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BIOMETRICS 27, 77-102 
March 1971 

The following paper was presented by H. 0. Hartley on August 21, 1970 during the 7th 
International Biometric Conference held in Hannover, Germany. Bernard G. Greenberg was in 
the Chair. 

STOCHASTIC COMPARTMENTAL ANALYSIS: MODEL AND LEAST 
SQUARES ESTIMATION FROM TIME SERIES DATA 

J. H. MATIS AND H. 0. HARTLEY 

Institute of Statistics, Texas A&&M University, College Station, Texas 77843, U. S. A. 

SUMMARY 

This paper is concerned with a discrete population of particles in a steady state com- 
partmental system. The system is considered to have m compartments and thl transitiotis 
are stochastic in nature. Such systems may be used to model a variety of problems; one 
application is sketched in this work. 

Efficient estimation of these transition rate parameters requires the associated distribu- 
tion theory. This paper advances the distribution theory considerably by providiing a 
compact analytic solutioin to the compartmental problem. 

Often in practice, individual compartmenits are inaccessible for observation and 
instead time series data are available only on the passage of material to the system exterior. 
The covariance kernel of such observations is derived in this paper and utilized for 'effi- 
cient' parameter estimation. The recommended estimation procedure is demornstrated on 
both simulated and biological data, and in the process the merits of the procedure are 
clarified. 

1. INTRODUCTION 

Recently a new branch of biomathematical modelling, called compart- 
mental analysis has been developed. The concept of compartmental analy-sis 
assumes that a system may be divided into homogeneous components, or 
'compartments.' Various characteristics of the system are determined by 
observing the movement of tracer material. 

Usually the theory is applied to describe the niovemerit of a population 
of tracer molecules, e.g., the flow of iron molecules within sheep (Carter et al. 

77 
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78 BIOMETRICS, MARCH 1971 

[1964]). Possibly since the individual molecules are infiinitesimal in size, nearly 
all the previous literature has made the implicit assumption of a deterministic 
flow pattern. Papers by Zilversmit et al. [1943] and Sheppard anid House- 
holder [1951] are principal founders of the deterministic compartmnental 
thleory, and more recently Sheppard [1962], Rescigno and Segre [1966], and 
Whlipple and Hart [1963] provide comprehensive reviews of the theory aind 
partial bibliographies of its application. Estimation in the d-eterministic 
model utilizes the ordinary least squares techni(ue, and recent'ly 'sinultaneous 
equation' estimation for timewise uncorrelated error has been introduced to 
compartmental models in a series of papers by Beauchamp and Cornlell 
[1966; 1968; 1969]. 

On the other hand, stochastic compartmental analysis, which assumes 
probabilistic behavior of the tracer particles, has been slow to develop. 
Bartiholomay [1958] was an early pioneer of the stochastic assumption, and 
solved the one-compartmient model. Cornfield et al. [1960], after reviewvmg 
some questions of estimation in the deterministic nmodel, arrive at the con- 
clusion that the stochastic model is more 'realistic' and should be investigated. 
Their treatment of the stochastic aspects, howvever, is brief and admittedly 
'preliminary'; their assumption that observations are independent over time 
is 'unsatisfactory' fromi a practical standpoint. Several subsequent papers 
have solved for the 1st and 2nd moments of special 2- or 3-compartment 
models; see e.g. Bernard et at. [1965] and Matis and Carter [1970]. iBut the 
probability distribution theory and its implementation into an estirnation 
procedure, the two fundainental problems of stochastic compartmental 
analysis, still reinain to be solved. 

In a sense, a comparlmental model can claimn only to represent an 'ap- 
proxiinate' theoretical background for the biological observTed phenomena, 
in that it emyiploys an abstraction of 'transfer' of particles without specifying 
a detailed causative theorv responsible for the transfer mechanisms. It is also 
becauise of this approximate feature that a stochastic compartmental theory 
is more realistic in that a detailed causative mechanismii, lacking in the deter- 
ministic model, is supplied by a stochastic model. This paper treats the case 
of a finite tracer population in a compartmental system with probabilistic 
flow. The joint generating function for the rn random variables specifyingr the 
nuimber of tracer particles in each compartment is derivecl. Inversion of the 
generating function gives the joint distribution of the rm ranidom variables 
at any particular point in tine; from whence the covariance kernel for the 
total number of particles in the m-compartment system at different times is 
derived. The paper also recommends a procedure to incorporate the covari- 
ance kernel in the nonlinear least squares estimation of the parameters 
from time-series data. 

2. AN APPLICATION 

As is appareimt in the above mentioned reviews, compartmenital analysis 
finds application in many diverse areas of biomedical science. Heretofore the 
applications have been predomiinately physiological or pharmacokinetic and 
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STOCHASTIC COMPARTMENTAL ANALYSIS 79 

it is not as well known that compartmental models have been proposed under 
other termninology in many other areas of endeavor; see e.g. the sociological 
model of Herbst [1963], the public health miodel of Fix and Neyman [1951], 
and the anatomical model of Blaxter et al. [1956]. This paper will illustrate 
the theory as applied to the last of these models; the application to other 
areas is immediate. 

More specifically, the application motivating this paper is twofold: (1) 
to develop a stochastic model describing the passage of a given material 
through the gastrointestinal tract of ruminants, e.g. cattle and sheep, and 
(2) to estimate the 'turnover-rate' parameters of the given material from 
fecal output of its tracer. Animal nutritionists identify a great variety of 
materials for which the above modellinig is useful; one particular substance 
of interest, for example, consists of indigestible, plastic beads used as roughage 
substitute. 

Previous biological evidence suggests that compartmental anialysis is 
applicable to the above problem. The gastroinitestinal tract may be con- 
ceptualized as a series of 'vats' (see e.g. Hungate [1966] chapter V) and indeed 
Blaxter et al. [1956], by assuming deterministic behavior, have obtained 'good' 
fits of experimental data to a very restricted 4-coimpartment imodel. They 
suggest the compartments are identified as in Figure 1. 

The theory subsequently developed will incorporate stochastic behavior 
into any configuration of mn compartments. All associated turnover rates 
may then be estimated. 

3. SOLUTION OF m-COMPARTMENT STOCHASTIC MODEL 

3.1. Derivation of partial differential equation 
Let a general rn-compartment system', where each compartment is 

connected to each other and to the system exterior, be given. It follows that a 
general system has Tn' parameters. Figure 2 represents a general ni = 2 
compartment systemi with 2n' = 4 parameters. Let N, (0) be the known num- 
ber of labelled units introduced into compartment i at tirne 0 and let Ni(t) 
be a random variable specifying the number of units irn compartment i at 
time t. Let bij be the transition intensity or 'turnover rate' from compartment 
i to compartment j, whlere b,o represents ani excretion fro-m compartment i. 
Th-en, by definition, bji At is the probability that a particular unit migirates 
from compartment i to compartment j in the tiine interval At. 

TwN,o assumptions of (steady-state) compartment analysis are introduced: 
(1) the bi. are independent of time and (2) each of the Nj(t) units acts in- 

Rumen - Abomasum a Duodenum | Feces 

FIGURE 1 

A sirnple examnple of the following general theory is clisetssed in section 5. 
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80 BIOMETRICS, MARCH 1971 

EXI 2 [ 

lbol lbo2 

FIGURE 2 

dependently. We now,r derive the fundamental differential equation for the 
joint distribution of stochastic variables, Ni(t). Although this could be directly 
derived for differential time, dt, we prefer a direct derivation by starting from 
a finite increment, At, and letting At approach 0. 

Given the N,(t) independent units in compartment i at time t, the con- 
ditional probability that a single unit moves from i to j in At is deternmined 
by the binomial law to be 

N,(t)(bji At)(1 - bi At)Ni (t) -1 

which may be expanded in terms of At to 

N,(t)bii At + o(At). 

Similarly the probabilitv of more than one migration in At is o(At). 
There are 2m - 1 possible ways for the number in compartment i, Ni(t), 

to change in At; compartment i may gain a unit from any of the m - 1 other 
compartments, or it may lose a unit either to another compartment or to the 
system exterior. Though these events are not independent, clearly the prob- 
ability of two or more events occurring in At is again o (At). 

Let a simple event be a change in the number of at least one compartment. 
Also let 

Pkl k2 ... km[t; N1(t), . . , Nm(t)] ki 0=, :41 

denote the conditional probability that given N,(t), N2(t), *. , Nm(t) units 
in the compartments at time t, the event { each compartment i gains (or loses) 
ki units respectively} occurs in the time interval (t, t + At). Then to first 
order magnitude of At, the above considerations determine m2 different events 
with probabilities: 

p-1,,o ... = Ni(t)bol At 

p-,,o ..o = NI(t)b2l At 

P-1,00 .. .1 = N,(t)b,n, At 

* ~~~~~~~~~~~~~~(1) 

Po,o,o -1_J = Nrn(t)bom At 

P1,o,o...-1 = Nm(t)blm At 

-Nm(t)bm-,m At 
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STOCHASTIC COMPARTMENTAL ANALYSIS 81 

Note that each event is associated with one of the m2 bii parameters of a 
general m-compartment system. 

The above probabilities (unit jumps in a continuous parameter, t, for 
integral states, Ni(t)) define an n-dimensional birth-death process. By stand- 
ard techniques (see e.g. Bartlett [1966] or Bailey [1964]), one may first write 
the Kolmnogorov forward equations and then a linear partial differential 
equation for the generating function. Let irn,,7 ,..m(t) be the probability 
that Ni(t) = ni , i = 1, , mn. Then it follows that 

Wni,n2,-.,nJ1(t + wt) = n +1,n2,...,nm(f)P-1l0b0b@@@0(f) 

+ 7rn3L+1,n2_1 , e,nJ0(tp- I ,110, . . ., 0(+ 

+ 7rn + l,n .... nin- (t)p_ 011 .. I ,*ee1 (t) + 

+ 7rn ,n2, *- e,n -tn+(0)pO t0 e @,l 

+ ~~~~~ 
+ 7rn1,n*, -,nm-,-19nm,+1(0)pO,OO,0 ,,-(t 

- p.1,ng,-,nJO(t) - P10 - P 00 

- -Po0, 0,,_1W(t)]. (2) 

From equations (1) and (2) the forward equation is readily seen to be 

d7r,,n2 -nrt(t) (n + 1) (t) + ( dz~~~n - 1)[7rn.+l,n ...... ..()ol +7rn1.+1,n11-1,---nJt)b21 dt 

+ + 7rni+1,n2,...,nm-1(t)bmn1 + *. 

+ (fm + l)[rnw1,n2, ..,nm+1(t)born + 7rnl1-1,n, -,n,n+1(t)bIm 

+ + 7rn ,n, ...,nm-i-l,nm+l(t)bm-l .m(t)] 
m m 

-7n, n nn(t) E ni E b3,i* (3) 
i-1 i=o 

j;i 

Since the moment generating function (m.g.f.) is defined as 

MI(01 , 02 I Om , t) = E 7n 1,n2- ,nL(t)I eOini' 
(nl_,n2, - e,rm)i= 

where the Oi are real, a partial differential equation for the m.g.f. may be 
m& Oini hns found by multiplying both sides of (3) by Hi=, e and then summing over 

all possible values of the m-tuple (n, , n2, , nm). Using such relations 
as 

n17rnx,ns ,-,nJ0t OInIe 
(ni,ngB, -,nns?) * 

- Z fln7rn1*,n2*,...,nm*(t) T e 0 ., 
(n, *, ns* * *,nm *) it1 
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82 BIOMETRICS, MARCH 1971 

where n0 = n1 + 1, n = n2 - 1, and n;i = ni for 3 < j ? m; and then 
multiplying throughout by M_'1 to transformn the m.g.f. to the cumulant 
generating lunction (c.g.f.), say K(01 , 09, *., O, , t), one has the relation 

aK(Ol , o0, , O?Sn 7 f; 

Y' J(e' K(Pb Z 0 2K(0OM02 1) -)bo; + m 1)b}j , , Om (4) 

Inasmuch as at time t = 0 there are NV (0) = Ni knowni units in each comn- 
partment i, an initial condition is 

Kc(01 9 02, , Onm 
X ) = Ni i * (5) 

i-I 

The form of equations (4) and (5) is -well known; indeed, Bailey [1964] has 
formalized rules of thumb through which the equations could be written 
directly from the probability intensity parameters, bij , andl the initial unit 
counts. 

3.2. Solution of partial differential equzation 

The first moments of the compartments, ;ti(t) = E[Ni(t)], are partic-L 
larly interesting. A system of equationis describing the 1 i(t) may be derived 
by (1) expanding the c.g.f. in terms of its cumulants and exptanding- the 
exponential terms in powers of the Oi , (2) performing, t'Uhe appropriate dif- 
ferentiations on both sides of the equation, and finally (3) equating coefficients 
of 01 through 0Om . Let MT(t) be the rn-vector of expected values, [y,(t), . 

YM(t)], an-d definie an rn X m matrix B (bii) such that bsi, for i 5-- j, are the 
previously introduced transition probabilities and 

?n 

bi1 F- bifi 
ij0 

Note that bsi is a linear combination of all rates leaving compartment i. 
With these definitions, the system of equations derived from (4) to describe 
the first moments may be written 

M'(t) = BM(t), (6) 

where M'(t) designates the derivative of M (t). Equation (6), however, is 
identical to the deterministic equationis of a general rn-compartment system 
(see Sheppard [1962] p. 30). Thus by appealing to uniqueness properties, 
the following proposition is proven, which though not surprising, is nonetlle- 
less important subsequently: 
Proposition 1. The expected value, gu (t), of the number of units in each 
compartment i of a stochastic n-compartment system is identically equal to 
its deterministic solution. 

Matis and Carter [1970] have solved for the second moments of a 2- 

This content downloaded from 128.237.144.15 on Tue, 19 Jan 2016 05:21:33 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STOCHASTIC COMPARTMENTAL ANALYSIS 83 

compartment system by the same technique of equating second order coeffi- 
cients. However, the second (and higher) moments of an 7n > 2 compartment 
system are difficult to solve by the same method; the linear system describing 
the second moments involves -m.(rn + 1) equations. A simpler and more 
revealing method involves solving for the c.g.f. directly from equations (4) 
and (5). Of course, another compelling argument for an explicit solution of 
the c.g.f. rests in its ability to define uniquely the associated probability 
distribution. 

The followving definitions are essential for the c.g.f. Let p be the negative 
transpose of the matrix B in (6), i.e. g = -BT. Let the latent roots of 5 be 
o j = 1, . , rn; and assume that the complex numbers ai are distinct. 

Correspoinding to each ai , a latent rn-vector, say F', may be found where for 
subsequent convenience the first element is either 0 or is standardized to 1. 
Let F = (f j) be the matrix of these latent vectors, i.e., 

fil f12 ... flm 

= [1 F2 ... Fm] L;fl :;: ii 
Jn1l fm2 . f. 

The determinant of F is denoted IFl, and the cofactor of fi by Fii . Another 
function of the turnover rates, pki(t ; bo1 , , ..* , brnm), or in abbreviated 
form p.i(t), is now defined by 

1 m 

Pki(i) = Zfi,Fk,C-ec 
i 

(7) ps) IF'I L ii=1 
and it may be shown to be a real number. Further, the m-variate c.g.f. which 
solves equations (4) and (5) is 

K(01 2 X** t) = ( N,(0) In I + E(e -)Pki( (8) i=1~~~~~= 

Whilst the differential equation (4) is readily available, we are not aware 
that solution (8) has been given before in the literature of compartmental 
analysis, and it is this that contributes to the theory2. The result is readily 
verified for the special case rn = 2 by substitution into (4). 

3.3. Resultant probability distribution 
The remainder of this section will explore the properties of the generating 

function. The jth marginal c.g.f. is immediately 

K(O, 0 , ,0,t) . .2N In [1 + (e?' - 1)pji(t)] (9) 

2 It has siince come to our notice that our problem is related to the so-called 'illness-death' process treated 
by Chiang [1968] who uses probability generating functions which he derives as solutions of a differential 
equation treated in his Chapters 4-7. Equation (8) is derivable from his published work. 
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84 BIOMETRICS, MARCH 1971 

The mean and variance of N, (t), say g, (t) and o-v(t), are found by expanding 
and differentiating (9) to be, for v = 1, * m, 

A-Wt = NiAVi (t)s 
(10) 

os(t) = jj Nip.i(t)[1 - p,(t)]. 

Consider the case where only the uth compartment is labelled; i.e., 
Ni = Ni(O) = 0 for all i F u. Then as an immediate consequence of the non- 
negativity of the variance, one may show that 0 < pvu(t) < 1 for all t. Since 
u and v are arbitrary, the following inequalities are established: 

0 < Pv,uf(t) < 1 for all u, v, and t. (11) 

Consider also the random variable NT(t) = Em=l Ni(t). By properties of 
expectati.ons, its expected value, AgT(t), is 

m m 
gT(t)= EN i E P(t) (12) 

i=1 V=1 

Since the total system cannot gain units in addition to the initial dose, clearly 
0 < NT(t) < NT(O). If only the uth compartment is labelled, it follows that 

0 < N<(t) < Nu(0) 
from whence 

0 < IT(t) = N.(O) E p'u(t) < NU(O). 

Thus since EV=l p,u(t) < 1 holds for all t and arbitrary u, the following is 
true: 

E PVu(t) < 1 for all u and t. (13) 
u=1 

A fundamental result may now be established: 
Proposition 2. Let the rn-vector &(t) be defined by &T(t) = [NQ(t), N2(t), .** 
Nm(t)]. Also let IFi(t), where rF(t) = [y1i(t), y2i(t) , ym(t)] for i = 
1, 2, * *, m, be distributed as a multinomnial with parameters Ni(0), P,j(t), 
PTn(t). i dPi (t); i.e. 
Prob [li (t), 72i (t), . . . mi(t) ] 

t~~~~~~~~~1 ~ ~ t 

in Z ji _ Ni(O)- E jii 
NTi(O) ! pji I pjii i 

m 
yjii! N (0)- 'Yii 

Then &(t) is distributed as the sum of the mt independent ri(t), i.e., 
in 
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STOCHASTIC COMPARTMENTAL ANALYSIS 85 

A verification of this claim is now sketched. The pi i(t) functions in equa- 
tion (8) meet the restrictions of multinomial parameters by virtue of inequali- 
ties (11) and (13). Moreover each of the m terms in the c.g.f. (8) has the form 
of a multinomial c.g.f. Hence by appeal to uniqueness properties of the 
c.g.f., the vector rri(t) corresponding to each term is distributed as a multi- 
nomial with the above parameters. The independence of the ri(t) results 
from the additivity of the c.g.f.'s. 

A physical interpretation may be attached to the r, (t) vectors as follows. 
The 'y,i (t) random variables characterize at time t the dispersion throughout 
the compartments (j) of the Nj (0) units which originated in compartment i. 
The Vri(t) vector is intuitively a multinomial but the Pii(t) parameters are 
usually involved functions of the bij turnover rates. Logically, the behavior 
of the Nj (0) units is independent of the, say, N'(0) units originating in com- 
partment i' 0 i, and indeed Proposition 2 establishes this assertion. Hence 
in a two-way layout of the yj,(t) elements, as in Figure 3, the rows are in- 
dependent. 

Compartment at time t Vector 
1 ... j m Notation 

'Yii(t)o -Yjl(t) 'y1 eml() r(t) 

Compartment 
at time 0 

mn y71(t) *yjm(t) * y*m(t) rn(t) 

Total N1(t) Nj(t) Nm(t) A(t) 

FIGURE 3 

However, the total (over all mn origins) number of units in compartment 
j, Ni (t), is the jth marginal of A (t) and is not independent of the other mar- 
ginals; hence the columns of Figure 3 are dependent. If u and v are different 
compartments, the covariance of yut and i is determined by properties of 
the multinomial distribution to be 

cov [y.i (t), y.i(t)] = -N (O) pwi (t)p.j(t). 

Similarly, since Nj(t) = l yij and by virtue of the independence of the 
ri(t), it follows that 

cov [NX(t), Nv(1)] = N j()pv ()pj(t). 

It is also of interest here to recall a well-known result of a one-compartment 
model, or a pure death process. It has been established that the number of 
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86 BIOMETRICS, MARCH 1971 

individuals remaining in the process follows a binomial distribution. Note 
that Proposition 2 generalizes this previous result in a natural manner, i.e., 
the Ni (t) for given t can be regarded as a mixture of multinomial distributionls. 
Indeed NT(tl) - NT(t'2) for various t intervaIls may also be regarded as a 
mixture of multinomial distlibutions, where the ith component results from 
the N (0) units placed in the ith compartment. The present theory will not 
utilize this latter mixture property. 

4. LEAST SQUARES ESTIMATION OF THE PARAMETERS b,,. 
Proposition 2 contains the stochastic model of the general m-compart- 

ment system; hence it provides a complete basis for the least squares estima- 
tion of the (at most) n'2 transition probability rates, or b j, from output data. 
We will now spell out estimation in the special case where in our experience 
data are most readily available, i.e., where data are available only on the 
total number of units in the system at various times, denoted previously as 
NT(tj) for i = 1, * , z. Beauchamip and Corniell [1966; 1968; 1969] have 
considered a generalization where time-series data is obtained at specified 
times from several compartments simultaneously. The presenit approach 
differs from theirs in two regards: (1) it allows for the correlation of observa- 
tions over time and (2) by recognizing that the variance-covariance matrix, 
X, is a known mathematical function of the parameters, it introduces a two- 
stage estimation procedure based oni that fact. Both above features are direct 
consequences of Proposition 2 rather than being an assumed error structure 
and hence, we feel, they are imperative to implement. 

The present approach also differs fundamentally from previous practice 
by estimating the b;i parameters directly. It has been customary in the past 
first to estimate the exponents anid coefficienlts of a sum of exponentials 
model, and theil to transform theii by the invariant theory of Berman and 
Schoenfeld [1956]. Since it is our exlerience, lowever, that ofteni many bij 
paramieters are known a priori to be 0, tile present approach reduces the 
number of parameters immediately and tlhus enhances the efficiency without 
resort to the algebraically difficult alternative of restricted least squares 
(see e.g. Goldberger [1964] p. 256). 

4.1. Compartmental antalysis regression function 
Equation (12) above gives the expected value, /,I(tj), for the numrnber of 

units remaining in a pulsed compartmental system at time t. With the ad- 
ditional definition 

a,(t,;boj , b2l, , b.tm) = a.(t) = >,p'(t), (14) 

equation (12) simplifies to 

/I(t)( = Ni(O)a(t). (15) 
ih 

The following definitions are now necessary: 
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STOCHASTIC COMPARTMENTAL ANALYSIS 87 

(1) yT = [Yl 2 , . * yj] is the z-vector of observations NT(tl), NT(t2). 
*... I A1(t.), 

(2) 52T _[W 2 is the m 2-parameter vector of the rates 
bol , b2lI b3l bn , , respectively, 

(3) gT(t, a) -[g(t1), g(t2), ... , g(tz)] is the z-vector of expected values 
lT(tl), /1T(t2), A *T(tz), and 

(4) T = [Ei, E2 ej * * z] is the z-vector of error variables. 

The 'regression function' may now be written 

Y = g(t; Q?) + F, (16) 

where it is apparent by construction that E(E) = 0. Hence the z X z covari- 
ance matrix is E(?T) which is denoted subsequently by x (o-i J. 

Reference back to equations (7) and (12) indicates that the parameters, 
coi , enter into equation (16) nonlinearly. Thus following a well-known non- 
linear estiMation procedure, g(t; Q) will be expanded by a first order Taylor 
series about some initial esti-mate of the parameter vector, say Oa, and the 
modified Gauss-Newton technique employed to iterate for P. (see Hartley 
[1961]). With the above linearization, equation (16) is approximately 

Y - g(t, 0 ) = oGoD -+ -, (17) 

where 

(1) 0G - (0g1,) = [OgQi 7 ~)]/(O)CA)) |Q=OQ is the z X m2 matrix of first 
partials of the elements g(ti , Q), i = 1, * , z, with respect to the parameters 
ci j = 1, In2 ,and 

(2) ODT [od1 , od2 , * , odJ2] is the 2 vector of differences coi -ocoi I 
Since equation (17) is linear in the odi , the best linear unbiased estimates 
(BLUE) of the odi are found by minimizing the generalized sum of squared 
deviations, ?T-1?. 

Estimation in the deterministic model proceeds exactly as above, inas- 
much as by Proposition 1, the expected values, MT(ti), identically equal the 
deterministic models. In the absence of stochastic considerations, however, 
the observations are assumed independent and usually the (measurement) 
errors are assigned equal magnitude; hence T = 0_2 1 where I is the identity 
matrix. Thus the modified Gauss-Newton technique minimizes the sum of 
squares by using the Gauss-Markov theorem internally for BLUE estimates. 

Yet, as previously hypothesized by Cornfield et al. [1960], it will be demon- 
strated presently that the individual stochastic disturbances, Ei, are 
neither homoscedastic nor independent. In stochastic compartment analysis, 
then, 'efficient' estimation requires the modified G-N technique to minimize 
the generalized sum of squares by using the Aitken generalized least squares 
theorem (see e.g. Goldberger [1964] p. 233). By the Aitken theorem, the 
BLUE of OD, say OD, is given by 

oD= [oGT 'oG]-'oGTM7[Y - g(t, ,O)]. (18) 

The balance of this section will consider first the derivation of the matrix 
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; and then suggest a method of incorporating it into the estimation procedure. 

4.2. Covariance kernel of observations 

The diagonal elements of N may be derived utilizing the corollary in 
section 3. Note that 

m 
0aa = var [N(ta)] = var Ei Nk(ta) 

k1- 1 

mm 

E var [Nk(ta)] + > E cov [Nk(ta), Nl(ta)]. 
kI I1 

From the corollary and by the properties of independent multinomials, it 
follows that 

var [Vk (t.) I = E N.Pks(ta) [1 pPks(ta)] 
and s (19) 

VI 

cov [Nk(ta) , Ni(ta)] -Z Nspks (tu)PIs(ta). 

Substituting equations (19) into the above, and then simplifying, one has 
mn m m 1 

aaa - l Z NsPks[ 
Pks(tQa)] 

E E E N.Pk.(I'a)Pls(l.) 
k=1 s=l koIl 8=1 

AN, >i Pks(ta) - Z Prs(ta) 
8=1 k=1 r=1 

E= N,a,(tj)[1 - a,(tQ)Ij (20) 
s=1 

where a,(ta) was defined previously by equation (14). 
The derivation of Cab , the covariance of the process at two different times, 

ta and tb = ta + At, At > 0, requires the identity 
m 

ai(tb) = E Pri(ta)ar(At) (21) r=1 

and also the Markov property. The general covariance element is found to be 
?n 

(ab =E N,a,(tb) [1 - a, (ta)]* (22) 
s81 

Proofs of identity (21) and claim (22) are lengthy and thus deferred to the 
Appendix. Equations (20) and (21) may be combined into the following result: 
Proposition 3. Let 0-ab = cov [NT(ta), NT(tb)] be the covariance kernel of 
the process describing the total number of beads in the system at times tb and 
ta such that tb ? ta . Then 

?ab N,a,(tb) [1 - 
a,(ta)]* (23) 

8 
1 
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The covariance matrix, 1, is thus specified by equation (23) for observations 
at any arbitrary time points. 

4.3. Recommended estimation procedure 
If the model (16) were linear in the parameters Q and if the covariance 

matrix ; were completely specified, the Aitken least squares theorem would 
provide BLUE estimates of the bii parameters. The stochastic compartmental 
problem, however, does not satisfy either condition. Instead, it is proposed 
that the b1j parameters be found iteratively according to the scheme below; 
such estimates will be 'efficient' in the sense that the heteroscedasticity and 
interdependence of the observations is considered. 

The logic of the following procedure is two-fold. One iterative loop starts 
by initially assuming a spherical covariance matrix, z = I, to estimate the 
parameters. These estimates may be used to improve the estimate of X, 
which in turn may be used for improved parameter estimation by an Aitken 
method. This loop is repeated until the parameter estimates converge. The 
problem of an incompletely specified l; matrix is thus tackled. 

The nonlinearity of the regression model may be handled by inducing an 
iteration process within every cycle of the above loop. This second iterative 
procedure, as outlined in section 4.1, consists of the modified Gauss-Newton 
algorithm extended to minimize the generalized sum of squares of a specific 
z matrix. 

In outline form, let il be the ith estimate of l; with Ox = I. Similarly let 
i( be the ith estimate of Q. The estimation procedure then consists of the 
following steps: 

(1) Holding ON fixed, iterate for the parameter estimates Q by the 
modified Gauss-Newton algorithm. 

(2) Substitute the 12(k2) estimates into the matrix 5 and 
(a) find its latent roots, ai , and vectors, Ft, 
(b) using (a), find the pii(t) and a" (t) parameters from equations (7) and 

(13), respectively, and 
(c) using (b), find the new estimated covariance matrix 1 (,) accordinig to 

(23). 
(3) Iterate for new parameter estimates 2Q(k+1,2) using l (h) in formula 

(18) with lQ(kQ) as the initial values. 
(4) Repeat steps 2 and 3 obtaining ix and iQ estimates successively 

until the process converges. 
The convergence properties of this two-stage procedure will not be in- 

vestigated in the present work. However, in practice, as also illustrated by 
the examples in section 4, convergence has always been attained to numerical 
satisfaction. 

5. EXAMPLES OF ESTIMATION PROCEDURE 
In this section the above estimation procedure is illustrated with two 

examples. One is a simulation with known parameter values and the other 
consists of data from the application described in Section 2. 
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5.1. Example of simnulated data 

Consider first simulated data frorm the compartmental system represented 
by Figure 4. The data were generated by choosinig parameter values b21 = 

Comp. I Comp. 2 -~Exterior 

FIGURE 4 

0.125 and b02 = 0.250, and initializing N,(O) -4000 and N2(0) = 0. Table 
1 contains a realization of the above stochastic process at 40 time points. 

The matrix g corresponding to the above system is 

0 b21 -b2l . 

LO bo 2 

TABLE 1 
DATA OP EXAMPLE 1 

t ArTTW t Nr(t) t aZV(TW t N(TW t NI(t) 

1 3949 9 2175 17 917 25 335 33 127 
2 3799 10 1968 18 819 26 288 34 112 
3 3618 11 1771 19 729 27 258 35 102 
4 3399 12 1591 20 643 28 232 36 92 
5 3147 13 1448 21 562 29 219 37 81 
6 2883 14 1303 22 509 30 185 38 70 
7 2653 15 1147 23 441 31 161 39 62 
8 2418 16 1012 24 386 32 1.47 40 55 

and simple matrix algebra reveals that 

a,- b2l, a2- bo2 

-fll = - F22 - 1, 121 F12 0, 

f22 Fil= Fl | (b21 bo2)/bs] 

Substituting the above into (7) and (14), it follows that 

a(t) = (bo2 - b2l) -(bo2el-alt-b2le-b2t 

from whence the mean and covariance kernel of the random variable NT(t) 
are given by 

IIT(ta) = 4000a(ta), (Jab =4000a(tb)[I - a(ta)]. 

Assuming now that the parameters are unknown, we judiciously select initial 
parameter estimates, b2l = 0.125 and ob02 = 0.250, and iterate for the least 
squares estimates (step 1 of the estimation procedure). The derived estimates, 
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lb2, and jb02 , are then substituted into the covariance matrix (step 2) from 
whence subsequent estimates, 2b2l and 2b02 , are again obtained by Gauss- 
Newton iteration (step 3). The procedure is repeated until these estimates 
converge. 

Table 2 summarizes the results of the estimation procedure. Note the 

TABLE 2 
PARAMETER ESTIMATION OF EXAMIPLE 1 

Iteration jb2l =t estimated std. dev. jbM2 =t estimated std. dev. 82 

0 0.12500 0.25000 
1 0.12547 i .00092 0.24454 i .00312 82.016 
2 0. 12561 i .00527 0.24419 z? .01851 1.063 
3 0.12561 i .00527 0.24419 ?L .01851 1.063 

very rapid convergence of the ib estimates. The procedure also provides an 
indicator of goodness of fit. Assuming the model to be true, the random varia- 
ble s2 is approximately distributed as jI/f.; hence s2 = 1.063 indicates an 
acceptable fit. 

Theoretically, the coinvergence is inidependent of the starting values for 
well-behaved surfaces. In the present simulation, the following 7 alternative 
sets of initial values were also used for the first iteration: (.2500, .5000), 
(.0625, .5000), (.0625, .1250), (.0312, .0625), (.0312, 1.000), (.5000, 1.000), 
and (.5000, .0625). It is gratifying that the estimation cycle of Table 2 was 
reproduced in each case. 

Another noteworthy fact is the difference in the standard deviations. As 
previously observed, the Aitken estimates are BLUE for a linear model with 
known covariance matrix. In the present siimulation, with the parameters and 
heence the covariance matrix determined, the standard deviations of the 
Aitken estimates are given by 

to be Gb,, = 0.00488 aind bob, = 0.01806. As expected, aniy other unbiased 
estimates have a greater variance; in particular the variability of the ordinary 
least squares (OLS) estimates, ., is calculated fromn 

= [G'G]-'GTIG[GTG]' 

to be ug,,. = 0.00528 and u g, =-- 0.02107. Note from Table 2 that the recom- 
mended estim-lation procedure estimates the standard deviations of the param- 
eters to be Sb2. = 0.00527 and Sbo. = 0.01851 which are close to the above 
0-b2. and 0b0. . However the OLS estimates of the standard deviations, by 
failing to recognize the interdepenidence of the observations, use the improper 
law 

1 = 2[GTG]1- n.Qi == Of'u 
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and thereby seriously underestimate the variability. Iteration 1 of Table 2 
gives these improper OLS estimates as Sg,l = 0.00092 and Sg 2 = 0.00312. 
In summary, experimenters who use ordinary least squares estimation in 
stochastic compartmental problems are led to believe such estimates are 
exceptionally significant when in fact such estimates may be shown inferior 
to those of the recommended iterative estimation. 

5.2. Animal scien-ce application 
As a second example, Table 3 contains data on the passage of beads 

TABLE 3 
DATA ON BEAD RETENTION IN SHEEP 148 

t NT(t) t NT(t) t NT(t) l NX(t) t NT(t) t NT(t) 

0.25 3989 2.75 3826 5.25 3589 7.75 3374 10.50 3011 14.00 2774 
0.50 3970 3.00 3813 5.50 3570 8.00 3347 10.75 2976 14.25 2766 
0.75 3954 3.25 3795 5.75 3563 8.25 3318 11.25 2941 14.50 2758 
1.00 3935 3.50 3778 6.00 3556 8.50 3250 11.50 2930 14.75 2744 
1.25 3931 3.75 3761 6.25 3542 8.75 3228 12.25 2911 15.00 2736 
1.50 3905 4.00 3705 6.50 3531 9.00 3202 12.50 2891 15.25 2727 
1.75 3888 4.25 3662 6.75 3503 9.25 3179 12.75 2866 15.50 2714 
2.00 3872 4.50 3629 7.00 3473 9.75 3127 13.00 2839 16.00 2701 
2.25 3864 4.75 3622 7.25 3450 10.00 3105 13.25 2821 16.25 2696 
2.50 3832 5.00 3599 7.50 3391 10.25 3062 13.75 2796 

through the gastrointestinal tract of a sheep. Similar experiments have been 
conducted by Blaxter et al. [1956] whose findings are well received among 
animal scientists and, indeed, constitute the state-of-the-art in the above- 
mentioned modelling. At time t' = 0, 4000 indigestible plastic beads were 
placed into the rumen of the sheep. The sheep were fed every 6 hours and 
their feces were also collected then and analyzed for bead passage. The trans- 
formed argument t of Table 2 represents the argument t' in days less a 4-day 
fixed transit time or 'time delay,' i.e., t = t' - 4. 

TABLE 4 
PARAMETER ESTIMATION OF SHEEP 148 

Iteration ib2l i estimated std. dev. ibo2 i estimated std. dev. s2 

1 .0290 i .0005 0.6580 i 0.0654 
2 .0218 i .0015 5.5656 i= 1.8699 1.523 
3 .0239 i .0018 2.1988 i- 0.9871 1.708 
4 .0231 i .0017 3.6266 i- 1.6228 1.615 
5 .0235 i .0017 2.8129 i- 1.2981 1.636 
6 .0234 i .0017 3.1611 i 1.4416 1.623 
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5.2.1. Two sequential compartment model 

Assuming initially the model of Figure 4 for the data, the mean value 
function and compartmental covariance kernel, say Y. , are given above in 
section 5.1. The complete covariance matrix of NT(t), however, includes two 
other kernels in addition to the compartmental kernel; one is due to the 
'end-period' error recognized by Blaxter et al. [1956], and the other is due to 
some unfortunate mastication of the beads by the sheep. Subsequent experi- 
mentation will be designed to practically eliminate both of these latter errors, 
hence their form is not presented at this time. For the present data, then, the 
complete covariance matrix, I T ,is the sum of the three components which 
are assumed independent, i.e., 

X T = Iec + le + m 

The estimation procedure of Result 3 is now employed using the matrix IT 

in the place of the previous ;. 
Table 4 lists the cycles of the procedure. The fit is poor (S2 = 1.6) but it 

is within reason for biological data. Inasmuch as current methodology uses 
ordinary least squares estimates, the fact that the final estimates differ con- 
siderably from the OLS estimates is noteworthy. The OLS estimates are 
0.0290 and 0.6580 while the terminal estimates of the above procedure are 
approximately (by extrapolation) 0.0234 and 3.07; in another lig,ht one param- 
eter estimate decreased by 19%0 and the other increased by an incredible 
370%. In the event one used the compartmental covariance kernel 1, aloine, 
the final parameter estimates b21 = 0.0244 and bo2 = 2.552 are close to the 
above terminal estimates but again far apart from the OLS estimates. 

Also, as in the simulated data example, the estimated standard deviations 
are deceptively low in OLS estimation. The coefficients of variation for the 
parameters in OLS are 0.017 and 0.099 compared to 0.073 and 0.456 in the 
recommended procedure. 

5.2.2. Other models 

Animal scientists proposed two other compartmental models which were 
tested on the sheep data. The first was a three sequential compartment 
model, where a third compartment was added to Figure 3, ancd the other was 
a model of two compartments in equilibrium, where bo2 = 0 in Figure 2. 
Only the results are presented below; the algebraic detail may be derived 
frorn the general formulations of sections 3 and 4. 

The three-compartment model was fitted to the data of Table 3 
by ordinary least squares with resulting parameter estimates 

b2l = 0.0294 i 0.0005, b32 = 0.6265 i 0.0673, bow = 16,384. i 3.401 X 107, 

and with no appreciable reduction in the error mean square. Clearly the 
astronomical turnover of the third compartment indicates the physical 
absence of such a compartment; the model was thus rejected in favor of the 
previous two-compartment system. 
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The other alternative model wv-as likewise fitted by ordinary least squares 
with parameter estimates bo, = 0.0093, b2l = 7.54, and b12 = 14.55, and with 
an increase in the error rnean square. The magnit.ude of the crossflow was 
judged excessive, and this model was also discarded. 

In sumrmary, we too are led to accept the two sequential compartment 
model proposed by Blaxter. It seems clear, however, that the stochastic 
considerations contribute (1) imnproved parameter estimates, (2) more realistic 
error estimates, and (3) a goodness-of-fit test. 
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APPENDIX 

(a) Proof. aj(tb) = Z7=1 Pri(ta)ar(At) for tb ta + At, At > 0 
By definition (14) 

in m in 

E Pri(ta)ar(At) = Y Pri(ta) X Pkr(At). 
r ~~~~~r l 

Using definition (7) 
1 m m Oa M m 

= Zi 2 E E fiiFrse-aita Z Z friFkie 
'IF '1 8-1 k'=1 j=1 

1 ?fl m r7n m 

Z- E Z E fiS lFjeaitieai friFra IF I k=1 s=1 j=1 rI 

Using a fundamental result of matrix theory, 

Z IFI for j-s 
rj ri 

r=1 
0 for j ?s, 

the above may be written 
min m m t Z pri(ta)ar (A) = Z E fi8Fk,e-a8t 

r==l k=l a-:1 

The right hand side reduces to a (tb) by successively reapplying definitions 
(7) and (14), thus establishinig the desired identity. 

(b) Proof. Oab = Z;s=1 N,a,(tb)[i - as(ta)] 
The following definitions are helpful: 

* 2,... , n= the expectation operator with respect to (the random variables) 
Z1 , Z2 t * Z,n t 

V, 2,... m = the variance operator with respect to z1 , Z, t Z1n , 

E,+1l ... njl,2,., m = the conditional expectation operator with respect to 

Zm+i, , * given the values ofz,z, ,zZ Z. 

Let variables Ni(ta), i = 1, . , m, be designated z1, , Zm , and 
Ni (tb), i = 1, * , in, designated z1+-1 , ... , tZ2,m . Since NT(ta) is a function 
only of the first mn variables, appeal to fundamental properties of expectations 
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establishes the relation below: 

El,2,. I,m,m+],...,2tiA7tNT (a) iNT(lb) } 

1El,2,- - , JNT(ta) E, +1 I,-e , 2.. II,2,--- m[NVT(lb)] } - 

By virtue of the Markov property inherent in the system, the conditional 
expectation on the right is equivalent to starting the process with N1 (ta), * . 
N.n(ta) units in the mn compartments, and taking its expectation at time At. 
Formula (15) permits the right hand side to be rewritten as 

Ell 2i=l 
j( 1( aj,t 

Utilizing expectation properties againi, the above simplifies to 
tn In 

Ej ai(zAt)Vi[Vi(tla)] + Z E [ai(Al) + aj(/\t)] coV [Ni(ta), Ni(ta)] 
j=1 i>i 

tn in 
+ i ai(At) {Ei [Ni(ta)] } 2 +-E - [aj(At) + aj(Al)]Ei[Ni(ta)1Ej[Nj(ta)1 

i=1 i>i 

Substituting in equations (10) and (19), one arrives at the following expression: 
m Mt 

, 

ai(WL) 

E NSpi s(ta)[1 -i Ps(ta)] 

i-l~ ~~~~~~~= s=' mn III m 771 2 

? m ? [ai(A') + aj(At)]{ ATNsPis(ta)pj}({a) +t (a)j 

m In I n. 

+ , [ai(-At) + aj(A t) ]/@N-,Pis(ta)90 2;/ NPj-(ta) { 
i>j s=l s=l 

Combining the first two terms and the last two, the above becomes 

Ns[ I Pi.s(ta) [i ai(z\t)pis(ta)] 

7t m 77t ~m 7n m 
+ "ai(At)I , NaATrpis(ta)Pir(ta) + N Z L Nspjs(l)p;,(t1 

i1 s=1 r=l 81 r=1 . L bj 

Simplifying the second term, one has 
In 7^ m 
E N, [ - I i s(ta) [ ai(At;)pis(ta) 

+ Ali , ai(Af)pis(ta)] [ Nr E Pir(fa)] 

Applying identity (21), the above reduces to 

N, Aa, (t,)[1 as(la)] + E N,, aas(tb) EA Nrar(ta) 
___ 8=1 r=1 

Using definition (15), and recalling the left hand side, it follows that 
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E[N(a) T( 
- (tb) Na b [ - as(ta)] + E[NT(ta)]E[AT( T)] 

from whence, by definition, 

?ab = COV [NT(ta), NT(t0)] => NTas(t) [1 - a8(ta)]e 

Received March 1970, Revised September 1970 

DISCUSSION 

M. E. WISE (University of Leiden): 

I have become an active opponent of models based on homogeneous compartments 
for interpreting physiological tracer data, which lead to linear kinetics. I would assume 
that a tracer mixes quickly and homogeneously with blood, but not with soft tissue, muscle, 
or bone or other organs. This is a minority view-point,' but there is now some uneasiness 
among many users of these models, and this shows up again and again in the 500 page book 
of the latest symposium (at Oak Ridge, edited by Bergruer and Lushbaugh [1967]). 

Maltis and Hartley have produced a method that works well with simulated data, but 
they too are obviously having difficulties with the excretion data on sheep. However, they 
have reasonable biological grounds for compartmentalising the digestive system in an 
uinusual model that does not involve other parts of the body. Two compartments A and B 
are assumed (on the left and right, respectively, in their Figure 2) and there are two 
unknown transition rates, from A to B and from B out of the system. The reverse transitioin 
B to A is assumed not to exist. The compartments are in series, the tracer is moving through 
the system, and the model predicts and fits the distribution of the total time it spends 
there. This consists of two parts, the time interval between entry and the A to B transition, 
or the first A to B transition if there are reverse ones, and the interval between this event 
and departure from the system. 

Nearly all observed clearance curves, such as these, can be interpreted as distributions 
of time intervals. These are between the tracer's entering and leaving different parts of 
the system, for example plasma (blood), soft tissues, and bone when the tracer is injected 
radioactive calcium. If these parts are homogeneous compartmeints, these intervals (or 
they may be called passage or sojourn times) will be distributed as negative exponentials. 
In Matis and Hartley's case they are actually binomial, and closer to exponentials the 
larger the number of beads (which correspond to the tracer). But we can explain why so 
many clearance curves fit negative powers of timne as well or better, and more simply, than 
they fit negative exponentials if these time interval distributions take a different form. 
They have to be like those for a drifting cloud of Brownian particles moving from A to B 
according to Einstein's law, but through a mnixed medium, i.e., with varying rates of spread- 
ing out (of diffusion in the classical case) compared with the rate of drift (Wise et al. [196S]). 
This mixed random walk in series distribution has the form 

y(t) = AtW exp + (1) 

When W = this becomes the well-known distribution of first passage tiines. For mixed 
media, WV > 2, and various kinds of superposition, as can occur if the tracer has left the 
part being observed and returned to it many times, can yield almost any smaller negative 
power W down to about 0.1. 

I A group at Kings College Hospital, London, have been criticising these analyses, almost alone, for a 
number of years (Anderson et al. [1963]). See also Neuman et al. [1968]. 
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The beads in the sheep's gut may or may not undergo this kind of mixed random walk 
in series. But there is one obvious consequence for Matis and Hartley's general model and 
procedure when there are several compartments in series, say 4. Then the observed distri- 
bution of total time in the system will conisist of the sum of just 4 random variables; these 
will be more or less of the same type, and positively skew. Surely then this distribution 
will approach a limiting type-something like a log normal one-or at any rate one with 
fewer parameters than are in the model. This could lead to trouble, just as in any situation 
where there are too many unknown parameters for the amount of numerical data available. 

I would like, however, to support strongly another general feature of their method. 
The output is a cumulative distribution. This is fitted with success by least squares, as 
the simulation shows, with major corrections for the correlations between successive 
observations. This could be very valuable. For example, observed total radioactivity in 
the body is subject to Poisson fluctuations which will be independent, whilst random 
uncorrelated fluctuations in the excretion rate produce correlated ones in the observed 
output. 

In reanalyses of published clearance curves (Wise [19711) the results from cumulative 
data were much less consistent than those from direct measurements of blood or urine 
activity. It looks as if the Matis and Hartley type of correction was not made but should 
have been. The example in Figure 1 shows how wildly in error an uncorrected least squares 
fit to this kind of cumulative data can be. 

The corresponding distribution of time to excretion in the sheep is obviously of interest. 
This is obtained at once by differencing Table 3, which yields the numbers of beads excreted 
in successive 6-hour periods. This does not yield a negative power of time, but it does 
reveal a near-daily rhythm in the excretion pattern. It is surprising that the biologists 
concerned seem not to have been interested in this. 

Figure 2 shows the ratios of numbers of beads excreted in successive 6-hour periods, 
plotted on a log scale. Clearly the rate of excretion very often increases rapidly from the 
first to the second quarter of the day, in fact there were 10 increases and one decrease from 
the 12 first quarters: and there is usually an increase from the third quarter too. Hence 
there is very often a 24-hour rhythm-not quite always-and often a 12-hour rhythm: 
possibly this is related to feeding every 6 hours. 

Incidentally there is a new journal that is devoted to biological rhythms and cycles 
of all kinds (Tromp [1970]). 

When this daily rhythm has been sorted out, the methods of this paper should certainly 
be adequate and efficient for assessing the model for a sheep's gut. I think there is not as 
yet convincing evidence, from the data, for or against it. 

Finally I would like to mention one or two more general issues. In interpreting 
physiological tracer data, and much else in biometry, a good method of analysis certainly 
yields a better answer than a less good one. But the choice of model makes far more 
difference, whether you are concerned with this or only with an empirical answer. And so 
far biometricians have tended to leave this choice to biologists (or physiologists, clinicians, 
bio- or medical physicists, etc.) even when it is a mathematical model. One realises that 
methodology has to be a full time occupation for many. But there should be more work on 
both clean and dirty data (cf. Finney's plea at this congress) to sort out the best mathe- 
matical description; and even this should be kept clearly separate from any underlying 
biological or biophysical model. 

Until this is done more often, quantitative biology in its widely different forms (any- 
thing involving tracers, biological cycles, much of neurophysiology, etc. etc.) will by and 
large stay separate from biometry2 and still further away will be "Ein neues goldenes 
Zeitalter . . in dem die verschiedensten Fachdisziplinen friedlich unter dem grossen Dach 
der Biometric Society zusammenleben" (Schneider [1971])3. Is this a consequence of the 

2 See also Skellam [1969]. 
3 Summarizing some reactions at our Society's foundation. 
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FIGURE 1 

REPLOT OF A COMPARTMENTAI FIT TO A STRONTIUM RETENTION CURVE FOR A PATIENT 

(SARGENT et al. [1965] TABLE 2, 6TH LINE FROM TI-IE BOTTOM). THE FITTED SUM 

OF 3 EXPONENTIALS IS DIFFEPENTIATED TO GIVE TIIE RATE OF EXCRETION Z, 

AND LOG Z IS PLOTTED AGAINST LOG t. THE NEARLY STRAIGHT CURVE IN (A) 

GIVES CLEAR EVIDENCE TIIAT Z IS PROPORTIONAL TO A POWER OF TIME, 

t 1V, UP TO AT LEAST 20 DAYS. CURVE (B) SHOWS THE CONTINUATION 

OF Z AND WIDE AND WILD DEVIATIONS FROM THE STRAIGHT 

LINE, I.E., AT 50 DAYS THE FITTED EXCRETION RATE IS 5 
TIMES TOO SMALL IF THE POWER FUNCTION CONTINUES 

TO FIT. IT DOES SO CONTINUE ACCORDING TO MANY 

SETS OF DIRECT OBSERVATIONS (SEE E.G. 

J. H. MARSHALL IN BERGNER AND 

LUSHBAUGH L1967] P. 451-68) 
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FIGURE 2 

RATIOS OF NUMBERS OF BEADS EXECRETED IN SUCCESSIVE 6-HOUR PERIODS, PLOTTED 

AGAINST THE TIME AT THE MIDDLE OF THE 12 HOURS. CALCULATED FROM MATIS 

AND HARTLEY'S TABLE 3. BEYOND 14 DAYS THE PERIODS BETWEEN 

COLLECTIONS WERE SOMETIMES LONGER THAN 6 HOURS. THE 

DAILY RHYTHM IS BECOMING LESS REGULAR AFTER 

10 DAYS, BUT DOES NOT DISAPPEAR. 
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very success of our subject in providing a service for researlch workers in fields like agri- 
culture where little depended on the underlying models or these could be kept very simple? 

REFERENCES 
Anderson, J., Osborn, S. B., Tomlinson, R. W. S., and Weinbren, I. [1963]. Some applica- 

tions of power law analysis to radiosotope studies in man. Phys. iMed. Biol. 8, 287-95. 
Bergner, E. E. and Lushbaugh, C. C., Eds. [1967]. Compartments, pools, and spaces in 

medical physiology. U. S. Atomic Energy Commission, Symposium series 11. 
Neuman, W. F., Terepka, A. R., Canas, F., and Tippet, J. T., [1968]. The cycling concept 

of exchange in bone. Calc. Tiss. Res. 2, 262-70. 
Sargent, T., Liiifoot, J. A., and Isaac, Elsa C. [1965]. Whole body counting of 47Ca and 

85Sr. Report UCRL 16246. Lawrence Radiation Lab., Berkeley, California. 
Schneider, B. [1971]. Presidential address. Biometrie in den 70er Jahren. Biometrics 27, 

264-7. 
Skellam, J. G. [1969]. Models, inference, and strategy. Biornetrics 25, 457-75 (in. particular 

p. 464, middle paragraph). 
Tromp, S. WV., Ed. [1970]. J. Interdisciplinary Cycle Res., Swets and Zeitlinger N. V., 

Amsterdam. 
Wise, MI. E. [19711. The evidence against compartments (Abstract). Biometrics 27, 262. 
Wise, M. E., Osborn, S. B., Anderson, J., and Tomlinson, R. W. S. [1968]. A stochastic 

model for turnover of radiocalcium based on the observed power laws. Math. Biosci. 2, 
199-224. 

See also the reply to a letter on 'Calcium kinetics: the philosophy and practice of science' 
by J. S. Beck and A. Rescigno [1970]. Phys. Med. Biol. 15, 567-8, and the abstracts 
in: Brit. J. Radiology [1968] 41, 953-4. 

The auth1ors replied briefly at the meeting and subsequently more fully in writing as 
follows: 

Lest anyone feel that the present paper advocates the indiscriminate adoption of the 
compartmental model, we welcome the comments of Dr. Wise as a word of caution. His 
comments also raise several pertinent issues which call for brief remarks:- 

May we first note that the intent of the paper was to provide a stochastic version of 
compartmental analysis which is already widely used in a deterministic context. However, 
we do of course take the responsibility for 'justifying' the model in the situations where we 
apply it. We are gratified that Dr. Wise seems to 'support strongly' the methods proposed 
for the model. At this time we would like to make a brief case also for the relevancy of the 
compartmental model itself in regard to clearance data. 

The classical compartmental model assumes 'the random appearance and disappearance 
of molecules' within the compartments (Zilversmit et al. [1943]). Hence, as pointed out, 
one must assume instant mixing and also the inability of the system to distinguish between 
'old' and 'newly'-introduced units. Both conditions are roughly satisfied with indigestible 
plastic beads. However, they are not true in many other cases of passage data as, for 
example, in the passage of hay particles which undergo physical alteration in the rumen. 
In such cases the transfer probability coefficients, or bij, are functions of the age of the unit. 

Suppose, as suggested by Wise, that such age dependency induces a gamma distribu- 
tion of lifetimes rather than the exponential implied in the above assumptions. This gamma 
random variable is readily incorporated into the compartmental model by the artifice 
of a sequence of irreversible subcompartments with identical internal flowrates whilst a 
transfer to other compartments only occurs from the last subcompartment. Since the 
internal rates are known to be identical, no new parameters are introduced but instead the 
corresponding eigenvalues of the 9 matrix are equal. According to well-known theory, the 
solution of the differential equations introduces powers of t, and equation (7) in the paper 

This content downloaded from 128.237.144.15 on Tue, 19 Jan 2016 05:21:33 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STOCHASTIC COMPARTMENTAL ANALYSIS 101 

above is generalized to the form 

p1/ (t) - >i eal Z X,cU ijI.t 
i=l 1=1 

This solution not only 'explaiins' the success of the 'power law' approximation' but adds 1) 
the advantage of the biological concept of the compartmental model, 2) the interpretation 
of the coefficients as known functions of the unknown turnover rates, and 3) a simple yet 
complete stochastic derivation. The details of the theory together with simulations and 
supportive examples are contained in Matis [1970]. Cotuld it be that many examples which 
purport to discredit the compartmental model are merely cases of compartmental systems 
with age dependency, i.e. eigenvalue degeneracy? Of course, as Dr. Wise observes, the 
power law does not fit well to the present data; indeed we did not expect to find age 
dependency in bead transfers. 

Quite aside from these modelling considerations, we also wholeheartedly concur with 
the plea for more analysis of the basic data. Biological models are, or at least should be, 
evolved by a repeated see-saw process of monitoring against experimental evidence. Starting 
from a comparatively simple model a comparison with experimental evidence will normally 
point to modifications of the original model which in turn call for niew experimental evidence 
to provide a decision between alternative model modifications and so on. Dr. Wise rightly 
criticizes numerous instances in the literature when a compartmental model was uised as a 
starting point and its failure to explain experimental data was never heeded. In the present 
case, the first comparison with experimental data showed only a moderately good fit but 
at the same time provided pointers for reasonable modifications as, for example, the 
'end-period' factor. However, the data did not appear to us to call for the complete rejection 
of the compartmental imodel. 

Dr. Wise suggests, in light of the above considerations, that a diurnal rhythm should 
have been incorporated by us. Should his assumption prove true through fuLrther experi- 
mentation, it could be incorporated as a final stage of the compartmental model and should 
improve the goodness-of-fit statistic if such a phenomenon is present. However, we do 
not believe that the present data warrant the use of a diurnal rhythm model in addition 
to the end-period error which we refer to in the paper. That reference (aiid indeed more 
extensive experience) indicates a strong negative correlation between consecutive fecal 
collections and gives the natural reason for this end-period phenomenon. Note that the 
phenomenon is vividly illustrated by the zig-zag effect in Dr. Wise's Figure 2. It is likely 
that most of the 'diurnal effect' noticed by him is a reflection of the end-period factor 
which fact can be demonstrated in the following manner: 

Table 1 is constructed by first calculating all differences N(t + -1) - N(t) (which Wise 
calls N(t + 1) - N(t)). The trends in the adjacent differences, or 6-hour collections, are 
then observed for each diurnal quarter. Note that a slight trend in the pattern of increases 
vs. decreases is induced by the negative correlation between successive collectionis. If one 
now takes the ratio of those successive collections, i.e. [N(t + ) -N(t)1/[N(t) - N(t - ) 

the negative correlation is amplified even more and one would expect the original end-period 

TABLE 1 
TRENDS IN DIFFERENCES, N(t + 1) - N(t), BY QUARTERS 

1st quarter 2nd quarter 3rd quarter 4th quarter 

Decrease 5 9 3 8 
Increase 8 3 8 4 
No Change 0 1 1 1 

1 At least for positive powers; Dr. Wise seems to prefer negative powers. 
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TABLE 2 

1V(t + 4) - N(t) 
TRENDS IN RATIOS, N V(t _ 1 B QUARTERS 

N(t) - Nv(t - ) 

1st quarter 2nd quarter 3rd quarter 4th quarter 

Decrease 7 5 9 1 
Increase 4 7 3 10 
No Change 1 0 0 0 

factor to be even more strongly evidenced. Table 2 lists the trends among these consecutive 
ratios. In light of the increased correlation, the observation of 10 increases to 1 decrease in 
a particular quarter is not surprising. 

ADDITIONAL REFERENCE 

Matis, J. H. [1970]. An example of age dependency in compartmental models. NASA Tech. 
Report 114, Institute of Statistics, Texas A&M University. 
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