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Abstract

In this paper, we extend existing latent space approach for network analysis to fur-
ther account for temporal dependencies among networks. Motivation for this model
is to understand and perform statistical analysis on how the structures of the net-
work as represented by the latent positions evolve with time. Further in many real
world applications, it is also of interest to understand the changing effects of the
observed nodal covariates in tie formation. To address these questions, we introduce
a Bayesian longitudinal latent space network model by combining ideas from state
space model literature and latent variable network models. We leverage on the dual
interpretation of the latent distance as latent variable and as residual to include edge
covariates in the model. We then apply the proposed model to analyze temporal
network of teachers’ interactions in several secondary schools in a school district.

Keywords: Latent space model, Network attributes, Longitudinal network analysis, Advice
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1 Motivation and Introduction

Network data is widely used in education research to study how different units, such as

teachers, students, administrators etc., in educational settings interact among themselves or

with other units, and the implications of these interactions on the overall learning behavior

of the students. Pitts and Spillane (2009), Spillane et al. (2012), Spillane and Hopkins

(2013), Penuel et al. (2009) are some of the examples of such studies. Statistical analysis of

educational networks helps us to evaluate teachers and students by identifying important

properties and structures of the networks that affect their performances, and hence to

make necessary policy recommendations for any improvement (Sweet et al., 2013; Sweet,

Thomas, and Junker, Sweet et al.). Further, since interaction itself is a dynamic process

that changes over time, conditional on external and internal factors, it is important to study

the dynamics of the changing structures in networks observed over many time points. While

majority of the earlier works in education literature have mainly focussed on networks

observed at a particular time point, recently there has been increasing interest in studying

networks over multiple time points (Spillane et al., 2012; Harris et al., 2013). However,

development in methodologies is lagging compared to the interest generated in application

and data collection. The changing nature and the added complexity of the data requires

more sophisticated method of analysis to make sound inference on the data.

Consider, for example, instructional advice seeking network of teachers in a school

district observed in 5 different years (Spillane et al., 2012). The socioplots of the observed

advice seeking networks are shown in Figure 1. Number of changes were made in the

schools since the first year of data collection. Assessment was changed from district level

to state level, first for Reading and then for Math in the following year; new math coaches

were introduced in the schools after the first year of data collection. We expect these

2



changes to change teachers’ incentives for communication and also their expectations from

each other in terms of instructional advice. It is then of interest to understand how advice

seeking behavior of the teachers as shown by the network is changing with time (Spillane

et al., 2012). Further, researchers in education also want to understand how similarities

or differences in observed covariates of the nodes or group of nodes affect present and

future advice seeking behavior of teachers in the network. For example, Spillane et al.

(2012) have shown that the teachers who teach in the same grade are more likely to seek

advice from each other compared to those teaching in different grades. It is then natural

to ask if the relationship between the covariates and the advice seeking behavior of the

teachers is persistent over time in a longitudinal setting. This question has mostly remained

unexplored in education research. It will also be useful to predict how the network will look

like in the future, based on the past networks and covariates, to make important decisions

in the schools.

In this paper, we introduce a method to analyze networks observed over several time

points, and investigate how the relationship between network and observed covariates is

changing over time in the presence of latent variables in longitudianl advice seeking network

of teachers. We apply this method to stu We focus on extending existing method for

network analysis, latent space network model to be more specific, that was introduced by

Hoff et al. (2002) to model the evolution of the network structure over time. In the latent

space network model, the underlying network structure is represented by the positions of

nodes in a continuous (Euclidean) latent space. This class of model allows for the basic

network properties like reciprocity and transitivity of the nodes, with possible extension to

clusterability. We aim to extend the idea of reciprocity and transitivity in a static network

to the temporal network settings. The nodes with ties at previous time points are more

likely to have ties in the future, indicating that they will lie close to each other in the future
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Figure 1: Socioplot of the advice seeking network of teachers in secondary schools in a
school district (Spillane et al., 2012). Nodes are the teachers and a tie from i to j is defined
by whether teacher i goes to j for advice. Different colors in a network represent different
schools in the district.

4



latent space. Similary, if the nodes i and j, and the nodes i and k have ties at time t, the

nodes i and k are more likely to have a tie at t+ 1. Furthermore, a network can evolve in

time by the expansion of the latent positions making the network sparser, by the shrinkage

of the latent positions which makes the network denser, or by no change in the latent

positions which implies no substantive change in the network structure, after accounting

for the observed covariate effects in the network. Methods that treat related networks to be

independent over time are not well-suited for networks observed over multiple time points

(as we show later in Figure 6). By modeling temporal networks as different instances of

static networks, we lose important information about network evolution. Instead, modeling

them as a related process that accounts for the time dependencies helps us understand the

evolution of the underlying network structure.

We propose a state space modeling approach for evolution of temporal networks using a

class of latent variable models. By leveraging on the dual interpretation of latent variable

and residual in the model, we furthur introduce a way to include and evaluate the effect

of covariates on the likelihood of forming network ties over time. The proposed model is

a crucial contribution to applications in education and other social-sciences, as it aims to

answer some of the substantial questions, for instance pertaining to interactions of teachers

observed over time, via a systematic statistical approach.

The organization of the paper is as follows. We review existing literature for analyzing

longitudinal network in section 2. We present the proposed method in section 3 and the

estimation of the model parameters using MCMC in section 4. We demonstrate the use of

the model to analyze advice seeking network of teachers and the results in section 5, and

end with summary and conclusion in section 6.
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2 Literature Review

Existing statistical models for analyzing network observed at a time point can be broadly

divided into two classes. (See Goldenberg et al. (2010), Fienberg (2012) and Dabbs et al.

(prep) for a detailed review of these methods.) The first class of method is based on

exponential random graph models (ERGMs), which are defined by different de-

scriptive network statistics (Frank and Strauss, 1986). The probability distribution of a

graph in ERGM can be written as an exponential family with the network statistics being

the sufficient statistics for the distribution (Holland and Leinhardt, 1981; Robins et al.,

2007; Goldenberg et al., 2010). The other class of method is based on latent variable

or conditionally independent dyads (CID) models which are developed to model

the underlying unobserved network features. Conditional on these latent features, ties in

a network are assumed to be independent (Goldenberg et al., 2010; Dabbs et al., prep).

Sender receiver network model, latent space network model, stochastic block model and

mixed membership stochastic block model are examples of the latent variable model (Hoff

and Ward, 2004; Hoff et al., 2002; Airoldi et al., 2006). Further, Dabbs et al. (prep) have

recently proposed an additive model that includes different combination of these latent

variable models along with covariates.

Recently, there has been some works in statistics literature on extending existing net-

work methods to account for temporal networks, for example by Robins and Pattison

(2001), Hanneke and Xing (2007),Hanneke et al. (2010), Westveld and Hoff (2011), Xing

et al. (2010), Sarkar and Moore (2005) and Sewell and Chen (2014). Robins and Pattison

(2001), Hanneke and Xing (2007) and Hanneke et al. (2010) have studied the networks ob-

served over discrete time points in the ERGM settings, also known as temporal ERGMs

or TERGMs . TERGMs make standard Markov assumption on the evolution of a net-
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work graph such that the network observed at time t is independent of networks observed

in the previous time points un to t − 2, given the network at t − 1 (Hanneke and Xing,

2007), with an additional assumption that the distribution of the network observed at time

t conditional on the network at t − 1 has an ERGM representation (Frank and Strauss,

1986). As the assumption on tie dependence deviates from independence, the model gets

more and more complicated. Snijders (1996) have also developed stochastic actor oriented

models using a continuous time Markov processes, the class of models that is very similar

to ERGMs. Many of these methods run into computational complications and convergence

issues, for example convergence to degenerate solutions, when the model specification is

complex, thus making them less desirable in real world applications (O’Malley, 2013; Hand-

cock et al., 2003).

Westveld and Hoff (2011) extended the static model for directed networks with sender

and receiver random effects and fixed covariate effects, introduced by Gill and Swartz (2001)

and later implemented by Hoff and Ward (2004), to account for temporal dependencies in

mixed effects temporal model . They assume autoregressive dependence structure on

the sender-receiver effects and the overall residual, and hence account for additional corre-

lation in random error (random effects) introduced by temporal dependencies. Xing et al.

(2010) extended mixed membership stochastic block model (MMSBM) (Airoldi

et al., 2006) to account for the temporal nature of networks, and called it the dynamic

mixed membership stochastic block model (dMMSBM). Xing et al. (2010) devel-

oped a Bayesian state-space approach for modeling the evolution of the underlying roles of

entities in a network, such that a network evolves in time through the random walk depen-

dence structure on the hyperparameters of the prior distribution of the membership vectors

and the block probabilities. Sarkar and Moore (2005) introduced a predictive latent space

model for temporal networks. Similar work on extending latent space model to account for

7



longitudinal networks is also done by Sewell and Chen (2014). However, none of the latent

variable models for temporal networks focus on estimating covariate effects on which most

of the questions in education research hinges.

In this paper, we focus on latent space network models, and address some of the

drawbacks of the existing methods to make the model applicable for networks in education

research. Hoff et al. (2002) introduced latent space model for social networks, and Hoff and

Ward (2004); Handcock et al. (2007); Raftery et al. (2012) have explored methodological

and computational aspects of the static latent space models. We also present the utility of

the model by analyzing advice seeking network of teachers (Spillane et al., 2012) observed

over 5 time points.

3 Model

The latent space network model (LSM) introduced by Hoff et al. (2002) is charac-

terized by the positions of nodes in a low-dimensional latent space. Hoff et al. (2002)

describes the latent space as a social space containing the unobserved characteristics of the

network, where nodes with similar latent characteristics will have nearby latent positions.

Further, conditional on the latent positions the ties in a network are assumed to form in-

dependently, and the probability of a tie between nodes i and j is inversely related to the

interdistance between their latent positions. LSM accounts for basic network properties

like reciprocity, transitivity and clustering . If two nodes share a tie, they lie close

to each other in the latent space which indicates high probability of reciprocating the tie.

If two ties in a network share a common node, then the two remaining nodes will lie close

to each other in the latent space hence increasing the probability of a tie between those

nodes. These properties are described in more detail in Hoff et al. (2002)
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Let Y denote a random variable representing a network graph. We use upper-case Y to

denote a random variable, and lower-case y to denote its realization. For a static network,

an observed network is a graph with n vertices. These vertices are called the nodes of

the network, and the corresponding edges connecting the vertices are the ties . A network

is usually represented by a n × n sociomatrix Y with entries Yij, where Yij measures the

strength of a relationship from node i to node j, and can be either discrete or continuous.

We call Yij a tie from i to j. A tie Yij and its reciprocal tie Yji collectively form a dyad

between i and j. For an undirected network, Yij = Yji. For simplicity, we will consider a

discrete network Y such that

Yij =

 1 if there is a tie from i to j

0 if there is no tie.

However, the models discussed in the paper can be easily extended to ordinal and continuous

valued ties based on the techniques used for generalized linear models. We will use Z to

denote a n×d matrix of the latent positions, such that its ith row Zi is a vector representing

the position of a node i in a d dimensional latent space.

We can represent the LSM model in notation in Equation 1:

yij ∼ Bernoulli(pij)

ηij := logit (pij) = β0 − ||Zi − Zj||

Zi ∼MVN(0,Σ).

(1)

Here, pij denotes the probability of forming a tie from node i to j and ||Zi−Zj|| denotes

the distance (for example, Euclidean) between the latent positions Zi and Zj. Finally, β0

is an overall intercept of the model.
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We can then invoke the conditional independence of ties given latent positions and

intercept to get the likelihood of the observed network y conditional on the latent positions

Z and the intercept β0, as given by Equation 2:

P (Y = y|Z, β0) =
∏
i 6=j

exp[ηijyij − log (1 + exp(ηij))]. (2)

The intercept β0 in the model can be seen as an overall fixed network effect, whereas

the distance between the latent positions Zi have the dual interpretation of being latent

variable and residuals in the model. Recall that the latent positions model the unobserved

characteristics of the nodes in a low dimensional Euclidean space via the interdistance of

the positions. As we include observed covariates in the model that explain some of the

structures in the network, any extra structure of the network that is not explained by the

covariates will then be accounted for by the positions of the nodes in latent space through

their interdistances. LSM is arguably a useful and appealing method for network analysis

because it implicitly models different network features while making fewer assumptions

about the dependence structure of the ties.

We denote edge covariates by an array X of dimension n × n × K, where K is the

number of covariates in the model. Xijk is used to denote the kth covariate for a tie where

i is the sender and j is the receiver, and βk is the corresponding slope coefficient. We can

rewrite the logistic link function in Equation 1, as done previously in Sweet et al. (2013)

for hierarchical network models, to include observed covarites effect as:

logit (pij) = β0 +
K∑
k=1

βkXijk − ||Zi − Zj||.
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We combine ideas from the latent space model of Hoff et al. (2002) and the state-space

modeling approach to model the evolution of networks in time through the changes in the

latent positions. In this paper, we assume random walk plus noise evolution of the latent

positions over time.

In case of a temporal network, we define Yt as a sociomatrix of the network at time

t with entries Yijt measuring a relationship from node i to j at that time t. Further, we

will use Y1:T := [Y1Y2 . . . YT ] to denote the list of socio-matrices up to T time point, and

Z1:T := [Z1Z2 . . . ZT ] to denote the list of latent positions up to time T . Note that, under

our method it is not necessary to have same number of nodes at all T time points.

LSM for the static model can be extended to account for the temporal network with

changing covariates effect in Equation 3 :

yijt ∼ Bernoulli(pijt) for i 6= j

logit(pijt) = β0 +
K∑
k=1

Xk
ijtβ

k
t − ||Zit − Zjt||

Zi,1 ∼MVN(0,Σ), for i = 1, . . . , n

Zi,t = Zi,t−1 + εt for t = 2, . . . , T

εt ∼MVN(0,Σ).

(3)

Here, K is the total number of edge covariates in the model, Xk
ijt represents kth covariate

related to the tie from i to j at time t and βk
t is the corresponding slope coefficient. In the

current application using advice seeking network of teachers, we are interested in seeing

how βk
t changes with t for each co-variate k.
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4 Estimation

We use Metropolis Hastings within Gibbs algorithm to draw samples from the posterior

distribution of the parameters, namely, the slope coefficients β1:T , the intercept β0, the

latent positions up to time T , Z1:T , and the variance covariance matrix of the latent po-

sitions, Σ. Using the conditional independence property of the network ties we can write

conditional likelihood of the data as

P(Y |Z1, . . . , ZT , X, β, β0) =
T∏
t=1

∏
i 6=j

P(Yi,j,t|Zi,t, Zj,t, Xijt, βt, β0).

The Markovian property of the trajectory of the latent positions allows use to write the

joint density of the latent positions upto time T as

P(Z1, . . . , ZT ) =
n∏

i=1

P(Zi,1|µz,Σ)×
T∏
t=2

n∏
i=1

P(Zi,t|Zi,t−1,Σ),

where, µz is the mean and Σ is a diagonal variance-covariance matrix of the multivariate

normal distribution of the latent positions at time 1.

We then have the full likelihood of the data and the parameters into a simple product

form as in Equation 4.

P(Y, Z,X, β, β0) = P(Y |Z1, . . . , ZT , X, β, β0)P(Z1, . . . , ZT |β0)P(β0)

=
T∏
t=1

∏
i 6=j

P(Yi,j,t|Zi,t, Zj,t, Xijt, βt, β0)×
n∏

i=1

P(Zi,1|µz,Σ)

×
T∏
t=2

n∏
i=1

P(Zi,t|Zi,t−1,Σ)× P(β0)× P(Σ).

(4)
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Following prior distributions are specified to draw samples from the posterior distribu-

tion of the parameters given data using MCMC algorithm:

Zi1 ∼ Multivariate Normal(µz,Σ)

β0 ∼ Normal(µ0, σ
2
0)

βk
t ∼ Normal(µ0, σ

2
0)∀k, t

Σii ∼ InverseGamma(A,B).

µ0,σ
2
0 are prior mean and variance of the intercept and slope parameters, whereas µz

and Σ are hyperparameters of the model specifying mean and variance-covariance matrix

of the prior distribution of the latent positions at time t = 1. A and B are the shape and

the rate parameters of the Inverse-Gamma prior distribution on Σ. We constrain Σ to be

a diagonal matrix to simplify computation.

Note that, since the likelihood of the data is related to the latent positions only through

the latent distance, the latent positions Zt’s are identifiable only upto a distance preserving

transformation. For inference and summarizing the MCMC posterior draws of the latent

positions, we address the issue of unidentifiability using procrustes transformation (Borg

and Groenen, 2005) of the posterior draws as a post-processing step. Following Hoff et al.

(2002), we initialize the latent positions in the MCMC using multidimensional scaling on

the observed distance matrix (minimum path length between nodes). We also use these

positions at each time t as a target for procrustean transformation. Similar approach has

been used by Hoff et al. (2002) and Sewell and Chen (2014).

MCMC algorithm for LLSM is coded in Rcpp (Eddelbuettel and François, 2011) and R

(R Core Team, 2014), and is available upon request.
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4.1 Estimation with Missing Nodes

The first term of the product in Equation 4 can be easily obtained from Equation 2 for each

time point t since the networks are independent over time conditional on the covariates, the

latent positions and the intercept. However, we need to account for the changing number

of the nodes over time while computing the likelihood of the latent positions, which is a

major concern in many real world applications. We will assume that nodes are missing

at random. Further, once a node exits a network there is a very less chance that it will

re-enter. Thus, if a node enters the network at t > 1, we will use the t at which the node

enters the network as its initial time and assume that its latent position has the same prior

as Zi1. Let {Nt−1} denote set of nodes at time t that were also present at t− 1.

The likelihood in Equation 4 can be re-written as:

P(Y, Z,X, β, β0) =
T∏
t=1

∏
i 6=j

P(Yijt|Xijt, zit, zjt, βt, β0)×
n1∏
i=1

P(zi,1|µz,Σ)

×
T∏
t=2

nt∏
i=1

[P(zi,t|zi,t−1,Σ)I(i ∈ {Nt−1}) + P(zi,t|µz,Σ)I(i ∈ {Nt−1})]

× P(β0)× P(β)× P(Σ)

(5)

In this setup, we do not necessarily require the nodes to be present at all time points.

Assuming that some of the nodes are missing at random, we will use the time point at

which a node appear in the network as its initial time and hence the latent positions for

this node at the initial time point are centered around µz. Bayesian framework of our

model also allows for easy imputation of the missing ties.
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5 Data analysis

To illustrate the utility of our model in education research, we use advice-seeking network

data of teachers in primary schools from a school district (Spillane et al., 2012),(Spillane

et al., 2012),(Spillane and Hopkins, 2013). Following the convention in Spillane et al.

(2012) and Sweet (2015), we will use the pseudonym Auburn Park as the name of the

district. Spillane et al. (2012) and Sweet (2015) have analyzed this network of teachers at

a particular time point, concluding that teachers teaching in the same grade and of similar

gender are more likely to interact with each other for advice. However, longitudinal analysis

of the advice-seeking networks is missing. Number of changes were made in the schools

since the first year of data collection. Assessment was changed from district level to state

level, first for Reading and then for Math in the following year; new math coaches were

introduced in the schools after the first year of data collection. We expect these changes to

change teachers’ incentives for communication and also their expectations from each other

in terms of instructional advice. In this section, we go a step further than Spillane et al.

(2012) and Sweet (2015) to investigate whether grade and gender of the teachers along with

their age and years of experiences affect the likelihood of forming advice seeking ties and

how this relationship changes over time.

The data includes school staff surveys as well as social network data from 14 elementary

schools for 5 different academic years observed once every year. Staff members were asked

to name the individuals to whom they seek instructional advice and information, and were

able to nominate any other staff member in the district. Network tie density at all 5

time points are reported in Table 1. We see that the network size (as represented by its

nodes) is fairly large and consistent over time, whereas the ties in the network are sparse

as represented by very small tie density. Tie density is lowest at the last time point.
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Year Number of schools Total nodes Tie Density
2010 14 326 0.0177
2011 14 385 0.0157
2012 14 372 0.0152
2013 14 387 0.013
2015 14 387 0.010

Table 1: Network Summary

Histograms of indegree and outdegree of the nodes in the networks at each time point

are displayed in Figure 2. In the figure, we can notice that the the network is asymmetric

and the distribution of indegree and outdegree is very different towards the tail. This

feature of the plots can be explained by the asymmetric advice seeking behavior where a

person who seeks advice is not necessarily also sought after and vice-versa. In the context

of these networks, the senders are the individuals seeking advice or information and the

receivers are the individuals providing advice or information. The tie then indicates an

advice/information relationship from the seeker to the provider.

In addition to the information about who goes to whom for advice, we also have infor-

mation on the covariates of the teachers in the networks. For example, we have data on

the schools the teachers teach, their gender, the grade/grades they teach, their age, and

their years of experience. Nodal covariates are converted into edge covariates so that we

can measure the effect of similarity and/ or differences in the nodes on the basis of their

covariates in tie formation. Gender and school id of the teachers are converted into edge

covariates by converting them into binary variable such that:

Sijt =

1 if i and j are in same school at time t

0 otherwise

and,

16



Year 1

In Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

Year 2

In Degree
F

re
qu

en
cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

Year 3

In Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

Year 4

In Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

Year 5

In Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

(a)

Year 1

Out Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

Year 2

Out Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

Year 3

Out Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

Year 4

Out Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

Year 5

Out Degree

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

(b)

Figure 2: Histograms representing the in-degree and out-degree of the nodes in the network
at 5 different years. a) is the plot of in-degree at each year the data was collected, and b)
is the plot of out-degree.

Geijt =

1 if i and j have same gender at time t

0 otherwise.

To account for the age differences of sender and receiver teachers, a new edge covariate

AgeDiff is created such that:

AgeDiffijt = Ageit − Agejt,

where Ageit is the age of the sender node i at time t and Agejt is the age of the receiver

node j at time t.

Next, to study the effect of grades on advice seeking behavior of the teachers, edge

covariates Grl are created, for grades first to sixth, such that

Grlijt =

1 if i and j both teach grade l at time t

0 otherwise.

Here, teachers teaching prek and kindergraden are used as a base case.

In addition, we also have data on the years of experience of the teachers in the school (self
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reported by the teachers). To account for assymetry in the advice seeking relationship and

test whether new teachers send more advice seeking tie and whether experienced teachers

receive more advice seeking tie, this nodal feature is used as a sender and receiver covariate

for years of experience of the sender and the receiver separately. Let, ESijt denote the

experience of node i at time t where i sends advice seeking tie to node j. Similarly, let

ERijt denote the experience of node j at time t, where j receives advice seeking tie from

node i.

Finally, some of the covariates are missing for some nodes, either at all the time points

or in some particular time point. Missingness for covariates is generally less than 5%.

We have two methods of completing such missing data. First, for a node with a covariate

missing at a time point, temporal property of the data is used to borrow missing information

from neighboring time points for the node, if it is observed at those time points. If the

covariate is missing for the node at all time points, it is replaced by the average value for

the school the teacher teaches at that time point. From our previous analysis, we have

observed that the teachers’ advice-seeking network cluster by their school membership [see

supplement materials], which led us to believe that our method is a valid approach to use

network structure for missing covariate imputation. More elaborate imputation of missing

covariates is a part of our future work.

5.1 Fitting LLSM to Auburn Park Data

We fit LLSM introduced in Section 3 with covariates using the model in Equation 6.
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Yijt ∼ Bernoulli(pijt) for i 6= j

logit(pijt) = β0 + βS(t)Sijt +
6∑

l=1

βl
Gr(t)Grlijt + βGe(t)Geijt+

βAgeDiff(t)AgeDiffijt + βESESijt + βERERijt − ||Zit − Zjt||

Zi,1 ∼MVN(0,Σ), for i = 1, . . . , n

Zi,t = Zi,t−1 + εt for t = 2, . . . , T

εt ∼MVN(0,Σ).

(6)

Parameters for the prior distributions in the model are specified as following:

Zi1 ∼ Normal(

0

0

 ,Σ)

β0 ∼ Normal(0, 1000)

Σii ∼ InverseGamma(100, 150)

βk
t ∼ Normal(0, 1000)∀k, t

We use Metropolis Hastings within Gibbs Algorithm to sample draws from the posterior

distribution of the parameters given the data. The Metropolis-Hastings draws were tuned

to ensure acceptance rates between 0.38 and 0.46 for one-dimensional draws and between

0.2 and 0.28 for drawing parameters with higher dimensions follwing Gelman et al. (2003).

We generated 7000 MCMC draws to ensure convergence. After burnin of the first 2000

draws and thinin of 20, we retained a total of 250 sample. Posterior mean of the MCMC

draws of the coefficients along with 95% (equaltailed) credible interval for each covariate
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over five different time points are displayed in Figure 3.

Posterior mean of the slope parameters along with their 95% credible interval displayed

in Figure 3 suggest that, teaching in the same school is a very strong indicator of whether

there exists an advice seeking tie between two teachers. However there is a drop in the effect

of the school covariate after time point 3. Also teachers are more likely to go for advice

to someone of same gender or teaching in similar grade. However, the effect of teaching in

same grade seems to been different for different grades over time. Further, while the effect

size is small teachers are more likely to go to someone who is older than them for advice, as

shown by the negative and non-zero coeffcient for covariate defined by the difference in age

of the sender and the receiver. This effect is also mostly consistent over time. Experience

of the sender and receiver nodes seem to have interesting and unexpected effect. In the first

two time points, teachers with fewer years of experiences are more likely to send advice

seeking ties and the teachers with more years of experiences are more likely to receiver

advice seeking ties. However, the relationship is insignificant or reversed in later years of

the survey.

Next we also look at the estimated latent positions that explains latent structure of

the networks not explained by the observed covariates in the model. Posterior mean along

with 1 posterior standard error ellipse of the latent positions over 5 years are displayed in

Figure 4. We observe that the spread of the estimated latent positions increases over time,

which might explain the decrease in tie density of the advice seeking network over time.

5.2 Posterior Predictive Checking

We use posterior predictive assessment following the guidelines in Gelman (2003) to com-

pare the fits from the MCMC algorithm and the observed data. Let p̂ = p(yrep|y) denote
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Figure 3: Posterior mean of the coefficients along with 95% credible interval from LLSM
for different edge covariates; a.) effect of teaching in same school vs. different schools
over 5 different years, b.) effect of the interaction between grade level and whether two
teachers teach in same grade over 5 years and c.) effects of similarity in the gender, age
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Y-axis is the estimated value of the β coefficient, with scale adjusted to account for different
ranges of the set of covariates shown in each plot.
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Figure 4: Posterior mean along with 1 posterior standard error ellipse of the latent positions
over 5 years.

distribution of future data conditional on the observed data under the model being fit.

This is the posterior predictive distribution of Y . Then we can assess the fit of the model

by comparing p̂ with observed network data at each time point.

Let θt = {Zt, β0, βt} denote the set of model paramters in LLSM at time t. Then we

can compute p̂t for each time point t as in Equation 7:

p̂t = P(yrept |Y )

=

∫
P(yrept |θt)P(θt|Y )dθt

≈ 1

L

L∑
l=1

P(yrept |θ
(l)
t ).

(7)

Here, L is the total number of MCMC draws from the posterior distribution of the

paramters given data.

In figure 5, we compared the observed data with the posterior predictive probabilities
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of ties in each year using the image plots. The ties are plotted by the school membership of

the teachers to show a clear block structure in the data by school. We plotted the predicted

probabilities in the same order as well. It is clear from the figure that the model recovers

the observed data very well.

5.3 Comparision with Model Fits from Models with Assumption

of Independences of Ties

For completeness of our analysis, we compared the fits from simpler models to the Auburn

Park data with the fits from our model. First we fitted time independent logistic regression

with covariates at each time point (refer to Equation 8) and computed fitted probability

using the point estimates of the model fits.

logit(P (Yijt = 1)) = β0 + βS(t)Sijt +
6∑

l=1

βl
Gr(t)Grlijt + βGe(t)Geijt+

βAgeDiff(t)AgeDiffijt + βESESijt + βERERijt.

(8)

Second, we fitted logistic regression using prior ties information as a covariate as shown

in Equation 9. This is a modified autoregressive logistic model. Again, we used the point

estimates of the coefficients at each time point to compute fitted probabilities of tie.

logit(P (Yijt = 1)) = β0 + βt−1Yij(t−1) + βS(t)Sijt +
6∑

l=1

βl
Gr(t)Grlijt+

βGe(t)Geijt + βAgeDiff(t)AgeDiffijt + βESESijt+

βERERijt

(9)
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(a) (b)

(c) (d)

(e)

Figure 5: Image plots for comparing observed network and estimated ties using the posterior
predictive fits from LLSM at a.) Year 1, b.) Year 2, c.) Year 3, d.) Year 4 and e.) Year 5
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Figure 6: Plots Comparing a.) true positive rates and b.) Accuracy, of the estimates from
different models used to fit advice seeking networks. Posterior predictive distribution is
used to computed fitted probabilties of ties for the two Bayesian methods, LSM and LLSM
RW.

Finally, we fitted independent latent space model for each time point without the ran-

dom walk dependence of the latent positions using the model shown in Equation 1.

For independent LSMs and our proposed longitudinal LSM, we used estimated proba-

bilities of ties computed from the posterior predictive distribution. We used accuracy or

the percentage of correctly classified presence and absence of ties in observed data, and

true positive rate or the proportion of correctly classified observed ties as two metrics for

model evaluation, which are displayed in Figure 6.

In-sample fits from point estimates are often known to be optimistic [[TODO:CITE]].

So, to be fair on our Bayesian estimates we also compared fitted probabilities using posterior

mean as the point estimates for LSM and LLSM. Corresponding measure of accuracy and

true positive rates using point estimates are shown in Figure 7

Model assesessments as displayed in Figures 6 and 7 show how thet overall fit improves
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Figure 7: Plots Comparing a.) true positive rates and b.) Accuracy, of the estimates from
different models used to fit advice seeking networks. Point estimates of the parameters are
used to compute fitted probabilities of ties for all the models under consideration.

by using the latent space model and by accounting for the time dependence.

6 Conclusion
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