and from filter to filter. We
would think it comes from properties of feature statistics and the photometric redshift
measurement we are using. A possible direction for future work would be resolving this
discrepancy.
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Appendix: Definition of feature statistics

. Multimode (M) statistic
Given a quantile g;(such that [ of the pixels have intensity not greater than g;) for
pixel-wise intensity of an image, define the following new image,

Y B =
Birj 0 : otherWlse
where f; ; is the intensity of pixel (i, j).

Then let A; (1) and A; (o) denote the number of pixels in the two largest groups of
contiguous pixels given the quantile g;. Let ng; denote the number of pixels in
segmentation map, i.e. the galaxy mask. Define the area ratio for each quantile

1,(2)

R =—""—"
A J(1)Tseg
and the M statistic is the maximum R; value over all quantile /’s,

M = mlaXRl

The M statistic characterizes whether a galaxy is multimodal. Values closer to 0.5
means the galaxy might have more than one mode.

. Intensity (I) statistic

In computing the I statistic, each pixel in the image is associated with a local
maximum in pixel intensity using the gradient ascent method (also known as mode
clustering). And the I statistic is the ratio between the total intensity of the two
regions with greatest total intensity,

I is the statistic to complement M in characterizing whether a galaxy has more
than one bright regions, taking the intensity of regions into account.

. Deviation (D) statistic The intensity centroid of a galaxy is defined as

(xcemycen :< segZZ fl7]7 segZZ]ﬁJ)

where the summations are over all ny., pixels in the image, and the D statistic is

y/

D — \/(xcen _x1(1>)2 + (ycen _)’I(l))z

Nseg
where (x1 VI ) is the center of the pixel group with highest summed intensities.
By calculatmg the normalized distance between the center of the whole image
and the center of the brightest region, the D statistic depicts how a galaxy deviates
from a spherical or disc shape.

M, I, D statistics are introduced in Freeman et al. (2013).
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4. Gini (G) statistic
The Gini coefficient of the distribution of absolute flux values is defined as

! Y (2i—n—1)|x]]

G = —_="

[X[n(n—1) 4
where X;’s are the absolute flux values of each pixel.
The Gini coefficient describes the inequality of a galaxy, i.e. whether a majority of
a galaxy’s flux is concentrated within a small area. The higher the Gini coefficient,
the more concentrated light is among the image of a galaxy.

5. My
The total second-order moment M;ot is the flux in each pixel f; multiplied by the
squared distance from the center of the galaxy.

Mo = T = 3l 50+ 0530

where (x.,y.) is the center of the galaxy, which is calculated by minimizing M,,,.
M> is defined as the normalized second-order moment of the brightest 20% of
the galaxy’s flux.

YiMi
M> =log <ﬁ> :,where Zf,' < 0.2f101
o i

The M, statistic depicts the distribution of bright regions off the center of the
galaxy.
Both G and My are defined in Lotz et al. (2004).

6. Concentration (C) statistic
Concentration is defined as the ratio of 80%-20% curve of growth radii (rgg,20)
normalized using a logarithm.

First the value for the galaxy’s radius r is needed. Let I(r, 0) be the intensity of
a galaxy’s light, where r is defined relative to the galaxy catalog position. To
calculate the radius, define the annular surface brightness 1 (r) as follows,

") g”frrjgrrl(r’,e)r’dr’de
pir) =
GE R rdrde

define the average surface brightness mu(r),

2n (r+6
iu(r) — o Jo "' 1(,0)r'dr'dd
G o rdrde

r is then defined as the solution of equation

(r)
)

=

=&

=i
~



The concentration statistic is then defined as

C=5x lOg(rgo%/rz()%)

The concentration statistic measures the concentration of a galaxy’s stellar light
distribution.

. Asymmetry (A) statistic
The asymmetry statistic compares the image of a galaxy and its appearance after
a 180° rotation. It is defined as follows

_ X510 —Rijl = (ns/ng) Y5 |0 — Rij|
2Ys0iji

where O represents the galaxy’s image and R its image after a 180° rotation. S is
the set of pixels inside the segmentation map and S’ is the set of postage-stamp
pixels outside the segmentation map.

By comparing these two images, the A statistic depicts the degree of asymmetry
of a galaxy. Both A and C statistics are defined in Conselice (2003).

A
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Figure 10: Side-by-side box plots for feature statistics for GOODSS field galaxies in
different redshift bins. A 0.8 threshold is used in determining redshift bins for each
galaxy. Since the M and I statistics are both zero inflated, we show box plots as well as
bar plots to show portion of zeroes in the statistics.
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Figure 11: Same as Figure 10, for the GOODSN field. We see slight differences in
behavior of portion of zeroes in M and I, but the trend is still largely consistent with
Figure 10.
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Figure 12: Comparison between continuous approach and bin approach for galaxies in

GOODSS fields. The horizontal line in the middle of the box represent the median of

each bin. The O’s represent the mean of each bin. Purple curves correspond to the 25th

and 75th percentile quantile regression. The yellow curve corresponds to the median
regression. The blue curve corresponds to the conditional mean curve given by kernel

regression.
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Figure 14: For each conditional 7-quantile, we provide its corresponding interval esti-
mate via design matrix bootstrap, resampling from the galaxy population of GOODSS
field 500 times. The blue X’s are the 25th percentile, median and 75th percentile for
three redshift bins, located at the middle of each redshift bin.
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mate via design matrix bootstrap, resampling from the galaxy population of GOODSN
field 500 times.
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