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1 Introduction

Chikungunya Fever is an emerging viral disease in the Americas, caused by the alphavirus,
Chikungunya virus (CHIKV) and transmitted by mosquitos. The most common symptoms
of Chikungunya are fever and joint pain; the joint pains are sometimes known to last for
years. The fever may be accompanied with headache, muscle pain, joint swelling, or rash.
Chikungunya has occurred in outbreaks of unpredented magnitude in Asia, Africa, Europe
and the Americas since 2004. The disease has affected approximately two million people,
with some areas having attack rates as high as 68% (Roth et al., 2014).

The Chikungunya virus is transmitted to humans by the bite of infectious mosquitos,
predominantly mosquitos of the Aedes genus; Aedes aegypti and Aedes albopictus (Lahariya
and Pradhan, 2006). The first indication of Chikungunya can be identified by the sudden
onset of fever two to four days after exposure. The fever typically lasts for two to seven
days and is usually accompanied by joint pains which typically last for weeks or months
and sometimes for years. Sometimes there are other symptoms like muscle pain, head ache,
nausea, fatigue and rash (Sourisseau et al., 2007). Chikungunya has a mortality rate of little
less than 1 in 1000. Usually the elderly, infants or those having underlying chronic medical
problems having higher risk of complications (Mavalankar et al., 2008).

Chikungunya virus has an incubation period ranging from one to twelve days, and is
most typically three to seven days(Thiberville et al., 2013). That is, it takes typically three
to seven days after the exposure of the disease, for an individual to show symptoms. The
disease occurs in two stages. The first stage usually begins with a very high fever, usually
above 102°C and sometimes reaching 104°C. The fever lasts from a week to ten days, during
which viremia occurs. However, other symptoms like headache and extreme exhaustion last
for another five to seven days (Chhabra et al., 2008).

The second stage of the disease lasts for approximately ten days during which symptoms
improve and the virus disappears from the blood. This is followed by strong joint pains and
stiffness in muscles, which last for weeks but may last for years. Joint pain is reported by
87% to 98% of the patients and often results in near immobility of the affected joints. During
the La Reunion outbreak (in Runion Island in the Indian Ocean) in 2006, more than 60%



of the people reported painful joints three years after the original Chikungunya infection
(Schilte et al., 2013). Similarly after a local epidemic of chikungunya in Italy, 66% of the
people reported muscle pains or joint pains one year after acute infection (Moro et al., 2012).

The word ‘Chikungunya’ is believed to have been derived from ‘Kungunyala’, meaning
“that which bends up” in Makonde language, which refers to the contorted posture of people
affected with the severe joint pain associated with this disease (CDC, 2006). Chikungunya
was discovered by Marion Robinson and W.H.R. Lumsden in 1955 after an outbreak in 1952
on the Makonde Plateau, the mainland part of modern-day Tanzania. They found that
in Africa, the virus largely cycles between other non-human primates, like monkeys, birds,
cattle, and rodents, and mosquitos between human outbreaks (Powers and Logue, 2007).
Due to the high concentration of virus in the blood of those infected (or in the acute stage
of infecton), the virus can circulate to and fro between humans and mosquitos very easily.
Hence outbreaks are usually related to heavy rainfall which implies increase in mosquito
population (Burt et al., 2012).

Since its discovery, periodic outbreaks have been documented in Africa, South Asia, and
Southeast Asia. After some years of inactivity, in 2005 Chikungunya caused large outbreaks
in Africa and Asia. For example in 2006, in India it re-appeared after 32 years of absence
in an outbreak that reported 1.25 million suspected cases(Lahariya and Pradhan, 2006).
Before that, the largest Chikungunya epidemic that had been documented was in 2005 in an
outbreak on the Runion Island in the Indian Ocean. It was estimated that 266,000 people
were affected on the island which had a population of approximately 770,000 people (Roth
et al., 2014).

The outbreak which started in 2005 was very severe and its severity is attributed to a
change in the genetic sequence of the virus which allows it to multiply more easily in mosquito
cells. The mutation also allows the virus to be carried by the Asian tiger mosquito, Aedes
albopictus, in addition to its main vector or carrier Aedes aegypti. This could increase the risk
of outbreaks since Aedes aegypti grows strictly in tropical climate whereas Aedes albopictus
is a more invasive species which has spread through Europe, the Americas, the Carribean,
Africa and the Middle East (Schuffenecker et al., 2006) (Tsetsarkin et al., 2007).

While CHIKV transmission had never been documented in the Americas before 2013, the
potential for outbreaks had long been recognized because of the prevalence of the vectors
and their efficiency at transmitting dengue viruses (CDC, 2014). In December 2013, Pan
American Health Organization (PAHO) and World Health Organization (WHO) reported the
first cases of locally acquired Chikungunya infections in Americas, reported from St. Martin
(Leparc-Goffart et al., 2015). As of August 2015, 1.5 million cases have been reported in
Americas since its start in December 2013, which has amplified the concern and awareness
about this disease.

Due to the recent emergence of the disease in the Americas, the current extent of spread
and risk is uncertain. It is important for us to understand the spread of Chikungunya for
effective intervention, but it is a difficult task as cases might be unrecognized or confused
with other diseases such as dengue. Some cases might not even get reported. Analyzing
travel patterns is also important to understand the spread of transmissions. But it is very



difficult to capture travel patterns in real-time and sometimes the patterns change due to
the outbreak itself. Further, epidemics are themselves stochastic in nature (Johansson et al.,
2014).

In 2013 Pan American Health Organisation (hereby called PAHO) in collaboration with
the U.S. Center for Disease Control and Prevention (CDC) published new guidelines on
Chikungunya. PAHO recommends that countries must maintain the capacity to detect and
confirm Chikungunya cases, manage patients and implement social communication strategies
to reduce the presence of mosquitos (PAHO, 2013). PAHO then published the cumulative
number of Chikungunya cases for all the countries in the Americas.

To understand and predict the spread of the Chikungunya disease we model the infected
case counts using SIR compartment models for the different countries. We also consider the
travel between countries and incorporate infected people traveling from one to the another.

2 Data on Chikungunya Transmission in the Americas

Countries affected by Chikungunya in the Americas are required by PAHO to maintain
a record of the progress of the disease since December 2013. The countries maintain a
record of the number of suspected, confirmed and imported cases of Chikungunya in their
country. The suspected and confirmed cases are counts for autochthonous (locally acquired)
transmissions. Autochthounus cases are those cases which are native rather than descended
from migrants or colonists and hence their presence in a country signifies the presence of the
virus in the mosquito population of the country. In addition to collecting the raw counts,
PAHO computes the incidence rate of the disease in every country, that is, it reports the
number of confirmed autochthonous transmissions per hundred thousand population.

PAHO maintains the weekly record of the cumulative counts for all the countries in
Americas on their website (www.paho.com). Currently fifty-one countries in the Americas
have been affected by Chikungunya and so the data consists of the cases reported weekly in
each of these countries since December, 2013.

There are usually errors in the reported cumulative infected cases either due to misdiag-
nosed cases or miscounting. These errors are usually corrected in subsequent weeks. As a
result of these corrections, sometimes the cumulative count reported decreases. For example
on plotting the difference in the cumulative counts of consecutive weeks for Colombia and
French Guiana, we notice in Figure 1, that the number of infected cases is negative at week
45 and week 30 for Colombia and French Guiana respectively. Since we do not know if the
error was made the previous week or the current week, we just assume zero new cases in
that week instead of negative count.

3 Methods

We have used two different types of models to model the number of infected cases of Chikun-
gunya, namely a multi-country SIR model and a multi-country ARIMA model. The multi-
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Figure 1: Confirmed new cases per epidemic week in Colombia and French Guiana. The
count at week 45 for Colombia and at week 30 for French Guiana are negative due to error.

country SIR and ARIMA models have been discussed in subsections 3.1 and 3.3 respectively.
We used the multi-country SIR compartment model to understand the spread of the disease.
The model helps us understand whether Chikungunya will cause an epidemic. The multi-
country ARIMA model was considered for a different reason, namely, in order to estimate
the number of infected cases in the future. In this section, we also consider an extension
of the simple SIR compartment model, given in subsection 3.2, that includes the mosquito
population. As we do not have necessary data on the mosquito population we do not use this
model. Despite this it is discussed in this section to exlain how multi-country SIR models
can be extended to incorporate mosquito population.

In order to model the dynamics of the disease in this section, we account for infected
people travelling from one country to another. In the SIR compartment modeling, we use a
different SIR compartment model for each country and include a variable for people travelling
between the infected compartments of the different countries. The optimum model is found
by minimizing the sum of squared errors in estimating new infected cases per week in all
the countries. The data for the movement comes from flight itineraries. Currently we just
assume the number of people traveling every week is a constant due to unavailability of data.

In the ARIMA modeling, the travel between the countries is incorporated by considering
multi-variate ARIMA models. The number of infected cases of Chikungunya in each country
is considered to be a variable. Hence considering a multi-variate model explains the influence
that a country has on another country in speading the disease.

3.1 Multi-Country SIR Compartment Model

Compartment models are one of the most commonly used methods for modeling epidemics.
The method is founded upon differential equations and was introduced by Kermack and
McKendrick in the early 1900s (Kermack and McKendrick, 1927). These models serve as
a base mathematical framework for understanding the complex dynamics of diseases. The



model assumes the population to be a homogeneous mixture of people who are divided be-
tween compartments. The compartments in the model represent their health status with
respect to the pathogen in the system. They also assume perfect mixing within the popula-
tion which implies that people make contact at random and do not usually mix in a smaller
subgroup.

The SIR model is a compartment model that considers three compartments called Suscep-
tible (S), Infected (I) and Removed (R). Individuals belong to the susceptible compartment
if they are susceptible to the infection. They belong to the infected compartment if they
are already infected and to the removed compartment if they are neither infected nor sus-
ceptible. The italic letters, S, I and R are used to denote the populations in S, I and R
compartments respectively. The italic letter N is used to denote the total population, that
is, S+I+R=N.

Now only people in the susceptible (S) compartment can get infected in the population.
Also they get infected only when they come in contact with an infected person (with some
probability). Hence the rate at which people get infected is proportional to the rate of con-
tacts between susceptible and infected people, that is, it is proportioanl to SI/N. Once the
suspectible people are infected they leave S compartment. Hence the rate at which suscep-
tible people get infected is also equal to the rate at which the S compartment’s population

decreases. Therefore,
dsS ST

it © N
Now if 3 is defined as the contact rate, which takes into account the probability of getting
the disease in a contact between a susceptible and an infectious subject then it becomes the
proportionality constant in the above relation.

Now considering the infected (I) compartment, we notice that the population increases
as the infected people from S compartment move to the I compartment. But some of the
infected people also recover from the disease and hence are removed to the R compartment.
~ is considered as the recovery rate, indicating the average proportion of infected people who
recover every instant. Hence v can also be seen as the inverse of the average recovery time.
Then the change in the population of I compartment can be given by,
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The people who recover just move to the Removed (R) compartment. Hence SIR models

are usually defined by the following differential equations.
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where,

[ is the contact rate,

v is the recovery rate,

S is the number of susceptible people,
I is the number of infected people,

R is the number of removed people,
N is the total population.

The basic reproduction number, Ry = £ is defined as the expected number of new
infections from a single infection in a population where all people are susceptible. Therefore
having a value of Ry > 1 indicates an epidemic where the infection peaks and eventually dies
down and a value of Ry < 1 indicates that the infection will die out without an epidemic.

We model every country with a different compartment model and include travel between
the infected compartments of different countries. Due to the unavailability of weekly travel
data between the countries, we assume that the number of people who cross borders be-
tween a pair of countries is constant per week. We also assume that the populations of the
countries remain constant over time. Hence movement between the susceptible and removed
compartments of different countries is inconsequential to the dynamics of the disease. We
also assume that movement is homogeneous, that is, the ratio of people belonging to the
different compartments among the people who cross borders is same as the ratio of people
belonging to the compartments in the country. It is also assumed that there is no migration
between countries and so the number of people traveling from country i to j is the same as
the number of people moving from j to i.

Therefore the cross-border SIR compartment model for countries i = 1,2,..,m is charac-
terized by the following differential equations:
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where ;,7:,5:, i, R; and N; are defined as before for country ¢ = 1,2,...,m and r;; = rj;
denotes the number of people traveling between any two countries i and j.

CHIKYV is transmitted by mosquitos but the cross-border SIR compartment model does
not really take into account the mosquito population. To incorporate the mosquito popula-
tion we could consider a compartment model which included mosquitos.

3.2 Multi-Country Ross-Macdonald Model for Mosquito-borne In-
fectious Diseases

Ronald Ross and George Macdonald developed a mathematical model of mosquito-borne
transmissions commonly known as Ross-Macdonald Model (Smith et al., 2012). The model
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considers homogeneous human and mosquito population and perfect mixing within the popu-
lations and between the mosquito and human population. It also assume constant population
of the humans and mosquitos. The model is given by:

dIy Ny — Iy
1 — bl — I
@~ b= =l
dI I
d—f = ac(Ny — IM)N—Z — 61y (3)

where,
a is the mosquito biting rate,
b is the mosquito to human transmission probability, per bite
¢ human to mosquito transmission probability, per bite
~ human recovery rate: inverse of average duration of infection in humans,
0 mosquito death rate: inverse of average duration of mosquito infection. Iy number of
infected humans,
Ny total number of humans in population,
Iy number of infected mosquitos,
Ny total number of mosquitos in population.
We could consider a Ross-Macdonald model for each country and then incorporate the
travel between the infected compartments of the countries. Then the differential equations
for the system would be
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where the a, b;, ¢;, Vi, iy Nuiy Lrris Nagi, Iy ave as defined in (3) for country i = 1,2, ...,m. r;
is as defined in (2) for the cross-border SIR compartment model.

Due to the lack of data on mosquito population, we do not use this approach for the
results discussed in the next section.

3.3 Autoregressive Integrated Moving Average (ARIMA) Model

While the previously discussed compartment models used Differential equations, a different
approach for modeling disease counts is an ARIMA model which uses data at previous time
points to estimate the present. ARIMA models are used to fit time series data either to
better understand the data or to predict future points in the series (forecasting). They
are applied in some cases where data show evidence of non-stationarity, where an initial
differencing step (corresponding to the “integrated” part of the model) can be applied to
reduce the non-stationarity (Box and Jenkins, 1990).

Non-seasonal ARIMA models are generally denoted by ARIMA (p, d, q) where parameters
p, d, and q are non-negative integers, p is the order of the Autoregressive model, d is the
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degree of differencing, and q is the order of the Moving-average model. ARIMA models form
an important part of the Box-Jenkins approach to time-series modelling.

Given a time series of data X; where t is an integer index and the X, are real numbers,
then an ARIMA(p, d ,q) model is given by:

(1—20@1) <1+Ze L’) (5)

where L is the lag operator, the «; are the parameters of the autoregressive part of the model,
the 6; are the parameters of the moving average part and the ¢; are error terms. The error
terms ¢; are generally assumed to be independent, identically distributed variables sampled
from a normal distribution with zero mean.

The above can be further be generalized as follows.

<1—Zazy) L) Xt—5+<1+20ﬂ> (6)

This defines an ARIMA(p,d,q) process with drift 6/(1 —>"7_, ;). ARIMA(p,d,q) are very
useful for forecasting a time series. We use multivariate ARIMA models to explain the spread
between the countries.

4 Results

4.1 Exploratory Data Analysis

The chikungunya epidemic started in the Americas in December, 2013. There have been
a total of 61,282 confirmed autochthonus cases in the Americas in a total of 97 epidemic
weeks counting up ovember 6th, 2015. As mentioned earlier, the case counts are updated
cumulatively and sometimes due to manual errors, the counts are updated in the consecutive
weeks. As a result of the updates, sometpnes the cumulative counts decease in consecutive
X . . New paragraph. . .
weeks instead of being non-decreasing /& or exam%fe, we notice a sudden drop in the total
cumulative confirmed cases in the Americas from Epidemic week 71 to 72, that is from May
gth to 15th, 2015. The counts drop from 31,223 to 8,790 in a week. The most likely reason
for such an abrupt change is a change in the process of updating the cumulative counts. As
the reason of the abrupt change is unknown, we assume that the cumulative counts were
computed newly from Epidemic week 72. So we adjust for the change and add 31, 223 to all
the cumulative counts henceforth.

On taking a difference of the cumulative counts to get the new confirmed autochthonus
cases Eer week, it is seen that due to the adjustment, the new count of 8,790 at week 72
is w *ﬂlﬂhlgﬁe?u{gﬁsa'ﬁfcﬁrﬁaazny other week, see Figure 2. This implies that our assumption that
a new set of cumulative counts were started at week 72 is false. To avoid complications
and not lose too much information, we just assume that there were no new confirmed cases
between week 71 and 72. The number of new confirmed cases from week 73 onwards are
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Figure 2: Total infectious subjects per week in Americas. We observe an anamoly at epidemic
week 72 in the first figure due to an adjustment in the process of updating the cumulative
number of confirmed autochthonus cases. The second one is the corrected version of the
first and the corrected cumulative counts are the cumulative sum of the counts given in this
figure.

Parameters [ v Ry
Americas 1 0.9695 1.0314

Table 1: The estimates of parameters 3, the contact rate, v, the recovery rate and Basic
Reproduction Number Ry = 'g for the Americas.

assumed to be correct and then the new cumulative counts are taken under consideration.
The corrected new confirmed cases per week can be seen in Figure 2.

4.2 SIR compartment model for the total counts in the Americas

. . N for this. . .
We model the spread of chikungunya in %em%%ﬁm the Americas

using an SIR compartment model. We select the optimal values of 5 and « for the Americas
by minimizing the log-sum of error squares using Nelder-Mead optimization algorithm. We
start the algorithm at / = 111, R = 0 and S = N — I, where [N_igthe population of Americas,
which.is.currently 991,134 thousand. Since the cumulative counts of the confirmed cases
give the sum of the I and R compartments till the given week, the error is computed as the
difference between the cumulative counts and the sum of estimated I and R from the model.
We try different starting values for the parameters and select the optimum value with the
minimum objective function. The optimum values can be seen in Table 1. The R, value is
1.0314 which ig greater than 1, which implies that chikungunya will cause an epidemic in
the Americas{Fbola’s basic reproduction number was found to be 1.51 for Guinea, 2.53 for
Sierra Leone and 1.59 for Liberia (CL, 2014D
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The drawback of a compartment model is that though it can predict if a disease will
be an epidemic or an endemic, it fits an exponential curve to the number of people in the
infected compartment and so the prediction of the number of new cases is not very accurate,
see Figure 3.

Confirmed Autochthonus cases per week in Americas
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Figure 3: Predicted number of confirmed cases per week in Americas.

4.3 Multi-country SIR model for St. Martin and St. Barthelemy

Missing period
The CHIKV transmission first started in artgiqrf in the Caribbean islands and spread to
St.-Barthelemy, also known as St. Barts. We modeled the transmission between them using
a cross-border SIR compartment model given in (2 ), where number of countries m = 2. The
number of people traveling from St. Martin to St. Baths and vice-versa is assumed to be,
r19 = 1r91 = 210, that is approximately 30 people travel from one to the other per day. This
number is obtained by looking at flight itineraries and capacity of each flight.

Due to the availability of only the cumulative number of confirmed cases, we have the sum
of the number of people in infected and removed compartments. So the optimum parameters
of the model can be found by using Nelder-Mead optimization algorithm, similar to what we
did in the case of the whole of Americas. We minimize the log-sum of squared errors where
the errors are computed by taking the difference between cumulative confirmed cases and
sum of estimated I and R for the two countries seperately.

Modeling the CHIKV transmissions in St. Martin and St. Barts using both the SIR model
(1) and the cross-border SIR model, we get the values of § and v for the two countries as
given in Table 2. The estimates of the parameters do not vary too much between the SIR
compartment model and the cross-border SIR compartment model. Interestingly, though the
Ry value for whole of Americas was seen to be greater than 1, in this case for both countries
it is less than 1. This could be because the disease died down pretty quickly in St. Martin
and St. Barts due to their small populations. The data confirms this as we see that the
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Compartment model St. Martin St. Barthelemy

Parameters o] y Ry B Y Ry

SIR 0.7979 0.9669 0.8252 0.7456 0.8706 0.8564
Multi-Country SIR 0.8046 0.9738 0.8262 0.7029 0.8261 0.8509

Table 2: The estimates of parameters 3, the contact rate, v, the recovery rate and Basic
Reproduction Number Ry = g for St. Martin and St. Barthelemy.

St. Martin's Infected Cases per Week St. Bart's Infected Cases per Week
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Figure 4: Infectious subjects per week inthSt. Martin and St. Barthelemy. The peak of the
infectious period occurs at sixth week. In case of St. Barts the peak does not seem to have
been captured.

infection indeed dies down in ten weeks in both countries. The number of infections peak in
the sixth week but we can see that the CHIKV infection did not cause an epidemic in these
two countries, see Figure 4. It is also noticeable that the peak is not captured very well by
the model and hence, it would not serve as a very good forecasting model.

4.4 ARIMA model for predicting counts in Americas

In order to create a good foreX‘asting model, we consider ARIMA models. For fore-casting the
total cumulative number of confirmed cases in whole of the Americas using an ARIMA (p,d,q)
model as given in (6) (Section 2.4), we choose the ideal parameters p, d and q by minimizing
the Akaike Information Criterion (AIC). The model thus chosen is ARIMA(4,3,8) with an
AIC value of 1477.632. But this model fits a total of 13 parameters and seems to be overfitting
the data and so we pick ARIMA(0,3,2) whose AIC is 1480.766 which is pretty close to the
AIC value of the previous model. Comparing this prediction to the predicted values of the
compartment model, we notice a huge improvement in the prediction (see in Figure 5).

To forecast the cumulative counts in the different countries, we could either fit an
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Figure 5: Predicted number of total cumulative confirmed cases and the total confirmed
cases per week in Americas. The black dotted line with the predicted value. We notice that
its much better than the fit of the SIR compartment model.

itis

ARIMA(0,3,2) to them (the model used for the total counts in Americas), or find the best
ARIMA (p,d,q) model for the country using minimum AIC, or fit a multivariate ARIMA (p,d,q)
model, given in (7) (Section 2.5) to all the countries and use that to forecast in the given
country. The multivariate ARIMA model fits a lot of parameters and so we need suffiecient
data to predict them. Unfortunately as discussed earlier we just have six countries which
have more than 30 weeks worth of data but even that does not suffice. Therefore we fit the
multivariate ARIMA model for just the three countries with the maximum data, namely
French Guiana with data for 45 weeks, Puerto Rico with data for 60 weeks and Colombia
with data for 54 weeks. Figure 6 compares the three different models for Puerto Rico.

We fit the multivariate ARIMA model with the minimum AIC to French Guiana, Puerto
Rico and Colombia. The model hence chosen is a multi-variate ARIMA(0,1,1). Similarly,

changing from - the univariate ARIMA model chosen for just Purto Rico is ARIMA(2,3,1). The models

active to

passive voice. _are fit on the data before epidemiological week 90 and we use it to forecast the number of

Maybe it
would help to
keep it
consistent.

cumulative cases for the next 8 weeks. The number of confirmed cases for the weeks can
then be found by taking a difference. In Figure 6 where we compare the forecasts for Puerto
Rico we notice that, the multi-variate model forecasts much better because it is smoother.
Also its variance is higher because of the multiple parameters that we are estimating.
Comparitively the two univariate ARIMA models are much less smooth¢ because of
which they predict the increase in the counts much better in the first couple of weeks.
The two univariate ARIMA models, the one that was selected for the total number of
counts in the Americas, ARIMA(0,3,2), and the one that was selected as the best model
for Puerto Rico, ARIMA(2,3,1), seem to be performing similarly. This could mean that
instead of fitting a seperate model for every country, it could generally be a good idea to
fit ARIMA(0,3,2) to all the countries. We look at the residual plots for ARIMA(0,3,2) and
ARIMA(2,3,1) in Figure 7. The plot shows us that other than a huge negative residual on
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Figure 6: Comparing ARIMA(0,3,2), which was selected for the total cumulative counts
in Americas, ARIMA(2,3,1), which was selected for Puerto Rico alone and multi-variate
ARIMA(0,1,1). Observed confirmed counts are given by the black line. The predictions are
made for epidemiological weeks 90 to 98, based on available previous data.
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Figure 7: Comparing the residuals for Puerto Rico of ARIMA(0,3,2), which was selected for
the total cumulative counts in Americas, ARIMA(2,3,1), which was selected for Puerto Rico
alone and multi-variate ARIMA(0,1,1). The predictions are made for epidemiological weeks
90 to 98, based on available previous data.

week 50, the fit of ARIMA(0,3,2) and ARIMA(2,3,1) are similar. This validates our state-
ment that ARIMA(0,3,2) works pretty well for Puerto Rico. Similarly it also performs well
for French Guiana and Colombia.

5 Discussion

The CHIKV outbreak in the Americas started in December 2013 in St. Martin and soon
spread to other countries of the Americas. Currently fifty-one countries in the Americas have
been affected and understanding the spread of the disease is critical to alert people to the
risk of disease and to implement control measures. We used cross-border SIR compartment
model to model the CHIKV transmission between St. Martin and St. Barthelemy, which
were the first two islands in the Caribbean to have been affected by the infection. We notice
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that the CHIKV transmission did not cause an epidemic in the two countries and died down
after a while.

We plan to use the cross-border SIR compartment model and the SIR compartment
model for all the countries in America. The data of travel between the different countries is
not very easily available which makes it challenging to fit a cross-border SIR compartment
model.

As data on mosquito population is also not available it could be challenging task to fit
the Ross-Macdonald model to the data. The current estimates of mosquitos in a location is
primarily based on Centers for Disease Control and Prevention (CDC) light trap collections,
which provide only point data. Logistic regression models have also been proposed to esti-
mate mosquito abundance in areas not sampled by traps (Diuk-Wasser et al., 2006). The
estimates of mosquito populations could be used to fit Ross-Macdonald model.
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