
Suppose a longitudinal rating design to be analyzed with the HRM has M time points
with ideal and observed ratings at time m nested within each θim, where θim is the trait
for examinee i at time point m, (m = 1, . . . ,M). Now, instead of assuming some normal
distribution for the traits, we model them using a longitudinal model, which is part trend and
part autoregressive time series model of order 1, meaning that each time point is modeled
using information only from the most previous time point. The other levels are the same but
now we have a set of ideal ratings and observed ratings at each timepointm. Item parameters
and rater parameters remain the same over time.

θim ∼ longitudinal model [AR(1) + trend]
ξimj | θim ∼ polytomous IRT model, j = 1, . . . , J , for each i, m

Ximjr | ξijm ∼ polytomous signal detection model, r = 1, . . . , R, for each i, j, m.
(4)

In order to estimate θim, let the trait for subject i at time point m be a function of two
quantities:

θim = δm + Zim (5)

Here, δm is the trend in θim at time m and Zim is the time series component of the model.
We can decompose δm into a function of the parameter g for overall growth, depending on
the type of trend. A linear trend is a straightforward and reasonable approach to modeling
linear relationships (whether positive or negative). If a linear trend, for example, then δm =

g × (m− 1)/(M − 1). Zim decomposes into Zim = ρZi(m−1) +
(√

1− ρ2
)
εim, where Zi(m−1)

the lagged value of Zim is weighted by ρ the autocorrelation parameter. In the second term
the random noise for examinee i at time point m denoted is distributed as and is weighted
by a function of the autocorrelation

√
1− ρ2. Weighting εim assures stationary variance of

the noise (and therefore the resultant traits) across M time points. Together, the sum of
the two weighted quantities in Zim makes up the component of θim that incorporates the
individual’s trait information; the other component incorporates an average trend for all N
examinees.
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