
The Population Vector Could Implement
Approximately Bayesian Inference

There is considerable interest in understanding how the brain might use pop-

ulations of spiking neurons to encode, communicate, and combine sources of

information optimally, as specified by Bayesian inference. For instance, Kord-

ing and Wolpert, in a 2004 paper, showed that performance on a sensorimotor

task was consistent with optimal combination of sensory input and the statis-

tics of the task that were learned during training, while Ma and colleagues

in a 2008 paper proposed a neural modeling framework according to which

Bayesian inferences could be computed. These works focused on the form in

which inputs were combined to produce the posterior mean and variance. We

show that population vectors based on point process inputs combine evidence

in a form that closely resembles Bayesian inference, with each input spike car-

rying information about the tuning of the input neuron. We have investigated

performance of population vector-based inference with various tuning func-

tions. While it is exactly Bayesian for von Mises tuning functions, it remains

approximately Bayesian for many other cases. We also suggest that encoding

stability within short epochs of time could lead to nearly optimal sensorimotor

integration.

(1)

1



(2)

There is considerable interest in understanding how the brain might use populations of spik-

ing neurons to encode and communicate probability, and to combine sources of information in

an optimal, or nearly optimal way, as specified by Bayesian inference, see the review by (3). A

population code represents information about a stimulus or behavioral feature using the simul-

taneous activity of a population of spiking neurons that are sensitive to that feature (4). Far from

being deterministic, the neural response for the same action or stimulus varies from trial to trial.

This suggests that the brain might encode features as probability distributions. For example, for

a center-out reach action, the population code might represent a probability distribution with a

central directional tendency µθ, and a measure of precision κ.

Population code Let us suppose that spikes from each neuron i, within a population of N

neurons follow independent point processes r = {ri}i=1,...,N (see the inset panel of Figure 1).

P (ri|θ) =
exp{−fi(θ)}fi(θ)ri

ri!
(1)

The mean response fi(θ) depends on θ − θPDi, where θ is the intended direction of reach, and

θPDi is the preferred direction for neuron i.

Here, we define fi as a von Mises function, which defines an exponential family on the unit

circle, analogous to the normal distribution on the real line.

fi(θ) = Aiexp{Bi cos(θ − θPDi)} (2)

Where Ai and Bi are constants representing the ith neuron’s amplitude and precision, respec-

tively. High precision indicates narrow tuning for a particular preferred stimulus θPDi.

The parameters θ, θPDi, and µθ are directional values; for a two-dimensional workspace, they

can be conveniently expressed in circular angles [0◦, 360◦] with 0◦ being equivalent to 360◦.

Figure 1 (left) shows the response vs. reach direction for a neuron with preferred direction of
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Figure 1: Encoding reach direction. The response distribution for one neuron with preferred
direction of 180◦ is shown on the left panel (width at half amplitude= 133◦). The black solid
line indicates the mean, and the blue dashed lines are ± one standard deviation. The gray inset
shows the poisson distribution for the neuron’s response given the preferred direction stimulus.
The right panel shows the mean response for a population of 12 neurons with equal precision
and preferred directions spaced at 30◦

180◦. For a poisson distribution, the variance of the response is dependent on the stimulus with

a Fano factor (variance to mean ratio) of 1. Tuning curves for a population of N=12 neurons

with equal precision (Bi = B) are shown on the right panel of Figure 1, the preferred directions

are spaced by 30◦. Under the assumption that every neuron responds independently, the popu-

lation response distribution becomes the product of the individual neuron response distributions

as shown in equation 3. Experimental evidence shows that neural populations do exhibit corre-

lations in firing rate, but for now we maintain the assumption of independence for mathematical

simplicity.

P (r|θ) =
N∏
i=1

P (ri|θ) (3)

Now we discuss two ways of computing estimates of the stimulus from the population re-

sponse: Bayesian inference and Population Vector.
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Bayesian Inference Bayesian decoders use Bayes’ theorem to produce a posterior probability

of the stimulus given the response:

P (θ|r) =
P (r|θ)P (θ)

P (r)
(4)

Where P (r|θ) and P (θ) are the likelihood function and prior distribution of the stimulus respec-

tively and P (r) is a normalizing constant. Assuming a uniform prior (this assumption can be

revisited later), the expression for the posterior distribution in cartesian coordinates is derived

as follows:

P (θ|r) ∝
N∏
i=1

P (ri|θ) (5)

P (θ|r) ∝
( N∏
i=1

1

ri!

)(
exp{−

N∑
i=1

fi(θ)}
)(
exp{

N∑
i=1

ri log(Ai)}
)(
exp{

N∑
i=1

riBi cos(θ − θPDi)}
)

(6)∑N
i=1 fi(θ) is constant over θ when the population has a uniformly dense distribution of pre-

ferred directions as shown on Figure 1B. Hence equation 6 is simply an unnormalized von

Mises distribution governed by the last term on the right. Let S̄b = N−1∑N
i=1 riBi sin(θPDi),

and C̄b = N−1∑N
i=1 riBi cos(θPDi). Then the posterior expression simply becomes:

P (θ|r) = Ãexp{κ cos(θ − µ̂b)}} (7)

Where the concentration is κ2 = S̄2
b + C̄2

b , the central tendency is µ̂b = arctan(S̄b/C̄b), and the

normalizing constant is defined as Ã = [2πI0(κ)]−1 with I0 being the modified Bessel function

of order zero. A 95% credible interval for the central tendency can be calculated directly from

the von Mises probability distribution in equation 7 such that:

P (µ̂b − θ∗b ≤ µb ≤ µ̂b + θ∗b ) = 0.95 (8)

Thus the angular size of the credible interval for the decoded stimulus is given as Lb = 2θ∗b
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Population Vector Population vector is a simple way to compute an estimate of the stimulus

from the population response. The estimate is an average of preferred directions weighted only

by the activity of each corresponding neuron. Let S̄pv = N−1∑N
i=1 ri sin(θPDi), and C̄pv =

N−1∑N
i=1 ri cos(θPDi). The resultant magnitude and direction are given by R̄2 = S̄2

pv + C̄2
pv,

and µ̂pv = arctan(S̄pv/C̄pv) respectively.

We can also think of the population vector as an estimate resulting from every spike carrying

directional information from its emitting neuron’s preferred direction. With this in mind, we

consider spikes emitted by the population as samples from a circular random variable with

a well defined mean direction µpv. Let α2 = N−1∑N
j=1 ri cos 2(θPDi − µ̂pv), then we can

use the Central Limit Theorem to obtain an approximate 95% confidence interval for µpv as

µ̂pv ± sin−1(1.96σ̂pv) (ref. Fisher) with σ̂pv = {(1 − α2)/(2MR̄2)}1/2 as the circular standard

error. The angular size of the confidence interval for the decoded stimulus is given as Lpv =

2 sin−1(1.96σ̂pv).

Comparing Population estimates In this section we compare the uncertainty associated with

estimating the direction of reach using Bayesian Inference and Population Vector. Consider the

population response to one instance in which the intended reach direction is 180◦. Figure 2

(left) shows the population response plotted against the preferred direction of each neuron. The

estimates of the direction of reach are the maximum likelihood µ̂b (posterior mean) for Bayesian

Inference, and the activity-weighted average direction µ̂pv for population vector. Note that these

two estimates are equal for the special case of uniform precision encoding in the population.

That is if Bi = B (see Figure 1) then it follows that:

µ̂b = arctan(S̄b/C̄b)

= arctan(
N−1B

∑N
i=1 ri sin(θPDi)

N−1B
∑N
i=1 ri cos(θPDi)

)

= arctan(S̄pv/C̄pv)
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Figure 2: Computing estimates of the stimulus from the population response to an intended
reach direction of 180◦ using Bayesian inference and Population Vector. Left: Population re-
sponse plotted against the preferred direction of each neuron and shown in cartesian coordi-
nates (inset). Right: Posterior probability distribution of the stimulus given the response using
Bayesian inference (top), and probability distribution of the stimulus using Population Vector
and circular Central Limit Theorem (bottom).

µ̂b = µ̂pv (9)

Yet the uncertainty associated with each estimate is not necessarily equal. Figure 2 (Middle)

shows the respective probability densities associated with each estimate. The credible interval

of size Lb was obtained by applying Bayesian Inference under the assumption of a uniform prior

distribution, and does not satisfy the coverage property. On the contrary, the confidence interval

of size Lpv was obtained using the Central Limit Theorem, which means that it satisfies the

coverage property. When repeatedly computing the ratio of credible interval size to confidence

interval size we observe that the distribution is centered at 1 with a standard deviation of 0.112

(Figure 3).
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Figure 3: Distribution of the uncertainty ratio of credible to confidence interval for 10,000
repetitions for the population of neurons shown in Figure 1 and a stimulus of 180◦
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Figure 4: Comparing Performance of Bayes and Population vector based on the distribution
of the credible and confidence intervals. Left: Distribution of credible (top) and confidence
(bottom) intervals for 10,000 repetitions and population from Figure 1. The horizontal bars
indicate the width of each distribution based on 2.5 to 97.5 percentiles. Middle: Width of
interval size distribution as a function of population size (tuning curve width at half amplitude
is same as Figure 1). Right: Width of interval size distribution as a function of firing rate
amplitude for the population given in Figure 1
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Appendix 1: Deriving the population response distribution

P (r|θ) =
N∏
i=1

P (ri|θ)

=
( N∏
i=1

1

ri!

)(
exp{−

N∑
i=1

fi(θ)}
)( N∏

i=1

fi(θ)
ri

)

=
( N∏
i=1

1

ri!

)(
exp{−

N∑
i=1

fi(θ)}
)(
exp{

N∑
i=1

ri log(fi(θ))}
)

=
( N∏
i=1

1

ri!

)(
exp{−

N∑
i=1

fi(θ)}
)(
exp{

N∑
i=1

ri log(Ai) + riBi cos(θ − θPDi)}
)

=
( N∏
i=1

1

ri!

)(
exp{−

N∑
i=1

fi(θ)}
)(
exp{

N∑
i=1

ri log(Ai)}
)(
exp{

N∑
i=1

riBi cos(θ − θPDi)}
)

(10)
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