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a b s t r a c t

This tutorial explains the foundation of approximate Bayesian computation (ABC), an approach to
Bayesian inference that does not require the specification of a likelihood function, and hence that can be
used to estimate posterior distributions of parameters for simulation-based models. We discuss briefly
the philosophy of Bayesian inference and then present several algorithms for ABC. We then apply these
algorithms in a number of examples. For most of these examples, the posterior distributions are known,
and so we can compare the estimated posteriors derived from ABC to the true posteriors and verify that
the algorithms recover the true posteriors accurately.We also consider a popular simulation-basedmodel
of recognition memory (REM) for which the true posteriors are unknown. We conclude with a number of
recommendations for applying ABC methods to solve real-world problems.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Following nearly a century of frequentist approaches to data
analysis and model fitting, the ‘‘Bayesian revolution’’, together
with the availability of powerful desktop computers and powerful
algorithms to fit full Bayesianmodels, has allowed psychologists to
exploit Bayesian methods in behavioral research. Bayesian meth-
ods are important not only because they circumvent the ‘‘ritualized
exercise of devil’s advocacy’’ (Abelson, 1995, p. 9) of null hypoth-
esis testing, but also because they allow for statistical inference
without compromising the theory motivating the experiments
that generated the data (e.g., Lee, Fuss, & Navarro, 2006; Nilsson,
Rieskamp, & Wagenmakers, 2011; Oravecz, Tuerlinckx, & Vandek-
erckhove, 2011; Vandekerckhove, Tuerlinckx, & Lee, 2011; Wet-
zels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2008). Thus,
Bayesian techniques complement the development of statistical
and mathematical models.

To understand the close link between Bayesian analyses and
model development, consider the data Y = {Y1, Y2, . . . , Yn}

observed after conducting an experiment. The data could be
anything, such as response times, ratings on a 1–7 scale, hit and
false alarm rates, or EEG traces. The data frommany experiments in
cognitive psychology (aswell as other areas of behavioral research)
are assumed to arise from a specific mathematical or statistical
model of the data-generating process. For example, if the data Y
are response times, the data-generating process could be described
by a two-boundary diffusion process (Ratcliff, 1978). If the data

∗ Corresponding author.
E-mail address: turner.826@gmail.com (B.M. Turner).

0022-2496/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmp.2012.02.005
are hit and false alarm rates, the data-generating process could be
described by signal detection theory (Green & Swets, 1966). Each
of these models of the data-generating process depends on a set of
parameters θ , such as the d′, σ andβ of signal detection theory, and
the goal of statistical inference is to say something about how those
parameters change under changes in experimental conditions.1

The fundamental difference between Bayesian statistics and
frequentist techniques lies in how the parameters θ are conceived.
For frequentists, parameters are assumed to be fixed within a
group, condition or block of experimental trials and inference is
therefore based on the sample space of hypothetical outcomes
that might be observed by replicating the experiment many times.
Inference about these unknown, fixed parameters takes the form
of a null hypothesis test (such as a t-test), or estimating the
parameters by determining the parameter values that minimize
the difference between the model predictions and the data.

For Bayesians, parameters are treated as random quantities
along with the data. Inferences about parameters are based on
the probability distributions of the parameters after some data are
observed—the posterior distributions. There are two requirements
to compute or estimate these posterior distributions. First,wemust
be able to compute the likelihood of the data; that is, given a
model with a set of parameters θ , we must specify the probability
of each observation in the sample. For mathematical models

1 A word about notation is in order. Throughout this tutorial, an unadorned
variable such as Y or θ should be permitted to take on vector values. If a variable
is subscripted (e.g., ϵt ), it is a scalar or an element (possibly vector-valued) of a
vector. Capital Roman letters represent variable quantities, while lower-case letters
represent fixed values.
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(such as the diffusion model or signal detection theory), this
requirement is simply thatwebe able towrite down the theoretical
probability density f (y|θ) for any observation y. Assuming that
the observations {Y1, Y2, . . . , Yn} are independent and identically
distributed, the likelihood is defined as

L(θ |Y1 = y1, Y2 = y2, . . . , Yn = yn) =

n
i=1

f (yi|θ). (1)

Second, we must supply a prior distribution for θ . This prior
distribution may be based on our previous understanding of
likely values for θ . For example, in a diffusion model, we might
place a distribution for the, say, drift rate at a location suggested
by previous values of the drift rate estimated under different
conditions (Wagenmakers, van der Maas, & Grasman, 2007).
Alternatively, this prior may instead reflect the fact that we know
nothing at all about θ . In this case, we might use a prior that is
uninformative, or widely dispersed over the allowable range or
support of θ .

Whether the prior is informative or not, after observing the data
it is updated, by way of the likelihood, to produce the posterior
distribution for θ . Using Bayes’ Theorem, the posterior π(θ |Y ) is

π(θ |Y ) =
L(θ |Y )π(θ)
L(θ |Y )π(θ) dθ

. (2)

With the posterior distribution of θ in hand, we can examine the
random behavior of θ . For example, keeping in mind a frequentist
alternative hypothesis such as HA : θ > 0, we can provide the
probability that θ really is greater than zero, or, conversely, the
probability that the null hypothesis H0 : θ ≤ 0 is true. The
posterior can be used to estimate a ‘‘credible set’’, the Bayesian
counterpart to a confidence interval for θ . The central tendency
of the posterior (mode, median or mean) can be used as a point
estimate for θ . As an alternative to these approaches, one could
designate a small interval such that any valuewithin the interval is
equivalent to the value of interest (e.g., values around H0 : θ = 0),
for all practical purposes. This interval is referred to as the region
of practical equivalence (Kruschke, 2011).

Although this framework is appealing and powerful in theory,
exact evaluation of the posterior distribution can be very
complicated, which until fairly recently restricted its utility to only
a few problems. The difficulty in evaluating the posterior is due
to the integral appearing as the denominator of Eq. (2), which is,
for realistic models, usually intractable. However, this integral is
simply a complicated normalizing constant. That is, the posterior
distribution is proportional to the prior times the likelihood, or

π(θ |Y ) ∝ L(θ |Y )π(θ). (3)

If both the likelihood and the prior have analytic forms, Eq. (3) im-
plies that the desired posterior is tantalizingly close at hand. If the
distributional form of π(θ |Y ) can be deduced from the product of
the likelihood and the prior, we need only write down this distri-
butional form (e.g., a gammadistribution) to compute the posterior
probabilities of interest. If the posteriorπ(θ |Y ) does not follow any
convenient distributional form, there remains considerable com-
putation beforewe can accurately estimate or obtain samples from
it. The recent enthusiasm for Bayesian methods in the psycholog-
ical community (and elsewhere) derives from the development of
simulation methods (such as Markov chain and sequential Monte
Carlo) and the availability of computers powerful enough to effi-
ciently implement thesemethods to estimate the posteriorπ(θ |Y ).

Monte Carlo methods make use of a ‘‘proposal’’ distribution, a
simple distribution such as the Gaussian from which samples can
be easily obtained. These samples are then filtered in such a way
that the samples that are consistent with the desired posterior are
retained and all others are discarded. When Monte Carlo methods
are appropriately implemented, the theory of Markov chains
guarantees that, in the limit (that is, with a large enough ‘‘chain’’
of samples), the distribution of the filtered samples approaches the
distribution of the posterior π(θ |Y ).

The prior π(θ) is always available, regardless of the model
of interest, because it is selected by the researcher. However,
there are many models for which a likelihood can be difficult
or impossible to specify mathematically. This problem arises
most frequently for computational or simulation-based models,2
which generate predictions by simulating the data-generating
mechanism. These models are very popular in the social sciences,
and in cognitive psychology in particular. In these cases, the
application of standard methods of Bayesian estimation, as well as
classical maximum likelihood estimation (Myung, 2003), has not
been possible.

Consider, for example, O’Reilly and colleagues’ LEABRAmodel of
learning (O’Reilly, 2001, 2006; O’Reilly &Munakata, 2000). LEABRA
is a connectionist network in which different sets of individual
computational units are organized into layers, and these layers
communicate by way of weighted connections between the units.
The network learns to produce certain patterns of activation in
response to input patterns by modifying the connection weights.

The unique contribution of the LEABRA architecture is how its
organization is tied to neural dynamics and neurophysiology. The
parameters of the neural units are chosen to correspond to the
electrophysiological constants controlling neural membrane po-
tential. Learning occurs in different ways and different rates, cor-
responding to the Hebbian, error-monitoring, and reinforcement
learning observed in biological systems. Different layers of neu-
ral units correspond to posterior cortex, hippocampus, and basal
ganglia.

The model has been applied to a wide range of problems in
cognition, including perception, language, attention, learning and
memory. The behavior of the model in different circumstances
is determined by simulating its behavior many times. There is
no analytical form available that describes the probability of
different model outputs. Therefore, like other simulation models
in psychology, LEABRA has not been able to take advantage of
progress in Bayesian computation. Similar problems have been
encountered in biology, particularly in genetics. In this context,
an approach called ‘‘approximate Bayesian computation’’ has been
successfully applied to estimating the parameters of complex
genetic models. Our tutorial presents this new approach and
demonstrates how it can be applied to computational models of
cognition.

2. Plan of the tutorial

We begin in Section 3 by presenting the ideas behind approxi-
mate Bayesian computation (ABC) and a number of algorithms that
have been used to generate estimates of the posterior distribution.
We start by demonstrating how ABC can be applied to a number of
toy problems, problems for which the true posterior distribution
can easily be derived and compared to the approximation provided
by ABC (Sections 4 and 5).

Our first example considers a problem with binomially dis-
tributed data and a simple ABC rejection sampler (see Algorithm 1
in Fig. 1). Next, we move to an exponential model, which requires
that we shift to a more general ABC algorithm, the ABC popula-
tion Monte Carlo sampler (Algorithm 2 in Fig. 3). In Section 6, we

2 In this paper we will make a distinction between ‘‘mathematical models’’,
models for which a likelihood can be derived, and ‘‘simulation models’’, for which
no closed-form likelihood exists.
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generalize the ABC population Monte Carlo sampler for hierarchi-
cal models and apply it to simulated data from a hierarchical bino-
mial model (see Algorithm 3 in Fig. 5). Finally, in Section 7 we ap-
ply Algorithm 3 to a popular computational model of recognition
memory, Shiffrin and Steyver’s (1997) Retrieving Effectively from
Memory (REM) model. We conclude the tutorial with a number of
practical suggestions for implementing the ABC approach.

3. Approximate Bayesian computation

Originally developed by Pritchard, Seielstad, Perez-Lezaun,
and Feldman (1999), approximate Bayesian computation (ABC)
replaces the calculation of the likelihood function L(θ |Y ) in Eqs. (2)
and (3) with a simulation of the model that produces an artificial
data set X . The method then relies on some metric (a distance) to
compare the simulated data X to the data Y that were observed.

Simulating the model to produce a data set that is then
compared to the observed data is a technique that is used
elsewhere to estimate parameters of computational models
(e.g., Malmberg, Zeelenberg, & Shiffrin, 2004; Nosofsky, Little,
Donkin, & Fific, 2011). It is common to use the sumof squared error
between summary statistics of the simulated and observed data as
a distance, and attempt to findpoint estimates of the parameters by
minimizing the sum of squared error using standard optimization
techniques: themethodof least squareswhere simulationprovides
the ‘‘predicted’’ values for the model.

ABC is similar to this ‘‘approximate’’ method of least squares
but has a much different goal. The goal of ABC is not to find point
estimates of parameters that minimize some discrepancy function
like the sum of squared error, but instead to obtain an estimate of
the posterior distributions for those parameters.

Recall that the posterior of a parameter θ is the distribution
of that parameter conditioned on the observed data Y . Without a
likelihood, it is not possible to write down an expression for this
posterior, or to estimate it using Monte Carlo methods. However,
we can simulate data X using some θ = θ∗. We retain θ∗ as a
sample from the posterior if some pre-defined distance ρ(X, Y )
between the observed and simulated data is less than some small
value ϵ0. For small values of ϵ0, the posterior π(θ |ρ(X, Y ) ≤ ϵ0)
will approximate the posterior π(θ |Y ) (Pritchard et al., 1999).

More formally, an ABC algorithm proceeds in the following
way: first, we sample a candidate parameter value θ∗ from some
distribution. For the first candidate, a reasonable choice for this
distribution will be the prior π(θ). We then use this candidate to
simulate a data set X from the model of interest that has the same
number of observations as the observed data set Y (so that the
distributional properties of the simulated data X and any summary
statistics computed from it can match those of the observed data
Y ).

We then compare the simulated data X to the observed data
Y by computing a distance between them given by a distance
functionρ(X, Y ). Ifρ(X, Y ) is small enough, less than some ϵ0, then
the simulated data X is ‘‘close enough’’ to the observed data Y that
the candidate parameter value θ∗ has some nonzero probability
of being in the approximate posterior distribution π(θ |ρ(X, Y ) ≤

ϵ0). Therefore, if ρ(X, Y ) is less than or equal to ϵ0, we keep θ∗ as
a sample from the posterior, otherwise we discard it.

For computational ease, it is often convenient to define ρ(X, Y )
as a distance between summary statistics S(X) and S(Y ) computed
for the simulated and observed data. For example, S(·) could be
the sample mean, so perhaps ρ(X, Y ) = (X − Y )2, the squared
distance between the sample means. However, some statistics
contain more information about a parameter than others. Ideally,
the summary statistic S(·) should be sufficient for the parameter θ .
Briefly, sufficient statistics provide as much information about the
parameter θ as the whole data set itself. Thus, if S(·) is a sufficient
statistic for the parameter θ , then the posterior distribution can be
written as

π(θ | Y ) = π(θ | S(Y )).

More formally, to determine if a statistic S(·) is sufficient, we
must be able to reexpress Eq. (1) as a function of the sufficient
statistic and the data. By the Fisher–Neyman Factorization
Theorem, if the probability distribution f (y | θ) can be factored
as

f (y | θ) = g (S(y) | θ) h(y), (4)

then S(y) is sufficient for the parameter θ .
As an example, consider a series of n independent and

identically-distributed Bernoulli trials and let Yi ∈ {0, 1} be the
outcome on trial i. Then we can write

P(Yi = y) =


θ y(1 − θ)1−y for y ∈ {0, 1}
0 otherwise,

where θ ∈ [0, 1] is the probability that Yi = 1. Then the joint
probability function for the set of outcomes {Y1 = y1, Y2 =

y2, . . . , Yn = yn} is

f (y | θ) =

n
i=1

P(Yi = yi)

=

n
i=1

θ yi(1 − θ)1−yi

= θ
n

i=1 yi(1 − θ)n−
n

i=1 yi

=


θ

1 − θ

n
i=1 yi

(1 − θ)n.

Therefore, the function f (y | θ) can be written as a function of
the unknown parameter θ and the statistic S(y) =

n
i=1 yi. By

Eq. (4), we can let g (S(y) | θ) = g
n

i=1 yi | θ

and h(y) = 1,

demonstrating that the statistic S(y) =
n

i=1 yi is sufficient for the
parameter θ .

The premise behind ABC is that if ρ(X, Y ) is defined by way
of sufficient statistics, then the resulting approximation to the
posterior will be good as long as ρ(X, Y ) is less than some small
ϵ. The issue is more complicated, however; ρ(X, Y ) must also be
chosen in such a way that

π(θ | Y ) = π(θ | S(Y )) ≈ π(θ | ρ(S(X), S(Y )) ≤ ϵ). (5)

If ϵ and ρ(S(X), S(Y )) are chosen well, then the approximation
given by an ABC sampler will be exact (Beaumont, 2010).

As one might imagine, choosing ρ(X, Y ) well can be tricky, in
part because it will depend on the unknown likelihood f (y | θ).
If the likelihood is unknown, it will be difficult (even impossible)
to determine sufficient statistics for the parameter θ . However, as
we will show in this paper, at least for some models, the choice
of ρ(X, Y ) is fairly robust with respect to the particular summary
statistics used.

ABC algorithms can take many forms. The simplest of these is
the ABC rejection sampling algorithm (see Algorithm 1; Beaumont,
Zhang, & Balding, 2002; Pritchard et al., 1999). The ABC rejection
sampler simply discards the candidate value θ∗ if it does not meet
the criterion ρ(X, Y ) ≤ ϵ0, as we described above. For very small
values of ϵ0, the rejection rate can be dramatically high. As a result,
Algorithm 1 can be very inefficient.

In the rest of this section, we present several different
approaches to ABC, focusing in particular on those approaches
most similar to the one we advocate for psychological models.
This is not intended to be an exhaustive review of ABC algorithms.
Interested readers may consult Beaumont (2010), Blum and
François (2010), Hickerson andMeyer (2008), Hickerson, Stahl, and
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Lessios (2006), Leuenberger and Wegmann (2010), Sousa, Fritz,
Beaumont, and Chikhi (2009) and Wegmann, Leuenberger, and
Excoffier (2009) for additional options and more mathematical
background.

It is also worth noting that ABC is not the only approach to
likelihood-free inference (e.g.,Wood, 2010), nor are the algorithms
presented in this article themost advanced ABC samplers available
(Barthelme & Chopin, 2011; Bazin, Dawson, & Beaumont, 2010;
Turner& Sederberg, submitted for publication; Turner&VanZandt,
submitted for publication; Wilkinson, submitted for publication).
When selecting from the many ABC algorithms to present in
this tutorial, we based our decision on computational efficiency,
estimation accuracy, and accessibility to a general audience.
Considering all of these issues, the algorithms and techniques
described in this article are meant to provide a general familiarity
with the topic, and they are not necessarily optimized for more
advanced modeling problems.

3.1. Markov chain Monte Carlo sampling

Markov chain Monte Carlo (MCMC) sampling is a general
technique that has been instrumental, as we discussed above, in
Bayesian estimation (Gelman, Carlin, Stern, & Rubin, 2004; Robert
& Casella, 2004). It has also been used in an ABC framework (Bortot,
Coles, & Sisson, 2007; Marjoram, Molitor, Plagnol, & Tavare, 2003),
and we discuss this work here.

MCMC sampling is a process that filters proposed values for θ
to arrive at a sample of values drawn from the desired posterior
distribution. There are a number of MCMC samplers, the most
popular of which is the Metropolis–Hastings algorithm. We begin
the Metropolis–Hastings algorithm by selecting some initial value
θ0 for θ . We then sample a candidate value θ∗ from a proposal
distribution q(·|θ0) conditioned on the initial value θ0. For example,
we could choose the proposal distribution q to be Gaussian.
Formally,

θ∗
∼ N (θ0, σ

2),

where the notation ‘‘∼’’ means that θ∗ has been sampled from
or follows a distribution, in this case a Gaussian distribution with
mean θ0 and variance σ 2.

With some probability determined by the likelihood (called the
‘‘acceptance probability’’ or ‘‘rejection rate’’; see below), we accept
θ∗ and set θ1 = θ∗, or we reject it and set θ1 = θ0. We continue
this procedure until, at the end of the sampling process, we have
obtained a chain of values {θ0, θ1, . . . , θm} that we can assume are
a sample from the posterior distribution π(θ |Y ).

The Metropolis–Hastings algorithm can be very efficient,
especially when the prior distribution π(θ) differs substantially
from the posterior distribution π(θ |Y ). However, computing the
acceptance probabilities to generate the chain {θ0, θ1, . . . , θm}

requires an expression for the likelihood.

3.1.1. The ABC MCMC algorithm
MCMC computations can be easily embedded within ABC

algorithms. Focusing again on the Metropolis–Hastings algorithm,
after sampling θ∗, instead of computing the acceptance probability
from the likelihood, we use θ∗ to produce simulated data X
from the model. We then compute the distance ρ(X, Y ) between
the observed data Y and the simulated data X and accept θ∗ if
ρ(X, Y ) ≤ ϵ0 and set θ1 = θ∗. If ρ(X, Y ) > ϵ0 we always reject θ∗,
and θ1 = θ0.

Using the Metropolis–Hastings algorithm, the ABC MCMC
acceptance probability for θ∗ on iteration i + 1 is given by

α =

min

1,

π(θ∗)q(θi|θ∗)

π(θi)q(θ∗|θi)


if ρ(X, Y ) ≤ ϵ0

0 if ρ(X, Y ) > ϵ0,
where π(θ) is the prior distribution for θ and q is the proposal
distribution. After computing α for θ∗, we draw a sample from a
uniform [0, 1] distribution, and if this sample is less than α, we
accept θ∗. If the proposal distribution q is symmetric, so q(θi|θ∗) =

q(θ∗
|θi), thenα depends only on the prior distribution andρ(X, Y ).

The chain {θ0, θ1, . . . , θm} must be evaluated for convergence
(see Gelman et al., 2004; Robert & Casella, 2004). Convergence
diagnostics are important because MCMC algorithms may suffer
if the proposal distribution q is poorly chosen. For example, if
σ 2 in the Gaussian proposal above is small, the chain is likely
to get ‘‘stuck’’ in low-probability regions of the posterior. This
occurs because, in low-probability regions, the candidate θ∗ is
unlikely to produce simulated data X close to the observed data
Y . In this situation, the probability of the chain moving out of the
low-probability region becomes effectively zero. This feature of
the algorithm produces highly dependent samples, an undesirable
result that can be remedied through thinning. Thinning is a
procedure where only a subset of the chain consisting of equally
spaced samples is retained as a sample from the posterior.
For instance, we might decide to keep every 100th value from
{θ0, θ1, . . . , θm}, which will require that we generate much longer
chains.

While all MCMC chains are in danger of getting stuck, the ABC
MCMC algorithm is particularly susceptible to this because of the
two criteria that the proposal θ∗ must meet: not only must it meet
the acceptance probability of the standard Metropolis–Hastings
sampler, it must also generate data that are sufficiently close to
the observed data. Therefore, the rejection rate of ABC MCMC can
be extraordinarily high, requiring inordinate computing cycles for
even relatively simple problems. To make things worse, MCMC
chains cannot be parallelized. As a consequence, we will not
consider the ABC MCMC algorithm further.

3.2. Particle filtering

Sequential Monte Carlo sampling differs from the MCMC
approach by its use of a particle filter. That is, rather than drawing
candidates θ∗ one at a time, these algorithms work with large
pools of candidates, called particles, simultaneously. The particles
are perturbed and filtered at each stage of the algorithm, bringing
the pool closer and closer to a sample drawn from the desired
posterior.

These algorithms begin by generating a pool of N candidate
values for θ . Usually this pool is obtained by sampling from the
prior distribution π(θ). Then, in subsequent iterations, particles
are chosen randomly from this pool, and the probability of any
particle being sampled depends on a weight assigned to that
particle. For the first iteration, the probability of choosing any
particle is equal to 1/N; that is, the particles have equalweight. The
different sequential Monte Carlo algorithms can be distinguished
by how sampling weights are assigned to the particles in the pool
in subsequent iterations.

The process of perturbing and filtering the particles requires
that we choose what is called a transition kernel. The transition
kernel serves the same purpose as the proposal distribution in the
MCMC algorithm discussed above. To specify the transition kernel,
we need to choose the distribution of a random variable η that will
be added to each particle tomove it around in the parameter space.
For example, if a particle θ∗ is sampled from the pool andperturbed
by adding a Gaussian deviate η ∼ N (0, σ 2) to it, then the new
proposed value for θ is θ∗∗

= θ∗
+ η. The transition kernel then

describes the distribution for θ∗∗ given θ∗: a Gaussian distribution
with mean θ∗ and variance σ 2.

Some algorithms also require thatwe specify a transition kernel
that takes us back to θ∗ from θ∗∗. If the distribution of θ∗∗ given θ∗

is a ‘‘forward’’ transition kernel, then the distribution of θ∗ given
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θ∗∗ is a ‘‘backward’’ transition kernel. If the forward transition
kernel is Gaussian aswe just described, then, because θ∗

= θ∗∗
−η,

one obvious choice for the backward transition kernel is again a
Gaussian distribution with mean θ∗∗ and variance σ 2. In general,
the forward and backward kernels need not be symmetric or
equal as in this example; in practice, however, they frequently
are (e.g., Sisson, Fan, & Tanaka, 2007). The optimal choice for the
backward kernel can be difficult to determine (DelMoral, Doucet, &
Jasra, 2006). Symmetric kernels greatly simplify the algorithm, but
may be a poor choice (see Toni, Welch, Strelkowa, Ipsen, & Stumpf,
2009).

We now present three sequential Monte Carlo sampling
algorithms adapted for ABC. Aswedescribed above, each algorithm
differs in the transition kernels they use and how weights are
computed to control how particles are sampled from the pool.
These algorithms are partial rejection control, population Monte
Carlo, and sequential Monte Carlo. Our focus later in this paper will
be on the population Monte Carlo algorithm.

3.2.1. Partial rejection control
The ABC partial rejection control (ABC PRC) algorithm was

developed by Sisson et al. (2007) as a remedy for the problems
associated with ABC MCMC discussed in the previous section. It
was the first ABC algorithm to use a particle filter.

The ABC PRC algorithm requires that we choose both a forward
and a backward transition kernel. We denote the forward kernel
as a density function qf (·|θ∗) and the backward kernel as qb(·|θ∗∗).
We use qf (·|θ∗) to perturb the particle θ∗ to θ∗∗, and then, with
θ∗∗, we simulate data X and compare X to the observed data Y by
computing ρ(X, Y ). If the particle θ∗∗ passes inspection (if ρ(X, Y )
is less than some ϵ0), thenwe keep it and give it aweightwhichwill
determine the probability of sampling it on subsequent iterations.
If the particle does not pass inspection (if ρ(X, Y ) > ϵ0), it is
discarded, and the process is repeated until we obtain a particle
that does pass inspection. The weight w given to the new particle
θ∗∗ is

w =
π(θ∗∗)qb(θ∗

|θ∗∗)

π(θ∗)qf (θ∗∗|θ∗)
.

This process is repeated until the pool consists of N new particles,
each satisfying the requirement that ρ(X, Y ) ≤ ϵ0.

If we stop now, after recreating the pool once, then ABC PRC is
equivalent to the ABC rejection sampler (Algorithm 1). However,
we will repeat the process multiple times. On each iteration we
sample particles with probabilities based on the weights they
were assigned in the previous iteration. These weights allow
us to discard particles from the pool in low-probability regions
(particles said to be ‘‘performing poorly’’) and increase the number
of particles in high-probability regions, finally resulting in a sample
of particles that represent a sample from the desired estimate of
the posterior π(θ |ρ(X, Y ) ≤ ϵ0).

This weighting scheme solves several of the problems of ABC
MCMC, including the problem of a chain getting stuck in a
low-probability region. However, the efficiency of the sampler
relies heavily on the choices of the two kernels qf (θ |θ∗) and
qb(θ |θ∗∗) and the prior π(θ). Consider, for example, a situation
with noninformative (i.e., flat) priors, so π(θ) is constant, and
qb = qf . In this situation, the weights w assigned to the particles
never change, and the algorithm reduces to an ABC rejection
sampler. In addition, the ABC PRC produces biased estimates of
the posterior (see Beaumont, Cornuet, Marin, & Robert, 2009): the
distribution defined by the pool of particles and their weights does
not converge to the true posterior. Beaumont et al. (2009) correct
for this bias using a population Monte Carlo sampling scheme.
3.2.2. Population Monte Carlo sampling
ABCpopulationMonte Carlo sampling (ABCPMC)has a different

weighting scheme than ABC PRC (Beaumont et al., 2009). While
the ABC PRC algorithm requires specifying both forward and
backward transition kernels, the ABC PMC algorithm uses a single
adaptive transition kernel q(·|θ∗) that depends on the variance
of the accepted particles in the previous iteration. This algorithm,
shown in Algorithm 2, was inspired by the populationMonte Carlo
algorithm developed for standard Bayesian estimation by Cappé,
Guillin, Marin, and Robert (2004).

Specifically, given the weight wi,t−1 for particle θi,t−1 on
iteration t − 1, the new weight wi,t for particle θi,t on iteration t is
computed as

wi,t =
π(θi,t)

N
j=1

wj,t−1 q

θj,t−1|θi,t , σt−1

 ,
where q


·|θi,t , σt−1


is a Gaussian kernel with mean θi,t and

standard deviation σt−1. The variance σ 2
t is given by

σ 2
t = 2

1
N

N
i=1


θi,t −

N
j=1

θj,t/N

2

= 2Var(θ1:N,t).

One serious problemwithmany sampling schemes is the speed
with which posterior estimates can be obtained. This speed is
dictated by the particle acceptance rate, or the probability of
accepting a proposal. Very low acceptance rates, which arise from
poorly selected proposal distributions or transition kernels, result
in a tremendous amount of computation wasted on evaluating
proposals that have no chance of being selected. The importance of
the ABC PMCweighting scheme is that it optimizes the acceptance
probability. This happens because the weights minimize the
Kullback–Leibler distance between the desired posterior and
the proposal distribution. The Kullback–Leibler distance is a
popular statistic that measures the discrepancy between two
density functions (Beaumont et al., 2009; Kullback, Keegel, &
Kullback, 1987). Minimizing the Kullback–Leibler distance in turn
maximizes the acceptance probability (see Douc, Guillin, Marin, &
Robert, 2007, for a proof).

Note that if ϵ0 = 0 and ρ(X, Y ) is a comparison between
summary statistics that are sufficient for θ , then the ABC
PMC algorithm produces exact posteriors (Beaumont, 2010). For
continuous measures, because the probability that ρ(X, Y ) equals
ϵ0 = 0 is zero, we choose some ϵ0 > 0, and the quality of the
approximation will depend on the value of ϵ0.

3.2.3. Sequential Monte Carlo sampling
Toni et al. (2009) derived the ABC sequential Monte Carlo

sampling (ABC SMC) algorithm from a sequential importance
sampling algorithm (Del Moral et al., 2006). The weights in ABC
SMC are very similar to the weights in ABC PMC, except that the
kernel q(·|θ∗) is nonadaptive and not necessarily Gaussian. Thus,
the weights assigned for the ith particle on the tth iteration in the
ABC SMC algorithm are given by

wi,t =
π(θi,t)

N
j=1

wj,t−1 q(θj,t−1|θi,t)

.

The ABC SMC algorithm is particularly useful when the transition
kernel in ABC PMC cannot have infinite support (e.g., cannot be
Gaussian). Thismight happen for certainmodels inwhich θ cannot
be negative; consider, for example, the probability parameter p in
the binomial distribution.
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3.2.4. Summary
This section summarized some of themost popular and efficient

ABC algorithms. We have experimented with all of these, and ABC
PMC has consistently provided good results for the psychological
models to which we have applied it. In addition, the ABC PMC
algorithm requires the fewest specifications of tuning parameters
by the user. Therefore, in the applications to follow we will focus
primarily on the ABC PMC algorithm (Algorithm 2).

The first three examples that we present are toy problems
where the true posteriors are known. This gives us the opportunity
to demonstrate ABC, and also to demonstrate the accuracy of the
posteriors estimated by ABC. We then show how ABC works with
a more realistic model, where the true posteriors are unknown.

4. A binomial example

For our first example,we consider a signal detection experiment
in which a subject is asked to respond ‘‘yes’’ when he or she hears
a tone embedded in noise and ‘‘no’’ when he or she does not hear a
tone. The sensory effects of signals andnoise are assumed to follow,
as in standard signal detection theory, normal distributions such
that the mean of the signal distribution is greater than the mean of
the noise distribution.

To simulate data from this experiment, we set the means of the
signal and noise distributions at 1.50 and 0, respectively, with a
common standard deviation of 1. Under these conditions, d′ – the
standard measure of discriminability – is equal to the mean of the
signal distribution (d′

= 1.50). With d′
= 1.50, an ideal observer

will correctly identify about 77% of the stimuli. Although we could
estimate the signal detection theory parameters d′ and β (see Lee,
2008; Rouder & Lu, 2005, for a fully Bayesian treatment of this
problem) using ABC, for simplicity assume that we wish only to
estimate the probability of a correct responsemade by the observer
regardless of whether the stimulus was a signal or noise.

4.1. The model

Consider correct responses to be ‘‘successes’’ and incorrect
responses to be ‘‘failures’’, and let a success be coded as R =

1 and a failure as R = 0. The outcome R on a single trial
can then be modeled as a sample from the familiar Bernoulli
distribution with parameter p = P(R = 1). Further assuming
that each trial is independent, we can model the number of
correct responses Y with the binomial distribution. Recall that
the binomial distribution gives the probability of Y = y
correct responses in a sequence of n independent and identically
distributed Bernoulli trials as

f (y|n, p) =


n
y


py(1 − p)n−y

or

y|n, p ∼ Bin(n, p),

where y takes on values in {0, 1, 2, . . . , n}. Because n is determined
by the experimenter, the focus of statistical inference centers on
the parameter p.

Bayesian analysis of this model usually proceeds by assuming
a beta prior for p, which allows p to range from 0 to 1. The beta
distribution Beta(α, β) is given by

f (p|α, β) =


Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1 if 0 < p < 1

0 otherwise,

where α > 0 and β > 0 are called the hyperparameters of
the model. If we wish to specify an uninformative prior for p,
it is convenient to use the fact that the beta distribution with
parameters α = 1 and β = 1 is the uniform [0, 1] distribution. For
this example, a uniform prior is a convenient choice if we do not
wish to speculate a priori about the performance of our subject.

The parameters of the beta distribution can be thought of as
the number of successes (α) and the number of failures (β) for
an earlier experiment. By letting α = 1 and β = 1 for the
prior, our experience with p is similar to having witnessed two
outcomes, one a success and the other a failure. The uninformative
Beta(1, 1) prior places equal probability on all possible values for
p in (0, 1). Using the beta distribution as the prior will result in
a beta posterior distribution for p. This equivalence relationship
between the prior and the posterior is called ‘‘conjugacy’’, and is
desirable because it eliminates the need to estimate the posterior.
The posterior for this model is

p|α, β, Y ∼ Beta (α = Y + α0, β = n − Y + β0) , (6)

where α0 and β0 denote the chosen values of the hyperparameters
for the prior distribution, n denotes the number of trials, and
Y =

n
i=1 Ri is the number of correct responses. We will use

this posterior distribution to assess the accuracy of the estimated
posteriors produced by ABC.

4.2. Estimating the posterior using ABC

Having derived the posterior distribution of p, we could
proceed immediately to evaluating hypotheses about p, such as the
probability that p > 0.5 or computing a 95% credible set for p.
However, our goal is to demonstrate the accuracy of the estimates
of the posterior produced by the ABC approach, and so we pretend
that the binomial likelihood is terribly difficult or impossible to
work with. This unfortunate situation, which prevents us from
obtaining the true posterior explicitly as in Eq. (6), forces us to
simulate data from the binomial model and use the ABC approach.

We must first define a distance to compare our simulated data
X with our observed data Y . For this example, we set this distance
to

ρ(X, Y ) =
1
n
|X − Y |,

the absolute difference between the proportions of observed and
simulated correct responses. The distance ρ(X, Y ) measures the
degree to which our simulated data X matches our observed data
Y . When ρ(X, Y ) = 0, the number of successes (failures) is exactly
the same for both the observed and simulated data. Reaching
this degree of precision can be quite costly in more complicated
models. Later, we will allow for a monotonically decreasing set of
tolerance thresholds ϵ meant to relieve the computational burden
(see Section 5).

4.3. Results

We simulated the model under three sample sizes, each with
p = 0.7. Treating each sample size as a set of observations from
a different observer, the first observer performed n = 10 trials,
the second observer performed n = 100 trials and the third
observer performed n = 1000 trials. As n increases, the amount of
information about the parameter p increases, resulting in posterior
distributions that are more peaked (see Eq. (6)).

For the estimates of the posterior, we sampled N = 10,000
values for p for each observer using the rejection sampling
algorithm (Algorithm 1) shown in Fig. 1 with tolerance threshold
ϵ0 = 0. Fig. 2 shows the distributions of values for p for each of the
three observers. Overlaying each histogram is the true posterior
given by Eq. (6). Fig. 2 shows that as the number of trials increases,
the posterior becomes more narrow around the true value of p.
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Fig. 1. An ABC rejection sampling algorithm to estimate the posterior distribution
of a parameter θ given data Y .

Fig. 2. The posterior distributions for three different subjects performing n = 10
(top panel), n = 50 (middle panel) and n = 100 trials. The dashed curve shows the
true posterior distribution.

For each observer, the estimate of the posterior found using ABC
is highly accurate, almost exactly equal to the true posterior.

The simplicity of this example allowed us to sample a great
many values for p (N = 10,000) at a negligible cost. Fitting the
data took only 5.13 s, 11.5 s, and 5.42 min on a standard Intel i7
processor (3.07 GHz) for each observer, respectively. To implement
the algorithm, we used the software R (R Development Core Team,
2008) and distributed the particle evaluations across eight cores.
A simplified version of this code is freely available on the first
author’s website.

5. An exponential example

While the binomial example demonstrates that the ABC
approach can accurately estimate the posterior distribution of the
probability parameter of the binomial distribution, the binomial
variable Y is discrete, taking on only the values between 0 and n.
This limited set of measurements and the simplicity of the model
made exactly ‘‘matching’’ the observed data easy for the values of
n that we examined. We should not expect things to be so easy for
more complex models or continuous measurements.
Continuous measurements pose a more difficult modeling
challenge because the probability of simulating exactly some value
Y observed in the data (say, 2.99792458. . . ) will be zero and perfect
matches between X and Y will be impossible. In practice, we
round continuous variables, so that 2.99792458. . . becomes 3.00
(or some other number measured to some acceptable degree of
precision). This means we can still implement the ABC algorithm
for continuous data, but wemust be muchmore careful in howwe
select the set of tolerance thresholds ϵ.

For this example, wewill apply an ABC algorithm to continuous
data generated from an exponential model. The use of the expo-
nential distribution in psychology is widespread. The exponential
distribution often appears inmodeling problems such as the distri-
bution of response times via the ex-Gaussian (e.g., Farrell & Ludwig,
2008; Matzke & Wagenmakers, 2009; Rouder & Speckman, 2004),
practice effects (e.g., Heathcote, Brown, & Mewhort, 2000), relat-
ing stimulus similarity to psychological distance (e.g., Nosofsky,
1986), predicting change (Brown & Steyvers, 2009) and memory
decay (e.g., Lee, 2004; Liu & Aitkin, 2008; Rubin & Wenzel, 1996;
Wixted, 1990). Here wewill demonstrate that the ABC PMC exten-
sion of Algorithm 1 described above produces accurate estimates
of the posterior of the exponential distribution’s single parameter.

5.1. The model

The exponential distribution Exp(λ) has the probability density
function

f (y|λ) =


0 if y < 0
λ exp(−λy) if y ≥ 0,

where the parameterλ > 0 is sometimes called the ‘‘rate’’, and 1/λ
is the mean of Y . The gamma distribution Γ (α, β) has probability
density function

f (y|α, β) =

0 if y < 0
βα

Γ (α)
yα−1 exp(−yβ) if y ≥ 0,

where the hyperparameters α > 0 and β > 0 are usually
called the shape and rate parameters, respectively. The exponential
distribution is a special case of the gamma distribution with α =

1 and β = λ. The gamma distribution is a conjugate prior for
exponential likelihood, so for observed data Y = {Y1, Y2, . . . , Yn},
and a gamma prior with α = α0 and β = β0, the posterior
distribution of λ is

λ|α, β, Y ∼ Γ


α = α0 + n, β = β0 +

n
i=1

Yi


.

Wewill use this posterior to evaluate the accuracy of the ABC PMC
algorithm. The values of the hyperparametersα0 and β0 were fixed
at 0.1.

5.2. Estimating the posterior using ABC PMC

We face a problem at this point. How dowe generate simulated
data X that is sufficiently close to Y when (1) Y is continuous,
and therefore cannot be perfectly matched, and (2) the proposal
distribution may be very far from the posterior distribution,
making it highly unlikely that any set of proposedparameter values
can generate simulated data X that is close to the observed data Y?
The use of the ABC PMC algorithm (Algorithm 2) described above
and shown in Fig. 3 solves Issue 1, but Issue 2 is more complex.

Issue 2 is a concern especially when the target posterior
distribution is very different from the proposal distribution,
frequently the prior. If we begin by sampling from the prior, we
will have to draw a very large number of samples before hitting on
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one that results in ρ(X, Y ) ≤ ϵt for some reasonable value of ϵt . If
we consider first (t = 1) a large value of ϵ1, we can find satisfactory
proposalsmuchmore quickly, but the resulting posterior estimates
will not be very accurate. The goal, then, is to gradually reduce
the value of ϵt , so that we ‘‘move’’ efficiently from the prior (or
proposal) distribution to the desired posterior distribution.

We must therefore balance computational efficiency with the
accuracy of the posterior estimate. To do this, we will specify a
set of monotonic decreasing tolerance thresholds ϵ over which the
ABC PMC algorithm will iterate. Starting with a large value for ϵ1,
we generate a sample of parameters from a distribution that is
intermediate between the prior and the posterior. Assuming that
the prior and the posterior distributions have the same support, as
ϵt gets smaller, this intermediate distribution will more and more
closely resemble the desired posterior.

One final issue concerns the interaction between the accuracy
of the posterior estimate and the form of the distance function
ρ(X, Y ). To explore the influence of the choice of ρ(X, Y ) on the
accuracy of the estimated posteriors, we explored three different
forms of ρ(X, Y ).

5.2.1. The distance function
Considering first the problem of selecting ρ(X, Y ), we retained

(for the sake of comparison) the comparable distance as in the
binomial example, or

ρ1(X, Y ) =
1
n

 n
i=1

Xi −

n
i=1

Yi

 =
X̄ − Ȳ

 .
We also examined

ρ2(X, Y ) = |median(X) − median(Y )|

and

ρ3(X, Y ) = |[F−1(0.75, X) − F−1(0.25, X)]

− [F−1(0.75, Y ) − F−1(0.25, Y )]|

= |IQR(X) − IQR(Y )| ,

where F−1(q, X) denotes the qth quantile of the data X and
IQR is the interquartile range. While both ρ1(X, Y ) and ρ2(X, Y )
reflect differences in the central tendency of X and Y , ρ3(X, Y )
is the absolute difference between the interquartile ranges of
the observed data Y and the simulated data X . Intuitively, for
symmetric or nearly symmetric distributions, one may be able
to obtain accurate posteriors on the basis of central tendency
alone. However, for asymmetric distributions like the exponential,
central tendency alone may not provide critical information about
skewness or variability, and a distance function based on central
tendency may produce inaccurate estimates of the posterior.

Weexaminedotherρ(X, Y ) functions in addition to these three,
such as the differences between themaximum (andminimum), the
differences in the range, the Kolmogorov–Smirnov test statistic,
and a probabilistic mixture of differences between the mean and
variance. In general, the best ρ(X, Y ) functions incorporate all the
observations in each sample X and Y (e.g., the sum of the data, the
mean of the data). Sisson et al. (2007) demonstrated that the use of
a single extremeorder statistic, such as themaximumorminimum,
results in poor estimates of the posterior. However, for models
whose parameters reflect a limit on the range of measurement
values that can be observed, a distance defined for the appropriate
extreme statistic can yield quite good results. In these situations, a
comparisonbetween themaximumorminimumobservationsmay
be the best ρ(X, Y ) function available.

In sum, to choose an appropriate ρ(X, Y ), one strategy is to
consider standard estimators of the parameters of the model
and the statistical properties of those estimators. For example, a
statistic such as X (used in ρ1(X, Y )), which may be sufficient for a
parameter reflecting central tendency, may provide the basis for a
good choice ofρ(X, Y ). Maximum likelihood estimatorswhen they
are available, such as the minimum statistic for a lower limit, may
also provide the basis for a good choice of ρ(X, Y ).

It is important to realize that we are not limited to using
only one summary statistic. Indeed, many authors have combined
several summary statistics in an attempt to efficiently connect the
parameters of themodel to the data that were observed (e.g., Bazin
et al., 2010; Turner & Van Zandt, submitted for publication). When
a likelihood is not available, the situation of most interest to
anyone considering ABC, evaluating the statistical properties of
estimators may not be straightforward. However, one benefit of a
simulation-basedmodel is that the parameters have psychological
or mechanical interpretations that may be easier to relate to
specific features of the data, and those features then can be
incorporated into the choice of ρ(X, Y ).

5.2.2. Tolerance
We hinted above at the computational difficulties that can

arise when tolerance thresholds ϵ are too small. This is a practical
consideration, which must be resolved together with the number
of tolerance criteria. The number of tolerance criteria determines
the number of iterations of the ABC PMC algorithm, so a large
number will result in a lengthy estimation procedure. However,
too few criteria will result in substantial rejection rates, and again
a lengthy estimation procedure. The goal, then, is to find a set
of values ϵ that balances the number of iterations against the
rejection rateswithin each iteration. Onemethod for achieving this
goal is to specify a set of monotonically decreasing values ϵ.

Currently, there are no good general guidelines for choosing
such threshold criteria. The values ϵ will depend on, among other
things, the scale of the data and the distance metric ρ(X, Y ). For
example, using ρ1(X, Y ) above for RT data, which ranges from
200 ms to 2000 ms depending on the task, an ϵ0 < 1 represents
a very small distance indeed. However, for proportional data such
as hit rates or subjective probabilities, an ϵ0 < 1 will not be at
all useful. We will discuss some practical guidelines for selecting
ϵ later, but until then the reader should recognize that we have
selected ϵ somewhat arbitrarily.

To generate the data, we took n = 500 samples from an
exponential distribution with λ = 0.1, so the observations
ranged from 0 to around 70 with mean 10, standard deviation
10, and interquartile range of approximately 11. We chose the
decreasing set of tolerances ϵ = {3, 1, 10−1, 10−3, 10−4, 10−5

}.
We could have selected other values for ϵ; ultimately, only the last
(smallest) element of ϵ matters. When the value of this element is
small enough, reducing it further does not produce any additional
changes in the approximate posterior distribution.

For each of the model fits we used N = 500 particles.

5.3. Results

The top panel of Fig. 4 shows the estimated posteriors for three
elements of ϵ (columns) for each of the three distance functions
(rows). The dashed curves on each panel show the true posteriors
and the histograms show the estimated posteriors obtained using
ABC PMC. The major finding is that as ϵt decreases, the accuracy of
the estimated posterior increases. When ϵt is small enough (10−3)
the approximate posterior distribution will not change very much
with further decrease in ϵs>t . This provides a check on whether
or not the estimated posterior has been obtained: if reductions
in ϵt do not produce changes in the estimated posterior, then the
estimate has converged to its final target.

Each panel in Fig. 4 shows, in the upper right corner, the
Kullback–Leibler distance between the estimated and actual
posteriors. Using this distance as a measure of accuracy of the
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Table 1
Computation times for the exponential example (in minutes).

Tolerance Mean Median IQR
Iteration ϵ ρ1(X, Y ) ρ2(X, Y ) ρ3(X, Y )

1 3 0.07 2.74 0.12
2 1 0.07 1.18 0.08
3 10−1 0.13 3.19 0.68
4 10−3 0.42 2.96 4.84
5 10−4 3.72 16.21 45.76
6 10−5 34.40 143.40 454.71
Total 38.81 169.67 506.18

estimated posterior, we can see that the accuracy under ϵ2 = 1
is poorer than under ϵ4 = 10−3 or ϵ6 = 10−5, and that there
is not much change in the accuracy for ϵt ≤ 10−3. Furthermore,
the estimates are more accurate for the distance function ρ1(X, Y )
than for ρ2(X, Y ) or ρ3(X, Y ).

The computation times were considerably longer in this
example when compared to the binomial example. Table 1 shows
the total time in minutes to complete each iteration, for each
distance function. The most obvious trend, to which we have
already alluded, is that as ϵt is decreased, the computation time
grows very fast. However, Table 1 also shows that there are
considerable differences across the distance functions. For the
mean, the total time (bottom row) is manageable—just less than
40min. The second distance function took about three hours while
the third distance function took about eight hours. While these
times may seem unreasonably long, we argue that this is a small
price to pay to circumvent the likelihood function. Furthermore,
the bulk of the computation time occurs on Iteration 6. Without
this final and unnecessary iteration, the finishing times for the
simulations would range from five minutes to less than an hour.

Themean difference distance function ρ1(X, Y ) producedmore
accurate posterior estimates than the other functions because the
mean is a sufficient statistic for the parameter λ. However, even
the other functions, ρ2(X, Y ) and ρ3(X, Y ), produced estimates
that were close to the true posterior. We must note, however, that
none of these distance functions, chosen for their simplicity, are
necessarily the best that we could have used. A distance based
on the entire distribution, such as the Kullback–Leibler distance
itself or a Pearson-type discrepancy function (that is, a chi-squared
statistic), may produce more accurate posteriors. We compared
these alternative distance functions to the results using ρ1(X, Y )
and found that the degree of improvement was very small. This
demonstrates that, although selecting an appropriate ρ(X, Y ) may
be difficult, there may be a range of ρ(X, Y ) functions that lead to
similar – possibly even exactly the same – results.

6. A hierarchical binomial model

An important extension of Bayesian procedures is to hierar-
chical models (e.g., Lee, 2011; Shiffrin, Lee, Kim, & Wagenmakers,
2008). A hierarchy is a system of groupings of elements (e.g., sub-
jects in experimental conditions) where lower levels of groupings
(e.g., subjects) are subsets of the higher levels (e.g., conditions). Hi-
erarchies are very important to mathematical modelers because
they allow inferences to bemade at different levels, which is essen-
tial to the study of individual and group differences. For instance, in
the binomial example, we inferred the probability of correct detec-
tions by a single subject. But, if we had collected data from a large
number of subjects, we would expect that some of these subjects
will have higher (or lower) probabilities than others for reasons
that may be more or less interesting.

A hierarchical model allows us to infer not only the probability
of correct responses for each subject, but also the probability of
correct responses for the groups, taking into account any fixed
or random factors of interest such as age, culture, or gender. The
estimates of the effects of experimental factors at the higher levels
of the hierarchy are informed by the effects of these factors at
the level of each individual. In this way the posteriors of the
hyperparameters (the parameters at the highest levels of the
hierarchy) ‘‘learn’’ from the individual-level parameters, providing
pictures of both overall experimental effects and individual
differences. This learning also occurs at the individual level because
each individual-level parameter informs the hyperparameters,
which then distribute this information to the other individual-level
parameters in the model. The individual-level parameters then
use this information to ‘‘borrow’’ strength from the estimates of
other individual-level parameters, an effect known as shrinkage.
The example in this section will extend the binomial model in
Section 4 to a hierarchical design to demonstrate the capabilities
of the ABC algorithm further.

We will again consider a simple signal detection experiment
similar to the one previously discussed, except this time we will
be drawing inferences about four subjects who each complete one
block of 100 trials. We are not only interested in determining the
posterior distribution of the probability of a correct response at
the subject level, but we are also interested in the experiment-
level hyperparameters of the distribution from which these
probabilities are drawn.

6.1. The model

We assume that all individual parameter values pi come from
a common beta distribution with parameters α and β . The pis
are the subject-specific parameters, while α and β are the group-
level hyperparameters. Inmoving from the simple binomial model
to a hierarchical binomial model, we run into the problem of
how best to sample from the posteriors of the hyperparameters
α and β . Because the mean of a beta distribution is α/(α +

β), the parameters α and β are not conditionally independent
given the values for pi. Therefore, estimating the posteriors for α
and β requires sampling from their joint distribution—we cannot
separate them and sample each independently.

To simplify matters, we can consider the posteriors of the
subject-level parameters pi transformed by the logit transforma-
tion, or

logit(p) = log


p
1 − p


.

The logit function is useful because it transforms the probability
space from pi ∈ (0, 1) to logit(pi) ∈ (−∞, ∞). If we also assume
that

logit(pi)|µ, σ 2
∼ N (µ, σ 2),

the new hyperparameters µ and σ 2, which take the place of the
old hyperparameters α and β , can bemodeled independently (see,
e.g., Christensen, Johnson, Branscum, & Hanson, 2011; Gelman
et al., 2004).

We choose the prior for the new hyperparameter µ to be
Gaussian. Specifically,

µ ∼ N (µµ, ξ 2
µ)

and, because variances are always positive, we choose an inverse
gamma prior for σ , or

σ ∼ Γ −1(ασ , βσ ).

These choices ensure a proper posterior distribution and a
straightforward approach to parameter estimation (see Gelman
et al., 2004, for more details).

For our simulations, we set µµ = 0 and ξ 2
µ = 10,000. This

is a diffuse prior that gives approximately equal weight to values
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Fig. 3. The ABC PMC algorithm to estimate the posterior distribution of a parameter θ given data Y .
for µ ranging from −5000 to 5000. It is important to note that
beingmore vague (e.g., setting ξ 2

µ = 1010) is unnecessary. Consider
the approximate endpoints of the parameter space for pi, 0.01 and
0.99. The logit transformation of these points is logit(0.99) =

−logit(0.01) = 4.5951. Thus, a still reasonable prior could be
much more narrow (e.g., ξ 2

µ = 100), without greatly affecting the
estimate of the posterior. We then set ασ = βσ = 0.1. This also is
an overly diffuse specification, following the same argument.3

6.2. Estimating the posteriors using ABC PMC

We simulated data for four subjects, each providing 100
detection responses. For each subject, we sampled a pi by first
sampling from the distribution of logit(pi), which was Gaussian
with mean µ = −1.0 and variance σ 2

= 0.5, and then
transforming the sampled value back to the probability scale.
We used the obtained pi as the parameter for generating 100
Bernoulli(pi) randomvariables to simulate the detection responses
Yij for Subject i.

3 We tried other specifications for the prior, such as µµ = 0, ξ 2
µ = 2.5, ασ = 1,

and βσ = 4, but these more concentrated priors had little effect on the posteriors
we obtained.
We implemented Algorithm 3, shown in Fig. 5, which is the
ABC PMC algorithm modified for the hierarchical model. This
modification samples from the posterior distributions of the
individual-level parameters logit(pi) given the values sampled
from the posterior distributions of the hyperparameters µ and σ .
For a distance metric we selected

ρ(X, Y ) =
1
Sn

S
i=1

 n
j=1

Xij −

n
j=1

Yij


where Yij (Xij) denotes the jth observed (simulated) response for
the ith observed (simulated) subject, S = 4 is the number of
subjects, and n = 100 is the number of observations per subject. In
other words, this statistic is the mean absolute difference between
the observed and simulated correct response proportions over
subjects. Another way to see this distance is as the average of the
distances for each subject computed as for the binomial example
of Section 4.

Note that if we simulate data for each subject that ex-
actly matches the number of correct responses observed, then
ρ(X, Y ) = 0. The largest that ρ(X, Y ) can be is 1. We therefore set
ϵ = {0.1, 0.05, 0.03, 0.01, 0.005}, emphasizing again that the se-
lection of ϵ is somewhat arbitrary.We try to converge to a distance
not much larger than 0, choosing each ϵt to reduce the computa-
tional burden associated with this goal. (We will discuss a more



B.M. Turner, T. Van Zandt / Journal of Mathematical Psychology 56 (2012) 69–85 79
Fig. 4. The posterior distribution of λ at three different tolerance thresholds (columns; ϵ = 1, 10−3, 10−5) and three different ρ(X, Y ) functions (rows; see text for details).
The dashed curve shows the true posterior distribution and the dashed vertical lines shows the true parameter value. The numbers in the upper right-hand corner of each
panel are the Kullback–Leibler distances between the estimated and true posteriors.
efficient approach to this problem in the General Discussion.) For
this algorithm we used 1000 particles.

6.3. Results

Fig. 6 shows the estimated posteriors for pi, µ and log(σ ) for
three selected levels of ϵ (rows; specifically, ϵ1 = 0.1, ϵ2 = 0.05,
and ϵ5 = 0.005). We selected these values of ϵ to display because
the posteriors for the other values were not substantially different
from ϵ5. That is, the estimates converged on the true posteriors for
ϵ ≤ 0.03. The left panel of Fig. 6 shows the approximate marginal
posterior distributions of pi for each of the four subjects, together
with the true marginal posteriors (dashed curves) for each of the
subjects, as well as the true sampled values for pi (dashed vertical
lines in order corresponding to the curves). As ϵt gets smaller the
approximatemarginal posteriors for pi approach the truemarginal
posteriors.

The right panels of Fig. 6 show the approximate joint posterior
distribution of the hyperparameters µ and log(σ ). We plot the
parameter σ on a log scale to reduce it to a scale comparable to
that ofµ. The darker areas in these smoothed estimates correspond
to regions of higher density. The figure shows that as ϵt goes to 0
the variance of the joint distribution decreases. The true sampled
values ofµ and log(σ ) are shown as the dashed lines in the figures.

The true values of the hyperparameters do not appear to
reflect the central tendency of the estimated posteriors, even
for the smallest element of ϵ. Although the true values of the
hyperparameters are contained within the marginal 95% credible
sets for µ and log(σ ), this apparent ‘‘inaccuracy’’ in the posteriors
arises from the quite small number of subjects in the experiment.
Even with a larger number of subjects, an entirely accurate
posterior estimate may not be centered exactly on the true
parameter values. Observe, for instance, the differences in the true
parameter values and the central tendencies of the true marginal
posterior distributions of the pis of Fig. 6 (left panel). This happens
because, for small numbers of subjects (or observations), therewill
be a stronger influence of the prior on the shape of the posterior.

This example demonstrates some of the mathematical com-
plexities that arise as a result of a hierarchical design. However,
the extension of the ABC PMC algorithm to hierarchical designs re-
quires little innovation. Algorithm 3 is equivalent to Algorithm 2
if hyperparameters and lower-level parameters (δ and θ , respec-
tively, in Algorithm 3) are contained within a single vector (θ in
Algorithm 2).We present the hierarchical algorithm separately be-
cause the distinction between the levels of parameters is an impor-
tant onewhichwill become criticalwithmore complicatedmodels.

The extension of Algorithms 2–3 comes at a high computational
cost. One serious problem with Algorithm 3 is the time required
to obtain the posterior estimates, which was around three days.
However, several new algorithms have recently been developed
(Bazin et al., 2010; Turner & Sederberg, submitted for publication;
Turner & Van Zandt, submitted for publication), that attenuate the
computation time for hierarchical models.

While this and the previous examples demonstrate the abil-
ity of the ABC approach to recover true posterior distributions,
all of these posteriors could be easily recovered using standard
likelihood-based techniques such as MCMC. We now turn our
attention to a popular psychological model of episodic recog-
nition memory, the Retrieving Effectively from Memory model
(REM; Shiffrin & Steyvers, 1997). REM is a simulation model with-
out an explicit likelihood.4 This model serves as our final example.

4 An unpublishedmanuscript byMontenegro, Myung, and Pitt (2011) derives the
likelihood for REM. The likelihood is very complex and we will not discuss it here.
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Fig. 5. A hierarchical ABC PMC algorithm to estimate the posteriors of the hyperparameters δ and the individual-level parameters θ given data Y .
7. Retrieving Effectively fromMemory (REM)

The REM model can be used to explain performance in a
number of episodic memory tasks. In this section, we will focus
on recognition memory. In a recognition memory task, a subject is
given a list of study items (e.g., words) during a study phase and
is instructed to commit them to memory. After the study phase,
the subject might perform some filler task, such as completing a
puzzle. Following these two phases is a test phase. During the test
phase, a subject is presented with a ‘‘probe’’ item and asked to
respond either ‘‘old’’, meaning that the subject believes the probe
was on the previously studied list, or ‘‘new’’, meaning that the
subject believes the probe was not on the previously studied list.
The probe word could have been on the previously studied list (in
which case it is a ‘‘target’’) or it could be a newword (in which case
it is a ‘‘distractor’’).

Given the two possible types of probes and the two possible
types of responses, there are four possible stimulus–response
outcomes on each trial. We focus on hits and false alarms. A hit
occurs when a target is presented and the subject responds ‘‘old’’,
and a false alarm occurs when a distractor is presented and the
subject incorrectly responds ‘‘old’’. The hit rates can be plotted as a
function of the false alarm rates, producing the receiver operating
characteristic (ROC; e.g., Egan, 1958; Green & Swets, 1966).

At the time of REM’s inception, there were a number of
regularities in recognition memory data that were not easily
explained by the then-current memory models (see Glanzer,
Adams, Iverson, & Kim, 1993, for a review). These regularities
included the absence of a list strength effect, the mirror effect and
the slope of the ROC curve. The list strength effect is the finding
that strengthening a subset of the study list (e.g., presenting some
itemsmore often than others during study) influences memory for
the remaining (nonstrengthened) items in the list. The list strength
effect is not evident in most recognition memory experiments.
The mirror effect occurs when two types of items with different
recognition rates are presented, such as high- and low-frequency
words. More easily recognizable items (e.g., low-frequency words)
show both higher hit rates and lower false alarm rates than less
easily recognizable items (e.g., high-frequency words). Finally, the
ROC curves constructed from hit and false alarm rates indicate that
the variance of perceived memory strength for targets is greater
than that of distractors. This difference in the variance stays fairly
constant over manipulations such as word frequency, list length
and list strength (e.g., Egan, 1958; Ratcliff, McKoon, & Tindall,
1994; Ratcliff, Sheu, & Gronlund, 1992). In developing the REM
model, Shiffrin and Steyvers (1997) attempted to explain these
regularities within a single framework.

REM is a global memory model, which means that recognition
responses are based on a calculation of familiarity, which in turn is
based on the representation of all the items on the study list. Each
item is assumed to be composed of a list of features. The number
of features w for each item is assumed to be equal, and each item
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Fig. 6. The posterior distributions for the probability of a correct response for four subjects (left panel; solid lines) at three levels of ϵt (rows). The true posterior distributions
are shown by the dashed distributions and the true sampled values are shown by the vertical lines (left panel). The right panel shows contours of the approximate joint
posterior distribution for the hyperparameters µ and log(σ ).
is stored as a vector called a ‘‘trace’’. Although the features of
each item are assumed to have some psychological interpretation
(such as the extent to which the item ‘‘bear’’ is associated with
the concept ‘‘fur’’), the values for each feature (e.g., ‘‘fur’’) are
generated randomly. In particular, the features follow a geometric
distribution, such that the probability that feature K equals value
k is given by

P(K = k) = (1 − g)k−1g,

where k takes on values in {1, 2, . . . ,∞} and the parameter g ∈

(0, 1) is called the environmental base rate.
To understand the role that g plays, consider the difference

in recognition performance between low-frequency and high-
frequency words. The value of g is assumed to be higher for
high-frequency words than for low-frequency words. Because
the variance of the feature value K is (1 − g)/g2, increasing
g will result in smaller variance. Thus, high-frequency words
will have more common features (K values that are equal)
than low-frequency words and the individual features will be
less diagnostic (i.e., harder to recognize). Furthermore, when g
increases, the mean of K , 1/g , decreases, resulting in a drop in
overall discriminability, which we discuss below.

During study, the features of an item from the study list are
copied to a memory trace. This copying process is both error-
prone and incomplete. The item representation in the trace is
initially empty, consisting entirely of zeros for each feature. The
copying process operates in two steps. First, a feature is copied
into the trace with probability u. Thus, with probability 1 − u, the
featurewill remain empty. If the feature is copied, it may be copied
correctly with probability c or it may be replaced with a random
value. If the feature is replaced, its valuewill be drawn again from a
geometric distribution with parameter g .5 This process is repeated
over all features of all studied items, resulting in an ‘‘episodic
matrix’’, the dimensions ofwhich are determinedbyw, the number
of features, and the number of items n on the study list.

At test, when a probe item (again consisting of a vector of w
features) is presented, the probe is compared to each trace in the
episodic matrix. Following the notation in Shiffrin and Steyvers
(1997), we let njq be the number of nonzero mismatching (‘‘q’’-
type) features in the jth trace, and nijm be the number of nonzero
matching (‘‘m’’-type) features in the jth tracewith a value of i. Then,
the similarity λj of the jth trace is

λj = (1 − c)njq
∞
i=1


c + (1 − c)g(1 − g)i−1

g(1 − g)i−1

nijm
. (7)

These similarities are then averaged across traces to produce the
overall familiarity Φ of the probe item:

Φ =
1
n

n
j=1

λj, (8)

5 Although this parameter could vary over subjects, it is common to set it equal to
the environmental base rate parameter. When this assumption is made, the model
is called ‘‘fully informed’’ (Criss & McClelland, 2006).
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where n is the number of traces in the episodic matrix. The
familiarityΦ is a likelihood ratio: the probability that the probe is a
target divided by the probability that the probe is a distractor. Once
Φ has been computed, a Bayesian decision rule is used such that if
Φ > 1, then the probability that the probe is a target is higher, and
the model elicits an ‘‘old’’ response. Otherwise, it elicits a ‘‘new’’
response.

It is not obvious that we can write down an expression for
the probability of responding ‘‘old’’ or ‘‘new’’ as a function of the
model parameters g, w, c , and u—the likelihood is not available
analytically (but see Footnote 4). Estimates of REM’s parameters
have been obtained by ‘‘hand-held’’ fits in which parameter values
have been adjusted manually over a restricted range (Shiffrin
& Steyvers, 1997), or by simulating the model and using least-
squares procedures that rely on the match between simulated
and observed data (e.g., Malmberg et al., 2004). These procedures
severely limit the extent to which inference can bemade about the
parameters, in particular, how these parameters varywith changes
in experimental conditions. The ABC approach allows full Bayesian
inference despite the lack of an expression for the REM likelihood.

7.1. The model

Our goal is to make inferences about the parameters g, u,
and c for a single simulated subject in a recognition memory
experiment over two list-length conditions. In two study phases,
the subject sees a 10- and a 20-item word list in the short and
long list conditions, respectively. The test lists consist of the entire
previously-studied list plus 10 or 20 distractor items for the short
and long list conditions, respectively. For the purposes of this
demonstration, we will not use a hierarchical model, but see
Turner, Dennis, and Van Zandt (manuscript in preparation) for a
hierarchical REM model fit to the data of Dennis, Lee, and Kinnell
(2008).

We simulated REM in three stages. After selecting values for
g, u and c , we generated a stimulus set using the parameter g .
Next, we filled in the episodic matrix during the study phase using
the parameters g, u and c . Finally, we completed the test phase by
using the same parameters g, u and c and Eq. (7). Using this three-
step procedure allows the posteriors to reflect variance from both
the stimulus set and the memory process.

Each of the parameters in REM are probabilities, bounded by
zero and one, which makes selecting the priors straightforward.
Because REM has never been fit in a Bayesian framework, we
have no reason to believe that the parameters are located at
any particular point in the parameter space. Therefore, we use
noninformative priors that weigh equally all of the values in the
set (0, 1), that is,

g, u, c ∼ Beta(1, 1).

We use the same parameter values over each condition of the
experiment; the only quantity that changes is n, the size of the
study list.

7.2. Estimating the posterior

The data we observe in a recognition memory experiment are
the numbers of hits and false alarms across the different condi-
tions. The numbers of hits YHIT and false alarms YFA follow binomial
distributions.More specifically, for list-length condition j, Yj, HIT ∼

Bin(nj, OLD, pHIT) and Yj, FA ∼ Bin(nj, NEW, pFA). The likelihood of
the joint event (Yj, HIT, Yj, FA) is then the product of these two bi-
nomial probabilities (see Turner et al., manuscript in preparation).
The difficultywith REM and other simulation-basedmemorymod-
els is that the probabilities pHIT and pFA, which are functions of the
model parameters, are not easily determined (but see again Foot-
note 4 and also Myung, Montenegro, & Pitt, 2007).

Using again the ABC PMC algorithm (Algorithm 2), we set

ρ(X, Y ) =
1
2C


C

j=1

(Xj, FA − Yj, FA)/NNEW


+

C
j=1

(Xj, HIT − Yj, HIT)/NOLD
, (9)

where the number of conditions C equals 2. This ρ(X, Y ) is zero
when the observed hit and false alarm rates equal the simulated
hit and false alarm rates (and also the miss and correct rejection
rates) for each condition. The maximum value of ρ(X, Y ) is one.

Given the range of ρ(X, Y ), we set ϵ = {0.2, 0.1, 0.06, 0}. As
before, this selection is determined by practical considerations.We
wish to balance the number of iterations required to accept a given
set of parameters with the number of iterations required to filter
those parameters. The smallest value of ϵ is zero, which means
we are converging to a perfect match between the simulated and
observed data. We are also fitting all of the data, in contrast to
our earlier exponential example where ρ(X, Y ) was a function of
only summary statistics such as the mean or interquartile range.
Obtaining a perfect match between the observed and simulated
data in this way ensures the accuracy of the estimated posteriors.

We used 1000 particles to estimate the posteriors.

7.3. Results

To generate the data, we simulated 20 and 40 responses using
REM for the two conditions with n = 10 and n = 20 items at
study, respectively. For each condition, we set g = 0.6, u = 0.335,
and c = 0.7. These values are shown in Fig. 7 as the dashed lines.
The simulated subject had hit rates of 0.80 and 0.60 and false alarm
rates of 0.40 and 0.15 for the two conditions.

Fig. 7 shows the estimated joint posterior distributions for each
pair of the parameters: c versus u (left panel), g versus u (middle
panel) and g versus c (right panel). Not surprisingly, the figure
shows a negative curvilinear relationship between the parameters
c and u, representing the trade-off between the probability u of
copying a feature and the probability c of copying it correctly.
To produce accurate responses, both c and u will need to be
reasonably high. However, when c and u are both near one, we
would expect almost perfect performance. Similarly, when c and
u are both near zero, we would expect near chance performance.
Our subjectwas neither perfect nor at chance, so the joint posterior
does not extend to the upper right nor the lower left corners of the
joint sample space for c and u.

There are a number of other noteworthy features of the joint
posterior estimates. First, like the negative correlation between u
and c , the positive correlation between c and g is quite strong,
as shown in the right panel of Fig. 7. Small values of g result
in large values of the feature K . These large features, which are
unlikely to have arisen from an incorrect copying, contribute to
very high levels of similarity when they are matched (see Eq. (7)).
Assuming a fixed value of u, familiarity will also be higher if c is
high, resulting in a larger number of accurately copied features.
Therefore, c and g can trade off against each other, such that a given
level of familiarity requires either fewer high feature values copied
correctly (low g and low c), or more low feature values copied
correctly (high g and high c).

Second, the correlation between u and g is not as strong as for u
and c and c and g . Like the correlation between c and g , for a fixed
value of c , a given level of familiarity can be produced by higher
feature values with a smaller probability of being copied (low g
and low u) or by lower feature values with a higher probability of
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Fig. 7. The estimated joint posterior distributions for each pair of the parameters in REM: c versus u (left panel), g versus u (middle panel) and g versus c (right panel). The
dashed lines show the parameter values used to generate the data.
being copied (high g and high u). However, the posterior estimates
are highly variable. This reflects the extent to which four data
points (the hit and false alarm rates from the short and long
list conditions) can move the uninformative Beta(1, 1) priors to
any particular location in the parameter space. Given the low
level of information contributing to these posteriors, it is actually
surprising how precise they are. The values of c, u and g that
generated the data are within the equal-tail 95% credible intervals
of the posterior estimates.

The total computation time for the simulation was about
45min. As in the exponential example, the bulk of the computation
timewas on the last iteration,which took about 34min. Thismeans
thatwewere able to obtain suitable estimates of the joint posterior
distributions in about 10 min.

8. General discussion

In this tutorial, we have discussed an approach to Bayesian
analysis called approximate Bayesian computation (ABC). This
approach is particularly beneficial when the model of interest has
a difficult or intractable likelihood function. This situation arises
frequently in more complex models of cognitive processes, such
as those that are found in memory, problem solving, and cognitive
neuroscience research. ABC algorithms are very easy to use and,
once developed, the basic algorithm can be easily applied to new
models.

Although the ABC approach provides a method to circumvent
intractable or ill-behaved likelihood functions, this approach is
certainly not without a cost. As we mentioned in the introduction,
the ABC approach is computationally more expensive than
standard Bayesian samplers. However, with modern multi-core
computers and graphics processing units (GPUs), computation
time is becoming less of an issue. One important feature of the
ABC PMC algorithm (and particle filters in general) is that particle
evaluations can be completely parallelized, potentially reducing
computation time even more.

We have a number of recommendations for users of the ABC
algorithms we have presented in this tutorial. First, there is little
need to use a rejection sampler (Algorithm 1). The ABC PMC
algorithm (Algorithms 2 and 3) will be much more effective for
most problems in cognitive modeling. Second, the choice of the
distance function ρ(X, Y ) will be determined at least in part by
the data to be modeled. Accuracy data can be modeled adequately
using a function that compares the means, but distributional
analyses such as those implemented for RT data will require a
distance function based on the entire distribution. For this purpose,
we recommend a Kolmogorov–Smirnov statistic or a Pearson-
type discrepancy function such as that used for the chi-squared
test. Pearson-type discrepancy functions could also be used for
frequency data (e.g., accuracy and Likert-type ranking data).

Finally, the choice for the tolerance thresholds ϵ will depend on
the selected distance functionρ(X, Y ), among other things.Most of
the distance functionswe presented for our exampleswere limited
in their range, and so our specifications for ϵ were not hard to
choose. In the case where ρ(X, Y ) is unbounded, such as for the
exponential example, we have to be more careful.

In practice, we will have no idea what the (random) parameter
values for amodel will be, sowe have no ideawhat the appropriate
values for ϵ might be. However, we should have some idea of
the potential range of values for ϵ given the selected distance
function ρ(X, Y ). For example, the distance function based on
the Kolmogorov–Smirnov statistic is constrained between 0 and
1. We might, then, select 0.5 for ϵ1. After performing the first
iteration of the ABC PMC algorithm, each accepted value for the
parameters will have associated with it a value of ρ(X, Y ) < 0.5.
The distribution of these ρ(X, Y ) values can then be inspected to
determine the next value for ϵ.

Given monotonic decreasing ϵt , as t gets large, the variance
of ρt(X, Y ) will approach 0. For continuous measures, we could
continue iterating, choosing ϵt to be smaller than ϵt−1, until
the software eventually rounds ϵt to 0. In practice, this may be
very inefficient. Instead, we recommend that iterations end when
the variance of ρ(X, Y ) at iteration t reaches some sufficiently
small value. We have found this method of determining the ϵ
values useful in other investigations of more complicated models
(e.g., Turner et al., manuscript in preparation).

We have applied these methods in our own work, and
found that we are able to fit models and perform Bayesian
analyses in areas where parameter estimation is traditionally
very difficult (e.g., Turner et al., manuscript in preparation).
Furthermore, this method provides opportunities to explore
models that are currently neglected (or perhaps avoided) because
of their computational complexity and the associated difficulties
encountered during attempts to estimate their parameters. One
example of this is the neurophysiologically plausible leaky
competing accumulator model (Usher & McClelland, 2001) which
does not have a closed-form likelihood but has the potential to
explain a very wide range of choice data, including data from tasks
with more than two alternative responses.

There is a tendency among mathematical modelers to view
simulation-based models as less valuable than mathematical
models. Mathematicalmodels, with their closed-form expressions,
provide a clear way to evaluate limits on parameters and the
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influence of each parameter on the predictions. By contrast, it is not
always clearwhat the predictions are for a simulation-basedmodel
nor which component of the model is responsible for producing a
given effect. It is also more difficult to isolate variance within the
components of a simulation-based model. ABC, while it does not
completely eliminate all of these problems, permits researchers to
choosemodels that, for reasons of complexity or computation, they
may not have considered previously.
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