
Evaluating String Comparator Performance for Record Linkage
William E. Yancey

Statistical Research Division
U.S. Census Bureau

KEY WORDS string comparator, record link-
age, edit distance

Abstract

We compare variations of string compara-
tors based on the Jaro-Winkler comparator and
edit distance comparator. We apply the com-
parators to U.S. Census Bureau data to see
which are better classi�ers for matches and
non-matches, �rst by comparing their classi�-
cation abilities using a ROC curve based analy-
sis, then by considering a direct comparison
between two candidate comparators in record
linkage results.

1. Introduction

We wish to evaluate the performance of
some string comparators and their variations
for use in record linkage software for U.S. Cen-
sus Bureau data. For record linkage, under the
conditional independence assumption, we com-
pute a comparison weight for two records from
the sum of the comparison weights of the indi-
vidual matching �elds. If we designate that the
values of a matching �eld agree for two records
by 
 = 1 and that they disagree by 
 = 0,
then we de�ne the agreement weight for the
two �elds by

aw = log
Pr (
 = 1jM)
Pr (
 = 1jU)

and the disagreement weight by

dw = log
Pr (
 = 0jM)
Pr (
 = 0jU)

where the probabilities are conditioned by
whether the two records do in fact belong to
the set M of true matches or the set U of true
non-matches. Presumably Pr(
 = 1jM) >
Pr (
 = 1jU), so that dw < 0 < aw. If we wish
to use a string comparator for the matching
�eld with alphabet �, we generally use a simi-
larity function


 : �� � �� ! [0; 1]

*This report is released to inform interested parties
of research and to encourage discussion.

where 
 (�; �) = 1 whenever the strings �; �
are identical. We then use an interpolation
function w,

w : [0; 1]! [dw; aw]

to assign a comparison weight w (x) to a pair
of strings �; � where the interpolation function
is increasing with w (1) = aw.

We next describe the string comparator
functions that we used for this study. We
then discuss the data sets that were used to
test the comparators. Then we discuss how
we interpreted the results of this data to try to
evaluate the classi�cation power of each of the
string comparators. We also look at the dif-
ference that the string comparator choice can
make in a matching situation.

2. The String Comparator Functions

In the following, let �; � be strings of
lengths m;n respectively with m � n.
2.1 The Jaro-Winkler String Compara-

tors

The Basic Jaro-Winkler String Comparator
The Jaro-Winkler string comparator [3] counts
the number c of common characters between
two strings and the number of transpositions
of these common characters. A character ai of
string � and bj of string � are considered to be
common characters of �; � if ai = bj and

ji� jj <
jn
2

k
;

the greatest integer of half the length of the
longer string. A character of one string is con-
sidered to be common to at most one character
in the other string. The number of transposi-
tions t is determined by the number of pairs of
common characters that are out of order. The
number of transpositions is computed as the
greatest integer of half of the number of out-
of-order common character pairs. The Jaro-
Winkler similarity value for the two strings is
then given by

x =
1

3

�
c

m
+
c

n
+
c� t
c

�
,

ASA Section on Survey Research Methods

3905



unless the number of common characters c = 0,
in which case the similarity value is 0.

There are three modi�cations to this basic
string comparator that are currently in use.
Similar Characters The J-W string compara-
tor program contains a list of 36 pairs of charac-
ters that have been judged to be similar, so that
they are more likely to be substituted for each
other in misspelled words. After the common
characters have been identi�ed, the remaining
characters of the strings are searched for simi-
lar pairs (within the search distance d). Each
pair of similar characters increases the count of
common characters by 0:3. That is the similar
character count is given by

cs = c+ 0:3s

where s is the number of similar pairs. The
basic Jaro-Winkler formula is then adjusted by

xs =
1

3

�
cs
m
+
cs
n
+
c� t
c

�
.

Common Pre�x This adjustment increases the
score when the two strings have a common pre-
�x. If p is the length of the common pre�x, up
to 4 characters, then the score x is adjusted to
xp by

xp = x+
p (1� x)
10

.

Longer String Adjustment Finally there is one
more adjustment in the default string compara-
tor that adjusts for agreement between longer
strings that have several common characters
besides the above agreeing pre�x characters.
The conditions for using the adjustment are

m � 5

c� p � 2

c� p � m� p
2

If all of these conditions are met, then
length adjusted weight xl is computed by

xl = x+ (1� x)
c� (p+ 1)

m+ n� 2 (p� 1)
2.2 Edit Distance String Comparators

We wished to compare the Jaro-Winkler
string comparators with some string compara-
tors based on edit distance. All of the
edit distance type comparator values are com-
puted using a dynamic programming algorithm
that computes the comparison value in O (mn)
time.

Standard Edit Distance The standard edit dis-
tance (or Levenshtein distance) [1] between two
strings is the minimum number of edit steps re-
quired to convert one string to the other, where
the allowable edit steps are insertion, deletion,
and substitution. If we let �i be the pre�x of �
of length i, �j be the pre�x of � of length j, and
" be the empty string, then we can initialize the
edit distance algorithm with the distances

e (�i; ") = i

e
�
"; �j

�
= j

e ("; ") = 0

indicating the number of insertions/deletions
to convert a string to the empty string. We
can then build up the cost of converting longer
pre�xes by computing

e
�
�i; �j

�
=

min

8>><>>:
e
�
�i�1; �j

�
+ 1

e
�
�i; �j�1

�
+ 1�

e
�
�i�1; �j�1

�
if ai = bj

e
�
�i�1; �j�1

�
+ 1 if ai 6= bj

(1)

where ai denotes the ith character of � and bj is
the jth character of �. The �nal minimum edit
cost is then given by e (�; �) = e (�m; �n).

While the edit distance function is a true
metric on the space of strings, it is not a sim-
ilarity function. We note that the maximum
edit length between two strings is n (m substi-
tutions and n�m insertions/deletions), so that
the comparator score

xe = 1�
e

n

de�nes a similarity function for string pairs �; �
where e is the edit distance between the strings.
We note that character order is important to
edit distance, so that the three common char-
acters that are out of order result in three ed-
its.
Longest Common Subsequence The length of
the longest common subsequence (lcs) of two
strings can also be computed by the same algo-
rithm [1], except that this time the only possi-
ble edit steps are insertion and deletion, so that
the recursive function is

e
�
�i; �j

�
= min

8<:
e
�
�i�1; �j

�
+ 1

e
�
�i; �j�1

�
+ 1

e
�
�i�1; �j�1

�
if ai = bj

(2)

ASA Section on Survey Research Methods

3906



Clearly the longest possible common subse-
quence length for our strings is m, so we can
de�ne a longest common subsequence similar-
ity function by

xc =
l

m

where l is the length of the longest common
subsequence of the two strings.
Coherence Edit Distance As we have seen,
both edit distance and lcs length depend
strictly on the order of the characters in the
strings. This is because the de�ning recur-
sion functions (1) and (2) that determine the
cost of the current pre�x pair depend only
on the last characters of the two pre�xes, i.e.
whether they are equal or not. There is no
checking to see whether one of these characters
occurred somewhere earlier in the other pre-
�x. The Jaro-Winkler string comparator al-
lows common characters to be out of order with
a penalty for transpositions. If the edit dis-
tance recursion looked back over earlier charac-
ters in the pre�xes, then a contextual edit score
could be given. In [2], Jie Wei uses Markov
�eld theory to develop such a recursion func-
tion, which looks like

C
�
�i; �j

�
=

min

8><>:
C
�
�i�1; �j

�
+ 1

C
�
�i; �j�1

�
+ 1

min1�a�N
1�b�N

�
C
�
�i�a; �j�b

�
+ Va;b

�
�i; �j

�	
where Va;b

�
�i; �j

�
is an edit cost potential

function and N is a number that indicates
the degree of coherence of the strings, i.e.
the amount of context that should be con-
sidered when computing the edit cost. For
Va;b

�
�i; �j

�
, we consider the substrings �i�a;i

and �j�b;j and let c be the number of common
characters to these two substrings. Denoting
t = a + b, we can express Jie Wei�s coherence
edit potential function as

Va;b
�
�i; �j

�
=

�
3
4

�
t� 2

3

�
� c if t is even

3
4 (t� 1)� c if t is odd

He also chooses N = 4 as a reasonable coher-
ence index for words. With this choice of N
we can display all possible values of (a; b) and

the corresponding range of Vab

(a; b) t maxVab max c minVab
(1; 1) 2 1 1 0
(1; 2) 3 1:5 1 0:5
(1; 3) 4 2:5 1 1:5
(1; 4) 5 3 1 2
(2; 2) 4 2:5 2 0:5
(2; 3) 5 3 2 1
(2; 4) 6 4 2 2
(3; 3) 6 4 3 1
(3; 4) 7 4:5 3 1:5
(4; 4) 8 5:5 4 1:5

The coherence edit distance is always less than
or equal to the standard edit distance, so the
maximum possible distance is still the length of
the longer string, and we can de�ne a coherence
edit similarity score by

xw = 1�
C

n

where C is the coherence edit distance of the
two strings.
Combination Edit Distance When we began
studying and evaluating string comparators us-
ing the approach discussed in Section 5., we
found that the edit distance similarity func-
tion did not perform as well as the J-W com-
parator. This may be because it does not use
enough information from the strings. In par-
ticular, it does not consider the length of the
shorter string. Thus we tried combining the
edit distance and the lcs comparators by aver-
aging them

xec =
1

2

��
1� e

n

�
+
l

m

�
which seemed to produce better results. The
example string pair has a combined edit score
of 1124

:
= 0:4583. There could be a more optimal

weighting of the two comparators.
Combination Coherence Edit Distance We also
considered the e¤ect of combining the coher-
ence edit distance and the lcs comparators.

xwc =
1

2

��
1� C

n

�
+
l

m

�
:

2.3 Hybrid Comparators

Our initial analysis of the results of our
experiment led us to consider combining a J-
W comparator with an edit distance type com-
parator. We will consider this development
after we describe the experiment.

ASA Section on Survey Research Methods

3907



3. Data Sets

There does not appear to be any theoret-
ical way to determine which is the best string
comparator. In fact, there does not appear
to be a clear meaning of �best�other than the
comparator that performs best on a given ap-
plication. We therefore want to conduct an ex-
periment to see which string comparator does
the best job for the application of record link-
age of U.S. Census Bureau data. Since the
string comparator is just one component of the
record linkage procedure, we �rst try to isolate
the string comparator�s contribution.

At the Census Bureau, we have some test
decks that are pair of �les where the matches
have been clerically determined. One large
pair of �les come from the 2000 Census and the
ACE follow-up. These �les each have 606; 411
records of persons around the country where
each record of one �le has been matched with
one record of the other. There are also three
smaller pairs of �les, denoted 2021,3031, and
STL, from the 1990 Census and the PES follow-
up. Each of these �les is of persons in the same
geographic area where not all of the records
have matches.

The data sets were formed by bringing
together the records that were identi�ed as
matches and writing out the pairs of last names
or �rst names whenever the two name strings
were not identical. We then removed all dupli-
cate name pairs from the list. From the 2000
data we obtained a �le of 65; 325 distinct �rst
name pairs and 75; 574 distinct last name pairs.
From the three 1990 �les combined we obtained
three �les of 942, 1176, and 2785 distinct �rst
and last name pairs.

4. The Computation

The purpose of the string comparator in
record linkage is to help us distinguish between
pairs of strings that probably both represent
the same name and pairs of strings that do
not. For the sets M of matched pairs, we will
use data sets of nonidentical name pairs from
matched records. Our data sets do not neces-
sarily contain only string pairs representing the
same name, since some records may have been
linked based on information of other �elds than
this name �eld. However, they should tend
to have similarities that one may subjectively
judge to suggest that they refer to the same
name. For our sets U of unmatched pairs, we

will take the set of cross pairs of every �rst
member name in the set paired with every sec-
ond member name other than its match. We
may think of these as unmatched pairs, but
they are really more like random pairs, since
there can be pairs of names in U which match
exactly. Thus we can never completely sep-
arate the set M from the set U , but the test
will be which string comparator can include the
most elements of M with the fewest elements
of U .

For each string comparator under exam-
ination, we compute the string comparator
value of each �rst member name with each sec-
ond member name. The sets of Census 2000
names are too large to store the resulting com-
parator values, so we split each of the sets into
24 subsets of name pairs, The �rst name pair
subsets have 2722 pairs (2719 for the last one)
and the last name pairs have 3149 pairs (3147
for the last one). Thus we compute the val-
ues of 13 string comparators, 8 J-W compara-
tors with all combinations of the three modi�-
cations and 5 edit distance type comparators,
of all cross pairs of strings in 51 sets of name
pairs to generate our string comparator output
data.

5. Analysis of Scores

We now face the problem of determining
how to use this data to measure the perfor-
mance of the string comparators. We can view
the problem as a binary classi�cation problem:
a string pair either belongs to M or it belongs
to U . One tool for analyzing classi�cation
e¤ectiveness is the ROC curve. The ROC
(receiver operating characteristic) curve orig-
inated for use in signal detection, but is now
commonly used in medicine to measure the di-
agnostic power of a test. A list of references
can be found on [6]. If we let 
 be a string
comparator similarity function, we measure the
discriminatory power of the string comparator
with the parameterized curve

(Pr (
 � tjU) ;Pr (
 � tjM)) ; t 2 [0; 1]

in the unit square. The resulting ROC curve
is then independent of the parameterization.
This is sometimes referred to as plotting sen-
sitivity against 1� speci�city. If we denote
the probability density of the M condition by
pM (t) and the density conditioned on U by

ASA Section on Survey Research Methods

3908



pU (t) so that

d

dt
Pr (
 � tjM) = �pM (t)

d

dt
Pr (
 � tjU) = �pU (t)

then we see that the slope of the tangent to the
ROC curve is

dy

dx
=

dy
dt
dx
dt

=
pM (t)

p U (t)

the likelihood ratio of the two distributions.
The diagnostic tool that is used is the AUC,
the area under the ROC curve. To interpret
this AUC, we de�ne the independent random
variables

X : M ! [0; 1]

Y : U ! [0; 1]

to be the string comparator value for a pair ran-
domly drawn from M or U respectively, which
have probability density functions pM and pU
respectively, then

AUC =

Z 1

0

Pr (
 � tjM) dPr (
 � tjU)

= Pr (X � Y ) ,

the probability that a randomly chosen element
of M will have a higher score than a randomly
chosen element of U . Thus an AUC = 1 would
indicate that the string comparator 
 is a per-
fect discriminator between M and U , and an
AUC = 1

2 would indicate that 
 has no dis-
criminating power whatsoever between M and
U . Hence the nearer AUC is to 1, the more ef-
fective the discriminator between the two sets.

We used our data to compute the AUC for
each of our string comparators, but then we re-
alized that for our application, the full AUC
is not a very relevant statistic. In our record
linkage program, the string comparator simi-
larity score is linearly interpolated to produce
an agreement weight between the full agree-
ment weight and the full disagreement weight.
When the interpolation value is less than the
disagreement weight, the disagreement weight
is assigned. Thus all similarity scores below
a cuto¤ value are treated the same, as indicat-
ing that the sting pairs are in U . The only
discrimination happens for string comparators
above this cuto¤. Thus for su¢ ciently small

values of � 2 [0; 1], we instead looked at values
of

1

Pr (
 � t�jU)

Z �

0

Pr (
 � tjM) dPr (
 � tjU)

where ta 2 [0; 1] such that Pr (
 � t�jU) = �.
Since dPr (
 � tjU) = �pU (t) dt,Z �

0

Pr (
 � tjM) dPr (
 � tjU)

=

Z 1

t�

Pr (
 � tjM) pU (t) dt

=

Z 1

t�

Z 1

t

pM (s) pU (t) dsdt

we see that this is the probability that X � Y
and Y � t�. Thus

1

Pr (
 � t�jU)

Z �

0

Pr (
 � tjM) dPr (
 � tjU)

= Pr (X � Y jY � t�) .

As � % 1, then ta & 0, and we see that the
interpretation agrees with the standard one in
the limit.

The weight interpolation function cur-
rently in use in the matching software is

w = aw � 4:5 (aw � dw) (1� s)

where s is the string comparator score from the
Jaro-Winkler comparator using all three modi-
�cations. With this interpolation, we see that
we will get the full disagreement weight w = dw
for

s_ =
7

9

:
= 0:778.

When we look at the J-W comparator scores as
a function of the �error rate�Pr (
 � tjU) = �,
we see that we are past this boundary score by
the time � = 0:02, sometimes by � = 0:01.
Thus we are interested in only a small sliver of
the total area under the ROC curve. Moreover,
the region corresponding to a positive agree-
ment weight is smaller still. For example, if
we have parameters that result in dw = �aw
(i.e. Pr (
 = 1jM) + Pr (
 = 1jU) = 1), then
the agreement weight w = 0 when

s+ =
8

9

:
= 0:889.

Suppose that we designate by p+; p� the
�error rate� probabilities for the full Jaro-
Winkler (all options) scores where for which

ASA Section on Survey Research Methods

3909



Pr (
 > s+jU) = p+ and Pr (
 > s�jU) =
p�. These boundary error probabilities remain
mostly consistent within the related groups of
data sets: the three sets of names from 1990,
the 24 sets of �rst names from 2000, and all
but 3 of the sets of last names from 2000. The
last three sets of last names are consistent with
each other but have a di¤erent error/score pro-
�le than the �rst 21 sets. This appears to be
because these last sets consist mostly of His-
panic last names and the random cross pairs
contain a higher proportion of incidental exact
matches. Approximate values of these cuto¤
error rates are given in the following table.

Data Sets p+ p�
1990 Names 0.0014 0.017
2000 First Names 0.0012 0.014
Main 2000 Last Names 0.0004 0.01
Subgroup 2000 Last Names 0.006 0.022

In all cases we see that for the given weight-
ing function for the full J-W string compara-
tor results in a very small part of the range
0 � Pr (
 > tjU) � 1 is relevant for the diag-
nostic power of the ROC curve. We will con-
sider only such restrictive ranges when com-
paring the relative strengths of the candidate
string comparators. That is, for restrictive
values of xi, for the corresponding value of ti,
where

Pr (
 > tijU) = xi
we consider the value of

p (xi) =

1

Pr (
 > tijU)

Z xi

0

Pr (
 � tjM) dPr (
 � tjU) :

5.1 Summary of Results

We summarize the results of comparing
values of p (xi) for small values of xi for each of
the string comparators on each of the 51 data
sets. We consider eight versions of the Jaro-
Winkler comparator with each combination of
the three adjustment functions. We consider
four edit-distance type comparators: Leven-
shtein and coherence with and without LCS.
More details with graphs and tables are avail-
able in [5].

The main observation is that the results
were fairly consistent for the three 1990 sets,
the 24 2000 �rst name sets, and the �rst 21 of
the 2000 last name sets. The last three sets
of last names from the 2000 census produced

di¤erent results. This will be discussed further
below.

For the 48 regular data sets, the 8 versions
of the J-W comparator were fairly close. The
two versions that used the su¢ x adjustment
without using the pre�x adjustment did notice-
ably worse than the other 6. The pre�x ad-
justment helped the most, but each adjustment
produced a small improvement, so that the ver-
sion using all 3 adjustments did best. However,
the p (x) scores for these 6 versions did not dif-
fer by more that 0.03, For the last 3 last name
data sets, the pre�x adjustment helped, but the
other two adjustments produced worse results,
so that the best version used only the pre�x
adjustment and the worst of the 6 was the full
J-W version, with the p (x) scores di¤ering by
as much as 0.16.

For the edit-distance type comparators,
the inclusion of the LCS function always pro-
duced better results. Also the coherence edit
distance comparator always did worse than
standard edit distance, di¤ering more in the
positive comparison weight range, so there does
not seem to be any justi�cation for the extra
complexity for this application. One might ex-
periment with di¤erent coherence index other
than N = 4, but this does not appear to be
very promising.

Comparing the full J-W comparator with
the edit distance/LCS comparator, we found
that the performance on the standard 48 �les
was about the same. The J-W comparator
doing slightly better on the �rst name sets and
the edit distance comparator slightly better on
the last name sets. However, for the anomalous
3 last name sets, the edit distance comparator
did better than the J-W comparator with p (x)
scores di¤ering by around 0.1.

5.2 Hybrid Comparator

Di¤erences Between the Jaro-Winkler and Edit
Distance Type Comparators To understand
how the performance of edit string compara-
tors di¤ers from that of the Jaro-Winkler com-
parators, we chose a selectivity cuto¤ value
and looked at the pairs of names from match-
ing records that are above the cuto¤ value for
one comparator and below the cuto¤ value for
the other comparator. We similarly looked at
the analogous name pairs from non-matching
records. Looking at the name pairs which
have an above cuto¤ value for the J-W com-
parator and below cuto¤value for the LCSLEV

ASA Section on Survey Research Methods

3910



comparator, we did not perceive a pattern to
the name pairs from either matching or non-
matching records. However, there was a simi-
larity to the name pairs that exceeded the LC-
SLEV cuto¤ and were below the J-W cuto¤.
These name pairs highlight some asymmetries
of the J-W comparator that can result in some
low scores especially for double names.

We can understand the major asymmetry
of the J-W comparator as follows. Let �; � be
two strings both of length n with no characters
in common and let �� be the concatenation of
these two strings. If we use the J-W compara-
tor on the pair �; ��, we get a fairly high score.
Speci�cally, the two strings have n common
characters with no transpositions for a basic
J-W score of 
 (�; ��) = 5

6 . If n � 4, the pre�x
adjustment raises the score to 
 (�; ��) = 9

10 :
On the other hand, 
 (�; ��) = 0 since all of
the common characters are beyond the search
distance. However, the LCSLEV comparator
results in the same score for either pair 
(�; ��)
= 
(�; ��) = 3

4 . The three last �les of last
name pair from 2000 especially contain a lot of
Hispanic names where the surname from one
�le is reported as a double name and the other
�le just has one of the two names, so this dis-
tinction in comparator behavior can be rele-
vant.
Selecting a Hybrid Comparator The standard
J-W comparator generally does well in our se-
lectivity, average sensitivity analysis. The
combination Levenshtein distance and longest
common substring comparator performs com-
parably. However, in our extreme cases of
the last three sets of the last name pairs,
the edit distance type comparator does signi�-
cantly better than the J-W comparator, proba-
bly because of the more robust handling of the
single name/double name pairs. We consider
that it might be advisable to use the J-W com-
parator except in those cases where it gives a
small value compared to the edit comparator.
However, we need to be able to compare the
string comparator values from the J-W com-
parator and the edit distance comparator.

We tried combining the JW110 compara-
tor with the LCSLEV comparator. We used
the one without the su¢ x adjustment since this
adjustment generally made a small di¤erence,
sometimes this di¤erence was negative, and we
thought of the LCSLEV comparator as o¤ering
a su¢ x correction. We considered the values of
the JW110 and LCSLEV comparators for the

same selectivity values, restricted to selectiv-
ity values in a range relevant to the assignment
of varying matching weights. The comparators
show a strong and consistent linear relationship
in this range, where we estimated the regression
coe¢ cients to be

ŝ110 = 0:66slcslev + 0:38

and de�ne the hybrid string comparator score
by

sh = max (s110;min (ŝ110; 1)) .

This may not be the best way to combine the
two string comparators. This hybrid string
comparator has some unappealing formal prop-
erties. The minimum value of sh is 0.38 instead
of 0, but comparator values this low will be
assigned the full disagreement weight anyway.
Also it is possible to have sh (�; �) = 1, but � 6=
� For instance, if � = a1a2a3a4a5a6a7a8a9 has
distinct characters and � = a2a3a4a5a6a7a8a9,
then

slcslev =
1

2

�
8

9
+
8

8

�
=
17

18

:
= 0:944

which results in ŝ110 > 1: On the other hand,
we have

s110 =
1

3

�
8

9
+
8

8
+
8

8

�
=
26

27

and

s111 =
26

27
+
1

27

�
8� 1

8 + 9 + 2

�
=
167

171

:
= 0:97660:

This is a high score but it would receive some-
what less than the full agreement weight.
Assessing the Hybrid Comparator When we
tested the hybrid comparator with the full J-
W and the edit/LCS comparators, the hybrid
comparator appeared to succeed in capturing
the advantages of the two comparators. For
the �rst name �les, the hybrid comparator was
close to the J-W comparator, closer than the
edit/LCS comparator. For the standard last
names, the hybrid comparator did a little bet-
ter than either the J-W or the edit/LCS com-
parator. On the last three anomalous name
sets, the hybrid comparator was close to the
edit/LCS comparator and well above the J-W
comparator.

ASA Section on Survey Research Methods

3911



6. Matching Results

We have analyzed several string compara-
tors by examining their average sensitivity over
selectivity intervals, concentrating on intervals
where the string comparator values can have
some in�uence on the matching weights for
record pairs in record linkage. We have seen
some, mostly slight, di¤erences between these
comparators. We would like to know if these
measured di¤erences are enough to e¤ect the
�nal record linkage result.

We ran matching programs using the full
J-W comparator and the hybrid comparator.
We computed 3 blocking passes on the 2000
data without one-to-one matching and then
applied one-to-one matching to these outputs.
We applied one-to-one matching to each of the
three 1990 data sets. To brie�y summarize,
the di¤erences in the matching results are fairly
subtle, but one can detect a slight improvement
using the hybrid comparator. Generally speak-
ing, at the same level of false matches, there
hybrid comparator produces a slightly higher
number of true matches. Also at comparable
cuto¤ levels, the hybrid comparator produces a
clerical region of somewhat reduced size. More
details are available in [5].

6.1 Summary

In the previous analysis using ROC curve
values, we saw that the Jaro-Winkler compara-
tor with all three adjustments and the hybrid
comparator which combines the Jaro-Winkler
comparator without the su¢ x adjustment and
the combination of edit distance and longest
common subsequence comparator both were
good performers in classifying the Census name
typographical error data. The hybrid com-
parator appeared to generally do somewhat
better. When we use the two comparators in
our matching software, the hybrid comparator
continues to do slightly better in classifying the
matches and the non-matches. It �nds very
few extra matches, but it does tend to separate
the matches from the non-matches. The cost
is that the hybrid matcher takes much longer
to run, essentially performing three quadratic
algorithms instead of one.

REFERENCES

[1] Stephen, Graham A. String Searching Algo-
rithms. World Scienti�c Publishing Co.
Pte. Ltd., 1994.

[2] J. Wei. �Markov Edit Distance�. IEEE Trans-

actions on Pattern Analysis and Machine
Intelligence, Vol 26, No. 3, pp. 311�321,
2004.

[3] Winkler, William E. �String Comparator Met-
rics and Enhanced Decision Rules in the
Fellegi-Sunter Model of Record Linkage�.
Proceedings of the Section on Survey Re-
search Methods, American Statistical As-
sociation, 1990, pp. 354�359.

[4] Winkler, William E. �Advanced Methods
for Record Linkage�. http://www.census.
gov/srd/www/byname.html

[5] Yancey, William E. �Evaluating String Com-
parator Performance for Record Link-
age.� http://www.census.gov/srd/www/
byname.html

[6] Zou, Kelly H. Receiver Operating Character-
istic (ROC) Literature Research. http://
splweb.bwh.harvard.edu:8000/pages/ppl/
zou/roc.html.

ASA Section on Survey Research Methods

3912


