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Abstract

The brain uses populations of spiking neurons to encode, communicate, and com-
bine sources of information, we are interested in how this process might be opti-
mal as specified by Bayesian inference. Previous work from Kording and Wolpert
[1] showed that performance of a sensorimotor task was consistent with opti-
mal combination of sensory information and training knowledge; Ma et al. [2]
also proposed a neural modeling framework according to which Bayesian infer-
ences could be computed.These works focused on the form in which inputs were
combined to produce the posterior mean and variance. We show that population
vectors based on point process inputs combine evidence in a form that closely
resembles Bayesian inference, with each input spike carrying information about
the tuning of the input neuron. We investigated the performance of population
vector-based inference with various tuning functions. We show that while its per-
formance is exactly Bayesian for von Mises tuning functions, it remains approxi-
mately Bayesian for many other cases.

1 Introduction

There is considerable interest in understanding how the brain might use populations of spiking neu-
rons to encode and communicate probability, and to combine sources of information in an optimal,
or nearly optimal way, as specified by Bayesian inference. A useful review of the literature is pro-
vided by Beck et al. [3]. In neural encoding terms, a population represents information about a
stimulus or behavioral feature using the simultaneous activity of a population of spiking neurons
that are sensitive to that feature [4]. Far from being deterministic, the neural response for the same
action or stimulus varies from trial to trial. This suggests that the brain might encode features as
probability distributions (Eq. 3). For example, for a center-out reach action, the population code
might represent a probability distribution with a central directional tendency p9, and a measure of
precision k.

2 Population code

In this section we define a probabilistic model of population code (Eq. 3). First, let us suppose that
spikes from each neuron ¢, within a population of N neurons follow independent point processes
r = {r;}i=1,...~ (Eq. 1, also see the inset panel of Figure . The mean response f;(6) depends on
0 — 6pp;, where 0 is the intended direction of reach, and 6 pp; is the preferred direction for neuron

- exp{—,(0)} fi(6)"

Ti!

P(r;|0) = (D

Next, we define f; as a von Mises function (Eq. 2), which defines an exponential family on the
unit circle, analogous to the normal distribution on the real line. Where A; and B; are constants
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Figure 1: Encoding reach direction. The response distribution for one neuron with preferred di-
rection of 180° is shown on the left panel (width at half amplitude= 133°). The black solid line
indicates the mean, and the blue dashed lines are 4 one standard deviation. The gray inset shows
the poisson distribution for the neuron’s response given the preferred direction stimulus. The right
panel shows the mean response for a population of 12 neurons with equal precision and preferred
directions spaced at 30°

representing the 44, neuron’s amplitude and precision, respectively. High precision indicates narrow
tuning for a particular preferred stimulus 6pp;.

fi(0) = Ajexp{B;cos(6 — O0pp;)} 2)

The parameters 6, Opp;, and py are directional values; for a two-dimensional workspace, they can
be conveniently expressed in circular angles [0°, 360°] with 0° being equivalent to 360°.

Figure|[I| (left) shows the response vs. reach direction for a neuron with preferred direction of 180°.
The noise observed in experimental recordings is typically approximated by a poisson distribution
[2], such that the variance of the response is dependent on the direction stimuli with a variance to
mean ratio of 1. Tuning curves for a population of N=12 neurons with equal precision (B; = B) are
shown on the right panel of Figure[l] the preferred directions are spaced by 30°. If we assume that
every neuron responds independently, the population response distribution becomes the product of
the individual neuron response distributions as shown in equation 3. We maintain the assumption
of independence for mathematical simplicity, although experimental evidence shows that neural
populations do exhibit correlations in firing rate.

N
P(r|0) = H P(ri]0) 3)

Now we discuss two ways of computing estimates of the intended direction stimulus from the pop-
ulation response: Bayesian inference and Population Vector.

3 Bayesian Inference
Bayesian decoders use Bayes’ theorem to produce a posterior probability of the intended direction
stimulus given the response:
b(r|0)P(6)
POr) = —————= 4
0 = =5y @

Where P(r|0) and P(6) are the likelihood function and prior distribution of the stimulus respectively
and P(r) is a normalizing constant. We obtained an expression for the posterior distribution in
cartesian coordinates by assuming a uniform prior, which we will revisit in a later section, and
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combining equations 1-3.

POl x [ Pr) )
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(6)
vazl fi(9) is constant over # when the population has a uniformly dense distribution of pre-
ferred directions as shown on Figure [IB. Hence equation 6 is simply an non-normalized von

Mises distribution governed by the last term on the right, exp{zl].vzl r;Bicos(f — Opp;). Let
Sy, = N1 Zivzl riBisin(0ppi), andin’;, = N1 Zf\; riB; cos(0ppi). We can define the con-
centration parameter as 2 = S? + CZ, the central tendency as i, = arctan(S,/Cy), and the

normalizing constant as A = [271y(x)]~! with I, being the modified Bessel function of order zero.
Thus the posterior expression becomes:

P(0r) = Aexp{r cos(0 — fu)}} (7

A 95% credible interval for the central tendency can be calculated directly from the von Mises
probability distribution in equation 7 such that:

Py — 05 < py < fip + 6) = 0.95 (8)

Thus the angular size of the credible interval for the decoded stimulus is given as L, = 20}

4 Population Vector

An alternative to Bayesian inference is a population vector estimate, which is a simple way to com-
pute an estimate of the stimulus from the population response [5]. The direction stimulus estimate
is an average of preferred directions weighted only by the activity of each corresponding neuron. Let
Spy = N1 Zfil r;isin(0pp;), and Cp, = N1 Zj\; r; cos(@pp;). Note the absence of B; com-
pared to Bayesian Inference. The resultant magnitude and direction are given by R? = SZU + C’gv,
and fi,,, = arctan(Sp,/Cpy) respectively.

We can also think of the population vector as an estimate resulting from every spike r; carrying
directional information from its emitting neuron’s preferred direction fpp;. With this in mind,
we consider spikes emitted by the population as samples from a circular random variable with a
well defined mean direction pp,,. Let ag = N -1 Z;\le r;cos2(8pp; — fipy). We use the Cir-
cular Central Limit Theorem [6] to obtain an approximate 95% confidence interval for u,, as
fipy £ sin"(1.966,,) with 6, = {(1 — aa)/(2M R?)}'/2 as the circular standard error. The an-
gular size of the confidence interval for the decoded stimulus is given as L, = 2sin™"(1.966,,).

5 Comparing population estimates

In this section we compare the uncertainty associated with estimating the direction of reach using
both Bayesian Inference and Population Vector. Consider the population response to one instance
in which the intended reach direction is 180°. Figure 2 (left) shows the population response plot-
ted against the preferred direction of each neuron. The estimates of the direction of reach are the
maximum likelihood fi;, (posterior mean) for Bayesian Inference, and the activity-weighted average
direction /i, for population vector. Note that these two estimates are equal for the special case of
uniform precision encoding in the population. That is if B; = B (see Figure 1) then it follows that:

fp, = arctan(Sy/Cp)

NIBY N risin(@ppi)

N*lBZiA;lmcos(HpDi)
arctan(Sy,/Cpy)

Hy = ﬂpw ©)

= arctan(
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Figure 2: Computing estimates of the stimulus from the population response to an intended reach
direction of 180° using Bayesian inference and Population Vector. Left: Population response plotted
against the preferred direction of each neuron and shown in cartesian coordinates (inset). Right: Pos-
terior probability distribution of the stimulus given the response using Bayesian inference (top), and
probability distribution of the stimulus using Population Vector and circular Central Limit Theorem
(bottom).
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Figure 3: Distribution of the uncertainty ratio of credible to confidence interval for 10,000 repetitions
for the population of neurons shown in Figure 1 and a stimulus of 180°

Yet the uncertainty associated with each estimate is similar but not necessarily equal. Figure 2
(Right) shows the respective probability densities associated with each estimate. The credible inter-
val of size L; was obtained by applying Bayesian Inference under the assumption of a uniform prior
distribution. On the contrary, the confidence interval of size L, was obtained using the Central
Limit Theorem. When repeatedly computing the ratio of credible interval size to confidence interval
size we observe that the distribution is centered at 1 with a standard deviation of 0.112 (Figure 3).
This suggests that although not exactly equal, the uncertainty of L, tends to be approximately equal
to that of L.
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