
Consistent Signi�cance Testing for Nonparametric RegressionJe� RacineDepartment of Economics, BSN 3403University of South FloridaTampa, FL, 33620-5500Abstract. This paper presents a framework for individual and joint tests of signi�cance employing non-parametric estimation procedures. The proposed test is based on nonparametric estimates of partialderivatives, is robust to functional mis-speci�cation for general classes of models, and employs nestedpivotal bootstrapping procedures. Two simulations and one application are considered to examinesize, power relative to mis-speci�ed parametric models, and to test for the linear unpredictability ofexchange rate movements for G7 currencies.Keywords. Kernel density estimation, inference, pivotal, nested bootstrap.1. INTRODUCTIONThe inability to test hypotheses in a nonparametric framework has remained a source of frus-tration for many applied researchers and econometricians. The motivation for using nonparametricmethods for both estimation and hypothesis testing comes from the fact that employing a mis-speci�edparametric model for the conditional mean and/or the data generating process will typically resultin inconsistent parameter estimates and hypothesis tests that possess asymptotically incorrect size.Nonparametric estimators are consistent under less restrictive assumptions than those required forconsistency of parametric estimators. Therefore, in the absence of knowledge regarding the true func-tional forms of the conditional mean and data generating process, nonparametric methods may bepreferred.The signi�cance test is probably the most frequently used test in applied multivariate regression. Inaddition, the signi�cance test is often used to con�rm or refute economic theories. However, the use ofmis-speci�ed parametric models for the purpose of signi�cance testing will typically yield tests whichhave incorrect size and low power. The likelihood of mis-speci�cation in a parametric framework ishigh given the fact that most applied researchers choose parametric models on the basis of parsimonyand tractability. Signi�cance testing in a nonparametric framework would therefore have obviousappeal given that nonparametric techniques are consistent under much less restrictive assumptionsthan those required for a parametric approach.This paper demonstrates how the nonparametric estimation of partial derivatives of an unknownconditional mean can be used for the purpose of signi�cance testing. Of course, such estimates areoften of direct interest in themselves. The proposed approach is based on the application of pivotalbootstrapping methods and resolves some important outstanding practical issues regarding hypothesistesting in a nonparametric framework.In this paper it is assumed that an unknown conditional mean and associated partial derivatives areestimated using the nonparametric kernel estimation technique based on the approaches of Nadaraya(1965) and Watson (1964), henceforth known as the Nadaraya-Watson kernel approach. The proposedapproach can be applied with little or no modi�cation to many other nonparametric and semipara-metric approaches such as orthogonal series estimators, feedforward neural networks, spline smoothersand so on.Given the distribution-free nature of the estimation technique, interest lies in conducting signif-icance tests which themselves do not rely on distributional assumptions. Methods for hypothesistesting in a nonparametric kernel framework based on asymptotic results have been recently proposedin Robinson (1991), Robinson (1994), Lavergne and Vuong (1992), and Rilstone (1991). In each of1



these proposed approaches asymptotic theory is employed to derive the limiting distributions of atest statistic which is based on a nonparametric kernel estimate. Rilstone (1991), for example, usesnonparametric kernel estimators of average derivative functionals for hypothesis testing, derives theasymptotic distribution of the proposed test statistic, and demonstrates that the test has a pn rate ofconvergence, the same rate as that obtained for a semiparametric model. Robinson (1994) builds onsuch results for semiparametric averaged derivatives and demonstrates that the rate of convergence ofthe �nite-sample distribution to the normal limit distribution can equal that of standard parametricestimates. For related work in this area the reader is referred to Stoker (1989), H�ardle and Stoker(1989), and Powell, Stock and Stoker (1989). Unfortunately, there are a number of drawbacks withsuch asymptotic-based approaches which arise in practice.The most troubling aspect of such asymptotic-based testing procedures is that the null distributionof such test statistics does not depend on the bandwidth, while the value of the test statistic dependsdirectly on the bandwidth. This is due in part to the fact that the bandwidth is a quantity whichvanishes asymptotically. This is a serious drawback in practice, since the outcome of such asymptotic-based tests tends to be quite sensitive to the choice of bandwidth. This has been noted by a numberof authors including Robinson (1991) and Rilstone (1991). Robinson (1991) noted that \substantialvariability in the [test statistic] across bandwidths was recorded", which would be most troubling inapplied situations due, in part, to numerous competing approaches for data-driven bandwidth choice.For a current overview of data-based bandwidth selection procedures in the context of kernel densityestimation see Jones, Marron and Sheather (1992).This paper resolves issues surrounding the asymptotic-based approaches to hypothesis testing innonparametric settings by applying pivotal bootstrap resampling. Resampling techniques are em-ployed to obtain the null distribution of a test statistic which is based on nonparametric estimatesof partial derivatives. Related work on bootstrapping nonparametric point estimates includes that ofH�ardle and Marron (1991) who propose the application of a `wild bootstrap' to obtain error bars forkernel estimators of a conditional mean. For theoretical work on the bootstrap see Bickel and Freed-man (1981) who derive the asymptotic validity of the bootstrap for a number of situations includingpivotal quantities, empirical and quantile processes, and U -statistics and other von Mises functionals.For a recent survey of resampling methods see Jeong and Maddala (1993).There are two important and quite distinct reasons why a resampling approach might be preferableto an asymptotic one for the purposes of hypothesis testing in a nonparametric framework. First,given the relatively slow rates of convergence of kernel estimators, the use of resampling techniquesmay be preferred for small to moderate sample sizes because resampling techniques might be expectedto perform better in �nite sample situations than an asymptotic-based counterpart (Efron 1983). Thisrate-of-convergence related problem has been discussed by many authors, for instance Mammen (1992)(pp. 4-5) who emphasizes the poorness of the asymptotic approximations in this context for moderatesample sizes. To quote, \Often the asymptotic distributions of these functionals cannot be calculatedexplicitly or explicit approximations are so poor that, typically, they cannot be used in practice formoderate sample sizes."Another reason for using resampling techniques is that there exist cases in which a resamplingapproach works under weaker conditions than those necessary for asymptotic approximations to hold.Bickel and Freedman (1983) demonstrate this result for linear models to which the bootstrap has beenapplied. Such results justify the use of bootstrapping through appeal to robustness arguments in thesense of being robust to departures from assumptions underlying the modeling procedure.The remainder of this paper proceeds as follows. The test statistic and algorithms to obtain its nulldistribution are presented in Section 2. Simulation results and applications are considered in Section3, while Section 4 summarizes and concludes. 2



2. A NONPARAMETRIC SIGNIFICANCE TESTThe most commonly used regression-based hypothesis test is the test of signi�cance. Rejectingor failing to reject the null is often used as evidence con�rming or refuting a theory, and can haveimportant practical and theoretical implications. Applied researchers typically choose parametricmodels on the basis of tractability and ease of interpretation, not on the basis of any prior knowledgeregarding the unknown DGP. Such models are typically mis-speci�ed to some degree. It is wellknown that hypothesis tests based on functionally mis-speci�ed parametric regression models willhave asymptotically incorrect size. That is, the probability of a Type I error will not equal theassumed nominal value regardless of the sample size. In addition, hypothesis tests based on mis-speci�ed models will su�er from low power and thereby fail to detect departures from the null.In the absence of knowledge regarding the true functional form for the conditional mean nonpara-metric Nadaraya-Watson Kernel methods will be used which are robust to functional mis-speci�cationamong the class of twice-continuously di�erentiable functions. The important features of the proposedapproach are that the null distribution of the nonparametric-based test will have correct size and thetest will have power in the direction of the class of twice-continuously di�erentiable alternatives.2.1. The Test Statistic. Let f(Y;X) denote the joint density of a set of random variables of interest(Y;X) where Y 2 R and X 2 Rp; p 2 N and let (yi; xi) be a realization of (Y;X). The density of Yconditional on X will be denoted g(Y jX) = f(Y;X)=f1(X) where f1(X) denotes the marginal densityof X. The conditional mean of Y with respect to X is de�ned as E(Y jX) = R y g(yjX) dy. Thegradient of the conditional mean with respect to the conditioning variables is de�ned as rE(Y jX) =@E(Y jX)=@X where rE(Y jX) 2 Rp. It is assumed that the reader is interested in a model of theform M (xi) = E(Y jxi) and in partial derivatives of the form �(xi) = rE(Y jxi) where jxi is taken tomean conditional on the random vector X assuming the realization xi 2 Rp.For notational simplicity, partition the vector X into two parts, the variables whose signi�cance isto be tested X(j) and all other conditioning variables X(�j) excluding X(j). The partitioned matrixof conditioning variables is written as X = (X(�j); X(j)) where X(�j) 2 Rp�j and X(j) 2 Rj. If theconditional mean E(Y jX) is independent of a variable or group of variables in question, X(j), thenthe true but unknown vector of partial derivatives of the conditional mean of the dependent variablewith respect to these variables is zero. This condition for independence of E(Y jX) and X(j) is statedas E(Y jX) ? X(j) , @E(Y jX)@X(j) = 0 a:s:(1)where @E(Y jX)=@X(j) 2 Rj and where ? denotes orthogonality or independence.Nonparametric estimation techniques yield partial derivatives which are permitted to vary overtheir domain. Contrast this with parametric multivariate linear regression techniques in which thepartial derivative is typically assumed to be constant over its domain. This has implications for thetype of test statistic used in a nonparametric context. In particular, tests must be formulated todetect whether a partial derivative equals zero over the entire domain of each variable in question.Noting explicitly that the partial derivatives vary over their domain, the null hypothesis can bestated in terms of the vector of partial derivatives of the conditional mean asH0 : @E(Y jX)@X(j) = 0 for all x 2 XHA : @E(Y jX)@X(j) 6= 0 for some x 2 X(2) 3



Since a test statistic in this context must necessarily involve some aggregate measure of the derivativeover its domain, an aggregate L2 norm measure will be used. This norm is adopted based on powerconsiderations.Using this L2 aggregate based on the unknown derivatives, the null and alternative hypotheses canbe stated as H0 : � = E�0 "@E(Y jX)@X(j) 2# = 0HA : � = E�0 "@E(Y jX)@X(j) 2# > 0(3)where � denotes a unit vector of length j, and @E(Y jX)=@X(j)2 is intended to mean that this is avector of squared derivatives. If the null hypothesis is true then � will be identically equal to zero.Otherwise, � will exceed zero.The proposed test statistic is obtained by constructing the sample analogue of Equation (3) inwhich the unknown derivatives are replaced with nonparametric estimates, �̂(xi) 2 Rj, i = 1; : : : ; n.The resulting test statistic will be denoted by �̂ and is written as�̂ = n�1 nXi=1 pXh=j h�̂h(xi)i2 :(4)The �nite sample properties of this test statistic are not known at this time, however it is fully expectedthat this will yield a consistent test under standard regularity conditions.2.2. Obtaining The Null Distribution of �̂. To conduct tests based on the proposed statistica sampling distribution under the null must be obtained. One option at this point would be towork on obtaining an asymptotic approximation to this distribution. Robinson (1991) employedasymptotic approximations for his analytically simpler semiparametric average derivative and notedthat \substantial variability in the [test statistic] across bandwidths was recorded", which is troublingfor reasons outlined in Section 1. Against this backdrop a resampling approach is pursued. As will beseen, the resulting test will have correct size and will be extremely insensitive to very large deviationsfrom the optimal bandwidth.The sampling distribution of �̂ under the null will be estimated using Efron's bootstrap (Efron1983). Percentiles of the test statistic under the null can then be obtained from this estimateddistribution, and one-sided tests can then be performed by comparison of the test statistic with theappropriate percentile obtained from the estimated distribution.2.3. Pivotal Resampling. Recent modi�cations of the bootstrap are known to give more reliablepercentiles than the standard bootstrap. The best approaches (as argued by Beran (1988) and Hall(1986)) are known as pivotal methods (also known as percentile-t methods). A statistic is (asymptot-ically) pivotal if its limiting distribution does not depend on unknown quantities (Hall 1992, p. 83).The general idea is that instead of bootstrapping a raw statistic �̂, a studentized statistic (�̂� �)=s(�̂)is bootstrapped where s(�̂) is a consistent estimate of the standard error of (�̂� �). For most applica-tions, s(�̂) is a pn consistent estimator. The bootstrap does a better job of estimating the distributionof a pivotal statistic than it does a non-pivotal one, and this pivotal bootstrap approach been shownto be asymptotically superior to non-pivotal bootstrap approaches (Hall 1988). In particular it hasbeen shown (Beran 1988) that the pivotal bootstrap distribution coincides through order pn with theEdgeworth expansion of the exact �nite sample distribution. In addition, Beran (1988) has demon-strated that critical values obtained from a pivotal approach will result in tests with �nite samplesizes closer to the nominal size than tests based on asymptotic critical values.4



There are two potential applications of pivoting for the test statistic at hand. First, our statisticis an average of (squared) pointwise derivative estimates �̂h(xi). These estimates can be pivoted bypointwise dividing by their standard errors based on asymptotic approximations, SE(�̂h(xi)). Thetest statistic based on the pivoted derivative estimates would therefore be given by�̂ = n�1 nXi=1 pXh=j " �̂h(xi)SE(�̂h(xi))#2 :(5)Secondly, the statistic �̂ can be pivoted by dividing by its standard error. The asymptotic distributionof the proposed statistic �̂ is not known, hence an estimator of the statistic's variance based onasymptotic results cannot be used. An estimate of the statistic's variance can, though, be computed viaresampling (I am most grateful to an anonymous referee for noting this point). Efron and TibshiraniEfron and Tibshirani (1993, p. 162) note that \standard error formulae exist for very few statistics, andthus... [for] more complicated statistic[s]... we would need to compute a bootstrap estimate of standarderror for each bootstrap sample [which] implies two nested levels of bootstrap sampling." Followingthis approach a nested pivotal bootstrap procedure is applied to estimate the null distribution oft̂ = �̂SE(�̂)(6)as opposed to �̂, where SE(�̂) is the estimated standard error of �̂ which is itself obtained via nestedresampling. It will be seen that pivoting the derivative estimates and the test-statistic itself will yielda test procedure which is remarkably insensitive to bandwidth choice. Section 3.1 and Appendix Apresent simulation results which demonstrate the improvements in empirical size from pivoting bothwith and without the pivoting of the derivative estimates.There is an issue of the bias of the nonparametric estimator �̂h(xi) which could be raised since,though �̂h(xi) is consistent, it is biased in small samples. There are three common approaches toaddressing this problem. The �rst involves explicit bias correction, the second involves the use ofhigher order kernels, while the third involves undersmoothing of the estimate. It will be seen that thethird approach will have obvious advantages in this context. This is due to the fact that the proposedtest is insensitive to the choice of bandwidth, therefore if one is concerned with the adverse e�ectsof bias one can simply choose to undersmooth the estimated derivatives and this will not adverselya�ect the size of the test. This being said, either of the three approaches mentioned above may beutilized if one is concerned with the adverse consequences of small sample bias.Finally, there is the question of how valid the pivotal bootstrap procedure is in this context. Theabove modi�cations of the standard bootstrap utilize improvements known to be the best currentlyavailable. Horowitz (1991) bootstrapped a smoothed maximum score estimator which, like the kernelestimator, is not pn consistent. His Monte Carlo evidence suggests that critical values based on thepercentile-t are much more accurate than those obtained from �rst-order asymptotic theory. Thevalidity of the pivotal bootstrap in this context can be checked via Monte Carlo results, and this issueis addressed in Section 3.1.2.4. The Resampling Algorithm. The algorithm presented here is for the case of iid randomvariables. Extension to the case of general stationary observations would follow by replacing thebootstrap below with the more sophisticated resampling procedure found in K�unsch (1989), while theproposed test procedure would remain unchanged.The bootstrapping algorithm for obtaining the null distribution of the test statistic t̂ proceeds asfollows:1. Estimate the `restricted' conditional mean E(Y jx(�j)i; �x(j)i). The resulting �tted conditionalmean is denoted M̂ (x(�j)i; �x(j)i), i = 1; : : : ; n. Note that since the null is E(Y jX) ? X(j), this5



restricted conditional mean does not vary with the variables whose signi�cance are to be tested(X(j)) since they are held constant at their means for all i = 1; : : : ; n.2. Generate residuals �̂i = yi � M̂ (x(�j)i; �x(j)i), i = 1; : : : ; n, then re-center them around the valuezero (Freedman 1981). Note that these residuals are constructed under the null.3. Generate the empirical distribution F̂ which has probability mass 1=n at �̂i. That is,F̂ : mass 1n at �̂i; i = 1; : : : ; n:4. Draw a `bootstrap residual sample' from F̂ by sampling with replacement from F̂ and call thisbootstrap sample f��i gni=1.5. Generate a `null bootstrap data sample' with dependent variable generated fromy�i = M̂ (x(�j)i; �x(j)i) + ��i ; i = 1; : : : ; nThe bootstrap sample will be fy�i ; xigni=1, where the conditioning variables are those from theoriginal sample and therefore contain both X(j) and X(�j).6. Obtain the bootstrap estimators �̂(xi)� and SE(�̂(xi)�) using fy�i ; xigni=1. Using these bootstrapestimators, calculate t̂� = �̂�=SE(�̂�) where SE(�̂�) is obtained according to Section 2.5 below.This will yield one bootstrap replication `null' value of the test statistic t̂ under H0.7. Independently repeat Step 6 a large number of times obtaining bootstrap replications t̂�1, t̂�2,: : : , t̂�B1 where B1 is the number of bootstrap replications.2.5. Pivoting the Test Statistic via Resampling. The standard error of the test statistic denotedby ��̂ is required, an estimate of which can be obtained via nested resampling. Resampling proceedsfrom the fY;Xg pairs used to compute a given value of the statistic, and proceed as follows:1. For a sample fY;Xg used to compute the test statistic �̂, draw a resample maintaining the(Yi; X 0i) pairs. That is, resample Z 0i = (Yi; X 0i). Call a given resample fY �; X�0g.2. Given the resample fY �; X�0g, compute �̂�, the test statistic based on this resample.3. Repeat steps 1 and 2 B2 times, and call the resampled test statistics �̂�1, �̂�2, : : : , �̂�B2 . Notethat since the variance is being estimated rather than tail percentiles, a fairly small number ofresamples will be required.4. Given the B2 resampled values of a given value of the test statistic, compute their standarddeviation, and call this SE(�̂).5. The pivotal value of a given value of the test statistic will therefore be given by t̂ = (�̂ ��0)=SE(�̂) = �̂=SE(�̂).This approach can be applied for both the test statistic and those values of the test statisticcomputed under the null. The pivoted value of the test statistic is denoted by t̂ = �̂=SE(�̂), and thepivoted values of the test statistic under the null by t̂�i = �̂�i =SE(�̂�i ); i = 1; 2; : : : ; B1.2.6. Decision Rules for the Proposed Test. Having computed and pivoted the test statistic �̂and having obtained the empirical sampling distribution of this test statistic under the null, the (1��)percentile t�1�� can be obtained where t�1�� is that value of t such thatPr[t > t�1��] = �(7)A test of size � can therefore be conducted by obtaining the null distribution for t̂ as outlined aboveand then determining whether t̂ > t�1��. If so H0 is rejected, otherwise we fail to reject H0.6



2.7. Appropriate Number of Bootstrap Resamples and Bootstrap Pivot Resamples. Thenumber of bootstrap replications is always context dependent. If one uses the percentile method forobtaining con�dence intervals or empirical p-values, a large number of replications might be necessaryto get reasonable accuracy in the tails of the distribution. However, if one is not obtaining tailpercentiles but is simply estimating low-order moments, then a small number of replications cansu�ce. For recent work on the appropriate number of bootstrap replications, see Hall and Titterington(1989).The proposed approach adopts the percentile method and, in addition, requires the estimation ofa variance for pivoting. Therefore, in this context 1,000 replications are recommended for obtainingthe tail percentiles, while 100 replications are recommended for estimation of the variance. Clearly,the higher the number of replications the better, but these suggested values appear su�cient to getextremely good accuracy of empirical size across a wide range of settings and sample sizes.Although intuitively one would expect the bootstrap to provide consistent estimates of the distri-butions of the test statistics considered in the paper, this has yet to be rigorously proven. The resultsof Hall and others would indicate that this is the case.3. APPLICATIONS3.1. Empirical Size. As noted in Section 1, the nonparametric asymptotic-based testing proceduressu�er from the fact that the outcome of the tests are sensitive to the choice of bandwidths since thenull distributions do not depend on the bandwidth. The proposed test should not su�er from thisdrawback since the null distribution depends explicitly on the bandwidth. In this section the empiricalsize of the proposed test is examined when the bandwidths deviate signi�cantly from their optimalvalues. Given the inherent sampling variability of data-driven bandwidth selection procedures this isperhaps the single most important practical issue to be addressed and it can only be examined viasimulation.All computations which follow were performed on a 90mhz Pentium. Source code was written inANSI C, and was compiled using gcc 2.6.3. The multivariate Gaussian kernel was used throughout.Tests were conducted with nominal sizes of � = 0:01; 0:05;0:10. The sample size was set at n = 50.There were 1; 000 bootstrap replications (B1 = 1; 000), 100 pivot (B2 = 100) replications, and 1; 000Monte Carlo replications. The following DGP was simulated for the experiment:yi = sin(2�x1i) + �i(8)A variableX2 was generated which was unrelated to E(Y jX). The data forX1 andX2 were distributedU [0; 1] and the disturbance term was distributed N (0; 0:25).The estimated model was of the formyi = E[Y jx1i; x2i] + �i(9)We wish to test whether the variable X2 is signi�cant or not, and the null is H0 : E(Y jX) ?X2.For what follows, the scaling factor for the bandwidth for variable j refers to the constant cj in theformula for the optimal bandwidth for the kernel employed, cj�jn�1=(4+p), where p is the number ofconditioning variables (in this case p = 2) and where �j denotes the standard deviation of Xj. Theunknown constant cj depends on the joint distribution of X and on the kernel function. However, thisconstant can be obtained by data-driven methods such as leave-one-out cross-validation (CV). For anoverview of CV see Stone (1974).For this simulated DGP, bandwidth choice via CV was investigated to determine the likely rangeof values for c1 and c2 which would be encountered in a practical setting. For the 1,000 simulateddata sets for which CV was applied the mean of c1 was 0.24, and the mean of c2 was 5� 105. Thesemean values will be referred to as the `optimal values' for the following simulations.7



Given the need to use data-driven methods for bandwidth selection for almost all practical settings,and given the inherent sampling variability in bandwidths obtained by such methods, it is highlydesirable that the outcome of any proposed test not depend on bandwidth choice. Therefore, theempirical size of the proposed test was calculated for 0:18 � c1 � 0:30, and for 0:5 � c2 � 10:0. Notethat for c2 > 10:0 the results do not di�er quantitatively from those for c2 = 10:0 and hence are notreported. These ranges for the bandwidths include the likely range of values which would be chosenby CV for this DGP.Table 1 below considers the e�ects of deviations of the bandwidths from their optimal values onempirical size of the proposed test. Scaling is linear in its e�ect, therefore, going from c2 = 1:0to c2 = 5:0 represents a 500% increase in the bandwidth. The upper left values in Table 1 denoteempirical size when the conditional mean is dramatically undersmoothed, while those in the lowerright corner correspond to oversmoothing. Boldface entries denote empirical size for the optimalbandwidth, while values marked with an asterisk di�er signi�cantly from nominal size at the 1% level.Appendix B presents some of the estimated conditional means for the range of bandwidths found inthe table below in order to convey the e�ect of the range of bandwidths considered.Nominal Size: 0.01c1jc2 0.5 1.0 5.0 10.00.18 0.01 0.01 0.02 0.010.24 0.01 0.01 0.02 0.010.30 0.01 0.01 0.02 0.01Nominal Size: 0.05c1jc2 0.5 1.0 5.0 10.00.18 0.05 0.07� 0.06 0.050.24 0.06 0.06 0.06 0.050.30 0.06 0.05 0.06 0.05Nominal Size: 0.10c1jc2 0.5 1.0 5.0 10.00.18 0.11 0.14� 0.11 0.100.24 0.10 0.12 0.11 0.100.30 0.12 0.10 0.10 0.10Table 1: Empirical sizes of the proposed test, �̂For this example, CV yields a range of bandwidths for which nominal size does not di�er signi�cantlyfrom the actual size. These values are found in the rightmost column of Table 1. Large deviationsof the bandwidths from their optimal values leave the test's size virtually una�ected, highlighting thepractical appeal of the proposed test given the need to use data-driven bandwidth selection techniquesin practice. These results demonstrate that the proposed test is remarkably insensitive to the choiceof the bandwidth, unlike the asymptotic tests.3.2. Mis-Speci�cation and Power. Suppose you are presented with a sample of data fyi; x1i; x2igof size n = 100. In the absence of prior knowledge about the true DGP the following linear regressionmodel is estimated using the method of least squares.yi = �0 + �1x1i + �2x2i + �3x1ix2i + �i(10) 8



Coe�cient Estimate Standard Error t-statistic�̂0 -0.015677 0.41287 -0.037971�̂1 -0.33105 0.69603 -0.47562�̂2 -0.013421 0.69603 -0.019282�̂3 0.61423 1.1734 0.52346�R2 -0.0217439F3;96 0.297721logL -157.679Table 2: Summary of Parametric Test ResultsThe parameters �1, �2, and �3 are not signi�cant based on this model, either individually or jointly.Based on this model it is concluded that E[Y jX] ? X1; X2.Now the above hypotheses is tested using the proposed test. The following table summarizesthe results of three tests - one for E[Y jX] ? X1, one for E[Y jX] ? X2, and one joint test forE[Y jX] ? X1; X2. Bandwidths were chosen via leave-one-out CV.Variable t̂ t̂c0:95 p̂X1 6.57 2.81 p < 0:001X2 3.45 2.26 p < 0:001X1; X2 10.1 4.00 p < 0:001Table 3: Summary of Proposed Test ResultsThe results are clear rejection that X1, X2, and (X1; X2) jointly are independent of the conditionalmean of Y .Now suppose that the true state of nature is revealed. The true DGP for the data used above isgiven by yi = E(Y jx1i; x2i) + �i= 8:0� cos(2:0�x1i)� (x22i � x2i) + (x2i � x22i) + �i(11)where X1 � U [0; 1], X2 � U [0; 1] and �i � N (0; 0:5). Note that this is a highly nonlinear functionand is twice continuously di�erentiable. This DGP is graphed below.Figure 1: Actual DGP0 1 0 1-2-101234 X1 X2Y
Having had the true state of nature revealed to us, it is seen that the linear parametric modelis clearly mis-speci�ed. In fact, the estimated linear model is a horizontal plane through the data,hence the estimated parameters/derivatives will be close to zero. In this case the mis-speci�cation of9



the functional form of the conditional mean E[Y jx1; x2] has led to tests which are not asymptoticallyvalid and which possess incorrect size and low power regardless of the sample size. In this example,the parametric model would lead one to believe that the conditioning variables X1 and X2 do nothelp explain movements in the dependent variable Y . In fact, quite the opposite is true. Clearly theparametric model above would fail the most simple speci�cation test, however, it is very unlikely thatthe true model would be found in practice. Hence tests based on any other parametric model otherthan Equation (11) would not be, strictly speaking, valid.The point to be made is that parametric models will always be mis-speci�ed to some degree, anda practitioner might likely encounter situations such as that above in which inference based on theparametric model is incorrect and hence misleading.3.3. Testing for the Unpredictability of Exchange Rates. The market e�ciency hypothesisapplied to foreign exchange rates is typically interpreted to mean that there is no information containedin past percentage changes in exchange rates which can be used to predict future percentage changesin exchange rates. This hypothesis is referred to as `unpredictability of exchange rates'.The linear unpredictability of exchange rates has a long history going back to early work on e�cientmarkets such as that by Fama (1965) and Cootner (1964). In addition, conditional heteroskedasticityin exchange rates has been repeatedly documented (Diebold 1988). The typical parametric charac-terization of exchange rate dynamics has been that of linear conditional means with nonlinearitiesworking through the conditional variance in the form of autoregressive conditional heteroskedasticity(ARCH) and related e�ects.Recent work by Diebold and Nason (1990) has questioned two related aspects of this parametricapproach. First, there is the question of whether the conditional mean is truly linear. Second, thereis the question of whether the ARCH e�ects may be an artifact of neglected nonlinearities in theconditional mean. Since both of these questions are concerned with potential mis-speci�cation of theconditional mean process, this would appear to be a good application for the proposed test. Dieboldand Nason (1990) do not attempt any direct testing and they simply compare out-of-sample predictionsof locally weighted regression (LWR) (Cleveland, Devlin and Grosse 1988) versus a parametric randomwalk speci�cation. The approach presented in this paper goes beyond the work of Diebold and Nason(1990) and allows us to actually test the market e�ciency hypothesis without assuming the functionalform for the conditional mean.Following the methodology of Diebold and Nason (1990), data for nominal weekly dollar spot ratesfor the G7, Friday average, (St) were collected from Citibase. All data are measured in cents perunit of foreign currency. Each series contains 636 observations, and each series begins 1/4/1980.Following Diebold and Nason (1990), interest focuses on percentage exchange rate changes � logSt,thereby avoiding potential problems associated with estimation of nonstationary regression functionsand highly collinear conditioning variables. It is worth noting that this transformed exchange rateseries � logSt may not in fact be an iid series, however, for this application I shall proceed under theassumption that it is. Diebold and Nason (1990) consider lag structures of one, three, and �ve lags.Their �ndings were una�ected by using di�erent lag structures, and they conclude that \Our �ndingsbode poorly for recent conjectures that exchange rates contain nonlinearities exploitable for enhancedpoint prediction".Results of the proposed test of the hypothesis H0 : E[� logStj�logSt�1] ? �logSt�1 correspond-ing to the one lag structure of Diebold and Nason (1990) are given in the following table. Bandwidthswere chosen via leave-one-out CV. Estimated critical values for � = 0:05 are given along with thevalue of the test statistic and the empirical p-value. Graphs of the estimated conditional means arefound in Appendix C. 10



Country t̂ t̂c0:95 p̂Canada 2.92 1.52 p < 0:01France 3.54 1.41 p < 0:01Germany 3.69 1.46 p < 0:01Italy 3.48 1.52 p < 0:01Japan 4.53 1.38 p < 0:01UK 4.16 1.38 p < 0:01Table 4: Predictability Test for G7 Exchange RatesFor each series for the period considered, the hypothesis E[� logStj�logSt�1] ? �logSt�1 wasrejected at all conventional levels. The estimated derivatives average from 0:2 to 0:3, and there isstrong evidence of a signi�cant and positive relationship between E[� logStj�logSt�1] and � logSt�1given the outcome of the proposed test for this data.Given this statistically signi�cant rejection of the null for all six series, the root mean squaredprediction error (RMSPE) was then computed for the one-step forecasts based on both the randomwalk hypothesis (RW) and the nonparametric forecasts (NP). The model was �t on the �rst T = 500observations, and ex-ante one-period forecasts were computed for the remaining observations in theseries which were not included in the estimation sample. That is, given � logSt, the �tted modelwas used to forecast � logSt+1, t = 501; 502; : : : ; 633. The bandwidth was selected by leave-one-outCV for the observations on which the model was �t, making this a completely ex-ante approach. Thefollowing table presents RMSPE for the RW and NP forecasts.Canada France GermanyRW NP RW NP RW NP0.004471 0.004277 0.013248 0.012848 0.013915 0.013479Italy Japan UKRW NP RW NP RW NP0.012802 0.012346 0.011611 0.010959 0.014016 0.013587Table 5: One-Step Forecast RMSPE for G7 Exchange RatesThe signi�cant nonlinear relationship detected by the proposed test can, in this instance, be ex-ploited for improved one-step-ahead forecasting over that obtained assuming that � logSt follows arandom walk. These results were robust to a very wide range of �tting/evaluation splits in the series.These results suggest that, for the exchange rate series considered and for the time-period considered,percentage changes in weekly exchange rates possess small but signi�cant nonlinear persistence whichcan be exploited for one-step-ahead forecasting. These results run counter to the �ndings of Dieboldand Nason (1990). Whether these �ndings can be exploited accounting for both risk and transactionscosts remains an open question. 4. CONCLUSIONThe test of signi�cance is probably the most widely used test statistic in the context of multivariateregression. Its importance stems partly from the fact that the signi�cance test is often used to con�rmor refute theories and so incorrect size or low power would have important practical and theoreticalimplications. In this paper the test of signi�cance is considered in the context of nonparametric kernelregression. The approach taken is based on the application of resampling methods and resolves someimportant outstanding practical issues regarding hypothesis testing in a nonparametric framework.The motivation for using nonparametric instead of parametric methods for both estimation andhypothesis testing derives from the fact that employing a mis-speci�ed parametric model will typi-cally result in inconsistent parameter estimates and signi�cance tests possessing both asymptotically11



incorrect size and low power. The utility of nonparametric estimation techniques is due to the factthat they are robust to functional mis-speci�cation for a wide class of data generating processes.Hypothesis tests based on such models do not therefore su�er from the adverse e�ects of functionalmis-speci�cation.The proposed test statistic is based on nonparametric estimates of derivatives of an unknownconditional mean with respect to the conditioning variables. A resampling technique known as nestedpivotal bootstrapping is used to derive the null distribution of the test statistic.Competing approaches in the context of nonparametric regression have been based on derivationsof the asymptotic or limiting distribution of similar test statistics. The application of resampling tech-niques resolves one extremely troublesome aspect of tests based on limiting distributions, that the teststatistics' value depends on a bandwidth while the limiting distribution does not, and hence the out-come of a test based on limiting distributions is highly sensitive to bandwidth choice. The test statisticproposed in this paper and the associated null distribution depends explicitly on the bandwidth, andthe proposed test is therefore remarkably insensitive to the choice of bandwidth. Furthermore, theempirical size of the test based on cross-validated bandwidths does not di�er signi�cantly from thenominal size for the simulation undertaken and is expected to be the case in general.The main contributions of the proposed approaches are threefold. First, the proposed signi�cancetest has correct size and in addition possesses power in the direction of the class of twice-continuouslydi�erentiable alternatives. Second, both the test statistic and its null distributions depend explicitly onthe bandwidth, a feature lacking if the null distributions are derived using asymptotic theory. Third,it is believed that the test statistic has the same rate of convergence as those based on parametricmodels due to the form of averaging employed in the construction of the statistics, though this isbeyond the scope of this paper and remains the subject of ongoing research.This paper represents part of an ongoing project whose goal is that of working towards a uni�edapproach to estimation, inference, and hypothesis testing in a nonparametric context. The test ofsigni�cance is widely used and can have important practical and theoretical implications, but clearlythere is much to be done before a sound, uni�ed, and workable nonparametric framework exists.5. AcknowledgmentsI would like to thank Hal White and Clive Granger for their numerous insightful comments andsuggestions, and two anonymous referees whose comments were most helpful. In addition, I would liketo thank participants at the Econometric Society meetings, the CESG meetings, and participants atthe Econometrics Workshops at the University of California San Diego. All errors remain, of course,my own. Appendix A. Empirical Sizes of Non-Pivotal Test StatisticsIt is clear that the pivotal approach taken in this paper is more computationally intensive thanthe standard bootstrap. The question arises as to the practical bene�t of the application of pivotalbootstrapping for the situation at hand. To answer this question, the empirical size for two teststatistics is considered. The �rst is the unpivoted statistic given in Equation (4), while the secondis the pivoted version of Equation (4). Note that the proposed statistic involves �rst pivoting thederivative estimates and then considering a pivoted version of this pivoted statistic.Table A therefore gives the empirical size for the statistic for which no pivoting occurs,^̂� = 1n nXi=1 h�̂(xi)ji2(12) 12



Table ANominal Size: 0.01c1jc2 0.5 1.0 5.0 10.00.18 0.07� 0.14� 0.10� 0.10�0.24 0.02 0.07� 0.04� 0.04�0.30 0.01 0.05� 0.03� 0.04�Nominal Size: 0.05c1jc2 0.5 1.0 5.0 10.00.18 0.22� 0.34� 0.29� 0.28�0.24 0.12� 0.22� 0.18� 0.18�0.30 0.09� 0.17� 0.13� 0.15�Nominal Size: 0.10c1jc2 0.5 1.0 5.0 10.00.18 0.36� 0.50� 0.44� 0.43�0.24 0.23� 0.37� 0.30� 0.29�0.30 0.18� 0.29� 0.24� 0.23�Table A.1: Empirical Size.Note that the empirical sizes for the raw statistic are so poor as to render the test statistic in thisform virtually unuseable.Table B gives the empirical size for the statistic for which there is no pivoting of the derivativeestimates, but the statistic ^̂� given in Equation (12) is pivoted, that is,t = ^̂�SE(^̂�)(13) Table BNominal Size: 0.01c1jc2 0.5 1.0 5.0 10.00.18 0.01 0.01 0.01 0.010.24 0.01 0.01 0.01 0.010.30 0.01 0.01 0.01 0.01Nominal Size: 0.05c1jc2 0.5 1.0 5.0 10.00.18 0.06 0.03� 0.04 0.03�0.24 0.04 0.04 0.04 0.040.30 0.05 0.04 0.05 0.05Nominal Size: 0.10c1jc2 0.5 1.0 5.0 10.00.18 0.11 0.07� 0.08 0.080.24 0.10 0.08 0.09 0.080.30 0.11 0.09 0.10 0.09Table A.2: Empirical Size.Note that pivoting the statistic given in Equation (4) yields a dramatic improvement in empiricalsize. These results are just slightly worse than that for the proposed statistic.13



Appendix B. Degree of Smoothing and SizeOne of the main contributions of this paper is the fact that the proposed test is remarkably insen-sitive to bandwidth choice. The estimates plotted below are those for the center row of Table 1 inSection 3.1. The empirical sizes for tests based on each of these estimated conditional means di�erby at most 2%, yet clearly these di�er greatly in the amount of smoothing occurring. The estimatesrange from a severely undersmoothed estimate (c1 = 0:24; c2 = 0:5) to an appropriately smoothed one(c1 = 0:24; c2 � 10). Note that for all of these cases, the empirical size is very close to the nominal size.Finally, again note that when using CV, the empirical and nominal sizes do not di�er signi�cantly,and these values are to be found in the rightmost column of Table 1.C1 = 0:24; C2 = 0:50 0 1�101 X1 X2Y C1 = 0:24; C2 = 1:00 0 1�101 X1 X2Y C1 = 0:24; C2 � 10:00 0 1�101 X1 X2YFigure B.1: Range of Bandwidths and Degree of Smoothing.Appendix C. Degree of Smoothing and SizeThe following graphs present the data and kernel estimates of the conditional meanE[� logStj�logSt�1] for G7 exchange rates for the case of one lag.14
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Figure C.1: Kernel Estimates of the Conditional Mean for G7 Exchange Rates.Note that there appears to be a common small and positive nonlinear relationship present between� logSt and � logSt�1 for all series. 15
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