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Abstract

In this paper, we extend existing latent space approach for network analysis to fur-
ther account for temporal dependencies among networks. Motivation for this model
is to understand and perform statistical analysis on how the structures of the net-
work as represented by the latent positions evolve with time. Further in many real
world applications, it is also of interest to understand the changing effects of the
observed nodal covariates in tie formation. To address these questions, we introduce
a Bayesian longitudinal latent space network model by combining ideas from state
space model literature and latent variable network models. We leverage on the dual
interpretation of the latent distance as latent variable and as residual to include edge
covariates in the model. We then apply the proposed model to analyze temporal
network of teachers’ interactions in several secondary schools in a school district.

Keywords: Latent space model, Network attributes, Longitudinal network analysis, Advice
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1 Motivation and Introduction

Network data is widely used in education research to study how different units, such as
teachers, students, administrators etc., in educational settings interact among themselves or

with other units, and the implications of these interactions on the overall learning behavior

of the students. Pitts and Spillane (2009), Spillane et al. (2012), Spillane and Hopkins
(2013), Penuel et al. (2009) are somse-af the examples of such studies. Statistical analysis of
educational networks helps us to evaluate teachers and students by identifying important
properties and structures of the networks that affect their performances, and hence to

make necessary policy recommendations for any improvement (Sweet et al., 2013; Sweet,
Thomas, and Junker, Sweet et al.). Further, since interaction itself is a dynamic process Need dates
that changes over time, conditional on external and internal factors, it is important to study

the dynamics of the changing structures in networks observed over many time points. Whileﬁ the
majority of th earlier works inheducation literature have mainly focussed on networks ,a'/ the
observed at a particular time point, recently there has been increasing interest in studying

networks over multiple time points (Spillane et al., 2012; Harris et al., 2013). However,

of metho-
dology

development irsnetiroto:

i his lagging compared to the interest generated in application

and data collection. The changing nature and the added complexity of the data requires
Y

more sophisticated method of analysis to make sound inference on the data.

Consider, for example, I\instructional advice seeking network of teachers in a school
an

district observed in 5 different years (Spillane et al., 2012). The socioplots of the observed

A number

The district assessment was replaced with a state a year later _ )
assessment, ta—eﬁﬁ@-lewk rst for Reading apd the&for Math ie=the-fellewsneg=year; new math coaches

were introduced in the schoolf after the first year of data collection. We expect these

Make figure 1 appear on page 3.



affect of

changes to ﬂsa.nzg?\teachers’ incentives for communicatio%and also their expectations fram

M
each other in terms of instructional advice. It is then of interest to understand how advice

changes
seeking behavior of the teachers as shown by the network is=shanging with time (Spillane
New —
parag. et al., 2012). | Further, lLesearChersTnleducation also want to understand how similarities
e ——

or differences in observed covariates of the nodes or group of nodes affect present and
future advice seeking behavior of teachers in the network. For example, Spillane et al.
(2012) have shown that the teachers who teach in the same grade are more likely to seek
advice from each other compared to those teaching in different grades. It is then natural
to ask if the relationship between the covariates and the advice seeking behavior of the
teachers is persistent over time in a longitudinal setting. This ques‘g&ﬁal}c has mostly remained

unexplored in education research. It will also be useful to predict b.s'a;'\the network will look

like in the future, based on the past networks and covariates, te-smaekeimpaortemt-cesisians
1T CITe SCiToets: for analyzing
In this paper, we introduce a method te-snalyze networks observed over several time
points, andwfgnvestigate how the relationship betweer? network and observed covariates is
changes a

chesrgimg over time in the presence of latent variables in longitudianl advice seeking netswork

of tead@rs.

-

We focus on extending existing metho%for

s
particularly the

network analysis,latent space network model e

(Hoff et al. f2002) ,\to model the evolution of the network structure over time. In the latent
()]

space network mo‘del, the underlying network structure is represented by the positions of

nodes in a continuous (Euclidean) latent space. This class of model allows for the basic

network properties like reciprocity and transitivity of the nodes, with possible extension to
, as well as other features of the latent space model,

E::;g clusterability. lWe aim to extend the idea of reciprocity and transitivity izr=a static(\ne-twk
[

to e temporal network settings. The nodes with ties at previous time points are more

likely to have ties in the future, indicating that they will lie close to each other in the future
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Figure 1: Socioplot of the advice seeking network of teachers in secondary schools in a
school district (Spillane et al., 2012). Nodes are the teachers and a tie from ¢ to j is defined
by whether teacher i goes to j for advice. Different colors in a network represent different
schools in the district.



Doyoumeanj?

latent space. Similary, if the nodes ¢ and j, and the nodes ¢ and k have ties at time ¢, the
noder ¢ pnd k are more likely to have a tie at ¢ + 1. Furthermore, a network can evolve in
time by the expansion of the latent positions making the network sparser, by the shrinkage
of the latent positions which makes the network denser, or by no change in the latent
positions which implies no substantive change in the network structure, after accounting
for the observed covariate effects in the network. Methods that treat related networks to be
independent over time are not well-suited for networks observed over multiple time points

; see for example
(as we show later 4m Figure 6). By modeling temporal networks as different instances of

A
static networks, we lose important information about network evolution. Instead, modeling
them as a related process that accounts for the time dependencies helps us understand the

evolution of the underlying network structure.

AL - oo o - 1. P .
P PrOpUST ST eatsS-Spa@e-ITToT IS wp‘l"rna"h fox *STa 1011 Ol = i X I

_clascoflatont Mgm. By leveraging on the dual interpretation of latent variable
and residual in the model, we furthur introduce a way to include and evaluate the effect
of covariates on the likelihood of forming network ties over time. The proposed model is
a crucial contribution to applications in education and other socia@seiences, as it aims to (no dash)
answer some eftkesubstantial questions, for instance pertaining to interactions of teachers
observed over time, via a systematic statistical approach.
The organization of the paper is as follows. We review existing literature for analyzing
longitudinal network in section 2. We present the proposed method in section 3 and the
estimation of the model parameters using MCMC in section 4. We demonstrate the use of

the model to analyze advice seeking network of teachers and the results in section 5, and

end with summary and conclusion in section 6.



2 Literature Review

Existing statistical models for analyzing network observed at a time point can be broadly
divided into two classes. (See Goldenberg et al. (2010), Fienberg (2012) and Dabbs et al.
Ir11ep"2 for a detailed review of these methods.) The first class of method iiaﬁizid on
exponential random graph models (ERGMs), which are defined by different d
scriptive network statistics (Frank and Strauss, 1986). The procl;)easlc):;}:]tg; edlStI‘lbuthl:\ of a
graph in ERGM can be written as an exponential family with the network statistics being
the sufficient statistics for the distribution (Holland and Leinhardt, 1981; Robins et al.,
2007; Goldenberg et al., 2010). The other class of method is based on latent variable
or conditionally independent dyads (CID) models which are developed to model
the underlying unobserved network features. Conditional on these latent features, ties in
a network are assumed to be independent (Goldenberg et al., 2010; Dabbs et al., prep).

the —_ the
,\Senderrrecelver network model, latent space network model, stochastlc block model and

mixed ;nembership stochastic blg\ck model are Eelgiarnples of the/iatent variable rnodel (Hoft
and Ward, 2004; Hoff et al., 2002; Airoldi et;\l , 2006). Further, Dabbs et al. (prep) have
recently proposed an additive model that includes different combination of trhese latent
variable models along with covariates. the

Recently, there has been some worky innstatistics literature on extending existing net-
work methods to account for te ﬁporal networks, for example by Robins and Pattison
(2001), Hanneke and Xing (2007))‘Hanneke et al. (2010), Westveld and Hoff (2011), Xing
et al. (2010), Sarkar and Moore (2005) and Sewell and Chen (2014). Robins and Pattison
(2001), Hanneke and Xing (2007) and Hanneke et al. (2010) have studied the networks ob-

served over discrete time points in the ERGM settings, also known as temporal ERGMs

N
or TERGMs. TERGMs make standard Markov assumption on the evolution of a net-



work graph such that the network observed at time ¢ is independent of networks observed
in the previous time points un to t — 2, given the network at ¢ — 1 (Hanneke and Xing,
2007), with an additional assumption that the distribution of the network observed at time
t conditional on the network at ¢t — 1 has an ERGM representation (Frank and Strauss,
1986). As the assumption on tie dependence devi;]czrse ?rnoc;rllmi)rrliiependence, the model gets
more and more complicated. Snijders (1996) have als{)\developed stochastic actor oriented
models using a continuous time Markov processes, the class of models that is very similar
to ERGMs. Many of these methods run into computational complications and convergence
issues, for example convergence to degenerate solutions, when the model specification is
complex, thus making them less desirable in real world applications (O’Malley, 2013; Hand-
cock et al., 2003).

Westveld and Hoff (2011) extended the static model for directed networks with sender
and receiver random effects and fixed covariate effects, introduced by Gill and Swartz (2001)
and later implemented by Hoff and Ward (2004), to account for temporal dependencies in
maxed effects temporal model. They assume autoregressive dependence structure on
the sender-receiver effects and the overall residual, and hence account for additional corre-
lation in random error (random effects) introduced by temporal dependencies. Xing et al.
(2010) extended mixed membership stochastic block model (MMSBM) (Airoldi
et al., 2006) to account for the temporal nature of networks, and called it the dynamic
mixed membership stochastic block model (dMMSBM). Xing et al. (2010) devel-
oped a Bayesian state-space approach for modeling the evolution of the underlying roles of
entities in a network, such that a network evolves in time through the random walk depen-
dence structure on the hyperparameters of the prior distribution of the membership vectors
and the block probabilities. Sarkar and Moore (2005) introduced a predictive latent space

model for temporal networks. Similar work on extending latent space model to account for



longitudinal networks is also done by Sewell and Chen (2014). However, none of the latent
variable models for temporal networks focus on estimating covariate effects on which most
of the questions in education research hinges.

In this paper, we focus on latent space network models, and address some of the
drawbacks of the existing methods to make the model applicable for networks in education
research. Hoff et al. (2002) introduced latent space model for social networks, and Hoff and
Ward (2004); Handcock et al. (2007); Raftery et al. (2012) have explored methodological
and computational aspects of the static latent space models. We also present the utility of
the model by analyzing advice seeking network of teachers (Spillane et al., 2012) observed

over H time points.

3 Model

The latent space network model (LSM) introduced by Hoff et al. (2002) is charac-
terized by the positions of nodes in a low-dimensional latent space. Hoff et al. (2002)
describes the latent space as a social space containing the unobserved characteristics of the
network, where nodes with similar latent characteristics will have nearby latent positions.
Further, conditional on the latent positions the ties in a network are assumed to form in-
dependently, and the probability of a tie between nodes i and 7 is inversely related to the
interdistance between their latent position;h eLSM accounts for basic network properties
like reciprocity, transitivity and clustering. If two nodes share a tie, they lie close
to each other in the latent space which indicates high probability of reciprocating the tie.
If two ties in a network share a common node, then the two remaining nodes will lie close

to each other in the latent space hence increasing the probability of a tie between those

nodes. These properties are described in more detail in Hoff et al. (2002) /\

8



Let ¥Ydenstaa-tetmdCIN vallaDIC TePICSeItirE=er et WoT R Srapi—tre=aseupper-case Y to
denete—rrrendonmrarianic, aind Towesacase 2t to dencteite realization. For astatic network,
T OUserved-retwark is o oraphssithensiortices—TiTose-voibicss-wre-—cotted Tite1redes-of

on n nodes
tb.’%-ll-@"frwuﬁt\, cuu]. thu ”’“'Y'DQI"‘“@;"O \,JS\JD \Juuut,‘(jbillg Lllp verbicos w;\ﬁhu t.:uo. A network Xr vertices

is usually represented by a n x n sociomatrix Y with entries Y;;, where Y;; measures the
strength of a relationship from node 7 to node j, and can be either discrete or continuous.
We call V;; a tie ?rg?r? ei to j. A tie Yj; and its reciprocal tie Y}; collectively form a dyad
between ¢ and j. For an undirected network, Y;; = Yj;. For simplicity, we will consider a

discrete network Y such that

1 if there is a tie from i to j
Yy =
0 if there is no tie.

this
However, the models discussed in 4ire paper can be easily extended to ordinal and continuous

valued ties based on the techniques used for generalized linear models. We will use Z to
denote a n x d matrix of the latent positions, such that its i*" row Z; is a vector representing
the position of a node 7 in a d dimensional latent space.

as
We can represent the LSM model in notation in Equation 17/

N
Yi; ~ Bernoulli(p;;)
nij = logit (pi;) = Bo — ||Zi — Zj]| (1)
Z; ~ MVN(0,5).

Here, p;; denotes the probability of forming a tie from node i to j and ||Z; — Z;|| denotes
the distance (for example, Euclidean) between the latent positions Z; and Z;. Finally, 5

is an overall intercept of the model.



We can then invoke ¥ite conditional independence of ties given latent positions and
intercept to get the likelihood of the observed network y conditional on the latent positions

Z and the intercept [y, as given by Equation 2:

P(Y =y|Z,Bo) = | [ explniyi; — log (1 + exp(ni;))]- (2)
i#]

The intercept [y in the model can be seen as an overall fixed network effect, whereas
the distance between the latent positions Z; have the dual interpretation of being latent
variable and residuals in the model. Recall that the latent positions model the unobserved
characteristics of the nodes in a low dimensional Euclidean space via the interdistance of
the positions. As we include observed covariates in the model that explain some of the
structures in the network, any extra structure of the network that is not explained by the
covariates will then be accounted for by the positions of the nodes in latent space through
their interdistances.TEeSM is arguably a useful and appealing method for network analysis
because it implicitly models different network features while making fewer assumptions
about the dependence structure of the ties.

We denote edge covariates by an array X of dimension n x n x K, where K is the
number of covariates in the model. Xj;;, is used to denote the k" covariate for a tie where
i is the sender and j is the receiver, and ¥ is the corresponding slope coefficient. We can

rewrite the logistic link function in Equation 1, as done previously in Sweet et al. (2013)

for hierarchical network models, to include observed covarites effect as:
K
logit (pi;) = Bo+ ZﬁkXijk —1Zi = Zj|.
k=1

10



We combine ideas from the latent space model of Hoff et al. (2002) and the state-space
modeling approach to model the evolution of networks in time through the changes in the
latent positions. In this paper, we assume random walk plus noise evolution of the latent
positions over time.

In case of a temporal network, we define Y, as a sociomatrix of the network at time
t with entries Y;;; measuring a relationship from node ¢ to j at that time ¢. Further, we
will use Yy := [Y1Ys...Y7] to denote the list of socio-matrices up to T time point, and
Zvr = [Z1Zy ... Z7] to denote the list of latent positions up to time 7. Note that, under
our method it is not necessary to have same number of nodes at all T time points.

The a network
LSM for #me static meeeel Kan be extended to account for the temporal network with

N\ S
c}&ging covariateh effect inEqUations3==—  as
A AN

Yije ~ Bernoulli(p;j,) for i # j
K
logit(pijit) = Bo + Z XEBE =1 Zw — Zyl|
k=1
Zi1~MVN(0,%), fori=1,...,n
Zi,t = Ziytfl + €& fort = 2,...,T
e~ MVN(0,%).
Here, K is the total number of edge covariates in the model, X fjt represents k" covariate
related to the tie from 4 to j at time ¢t and SBF is the corresponding slope coefficient. In the

current application using advice seeking network of teachers, we are interested in seeing

how (F changes with ¢ for each co-variate k.

11



4 Estimation

the
We use Metropolis Hastings within Gibbs algorithm to draw samples from the posterior

distribution of the parameters, namely, the slope coefficients (1.7, the intercept [y, the
latent positions up to time 7', Z;.7, and the variance covariance matrix of the latent po-
sitions, Y. Using the conditional independence property of the network ties we can write

conditional likelihood of the data as

T
P(Y|Zl7 R ZT7 Xa ﬁ) BO) = H H P(}/;',j7t|Zi,ta Zj,ta Xijt> Bh 50)
t=1 i#j
The Markovian property of the trajectory of the latent positions allows use to write the

joint density of the latent positions upto time 7' as

n n

T
P(Zl,...,ZT) = HP 21|/sz7 XHHP zt|Zzt 15 )7

=1 t=2 i=1

(remove space)

C_’)where, 4, is the mean and ¥ is a diagonal variance-covariance matrix of the multivariate
normal distribution of the latent positions at time 1.

We then have the full likelihood of the data and the parameters into a simple product
form as ir-tespratiordim

P(Y,Z, X, B,6) =P

—~

Y|Zy, ..., Zr, X, B, Bo)P(Zy, - - - s Z7| Bo)P(Bo)

I
1~

P(Y;, il Zi+, Zj+, Xijt, Br, Bo) X H P(Ziilp, %) (4)
i—1

w
Il
—
.
S
<.

1~
s

P(Zit|Ziz—1,%) x P(By) x P(X).

-
I|
no
o
I
—
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we also specify the

I\Following prior distributions KL e-Speciicd W tesfrom STETT0T AIStrTou-

N LN T ] -

. _ 4 . i |
~Toris ff]n." I“?vn“’lvtblb glVeIl UAala " OSTTE I UTVIC AlgOT TUITITT.

Zi1  ~ Multivariate Normal(pu,, >2)
Bo ~ Normal(ug,og)
BF ~ Normal(ug,02)Vk, t

Yy ~ InverseGamma(A, B)/\

where
Ho,04 are prior mean and variance of the intercept and slope parameters, whereas j,

and X are hyperparameters of the model specifying mean and variance-covariance matrix
of the prior distribution of the latent positions at time t = 1. A and B are the shape and
the rate parameters of the Inverse-Gamma prior distribution on ». We constrain ¥ to be
a diagonal matrix to simplify computation.

Note that, since the likelihood of the data is related to the latent positions only through
the latent distance, the latent positions Z;’s are identifiable only Sflg’to a distance preserving
transformation. For inference and summarizing the MCMC poste,}ior draws of the latent
positions, we address the issue of unidentifiability using procrustes transformation (Borg
and Groenen, 2005) of the posterior draws as a post-processing step. Following Hoff et al.
(2002), we initialize the latent positions in the MCMC using multidimensional scaling on
the observed distance matrix (minimum path length between nodes). We also use these
positions at each time ¢ as a target for procrustean transformation. Similar approach has
been used by Hoff et al. (2002) and Sewell and Chen (2014).

The the
é\MCMC algorithm for is coded in Repp (Eddelbuettel and Frangois, 2011) and R
(

Core Team, 2014), and is avjilable upon request.

13
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4.1 Estimation with Missing Nodes

The first term of the product in Equation 4 can be easily obtained from Equation 2 for each
time point ¢ since the networks are independent over time conditional on the covariates, the
latent positions and the intercept. However, we need to account for the changing number
of the nodes over time while computing the likelihood of the latent positions, which is a

in which individuals may enter or leave the social networ (new
major concern in many real world application;;\. e will assume thalt0 v{,lodes are missing parag)
at random. Further, once a node exits a network there is a very l-ess/{:hance that it will

> re-enter. Thus, if a node enters the network at ¢ > 1, we will use the ¢ at which the node

enters the network as its initial time and assume that its latent position has the same prior

new .
E)arag] as Zj.JLet {N;_1} denote set of nodes at time ¢ that were also present at t — 1.3 (run these together)

—mm—)
<The likelihood in Equation 4 can be re-written aT

T ni
P(}/’ Za Xa /Ba 60) = H H P(}/;]t|Xtha Zity Zjts /Bta /60) X H P(Zi,1|ﬂz7 E)
=1

t=1 i#£;j

 TTTTPGorlrn DN € (Vi) + Pl DN € (V)] )

t=2 i=1

x P(fo) x P(5) x P(X)

In this setup, we do not necessarily require the nodes to be present at all time points.
Assuming that som% of the nodes are missing at random, we will use the time point at
which a node appear, in the network as its initial time and h%lce the latent positions for
this node at the initial time point are centered around g.. B;yesian framework of our

model also allows for easy imputation of the missing ties.

14
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5 Data analysis
analyze

To illustrate the utility of our model r=education reseazch, we wse advice-seeking network

data of teachers in primary schools from a (\sghool district (Spillane et al., 2012),(Spillane
et al., 2012),(Spillane and Hopkins, 2013). Following the convention in Spillane et al.
(2012) and Sweet (2015), we will use the pseudonym Auburn Park as the name of the
district. Spillane et al. (2012) and Sweet (2015) have analyzed this network of teachers at
a particular time point, concluding that teachers teaching in the same grade and of similar
gender are more likely to interact with each other for advice. However;? longitudinal analysis
of the advice-seeking networkgame. Number of changes were made in the schools
since the first year of data collection. Assessment was changed from district level to state
level, first for Reading and then for Math in the following year; new math coaches were
introduced in the schools after the first year of data collection. We expect these changes to
change teachers’ incentives for communication and also their expectations from each other
in terms of instructional advice. In this section, we go a step further than Spillane et al.
(2012) and Sweet (2015) to investigate whether grade and gender of the teachers along with
their age and years of experiences affect the likelihood of forming advice seeking ties and
how this relationship changes over time.

The data includefs school staff surveys as well as social network data from 14 elementary

schools for 5 different academic years observed once every year. Staff members were asked

from
to name the individuals % whom they seek instructional advice and information, and were

densities
able to nominate any otﬁer staff member in the district. Network tie demstty at a11b5 ]
number o

time points are reported in Table 1. We see that the network size (as represented by s

nodes) is fairly large and consistent over time, whereas the ties in the network are sparse

indicated
as «ammesontgst by very small tie density. Tie density is lowest at the last time point.
A

15
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figure from your talk that shows all the changes
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Year | Number of schools | Total nodes | Tie Density
2010 14 326 0.0177
2011 14 385 0.0157
2012 14 372 0.0152
2013 14 387 0.013
2015 14 387 0.010

Table 1: Network Summary

Histograms of indegree and outdegree of the nosdeees in the networks at each time point
are displayed in Figure 2. In the figure, we sem-notics that the the network is asymmetric
and the distribution of indegree and outdegree is V!r\y different towards the tail. This
feature of the plots can be explained by the asymmetric advice seeking behavior where a
person who seeks advice is not necessarily also sought after and vice-versa. In the context
of these networks, the senders are the individuals seeking advice or information and the
receivers are the individuals providing advice or information. The tie then indicates an
advice/information relationship from the seeker to the provider.

In addition to the information about who goes to whom for advice, we also have infor-
mation on the covariates of the teachers in the networks. For example, we have data on
the schools the teachers teach, their gender, the grade/grades they teach, their age, and
their years of experience. Nodal covariates are converted into edge covariates so that we
can measure the effect of similarity and?or differences in the nodes on the basis of theif"® SP2¢®)
covariates in tie formation. Gender anduschool id of the teachers are converted into edge

constructing s
covariates by coemwerting them inf&binary Variablﬁ sreh-thate

1 if i and j are in same school at time ¢
Sijt =

0 otherwise
and{

16
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More space
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Figure 2: Histograms representing the in-degree and out-degree of the nodes in the network
at 5 different years. a) is the plot of in-degree at each year the data was collected, and b)

is the plot of out-degree.

1 if ¢ and 5 have same gender at time ¢

Geyje =

around equgftions 0 otherwise.

pls!

No space
here.

AgeDiff is created such that:
AgeDZﬁijt = Age;, — Agejta

node j at time t.

covariates Gr' are created, for grades first to sixth, such that

1 if ¢ and j both teach grade [ at time ¢

Grl--t:

ij
0 otherwise.

Here, teachers teaching

To account for the age differences of sender and receiver teachers, a new edge covariate

Owhere Age;; is the age of the sender node 7 at time ¢ and Agej; is the age of the receiver
L~

Next, to study the effect of grades on advice seeking behavior of the teachers, edge

Not sure what

and kindergraden are used as a base case. you mean here.

In addition, we also hdve data on the years of experience of the teachers in the school (self

pre-k

17



reported by the teachers). To account for ag,éymetry in the advice seeking relationship and
test whether new teachers send more advice seeking tie and whether experienced teachers
receive more advice seeking tie, this nodal feature is used as a sender and receiver covariate
for years of experience of the sender and the receiver separately. Let, ES;;; denote the
experience of node 7 at time t where ¢ sends advice seeking tie to node j. Similarly, let
ER;j; denote the experience of node j at time ¢, where j receives advice seeking tie from
node 1.

Finally, some of the covariates are missing for some nodes, either at all the time points

or in some particular time point. Missingness for covariates is generally less than 5%.

consider imputing
We baze two methods of campleting such missing data. First, for a node with a covariate

the
missing at a time point, temporal pré%erty of the data is used to borrow missing information

from neighboring time(\points for the node, if it is observed at those time points. If the
covariate is missing for the node at all time points, it is replaced by the average value for
the school the teacher teaches at that time point. From our previous analysis, we have
observed that the teachers’ advice-seeking network clust%r by their school membership [see
supplement materials|, which led us to believe that our method is a valid approach to use

network structure for missing covariate imputation. More elaborate imputation of missing

covariates is a part of our future work.

the
5.1 Fitting LLSM to Auburn Park Data

the A specification
We fit LLSM introduced in Section 3 with covariates using the model in-tesadian b,

N A
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Yijt ~ Bernoulli(p;j) for i # j

6
logit(pije) = Bo + BswySijt + Z ﬁlcr(t) GT’iﬁ + Baew) Geijit
=1

Bagepigy AgeDiff; + BrsESiji + BerERiji — || Zi — Zj4l|
Zii~MVN(0,%), fori=1,...,n

Zi,t:Zi’t_l—i-Et fOl"t:2,...,T

€ MVN(O,Z)

Parameters for the prior distributions in the model afe specified as following;:

Zil

Bo

k
t

the

were

A

0
Normal( ,2)

0
Normal(0, 1000)

InverseGamma(100, 150)
Normal(0, 1000)VE, ¢

We use Metropolis Hastings within Gibbs Algorithm to sample draws from the posterior

distribution of the parameters given the data. The Metropolis-Hastings draws were tuned

to ensure acceptance rates between 0.38 and 0.46 for one-dimensional draws and between

0

0.2 and 0.28 for drawing parameters with higher dimensions follwing Gelman et al. (2003).

We generated 7000 MCMC draws to ensure convergence. After burnin of the first 2000

g
draws and thinin_of 20, we retained a total of 250 sample. Posterior mea§1 of the MCMC

draws of the coefficients along with 95% (equaltailed) credible interval fop each covariate

19



over five different time points are displayed in Figure 3.

Posterior meas of the slepe parameters along with their 95% credible interval displayed
in Figure 3 suggest thatyteaching in the same school is a very strong indicator of whether
there exists an advice seeking tie between two teachers. Howevel;\there is a drop in the effect
of the school covariate after time point 3. AIS(T\teaChers are more likely to go for advice
to someone oftggme gender or teaching in similar’ gradeg However, the effect of teaching in
same grade seér\ns to been different for different gradeg\ over time. Further, while the effect
size is Smal}\teachers are more likely to go to someone who is older than them for advice, as
shown by the negative and non-zero coeffcient for covariate defined by the difference in age
of the sender and the receiver. This effect is also mostly consistent over time. Experience
of the sender and receiver nodes seem to have interesting and unexpected effect. kil\ the first
two time points, teachers with fewer years of experiences are more likely to send advice

seeking ties and the teachers with more years of experiences are more likely to receiver

advice seeking ties. However, the relationship is insignificant or reversed in later years of
study.

the Strrvesa
N Finally, we reflect
Semssbsug aley look at the estimated latent positions that expramms—tavemt structure of

A o W\
the networks not explained by the observed covariates in the model. Posteridr mean along
with 1 posterior standard error ellipsge of the latent positions over 5 years are displayed in
Figure 4. We observe that the spread of the estimated latent positions increases over time,

. orresponds to
which R0 the aecrease in tie density of the advice seeking network over time.

5.2 Posterior Predictive Checking

We use posterior predictive assessment following the guidelines in Gelman (2003) to com-

pare the fits from the MCMC algorithm and the observed data. Let p = p(yrep|y) denote TeX?
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5.0

1 2 3 4 5
Year

(a) Same School

— First | — SameGender
—— Secon o Age Difference
Third -] —r Yrs Exp Receiv
—— Fourth Yrs Exp Sendel
Fifth 1
, | — Sixth
@ |
o
1 2 3 ! 5
Year
(b) Grades (c) Gender, Age & Years of Experiences

Figure 3: Posterior mea% of the coefficients along with 95% credible intervesil from LLSM
for different edge covarigtes; a.) effect of teaching in same school vs. différent schools
over 5 different years, b.) effect of the interaction between grade level and whether two
teachers teach in same grade over 5 years and c.) effects of similarity in the gender, age
difference between sender and receiver of the ties and the years of experiences of the sender

The and receiver separately, over the 5 different year.
Y-axis is the estimated value of the § coefficient, with scale adjusted to account for different

} ranges of the set of covariates shown in each plot.

No line break here.
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1
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5
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0
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0

Figure 4: Posterior mean along with 1 posterior standard error ellipse of the latent positions
over H years.

the
/\ distribution of future data conditional on the observed data under the model being fit.
This is the posterior predictive distribution of Y. Then we can assess the fit of the model
by comparing p with observed network data at each time point.

Let 0, = {Zy, Bo, i} denote the set of model paramters in LLSM at time ¢. Then we
can computi-ﬁ-g for each time point ¢ asdn=teopretion=—= {\
]

= [ P(y|6,)P(6,|Y)d6, (7)

L
rep
No spaceg Z ‘0

C ) Here, L is the total number of MCMC draws from the posterior distribution of the
paramters given data.

In figure 5, we compare} the observed data with the posterior predictive probabilities
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of ties in each year using the image plots. The ties are plotted by the school membership of
the teachers to show a clear block structure in the data by school. We plotted the predicted
probabilities in the same order as well. It is clear from the figure that the model recovers
the observed data very well. Would be useful to compare

these plots with similar plots for ¢
model that clearly doesn't fit.

5.3 Comparision with Model Fits from Models with Assumption

of Independences of Ties

For completeness of our analysis, we compared the fits from simpler models to the Auburn

Park data with the fits from our model. First we fitted time independent logistic regression
—

with covariates at each time poin)\(r fo Fouattomy) and computed fitted probability

using the point estimafes o1 thie model nts.
f

6
logit(P(Yije = 1)) = Bo + Bs)Sije + Z Blc;r(t) G7Jijt + Baer) Geijet
=1

5AgeDiﬁ(t)A9€Di]%jt + BrskSij + 5ERERij%\

Second, we fitted logistic regression using prior ties information as a covariate gs=st

2
his 1s a modified autoregressive logistic model. Again, WW

o

in N11at]

estimates of the coefficients at each time point to compute fitted probabilities of tie.
pmmm——

6
logit(P(Yie = 1)) = Bo + Bi—1Yiju—1) + Bs)Sije + Z By Gt
=1

Baer) Geije + 5AgeDiﬁ(t)AgeDiﬁ:ijt + BeskSiji+
BerER;j P
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Observed Network 1 Estimated Ties RW 1 Observed Network 2 Estimated Ties RW 2

Observed Network 3 Estimated Ties RW 3 Estimated Ties RW 4

s

Obsarvaed Network 5 Estimated Ties RW 5

Did you omit plots for simpler
independence models to save
space?

()

Figure 5: Image plots for comparing observed network and estimated ties using the posterior
predictive fits from LLSM at a.) Year 1, b.) Year 2, c.) Year 3, d.) Year 4 and e.) Year 5

24



1.000

RW
LSM
Logistic Model

RW

LSM

Logistic Model
Logistic AR Model

06

Logistic AR Model
Null Model

04
Accuracy
0.990 0.995

0.
0.985

True Positive Rate
.2

0.0
0.980

0975

i 2 a 5 i 2

3 3
Year Year
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Figure 6: Plots Comparing a.) true positive rates gnd b.) fxccuraey, of the estimates from
different models used to fit advice seeking netwdlrks. ,Posterior predictive distribution is
used to computed fitted probabilties of ties for the twd Bayesian methods, LSM and LLSM
RW.

The

Finally, we fitted independent latent space mode‘? for each time point without the ran-
dom walk dependence of the latent positions using the model shown in Equation 1.

For independent LSMs and our proposed longitudinal LSM, we used estimated proba-
bilities of ties computed from the posterior predictive distribution. We used accuracy, or A e
the percentage of correctly classified presence and absence of ties in observed data, and |
true positive rate-si"tlﬁé proportion of correctly classified observed ties as two metrics for
model evaluation, which are displayed in Figure 6. 4

In-sample fits from point estimates are often known to be optimistic [[TODO:CITE]].
So, to be fair on our Bayesian estimates we also compared fitted probabilities usingh[?osterior
mean as the point estimates for LSM and LLSM. Corresponding measure of accuracy and
true positive rates using point estimates are shown in Figure 7A

Model assesessments as displayed in Figures 6 and 7 show how thet overall fit improves

25
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Corrects in-sample bias.



RW

LSM

Logistic Model
Logistic AR Model

06

04
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Figure 7: Plots Comparing a.) true positive ratespand b.)
different models used to fit advice seeking netwo

3
Year

(b) Accuracy

used to compute fitted probabilities of ties for all the models under consideration.

by using the latent space model and by accounting for the time dependence.

6 Conclusion
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