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In a dynamic social or biological environment, the interactions
between the actors can undergo large and systematic changes. In
this paper, we propose a model-based approach to analyze what we
will refer to as the dynamic tomography of such time-evolving net-
works. Our approach offers an intuitive but powerful tool to infer
the semantic underpinnings of each actor, such as its social roles
or biological functions, underlying the observed network topologies.
Our model builds on earlier work on a mixed membership stochastic
blockmodel for static networks, and the state-space model for track-
ing object trajectory. It overcomes a major limitation of many current
network inference techniques, which assume that each actor plays a
unique and invariant role that accounts for all its interactions with
other actors; instead, our method models the role of each actor as a
time-evolving mixed membership vector that allows actors to behave
differently over time and carry out different roles/functions when in-
teracting with different peers, which is closer to reality. We present
an efficient algorithm for approximate inference and learning using
our model; and we applied our model to analyze a social network
between monks (i.e., the Sampson’s network), a dynamic email com-
munication network between the Enron employees, and a rewiring
gene interaction network of fruit fly collected during its full life cycle.
In all cases, our model reveals interesting patterns of the dynamic
roles of the actors.

1. Introduction. Networks are a fundamental form of representation
of complex systems. In many problems arising in biology, social sciences and
various other fields, it is often necessary to analyze populations of entities
such as molecules or individuals, also known as “actors” in some network
literature, interconnected by a set of relationships such as regulatory inter-
actions, friendships, and communications. Studying networks of these kinds
can reveal a wide range of information, such as how molecules/individuals
organize themselves into groups; which molecules are the key regulator or
which individuals are in positions of power; and how the patterns of biolog-
ical regulations or social interactions are likely to evolve over time.
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In this paper, we investigate an intriguing statistical inference problem
of interpreting the dynamic behavior of temporally evolving networks based
on a concept known as network tomography. Borrowed from the vocabulary
of magnetic resonance imaging, the term “network tomography” was first
introduced by Vardi (1996) to refer to the study of a network’s internal char-
acteristics using information derived from the observed network. In most
real-world complex systems such as a social network or a gene regulation
network, the measurable attributes and relationships of vertices (or nodes)
in a network are often functions of latent temporal processes of events which
can fluctuate, evolve, emerge and terminate stochastically. Here we define
network tomography more specifically as the latent semantic underpinnings
of entities in both static and dynamic networks. For example, it can stand
for the latent class labels, social roles, or biological functions undertaken by
the nodal entities, or the measures on the affinity, compatibility, and coop-
erativity between nodal states that determine the edge probability. Our goal
is to develop a statistical model and algorithms with which such information
can be inferred from dynamically evolving networks via posterior inference.

We will concern ourselves with three specific real world time-evolving
networks in our empirical analysis: 1) the well-known Sampson’s undirected
social networks (Sampson, 1969) of 18 monks over 3 time episodes, which
are recorded during an interesting timeframe that preludes a major conflict
followed by a mass departure of the monks, and therefore an interesting
example case to infer nodal causes behind dramatic social changes; 2) the
time series of email-communication networks of ENRON employees before
and during the collapse of the company, which may have recorded interest-
ing and perhaps sociologically illuminating behavioral patterns and trends
under various business operation conditions; and 3) the sequence of gene
interaction networks estimated at 22 time points during the life span of
Drosophila melanogaster, a fruit fly commonly used as a lab model to study
the mechanisms of animal embryo development, which captures transient
regulatory events as the animal aging.

Inference of network tomography is fundamental for understanding the
organization and function of complex relational structures in natural, socio-
cultural, and technological systems such as the ones mentioned above. In a
social system such as a company employee network, network tomography can
capture the latent social roles of individuals; inferring such roles based on
the social interactions among individuals is fundamental for understanding
the importance of members in a network, for interpreting the social struc-
ture of various communities in a network, and for modeling the behavioral,
sociological, and even epidemiological processes mediated by the vertices in
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a network. In systems biology, network tomography often translates to latent
biochemical or genetic functions of interacting molecules such as proteins,
mRNAs, or metabolites in a regulatory circuity; elucidating such functions
based on the topology of molecular networks can advance our understanding
of the mechanisms of how a complex biological system regulates itself and
reacts to stimuli. More broadly, network tomography can lead to important
insights to the robustness of network structures and their vulnerabilities;
the cause and consequence of information diffusion; and the mechanism of
hierarchy and organization formation. By appropriately modeling network
tomography, a network analyzer can also simulate and reason about the gen-
erative mechanisms of networks, and discover changing roles among actors
in networks, which will be relevant for activity and anomaly detection.

There has been a variety of successes in network analysis based on var-
ious formalisms. For example, researchers have found trends in a wide va-
riety of large-scale networks, including scale-free and small-world proper-
ties (Barabasi and Albert, 1999; Kleinberg, 2000). Other successes include
the formal characterization of otherwise intuitive notions, such as “group-
ness” which can be formally characterized in the networks perspective using
measures of structural cohesiveness and embeddedness (Moody and White,
2003), detecting outbreaks (Leskovec et al., 2007), and characterizing macro-
scopic properties of various large social and information networks (Leskovec et al.,
2008). Additionally, there has been progress in statistical modeling of social
networks, traditionally focusing on descriptive models such as the expo-
nential random graph models, and more recently moving toward various
latent space models that estimate an embedding of the network in a la-
tent semantic space, as we review shortly in Section 2. A major limitation
of most current methods for network modeling and inference (Hoff et al.,
2002; Li and McCallum, 2006; Handcock et al., 2007) is that, they assume
each actor, such as a social individual or a biological molecule in a network,
undertakes a single and invariant role (or functionality, class label, etc., de-
pending on the domain of interest), when interacting with other actors. In
many realistic social and biological scenarios, every actor can play multiple
roles (or under multiple influences) and the specific role being played depen-
dents on whom the actor is interacting with; and the roles undertaken by an
actor can change over time. For example, during a developmental process or
an immune response in a biological system, there may exist multiple under-
lying “themes” that determine the functionalities of each molecule and their
relationships to each other, and such themes are dynamical and stochastic.
As a result, the molecular networks at each time point are context-dependent
and can undergo systematic rewiring, rather than being i.i.d. samples from a
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single underlying distribution, as assumed in most current biological network
studies. We are interested in understanding the mechanisms that drive the
temporal rewiring of biological networks during various cellular and physio-
logical processes, and similar phenomena in time-varying social networks.

In this paper, we propose a new Bayesian approach for network tomo-
graphic inference that will capture the multi-facet, context-specific, and
temporal nature of an actor’s role in large, heterogeneous, and evolving
dynamic networks. The proposed method will build on a modified version of
the mixed membership stochastic blockmodel (MMSB) (Airoldi et al., 2008),
which enables network links to be realized by role-specific local connection
mechanisms; each link is underlined by a separately chosen latent functional
cause, and each vertex can have fractional involvement in multiple functions
or roles which are captured by a mixed membership vector. Thereby the pro-
posed model supports analyzing patterns of interactions between actors via
statistically inferring an “embedding” of a network in a latent “tomographic-
space” via the mixed membership vectors. For example, the characteristics of
group profiles of actors revealed by the mixed membership vectors can offer
important and intuitive community structures in the networks in question.

Modeling embedding of networks in latent state space offers an intu-
itive but powerful approach to infer the semantic underpinnings of each
actor, such as its biological or social roles or other entity functions, un-
derlying the observed network topologies. Via such a model, one can map
every actor in a network to a position in a low-dimensional simplex, where
the roles/functions of the actors are reflected in the role- or functional-
coordinates of the actors in the latent space and the relationships among
actors are reflected in their Euclidian distances. We can naturally capture
the dynamics of role evolution of actors in such a tomographic-space, and
other latent dynamic processes driving the network evolution by furthermore
applying a state-space model (SSM) popular in object tracking over the po-
sitions of the tomographic-embeddings of all actors, where a logistic-normal

mixed membership stochastic blockmodel is employed as the emission model
to define time-specific condition likelihood of the observed networks over
time. The resulting model shall be formally known as a state space mixed

membership stochastic blockmodel, but for simplicity in this paper we will
refer to it as a dynamic MMSB (or in short, dMMSB); and we will show
that this model allows one to infer the trajectory of the roles of each actor
based on the posterior distribution of its role-vector.

Given network data, the dMMSB can be learned based on maximum like-
lihood principle using a variational EM algorithm (Ghahramani and Beal,
2001; Xing et al., 2003; Ahmed and Xing, 2007), the resulting network pa-
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rameters reveal not only mixed membership information of each actor over
time, but also other interesting regularities in the network topology. We will
illustrated this model on the well-known Sampson’s monk social network,
and then apply it to the time series of email network from Enron, and the
sequence of time-varying genetic interaction networks estimated from the
Drosophila genome-wise microarray time series, and we will present some
previously unnoticed dynamic behaviors of network actors in these data.

The remaining part of the paper is organized as follows. In Section 2, we
briefly review some related work. In Section 3 we present the dMMSB model
in detail. A Laplace variational EM algorithm for approximate inference
under dMMSB will be described in Section 4. In Section 5 we present case
studies on the monks network, the Enron network, and the Drosophila gene
network using dMMSB, along with some simulation based validation of the
model. Some discussions will be given in Section 6. Algebraic details of the
derivations of the inference algorithm are provided in the appendix.

2. Related work. There is a vast and growing body of literature on
model-based statistical analysis of network data, traditionally focusing on
descriptive models such as the exponential random graph models (ERGMs)
(Frank and Strauss, 1986; Wasserman and Pattison, 1996), and more re-
cently moving toward more generative types of models such as those that
model the network structure as being caused by the actors’ positions in a
latent “social space” (Hoff et al., 2002). Among these models, some variants
of the ERGMs, such as the stochastic block models (Holland et al., 1983;
Fienberg et al., 1985; Wasserman and Pattison, 1996; Snijders, 2002), clus-
ter network vertices based on their structural equivalency (Lorrain and White,
1971). The latent space models (LSM) instead project nodes onto a latent
space, where their similarities can be visualized and explored (Hoff et al.,
2002; Hoff, 2003; Handcock et al., 2007). The mixed membership stochas-
tic blcokmodel proposed in Airoldi et al. (2005, 2008) integrates ideas from
these models, but went further by allowing each node to belong to multi-
ple blocks (i.e., groups) with fractional membership. Variants of the mixed
membership model have appeared in population genetics (Pritchard et al.,
2000), text modeling (Blei et al., 2003a), analysis of multiple disability mea-
sures (Erosheva and Fienberg, 2005), etc. In most of these cases, mixed
membership models are used as a latent-space projection method to project
high-dimensional attribute data into a lower-dimensional “aspect-space”, as
a normalized mixed membership vector, which reflects the weight of each
latent aspect (e.g., roles, functions, topics, etc.) associated with an ob-
ject (Erosheva et al., 2004). The mixed membership vectors often serve as
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a surrogate of the original data for subsequent analysis such as classifi-
cation (Blei et al., 2003b). The MMSB model developed earlier has been
applied for role identification in Sampson’s 18-monk social network and func-
tional prediction in a protein-protein interaction network (PPI) (Airoldi et al.,
2005, 2008). It uses the aforementioned mixed membership vector to define
an actor-specific multinomial distribution, from which specific actor roles
can be sampled when interacting with other actors. For each monk, it yields
a multi-class social-identity prediction which captures the fact that his in-
teractions with different other monks may be under different social contexts.
For each protein, it yield a multi-class functional prediction which captures
the fact that its interactions with different proteins may be under different
functional contexts.

We intend to use the state space model (SSM) popular in object tracking
and trajectory modeling for inferring underlying functional changes in net-
work entities, and sensing emergence and termination of “function themes”
underlying network sequences. This scheme has been adopted in a num-
ber of recent work on extracting evolving topical themes in text docu-
ments (Blei and Lafferty, 2006b; Wang and McCallum, 2006) or author em-
beddings (Sarkar and Moore, 2005) based on author, text, and reference
network of archived publications.

3. Modeling Dynamic Network Tomography. Consider a tempo-
ral series of networks {G(1), . . . , G(T )} over a vertex set V , where G(t) ≡
{V,E(t)} represents the network observed at time t. In this paper, we as-
sume that N = |V | is invariant over time; thus E(t) ≡ {e(t)

i,j}
N
i,j=1 denote the

set of (possibly transient) links at time t between a fixed set of N vertices.
To model both the multi-class nature of every vertex in a network, and

the latent semantic characteristics of the vertex-classes and their relation-
ships to inter-vertices interactions, we assume that at any time point, every
vertex vi ∈ V in the network, such as a social actor or a biological molecule,
can undertake multiple roles or functions realized from a predefined latent
tomographic space according to a time-varying distribution Pt(·); and the
weights (i.e., proportion of “contribution”) of the involved roles/functions
can be represented by a normalized vector ~π(t)

i of fixed dimension K. We refer
to each role, function, or other domain-specific semantics underlying the ver-
tices as a membership of a latent class. Earlier stochastic blockmodel of net-
works restricted each vertex to belong to a single and invariant membership.
In this paper, we assume that each vertex can have mixed memberships, that
is, it can undertake multiple roles/functions within a single network when
interacting with various network neighbors with different roles/functions,
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and the vector of proportions of the mixed-memberships, ~π(t)

i , can evolve
over time. Furthermore, we assume that the links between vertices are in-
stantiated stochastically according to a compatibility function over the roles
undertaken by the vertex-pair in question, and we define the compatibil-
ity coefficients between all possible pair of roles using a time-evolving role-
compatibility matrix B(t) ≡ {β(t)

k,l}.

3.1. Static Mixed Membership Stochastic Blockmodel. Under a basic MMSB
model, as first proposed in Airoldi et al. (2005), network links can be real-
ized by a role-specific local interaction mechanisms: the link between each
pair of actors, say (i, j), is instantiated according to the latent role specifi-
cally undertaken by actor i when it is to interact with j, and also the latent
role of j when it is to interact with i. More specifically, suppose that each
different role-pair, say roles k and l, between actors has a unique probabil-
ity distribution P (·|βk,l) of having a link between actor pairs with that role
combination, then a basic mixed membership stochastic blockmodel posits
the following generative scheme for a static network:

1. For each vertex i, draw the mixed-membership vector: ~πi ∼ P (·|θ)

2. For each possible interacting vertex j of vertex i, draw the link indicator ei,j ∈ {0, 1}
as follows:

• draw latent roles ~zi→j ∼ Multinomial(·|~πi, 1), ~zj←i ∼ Multinomial(·|~πj , 1),
where ~zi→j denotes the role of actor i when it is to interact with j, and ~zj←i

denotes the role of actor j when it is approached by i. Here ~zi→j and ~zj←i

are unit indictor vectors in which one element is one and the rest are zero; it
represents the k-th role if and only if the k-th element of the vector is one,
for example, zi→j,k = 1 or zj←i,k = 1.

• and draw ei,j | (zi→j,k = 1, zj←i,l = 1) ∼ Bernoulli(·|βk,l).

Specifically, the generative model above defines a conditional probability
distribution of the relations E = {ei,j} among vertices in a way that re-
flects naturally interpretable latent semantics (e.g., roles, functions, cluster
identities) of the vertices. The link ei,j represents a binary actor-to-actor
relationship. For example, the existence of a link could mean that a package
has been sent from one person to another, or one has a positive impression
on another, or one gene is regulated by another. Each vertex vi is associated
with a set of latent membership labels {~zi→·, ~zi←·} (if the links are undi-
rected, as in a PPI, then we can ignore the asymmetry of ”→” and ”←”).
Thus the semantic underpinning of each interaction between vertices is cap-
tured by a pair of instantiated memberships unique to this interaction; and
the nature and strength of the interaction is controlled by the compatibility
function determined by this pair of memberships instantiation. For example,
if actors A and C are of role X while actors B and D are of role Y , we may
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expect that the relationship from A to B is likely to be the same as relation-
ship from C to D, because both of them are from a role-X actor to a role-Y
actor. In this sense, a role is like a class label in a classification task. How-
ever, under an MMSB model, an actor can have different role instantiations
when interacting with different neighbors in the same network.

The role-compatibility matrix B ≡ {βk,l} decides the affinity between
roles. In some cases, the diagonal elements of the matrix may dominate
over other elements, which means actors of the same role are more likely
to connect to each other. In the case where we need to model differential
preference among different roles, richer block patterns can be encoded in the
role-compatibility matrix. The flexibility of the choices of the B matrix give
rise to strong expressivity of the model to deal with complex relational pat-
terns. If necessary, a prior distribution over elements in B can be introduced,
which can offer desirable smoothing or regularization effects.

Crucial to our goal of role-prediction and role-evolution modeling for net-
work data, is the so called mixed membership vector ~πi, also referred to
as “role vector”, of the mixed-membership coefficients in the above gener-
ative model, which represents the overall role spectrum of each actor and
succinctly captures the probabilities of an actor involving in different roles
when this actor interacts with another actor. Much of the expressiveness of
the mixed-membership models lies in the choice of the prior distribution for
the mixed-membership coefficients ~πi, and the prior for the interaction coef-
ficients {βk,l}. For example, in Airoldi et al. (2005, 2008), a simple Dirichlet
prior was employed because it is conjugate to the multinomial distribution
over every latent membership label {~zi→·, ~zi←·} defined by the relevant ~πi.
In this paper, to capture non-trivial correlations among the weights (i.e., the
individual elements within ~πi) of all latent roles of a vertex, and to allow one
to introduce dynamics to the roles of each actor when modeling temporal
processes such as a cell cycle, we employ a logistic-normal distribution over
a simplex (Aitchison and Shen, 1980; Aitchison, 1986; Ahmed and Xing,
2007). The resulting model is referred to as a logistic-normal MMSB, or
simply LNMMSB.

Under a logistic normal prior, assuming a centered logistic transforma-
tion, the first sampling step for ~πi ≡ [πi,1, . . . , πi,K ] in the canonical mixed
membership generative model above can be broken down into two sub-steps:
first draw ~γi according to:

(1) ~γi ∼ Normal(~µ,Σ);
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then map it to the simplex via the following logistic transformation:

πi,k = exp{γi,k − C(~γi)}, ∀k = 1, . . . ,K(2)

where C(~γi) = log
(

K
∑

k=1

exp{γi,k}
)

.(3)

Here C(~γi) is a normalization constant (i.e., the log partition function).
Due to the normalizability constrain of the multinomial parameters, ~πi only
has K − 1 degree of freedom. Thus we only need to draw the first K − 1
components of ~γi from a (K − 1)-dimensional multivariate Gaussian, and
leave γi,K = 0. For simplicity, we omit this technicality in the forth coming
general description and operation of our model.

Under a dynamic network tomography model, the prior distributions of
role weights of every vertex Pt(·), and the role-compatibility matrix B,
can both evolve over time. Conditioning on the observed network sequence
{G(1), . . . , G(T )}, our goal is to infer the trajectories of role vectors ~π(t)

i in the
latent social space or biological function space. In the following, we present
a generative model built on elements from the classical state-space model
for linear dynamic systems and the static logistic normal MMSB described
above for random graphs for this purpose.

3.2. Dynamic Logistic-Normal Mixed Membership Stochastic Blockmodel.

We propose to capture the dynamics of network evolution at the level of
both the prior distributions of the mixed membership vectors of vertices, and
the compatibility functions governing role-to-role relationships. In this way
we capture the dynamic behavior of the generative system of both vertices
and relations. Our basic model structure is based on the well-known state-
space model, which defines a linear dynamic transformation of the mixed
membership priors over adjacent time points:

(4) ~µ(t) = A~µ(t−1) + ~w(t), for t ≥ 1

where ~µ(t) represents the mean parameter of the prior distribution of the
transformed mixed membership vectors of all vertices at time t, and ~w(t) ∼
N (0,Φ) represents normal transition noise for the mixed membership prior,
and the transition matrix A shapes the trajectory of temporal transfor-
mation the prior. The LNMMSB model defined above now functions as an
emission model within the SSM that defines the conditional likelihood of
the network at each time point. Note that the linear system on ~µ(t) can lead
to a bursty dynamics for latent admixing vector π(t)

i through the LNMMSB
emission model. Starting from this basic structure, we propose to develop
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a dynamical model for tracking underlying functional changes in network
entities and sensing emergence and termination of “function themes”.

Given a sequence of network topologies over the same set of nodes, here is
an outline of the generative process under such a model (a graphical model
representation of this model is illustrated in Figure 1):

• State-Space Model for Mixed Membership Prior:

– ~µ(1) ∼ Normal(ν,Φ),
sample the mean of the mixed membership
prior at time 1.

For t = 1, . . . , T :

– ~µ(t) = Normal(A~µ(t−1),Φ),
sample the means of the mixed member-
ship priors over time.

• State-Space Model for Role-Compatibility Matrix:

For k = 1, . . . ,K and k′ = 1, . . . ,K,

– η
(1)

k,k′
∼ Normal(ι, ψ),

sample the compatibility coefficient be-
tween role k and k′ at time 1.

For t = 1, . . . , T :

– η
(t)

k,k′
∼ Normal(bη(t−1)

k,k′
, ψ),

sample compatibility coefficients over sub-
sequent time points.

– β
(t)

k,k′
=

exp(η
(t)

k,k′
)

exp(η
(t)

k,k′
)+1

,
compute compatibility probabilities via lo-
gistic transformation.

• Logistic-Normal Mixture Membership Model for Networks

For each node n = 1, . . . , N , at each time point t = 1, . . . , T :

– ~π
(t)

i ∼ LogisticNormal
(

~µ(t),Σ(t)
) sample a k dimensional mixed mem-

bership vector;

For each pair of nodes (i, j) ∈ [1, N ] × [1, N ]:

– ~z
(t)

i→j ∼ Multinomial
(

~π
(t)

i , 1
) sample membership indicator for

the donor

– ~z
(t)

j←i ∼ Multinomial
(

~π
(t)

j , 1
) sample membership indicator for

the acceptor

– e
(t)

i,j ∼ Bernoulli
(

~z
(t) ′

i→j B
(t)~z

(t)
j←i

)

sample the links between nodes.

Specifically, we assume that the mixed membership vector ~π for each actor
follows a time-specific logistic normal prior LN (~µ(t),Σ(t)), whose mean ~µ(t)

is evolving over time according to a linear Gaussian model. For simplicity,
we assume that the Σ(t) which captures time-specific topic correlations is
independent across time.

It is noteworthy that unlike a standard SSM of which the latent state
would emit a single output (i.e., an observation or a measurement) at each
time point, the dMMSB model outlined above generates N emissions each
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Fig 1. A graphical model representation of the dynamic logistic-normal mixed membership
stochastic blockmodel. The part enclosed by the dotted lines is a logistic-normal MMSB.

time, one corresponding to the (pre-transformed) mixed-membership vector
~γ(t)

i of each vertex. To directly apply the Kalman filter and Rauch-Tung-
Striebel smoother for posterior inference and parameter estimation under
dMMSB, we introduce an intermediate random variable ~Y (t) = 1

N

∑

i ~γ
(t)

i ; it

is easy to see that ~Y (t) follows a standard SSM re-parameterized from the
original dMMSB:

~Y (t) ∼ Normal
(

~µ(t),
Σ(t)

N

)

, t = 1, . . . , T.(5)

In principle, we can use the above membership evolution model to capture
not only membership correlation within and between vertices at a specific
time (as did in Blei and Lafferty (2006a)), but also dynamic coupling (i.e.,
co-evolution) of membership proportions via covariance matrix Φ. In the
simplest scenario, when A = I and Φ = σI, this model reduces to random
walk in the membership-mixing space. Since in most realistic temporal series
of networks, both the role-compatibility functions between vertices, and the
semantic representations of membership-mixing are unlikely to be invariant
over time, we expect that even a random walk mixed-membership evolution
model can provide a better fit of the data than a static model that ignores
the time stamps of all networks.
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4. Variational Inference. Due to difficulties in marginalization over
the super-exponential state space of latent variables ~z and ~π, even the ba-
sic MMSB model based on a Dirichlet prior over the role vectors ~π is in-
tractable (Airoldi et al., 2005, 2008). With the additional difficulty in in-
tegration of ~π under a logistic normal prior where a closed-form solution
is unavailable, exact posterior inference of the latent variables of interest,
and direct EM estimation of the model parameters is infeasible. In this sec-
tion, we present a Laplace variational approximation scheme based on the
generalized means field (GMF) theorem (Xing et al., 2003) to infer the la-
tent variables and estimate the model parameters. This scheme requires
one additional approximating step on top of the variational approxima-
tion developed in (Airoldi et al., 2008), but we will show empirically in
Section 5.1.1 that this step does not introduce much additional error. The
GMF approach is modular, that is, we can approximate the joint posterior

p
(

{~z(t), ~π(t), ~µ(t), B(t)}T
t=1|Θ, {G(t)}T

t=1

)

where Θ denotes the model parame-

ters, by a factored approximate distribution:

(6) q
(

{~z(t), ~π(t), ~µ(t), B(t)}T

t=1

)

= q1

(

{~z(t), ~π(t)}T

t=1

)

q2

(

{~µ(t)}T

t=1

)

q3

(

{B(t)}T

t=1

)

,

where q1() can be shown to be the marginal distribution of {~z(t), ~π(t)}T
t=1 un-

der a reparameterized LNMMSB, and q2() and q3() are SSMs over {~µ(t)}T
t=1

and {B(t)}T
t=1, respectively, with emissions related to expectation of {~z(t), ~π(t)}T

t=1

under q1(). This can be shown by minimizing the Kulback Leibler divergence
between q() and p() over arbitrary choices of q1(), q2() and q3(), as proven
in (Xing et al., 2003). The computation of the variational parameters of each
of these approximate marginals leads to a coupling of all the marginals, as
apparent in the descriptions in the subsequent subsections. But once the
variational parameters are solved, inference on any latent variable of inter-
est under the joint distribution p(), which is intractable, can be approxi-
mated by a much simpler inference on the same variable in one of the qi()
marginals that contains the variables of interest. Bellow we briefly outline
solutions to each of these marginals of subset of variables, which exactly
correspond to the three building blocks of the dMMSB model outlined in
Section 3.2. (Since µ(t) and B(t) both follow a standard SSM, for simplicity,
we only show the solution to q2() over µ(t), and treat B(t) as an unknown
invariant constant to be estimated.)

4.1. Variational approximation to logistic-normal MMSB. For a static
MMSB, the inference problem is to estimate the role-vectors given model
parameters and observations. That is, model parameters ~µ, Σ and B are
assumed to be known besides the observed variables E, and we want to
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compute estimates of the role vectors ~γ· along with role indicators ~z·→· and
~z·←·. (Under dMMSB, ~µ is in fact unknown, but we will discuss shortly how
to estimate it outside of the MMSB inference detailed bellow.)

Under the LNMMSB, ignoring time and vertex indices, the marginal pos-
terior of latent variables ~γ (the pre-transformed ~π) and ~z is:

p(~γ·, ~z·→·, ~z·←· | ~µ,Σ, B,E) ∝
∏

i

p(~γi | ~µ,Σ)×(7)

∏

i,j

p(~zi→j , ~zj←i | ~γi, ~γj)p(eij | ~zi→j, ~zj←i, B)

Marginalization over all but one hidden variables to predict, say ~γi, is
intractable under the above model. Based on the GMF theory, we ap-
proximate p(~γ·, ~z·→·, ~z·←· | ~µ,Σ, B,E) with a product of simpler marginals
q() = qγ()qz(), each on a cluster of latent variable subset, i.e., {~γi} and
{~zi→j , ~zj←i}. Xing et al. (2003) proved that under GMF approximation, the
optimal solution, q(), of each marginal over the cluster of variables is iso-
morphic to the true conditional distribution of the cluster given its expected

Markov Blanket. That is,

qγ(~γi) = p(~γi | ~µ,Σ, 〈~zi→·〉qz , 〈~zi←·〉qz)(8)

qz(~zi→j , ~zj←i) = p(~zi→j , ~zj←i | eij , B, 〈~γi〉qγ , 〈~γj〉qγ )(9)

These equations define a fixed point for qγ and qz. The optimal marginal
distribution of the variables in one cluster is updated when we fix the
marginal of all the other variables, in turn. The update continues until the
change is neglectable.

The update formula for cluster marginal of (~zi→j , ~zj←i) is straightforward.
It follows a multinomial distribution with K ×K possible outcomes 1 :

qz(~zi→j, ~zj←i) ∝ p(~zi→j | 〈~γi〉qγ ) p(~zj←i | 〈~γj〉qγ ) p(eij | ~zi→j , ~zj←i, B)(10)

∼ Multinomial(~δij)

where δij(u,v) ≡
1
C

exp(〈γi,u〉qγ + 〈γj,v〉qγ ) β
eij
u,v (1 − βu,v)

1−eij , and C is the
normalization function to keep

∑

(u,v) δij(u,v) = 1. Furthermore, the expec-
tation of z’s according to the multinomial distribution are

〈zi→j,u〉qz
=

∑

v δij(u,v)
∑

u,v δij(u,v)
=
∑

v

δij(u,v), 〈zj←i,v〉qz
=

∑

u δij(u,v)
∑

u,v δij(u,v)
=
∑

u

δij(u,v).

(11)

1The K ×K components are flatted into a one-dimension vector.
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The update formula for ~γi can be derived similarly but some further ap-
proximation is applied. First,

qγ(~γi) ∝ p(~γi | ~µ,Σ) p(〈~zi→·〉qz , 〈~zi←·〉qz | ~γi)(12)

= N (~γi; ~µ,Σ) exp(〈~mi〉qz

T ~γi − (2N − 2) C(~γi))

where mik =
∑

j 6=i(zi→j,k + zi←j,k), 〈mik〉qz =
∑N

j 6=i(〈zi→j,k〉qz + 〈zi←j,k〉qz),

and C(~γi) = log(
∑K

k=1 exp{γi,k}). The presence of the normalization con-
stant C(~γi) makes qγ un-integrable in closed-form. Therefore we apply a
Laplace approximation to C(~γi) based on a second-order Taylor expansion
around γ̂i (Ahmed and Xing, 2007), such that qγ(~γi) becomes a reparam-
eterized multivariate normal distribution N (γ̃i, Σ̃i) (see Appendix A.1 for
details). In order to get a good approximation, the point of expansion, γ̂i,
should be set as close to the query point as possible. Therefore, we set it
to be the γ̃i obtained from the previous iteration, i.e. γ̂r+1

i = γ̃r
i where r

denotes the iteration number.
The inference algorithm iterates between Eq. 10 and Eq. 12 until conver-

gence when the relative change of log-likelihood is less than 10−6 in absolute
value. The procedure is repeated multiple times with random initialization
for γ̃i. The result having the best likelihood is picked as the solution.

4.2. Parameter Estimation for Logistic-Normal MMSB. The model pa-
rameters ~µ, Σ and B have to be estimated from data E ≡ {eij}. In the
simplest case, where time evolution of ~µ and B is ignored, these can be done
via a straightforward EM-style procedure.

In the E step, we use the inference algorithm from Section 4.1 to com-
pute the posterior distribution and expectation the latent variables by fix-
ing the current parameters. In the M step, we re-estimate the parame-
ters by maximizing the log-likelihood of the data using the posteriors ob-
tained from the E-step. Under a LNMMSB, exact computation of the log-
likelihood is intractable, hence we use an approximation method known as
variational EM. We obtain the following update formulas for variational
EM (Ghahramani and Beal, 2001): (See Appendix A.2 for an illustration of
the derivation of the update for B.)

β̂k,l =

∑

i,j eijδij(k,l)
∑

i,j δij(k,l)
, µ̂ =

1

N

∑

i

γ̃i, Σ̂ =
1

N

∑

i

Σ̃i + Cov(γ̃1:N )(13)

The procedure for the learning can be summarized below:
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Learning for Logistic-Normal MMSB:
1. initialize B ∼ U [0, 1], ~µ ∼ N (0, I), Σ = 10I
2. while not converged (Outer Loop)

2.1. Initialize q(~γi)
2.2. while not converged and #iteration ≤ threshold (Inner Loop)

2.2.1. update q(~zi→j , ~zj←i) ∼ Multinomial(~δij)

2.2.2. update q(~γi) ∼ N (γ̃i, Σ̃i)
2.2.3. update B

2.3. update ~µ, Σ

The convergence criterion is the same as in inference. It is worth noting
that the update of role-compatibility matrix B is in the inner loop, which
means that it is updated as frequently as mixed membership vectors ~γi. This
makes sense because the role-compatibility matrix and mixed membership
vectors are closely coupled.

4.3. Variational approximation to dMMSB. When ~µ is time-evolving as
in dMMSB, two aspects in the algorithms described in Sections 4.1 and 4.2
need to be treated differently. First, unlike in Eq. (13), estimation of ~µ(t)

now must be done under an SSM, with {γ̃(t)

i } as the emissions at every
time point. Second, according to the GMF theorem, the µ appeared in all
equations in Section 4.1 must now be replaced by the posterior mean of ~µ(t)

under this SSM. Bellow we first summarize the algorithm for dMMSB, fol-
lowed by details of the update steps based on the Kalman Filter (KF) and
the Rauch-Tung-Striebel (RTS) smoother algorithms.

Inference for dMMSB:
1. initialize all ~µ(t)

2. while not converged
2.1. for each t

2.1.1. call the inference algorithm for MMSB on network E(t) in §4.1
(by passing to it all current estimate of ~µ(t)),

and return the GMF approximation γ̃
(t)
i , Σ̃

(t)
i

2.1.2. update the observations, ~Y (t) =
∑

i γ̃
(t)
i /N

2.2. RTS smoother update ~µ(t) = µ̂t|T based on {~Y (t)}T

t=1

Given all model parameters and all the emissions (the current estimate of
the mixed membership vectors {γ̃(t)

i } of all vertices returned by the logistic
normal MMSB at each time point), posterior inference of the hidden states
~µ(t) can be solved according to the following KF and RTS procedure. The
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major update steps in the Kalman Filter are:

µ̂t+1|t = Aµ̂t|t = µ̂t|t

Pt+1|t = APt|tA
T + Φ = Pt|t + Φ

Kt+1 = Pt+1|t(Pt+1|t + Σt+1/N)−1

µ̂t+1|t+1 = µ̂t+1|t + Kt+1(~Yt+1 − µ̂t+1|t)(14)

Pt+1|t+1 = Pt+1|t −Kt+1Pt+1|t(15)

where µ̂t|s ≡ E (~µ(t) | ~Y1, . . . , ~Ys) and Pt|s ≡ Var(µ̃(t) | Ỹ1, . . . , Ỹs). And the
major update steps in the Rauch-Tung-Striebel smoother are:

Lt = Pt|tA
T P−1

t+1|t = Pt|tP
−1
t+1|t

µ̂t|T = µ̂t|t + Lt(µ̂t+1|T − µ̂t+1|t)(16)

Pt|T = Pt|t + Lt(Pt+1|T − Pt+1|t)L
T
t(17)

4.4. Parameter Estimation for dMMSB. We again use the variational
EM algorithm. The E-step uses the dMMSB inference algorithm in Sec-
tion 4.3 for compute sufficient statistics µ̂t|T ,∀t, and the logistic normal
MMSB inference algorithm in Section 4.2 for computing all sufficient statis-

tics δ
(t)
ij(k,l). In the M-step, model parameters are updated by maximizing

the log-likelihood obtained from the E-step. From this on, we simplify the
linear transition model posed on matrix B and assume that it is constant.
We derive the following updates for the model parameters B, ν,Φ,Σ(t) (See
Appendix A.3 for some details):

β̂k,l =

∑

t

∑

i,j e
(t)
ij δ

(t)
ij(k,l)

∑

t

∑

i,j δ
(t)
ij,(k,l)

(18)

Φ̂ =
1

T − 1

(

T−1
∑

t=1

(µ̂t+1|T − µ̂t|T )(µ̂t+1|T − µ̂t|T )T +
T−1
∑

t=1

LtPt+1|T LT
t

)

(19)

Σ̂(t) =
1

N

(

∑

i

(µ̂t|T − γ̃
(t)
i )(µ̂t|T − γ̃

(t)
i )T +

∑

i

Σ̃
(t)
i

)

(20)

ν̂ = µ̂1|T(21)

The algorithm can be summarized below:
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Learning for dMMSB:
1. initialize B ∼ U [0, 1], ν ∼ N (0, I), ~µ(t) = ν, Φ = 10I, Σ(t) = 10I
2. while not converged

2.1. Initialize all q(~γ
(t)
i )

2.2. while not converged
2.2.1. foreach t

2.2.1.1. update q(~zi→j , ~zj←i) ∼ Multinomial(~δij)

2.2.1.2. update q(~γi) ∼ N (γ̃i, Σ̃i)
2.1.2. update B

2.3. RTS smoother update, ~µ(t) = µ̂t|T based on {~Y (t)}T

t=1

2.4. update ν, Φ, Σ(t)

Notice that in the above algorithm, the variational cluster marginals
q(~zi→j , ~zj←i), q(~γi), and q(~µ(1), . . . , ~µ(T )) each dependents on variational pa-
rameters defined by other cluster marginals. Thus overall the algorithm is
essentially a fixed-point iteration that will converge to a local optimum. We
use multiple random restarts to obtain a near global optimum.

5. Experiments. In this section we validate the inference algorithms
presented in Section 4 on synthetic networks and demonstrate the advan-
tages of the dMMSB model on the well-known Sampson’s monk network.
Then we apply dMMSB to two large-scale real world datasets.

5.1. Synthetic networks. We first evaluate the logistic normal MMSB de-
scribed in Section 3.1 in comparison with the earlier Dirichlet MMSB pro-
posed by Airoldi et al. (2008), and then with the dMMSB model described
in Section 3.2. We investigate their differences in three major aspects: (i) Is
the Laplace variational inference algorithm adequate for accurately estimate
the mixed membership vectors? (ii) For a static network, does LNMMSB
provides a better fit to the data when different roles are correlated? And
(iii) for dynamic networks, does dMMSB provides a better fit to the data?

5.1.1. Inference accuracy. We generated three sets of synthetic networks
each of which has 100 individuals and 3 roles, using 3 different sets role-
vector priors and role-compatibility matrices, to mimic different real-life
situations. Figure 2 shows the estimation errors with LNMMSB under the
three senarios. The results from the Dirichlet MMSB is very close to that of
LNMMSB and therefore not shown here.

For synthetic network I, most actors have a single role and the role-
compatibility matrix is diagonal which means that actors connect mostly
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I. 1

2

3 II. 1

2

3 III.1

2

3

true est. true est. true est.
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0.3 0
0.3 1 0
0.0 0 1

1 0.34 0
0.25 1 0
0 0 1

0.45 0 0.05
0 0.50 0
0 0 0.40

0.52 0 0
0 0.52 0
0 0 0.39

Fig 2. Results of inference and learning with LNMMSB on representative synthetic net-
works from scenario I to III. In the top row, the figure in each cell displays the estimated
role-vectors. They are projected onto a simplex along with the ground truth: a circle rep-
resents the position of a ground truth; a cross represents an estimated position; and, each
truth-estimation pair is linked by a grey line. Note that we used to different colors to de-
note actors from different groups. In the bottom row, we display the the true and estimated
role-compatibility matrices. For all three cases, the estimated role-compatibility matrices
are close to the true matrices we used to generate the synthetic networks.

with other actors of the same role. It can be seen that the mixed member-
ship vectors are well recovered. Most of the actors in the simplex are close
to a corner, which indicates that they have a dominating role. Some actors
are not close to a corner but close to an edge, which means that they have
strong memberships for two roles. The remaining actors lying near the center
of the simplex have mixed memberships for all three roles. In general, the
difficulty of recovering the mixed membership vector increases as an actor
possesses more roles.

In synthetic network II, the true mixed membership vector is qualitatively
similar to synthetic network I, but the role-compatibility matrix contains off-
diagonal entries. At a result, an actor in network II is more likely to connect
with actors of a different role than network I. In this more difficult case,
our model still accurately estimates the role-compatibility matrix and the
mixed membership vectors.

In synthetic network III, we present a very difficult case where many ac-
tors undertake noticeable mixed roles, and the within-role affinity is very
weak. Though a few actors near the center of the simplex endure obvious
discrepancy between the truth and the estimation, less than 10 percent ac-
tors have a more than 20 percent errors in their role vectors. Furthermore,
we can see the group structure is still clearly retained.

Note that LNMMSB and Dirichlet MMSB employs different variational
schemes to approximate the posterior of the mixed membership vectors, and
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Fig 3. The average distance in (top) L-1 and (bottom) L-2 between the ground truth and
the estimation of the mixed membership vectors in networks that share parameter settings
as simulation network I, II and III (from left to right).

Table 1

Dirichlet vs. Logistic Normal Prior for MMSB

Prior Avg. ℓ2 distance Log-likelihood

Dirichlet 0.091 -5755.8

Logistic Normal 0.092 -5691.7

the two models possess different modeling power to accommodate correla-
tions between different memberships. The combined effect could lead to a
difference in their accuracy of estimating the mixed membership vectors of
every vertex, although in practice we found such difference hardly notice-
able in the simplexial display given in Figure 2. To provide a quantitative
comparison between the LNMMSB and the Dirichlet MMSB, we compute
the average distance between the ground truth and the estimated mixed
membership vectors in the aforementioned three settings. We used both the
ℓ1 and the ℓ2 distance as the metrics in our comparison, and the results are
shown in Figure 4, each type of network is instantiated ten times to produce
the error bar. We can see that the LNMMSB performs slightly better for
network I and II (though no significant difference is observed).

5.1.2. Goodness of fit of LNMMSB. To evaluate the fitness of the model
to the data, we compute the log-likelihood of fitting a type-II synthetic
network generated in previous experiment, achieved by the model in ques-
tion at convergence of parameter estimation via the variational EM. Since
no simple form of the log-likelihood can be derived for both methods, the
log-likelihoods were obtained via importance sampling. The results for LN-
MMSB and Dirichlet MMSB are listed in Table 1, showing that the goodness
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1

2

3

Fig 4. Left: the true mixed membership vectors (circle) and the estimates by dMMSB
(cross) at time point 6 visualized in a 2-simplex; each truth-estimate pair is linked by a
grey line. Middle: the learned role compatibility matrix, whose non-zero entries are shown
by arcs with values; values outside the brackets are the truths and the values inside the
brackets are estimates. Right: Average ℓ2 errors of mixed membership vectors for MMSB
and dMMSB.

of fit of the two models are comparable, with LNMMSB slightly dominating
over Dirichlet MMSB. As a parallel evidence, the ℓ2 norm distances between
the inferred mixed membership vectors and the ground truth are also shown.

5.1.3. Goodness of fit of dMMSB. To assess the fitness of the dMMSB,
we generate dynamic networks consisting of 10 time points. The number
of actors remains 100 and the number of roles remains 3. Furthermore, we
generate the networks in such a way that networks between adjacent time
points show certain degree of similarity. As an illustration, the true role
compatibility matrix and the mixed membership vectors at time point 6 are
displayed in Figure 4.

In Figure 4(right), we compare dMMSB to an LNMMSB learning a static
network for each time point separately. We measure the performance in
terms of the average ℓ2 distance between the estimates of the mixed mem-
bership vectors and their true values. It can be seen that the error of dMMSB
is lower than the error of MMSB in most cases and about 10 percent lower
on average. This suggests that dMMSB can indeed integrate information
across temporal domain and better models the networks. More settings of
model parameters have been tested on both LNMMSB and dMMSB; they
confirm that dMMSB is more effective in modeling dynamic networks.

5.2. Sampson’s monk network: emerging crisis in a cloister. Now we il-
lustrate the dMMSB model on a small-scale pedagogical example, the Samp-
son network. Sampson (1969) recorded the social interactions among a group
of monks while being a resident in a monastery. He collected a lot of socio-
metric rankings on relations such as liking, esteem, praise, etc. Toward the
end of his study, a major conflict outbroke followed up by a mass depar-
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Fig 5. Posterior mixed membership vectors of the monks projected in a 2-simplex by Log-
Normal MMSB with 3 roles. Numbered points can be mapped to monks’ names using the
legend on the right. Colors identify the composition of mixed membership role-vectors.
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Fig 6. (a) The estimated role-compatibility matrix of the monk liking networks by Log-
Normal MMSB with 3 roles. (b) The Bayesian Information Criterion scores of the learning
result of the monk liking network with 1 to 5 roles. The lower the better.

ture of the members. The unique timing of the study makes the data more
interesting in the attempt to look for omens of the separation.

We analyze the networks of liking relationship at three time points. They
contain 18 members (only junior monks). The networks are directed rather
than undirected, because one can like another while not vice versa.

We start with a static analysis on the network of time point 3, which
is the latest record before the crisis. Several researchers have also studied
the static network, including Breiger et al. (1975), White et al. (1976) and
Airoldi et al. (2008).

The network is fitted by our model with 1 to 5 roles. The proper number
of roles is selected by Bayesian Information Criterion (BIC). Figure 6(b)
gives the BIC scores. It suggests that the model with 3 roles is the best.

Figure 5 shows the posterior estimation of mixed membership vectors
of the monks in the monk liking networks by LNMMSB with three roles. It
clearly suggests three groups, each of which is close to one vertex of the trian-
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Fig 7. The role-vectors learned in the dynamic network of liking relationship between
members in Sampson Monastery. Each color represents a role.

gle. Using Sampson’s labels, the three groups correspond to the Young Turks
(monks numbered 1, 2, 7, 12, 14, 15, 16), the Loyal Opposition (4, 5, 6, 9, 11)
+ Waverers (8, 10), and the Outcasts (3, 17, 18) + Waverer (13). The result
is consistent with all previous works except for a controversial person, Mark
(13). He is known as an interstitial member of the monastery. Breiger et al.
(1975) placed him with the Loyal Opposition, whereas White et al. (1976)
and Airoldi et al. (2008) placed him among the Outcasts.

Figure 6(a) demonstrates the estimated role-compatibility matrix. It ap-
pears that the inter-group relation of liking is strong, while the intra-group
relation is absent. Together with the fact that most of the individuals have
an almost pure role, it suggests that an explicit boundary exists between
the groups leaving the later separation no surprise.

The trajectories of the varying role-vectors over time inferred by dMMSB
with three roles are illustrated in Figure 7. Several big changes in mixed
membership vectors happened from time 1 to time 2, and some minor fluc-
tuation occurred between time 2 and time 3. Overall, most persons were
stable in the dominant role. If we only look at time 3 which is the one we
studied earlier in the static network analysis, the results of mixed mem-
bership and grouping of the two models are mostly consistent. Therefore,
according to the discussion in the static network analysis, the three roles
in the dynamic model can be roughly interpreted as Young Turks, Loyal
Opposition, and Outcasts.

One of the persons whose dominant role changed is Ambrose (3). He later
became an Outcast. However, at time 1, he was connected with both Romul
(1) and Bonaven (2) in the Young Turks besides his connection with Elias
(17), an Outcast. It supports our result viewing him mainly as a Young Turk
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at the time. The other two persons are Peter (5) and Hugh (11). They were
close to some Outcasts at time 1 but flipped to Loyal Opposition at time
2 where they finally belonged to. It suggests that the Outcast group whose
member finally got expelled had not been noticeably formed until after these
big changes happened between time 1 and time 2.

From time 2 to time 3, it can be observed that the mixed membership
vectors were purifying, for instances, in monks numbered 1, 3-10, 12, 15-
17. Bonaven (2) and Albert (14) were the exceptions, but they did not
change the general trend. The purifying process indicated that the members
of different groups were more and more isolated, which finally led to the
outbreak of a major conflict.

5.3. Analysis of Enron email networks. Now we study the Enron email
communication networks. The email data was processed by Shetty and Adibi
(2004). We further extract email senders and recipients in order to build
email networks. We have processed the data such that numerous email aliases
are properly corresponded to actual persons.

There are 151 persons in the dataset. We used emails from 2001, and built
an email network for each month, so the dynamic network has 12 time points.
We learn a dMMSB of 5 latent roles. The composition and trajectory of roles
of each recorded company employee and the role compatibility matrix are
depicted in Figure 8.

It is observed that the first role (blue) stands for inactivity, i.e., the con-
dition that a vertex not interacting with any peers; this is a necessary role
to account for the intrinsic sparsity of the network. The other roles are ac-
tive. Actors with Role 2 (cyan), likely representing lower-level employees,
only send email to persons of the same role, therefore they form a clique. So
is Role 4 (orange), which leads to another clique. Persons #6, 9, 48, 67, etc
mainly assume this role, and they communicate with many others in the
same role. They appear to be normal employees according to available in-
formation and the underlying meaning of the clique is yet to be discovered.

Role 5 (red) is within the functional composition of many people. Persons
in Role 5 sends emails to persons with either Role 5 or Role 3 (green).
They form a large clique, where Role 3 corresponds to receivers and Role
5 to both senders and receivers. Role 3 might reflect a certain aspect of
senior management role that routinely receive reports/instructions, while
Role 5 might correspond to an executive role that likes to issue orders to the
managers and communicate among themselves, or other level of positions
that behave somewhat similarly but possibly with opposite purpose, e.g.,
reporting to managers rather than dominating over them.
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Fig 8. Temporal changes of the mixed membership vectors for each actor; and the visual-
ization for role compatibility matrix.

Of special interest are individuals that are frequently dominated by mul-
tiple active roles (especially those falling into separate cliques), because they
have strong connection with different groups and may serve important posi-
tions in the company. By scanning Figure 8, actor #65 and #107 fit best to
this category. According to external sources, Mark Haedicke (#65) was the
Managing Director of the Legal Department, and Louise Kitchen (#107) was
the President of Enron Online, which supports the finding by our method.

We also zoom into Kenneth Lay (#127), the Chairman and CEO of Enron
at the time. His role vector in August is abnormally dominated by Role 3,
which stands for a receiver. It is exactly the time when Enron’s financial flaws
were first publicly disclosed by an analyst, which might lead to a massive
increase in enquiry emails from the internal employees.

With respect to systematic changes in temporal space, the role vectors
of most actors are smooth over time. However, a few people experiences a
large increase in the weight of the inactivity role in December (i.e., persons
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#6, 13, 36, 67, 76). This is the time when Enron filed for bankruptcy.
We can also visualize the mixed membership vectors of the network en-

tities and track the trajectory of the mixed membership vector for an indi-
vidual as shown in Figure 9. They can help us understand the network as a
whole and how each individual evolve in their roles. Based on these exam-
ples, we believe dMMSB can provide a useful visual portal for exploring the
stories behind Enron.

Apr 2001 #65 Mark Haedicke
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Fig 9. Left: visualization of mixed membership vectors of network actors in 3-simplex
at one time point. Each vertex of the tetrahedron corresponds to a role marked by its
ID. A mixed membership vector is represented by a cross whose location and color are the
weighted average of its active roles and whose size is proportional to the sum of the weights
from the active roles. Right: we track the trajectory of the mixed membership vector for
an actor across time. Numbers in italics show time stamps.

5.4. Analysis of Evolving Gene Network as Fruit Fly Aging. In this sec-
tion, we study a sequence of gene correlation networks of the fruit fly
Drosophila melanogaster estimated at various point of its life cycle. It is
known that over the developmental course of any complex organism, there
exist multiple underlying “themes” that determine the functionalities of each
gene and their relationships to each other, and such themes are dynamical
and stochastic. As a result, the gene regulatory networks at each time point
are context-dependent and can undergo systematic rewiring, rather than
being invariant over time. We expect the dMMSB model can capture such
properties in the time-evolving gene networks of Drosophila melanogaster.

However, experimentally uncovering the topology of gene network at mul-
tiple time points as the animal aging is beyond current technology. Here
we used the time-evolving networks of Drosophila Melanogaster reverse-
engineered by Kolar et al. (2008) from a genome-wide microarray time series
of gene expressions using a novel computational algorithm based on ℓ1 regu-
larized kernel reweighting regression, which is detailed in a companion paper
also appears in this issue. Altogether, 22 networks at different time points
across various developmental stages, namely embryonic stage (1–10 time
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point), larval stage (11–13 time point), pupal stage (14–19 time points) and
adult stages (20–22 time points), are analyzed. We focused on 588 genes
that are known to be related to developmental process based on their gene
ontologies.

We plotted the mixed membership vector over 4 roles for each gene as
it varies across the developmental cycle (Figure 10). From the time courses
of these mixed membership vectors, we can see that many genes assume
very different roles during different stages of the development. In particu-
lar, we see that many genes exhibit sharp transition in terms of their roles
near the end of embryonic stage. This is consistent with the underlying de-
velopmental requirement of Drosophila that the gene interaction networks
need to undergo a drastic reconfiguration to accommodate the new stage of
larval development. Somewhat surprisingly, we found when the number of
roles is set to four, the probability of interacting between different roles is
very small as revealed by the visualization of the role compatibility matrix
(Figure 10, lower right). More experiments are needed to examine whether
this pattern is a true property of the Drosophila gene interactions, or an
experimental artifact (e.g., from accuracy of network reverse engineering; or
from the smallish number of roles we have chosen to fit the model, which
might be overly coarse; or from the quality of approximate inference in a
high-dimensional model).

We selected four genes for further analysis, namely Optix, dorsal (dl),
lethal (2) essential for life (l(2)efl) and tolkin (tok). These four genes are
among the highest degree nodes in the network produced by averaging the
dynamic networks over time. We want to see how their roles evolve over
time, and therefore we plotted the trajectory of their mixed membership
vector in a 4-d simplex (Figure 11). We can see that the trajectory some
of these genes cover a wide area of the 4-d simplex. This is consistent with
the roles of gene Optix and dl as transcriptional factors that participate
in many different functions and regulates the expression of a wide range of
other genes. For instance, dl participates in a diverse range of functions such
as anterior/posterior pattern formation, dorsal/ventral axis specification,
immune response, gastrulation, heart development; Optix participates in
nervous system and compound eye development. In contrast, gene tok and
l(2)efl are not transcriptional factors and they are currently only known
for very limited functions: tok is related to axon guidance and wing vein
morphogenesis; l(2)efl related to embryonic and heart development. In our
results, we found that indeed the role-coorinates of tok are almost invariant,
but the trajectory of l(2)efl suggests that it may play more diverse roles than
what is current known and deserve further experimental studies.
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Fig 10. Changes in mixed membership vectors of all genes, and the visualization for role
compatibility matrix. The x-axes of each subplot is time, and the y-axes is the weight of
role-component. Each color stands for a role.
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Fig 11. The trajectories of mixed membership vectors of 4 genes (Optix, dl, tok, l(2)efl).

We further used the mixture membership vectors as features to cluster
genes at each time point into 4 clusters (each cluster corresponding to a
particular role-combination pattern), and studied the gene functions in each
role-combination across time. In other words, we try to provide a func-
tional decomposition for each role obtained from the dMMSB model and
investigate how these roles evolve over time. In particular, we examined 45
ontological groups and computed the score enrichment of these biological
functions over random distribution in each role cluster. Figure 12 and Fig-
ure 13 demonstrate the results in cluster (i.e., role) 1. The overall pattern
emerges from our results is that each role consists of genes with a vari-
ety of functions, and the functional composition of each role varies across
time. However, the distributions over these function groups are very differ-
ent for different roles: the most commmon functional groups for genes in
role 1 are related to multicellular organismal development, cuticle develop-
ment and pigmentation during development; for the second role, the most
common functional groups are gland morphogenisis, heart development, gut
development and ommatidial rotation; for the third role, they are stem cell
maintenance, sensory organ development, central nervous system develop-
ment, lymphloid organ development and gland development; for the fourth
role, gastrulation, multicellular organismal development, gut development,
stem cell maintenance and regionalization.
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Fig 12. Average gene ontology (GO) enrichment score for role 1. The enrichment score
for a given function is the number of genes labeled as this function. Note that in the plot
we have normalized the score to a range between [0, 1], since we are mainly interested in
the relative count for each GO group. Abbreviations appearing in the figure are: dev. for
development, proc. for process, morph. for morphogenesis, sys. for system.
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Fig 13. Temporal evolution of gene ontology enrichment score for role 1. The time points
are ordered from left to right, and from top to bottom. The order of the gene ontology
groups are the same as in Figure 12.

6. Discussion. Unlike traditional descriptive methods for studying net-
works, which focus on high-level ensemble properties such as degree distri-
bution, motif profile, path length, and node clustering, the dynamic mixed
membership stochastic blockmodel proposed in this paper offers an effective
way for unveiling detailed tomographical information of every actor and rela-
tion in a dynamic social or biological network. This methodology has several
distinctive features in its structure and implementation. First, the social or
biological roles in the dMMSB model are not independent of each other and
they can have their own internal dependency structures; Second, an actor
in the network can be fractionally assigned to multiple roles; And third, the
mixed membership of roles of each actor is allowed to vary temporally. These
features provides us extra expressive power to better model networks with
rich temporal phenomena.

In practice, this increased modelling power also provide better fit to net-
works in reality. For instance, the interactions between genes underlying the
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developmental course of an organism are centered around multiple themes,
such as wing development and muscle development, and these themes are
tightly related to each other: without the proper development of muscle
structures, the development and functionality of wings can not be fulfiled.
As an organism moves along its developmental cycle, the underlying themes
can evolve and change drastically. For instance, during embryonic stage of
the Drosophila, wing development is simply not present and other processes
such as the specification of anterior/posterior axis may be more dominant.
Many genes are very versitle in terms of their roles and they differentially
interact with different genes depending on the underlying developmental
themes. Our model is able to capture these various aspects of the dynamic
gene interaction networks, and hence leads us a step further in understand-
ing the biological processes.

In terms of the algorithm, a key ingredient to glue the three features to-
gether is the logistic normal prior for the mixed membership vector. This
prior is superior to a Dirichlet prior in our context since the off-diagonal
entryies of the covariance matrix allow us to code the dependency structure
between roles, as clearly demonstrated in an earlier work (Ahmed and Xing,
2007). Another advantage of the logistic normal prior is that it can be readily
coupled with a state-space model for tracking the evolution of the roles. How-
ever, the drawback of the logistic normal prior is that it is not a conjugate
prior to the multinomial distribution and therefore additional approxima-
tion is needed during learning and inference. For this purpose, we developed
an efficient Laplace variantional inference algorithm.

Our algorithm scale quadratically with the number of nodes in the net-
work, due to necessity to infer the context-dependent role indicator Z. It
scales quadratically with the number of possible roles, and linearly with the
number of time steps, which are small comparing to the network size. The
constant factor typically depends on the stringency of converge test in the
variational EM, and the number of random restarts to alleviate local opti-
mum. In our current implementation, we can handle a network with nodes
∼ 103 within a day. We have been focusing on developing efficient algo-
rithms that enable dynamic tomographic analysis of “meso-level” networks,
that is, network with thousands of nodes, rather than “mega” network with
millions of nodes. We feel that this objective is appropriate because for
mega-networks, such as the bolgsphere and the world wide web, it is the
ensemble behavior mentioned above that offers more important information
to an investigator who wants to do something with the network, rather than
individual nodal states. This change of focus with the size of the system can
also be seen in economics and game theory.
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There are many dimensions where we can extend our current work. For
instance, the current model does not explicitly take hubs and cliques of the
networks into account, and the state-space model does not enforces temporal
smoothness directly over the mixed membership vector but only on its prior.
Incorporating these elements will be interesting future research.

APPENDIX A: DERIVATIONS

A.1. Taylor Approximation. We want to approximate C(γi) by a
second order Taylor expansion. For simplicity, we temporarily drop the sub-
script i in this subsection. The Taylor expansion of C(~γ) w.r.t. any point γ̂
is

(22) C(~γ) ≈ C(γ̂) + ~gT (~γ − γ̂) +
1

2
(~γ − γ̂)T H(~γ − γ̂)

where ~g is the first derivative (a K×1 vector), and H is the second derivative
(a K × K matrix). Only linear and quadratic terms are left. Therefore,
Equation 12 becomes

qγ(~γ) ∝ N (~γ; ~µ,Σ) exp(〈~m〉qz

T~γ − (2N − 2) C(~γ))

≈ exp

{

−
1

2
(~γ − ~µ)T Σ−1(~γ − ~µ) + ~rT~γ + ~γT Sγ

}

where ~rT = 〈m〉Tqz
− (2N − 2)~gT + (2N − 2)γ̂T H is a 1×K row vector and

S = −(N − 1)H is a K ×K symmetric matrix.

Let x = ~γ − ~µ,the exponent becomes

−
1

2
(~γ − ~µ)T Σ−1(~γ − ~µ) + ~rT~γ + ~γT Sγ

=−
1

2
xT Σ−1x + ~rT (x + ~µ) + (x + ~µ)T S(x + ~µ)

=−
1

2
xT (Σ−1 − 2S)x + (~rT + 2~µT S)x + C1

(and let Σ̃−1 = Σ−1 − 2S, D = ~rT + 2~µT S)

=−
1

2
xT Σ̃−1x + Dx + C1

=−
1

2
(x− Σ̃DT )T Σ̃−1(x− Σ̃DT ) + C2

=−
1

2
(~γ − ~µ− Σ̃DT )T Σ̃−1(~γ − ~µ− Σ̃DT ) + C2
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Therefore, Σ̃ = (Σ−1 − 2S)−1 =
(

Σ−1 + (2N − 2)H
)−1

γ̃ = ~µ + Σ̃DT = ~µ + Σ̃(AT + 2S~µ)

= ~µ + Σ̃
(

〈~mi〉qz
− (2N − 2)~g + (2N − 2)Hγ̂i − (2N − 2)H~µ

)

where the first and the second derivatives are:

g(γ̂)k =
exp γ̂k

∑

k exp γ̂k

H(γ̂)kl =
I(k = l)
∑

k exp γ̂k

−
exp γ̂k exp γ̂l

(
∑

k exp γ̂k)2

or in short, H = diag(~g)− ~g~gT

A.2. Learning on Logistic-Normal MMSB. The log-likelihood as
a function of B can be written as:

l(B) =
∑

i,j

log
∑

k,l

(

δij,(k,l)β
eij

k,l (1− βk,l)
(1−eij)

)

+ C0

≥
∑

i,j

∑

k,l

δij,(k,l) log
(

β
eij

k,l (1− βk,l)
(1−eij)

)

+ C0

=
∑

i,j

∑

k,l

δij,(k,l)

(

eij log βk,l + (1− eij) log(1− βk,l)
)

+ C0

≡ l∗(B)(23)

∂l∗(B)

∂βk,l

=
∑

i,j

∑

k,l

δij,(k,l)

( eij

βk,l

−
1− eij

1− βk,l

)

β̂k,l =

∑

i,j eijδij,(k,l)
∑

i,j δij,(k,l)
(24)

Jensen’s Inequality is applied in the derivation to get an approximation
(more specifically a lower bound) to the log-likelihood which has an analyt-
ical solution in finding the maximum point. Setting the derivative to zero
gives us an MLE estimator of B based on approximation.
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A.3. Learning on dMMSB. Again, we take an approximation of the
log-likelihood, which is more tractable.

l(B) =
∑

t

∑

i,j

log
∑

k,l

(

δ
(t)
ij,(k,l)β

e
(t)
ij

k,l (1− βk,l)
(1−e

(t)
ij

)
)

+ C0

≥
∑

t

∑

i,j

∑

k,l

δ
(t)
ij,(k,l) log

(

β
e
(t)
ij

k,l (1− βk,l)
(1−e

(t)
ij

)
)

+ C0

=
∑

t

∑

i,j

∑

k,l

δ
(t)
ij,(k,l)

(

e
(t)
ij log βk,l + (1− e

(t)
ij ) log(1− βk,l)

)

+ C0

≡ l∗(B)(25)

The update equation for B is got from maximizing the upper bound of the
log-likelihood.

∂l∗(B)

∂βk,l

=
∑

t

∑

i,j

∑

k,l

δ
(t)
ij,(k,l)

( e
(t)
ij

βk,l

−
1− e

(t)
ij

1− βk,l

)

β̂k,l =

∑

t

∑

i,j e
(t)
ij δ

(t)
ij,(k,l)

∑

t

∑

i,j δ
(t)
ij,(k,l)

(26)
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