
 0

10000

20000

000

50000

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●
●●●

●

●

●

●
●
●●

I1

SI2

SI1VVS2

VVS1

IF

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
● ●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●●●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●
●●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

library(reshape)
ffm <- melt(french_fries, id=1:4,
na.rm=TRUE)
cast(ffm, subject ~ time, length)
cast(ffm, treatment ~ variable, mean)
cast(ffm, ... ~ rep)

Practical tools for
exploring data and models
Hadley Alexander Wickham

2

Contents

List of tables 3

List of figures 7

Acknowledgements 11

1 Introduction 13
1.1 Reshaping data . 13
1.2 Plotting data . 14
1.3 Visualising models . 15

2 Reshaping data with the reshape package 17
Abstract . 17
2.1 Introduction . 17
2.2 Conceptual framework . 18
2.3 Melting data . 19

2.3.1 Melting data with id variables encoded in column names 20
2.3.2 Already molten data . 21
2.3.3 Missing values in molten data . 21

2.4 Casting molten data . 22
2.4.1 Basic use . 22
2.4.2 High-dimensional arrays . 25
2.4.3 Lists . 26
2.4.4 Aggregation . 28
2.4.5 Margins . 28
2.4.6 Returning multiple values . 29

2.5 Other convenience functions . 30
2.5.1 Factors . 31
2.5.2 Data frames . 31
2.5.3 Miscellaneous . 31

2.6 Case study: French fries . 31
2.6.1 Investigating balance . 32
2.6.2 Tables of means . 33
2.6.3 Investigating inter-rep reliability . 34

2.7 Where to go next . 35
2.8 Acknowledgements . 35

3

Contents

3 A layered grammar of graphics 37

Abstract . 37
3.1 Introduction . 37
3.2 How to build a plot . 38

3.2.1 A more complicated plot . 39
3.2.2 Summary . 42

3.3 Components of the layered grammar . 42
3.3.1 Layers . 44
3.3.2 Scales . 46
3.3.3 Coordinate system . 47
3.3.4 Faceting . 48

3.4 A hierarchy of defaults . 48
3.5 An embedded grammar . 51
3.6 Implications of the layered grammar . 52

3.6.1 Histograms . 53
3.6.2 Polar coordinates . 54
3.6.3 Transformations . 55

3.7 Perceptual issues . 58
3.8 A poetry of graphics? . 59
3.9 Conclusions . 60
3.10 Acknowledgements . 61

4 Visualising statistical models: Removing the blindfold 63

Abstract . 63
4.1 Introduction . 63
4.2 What is a model? Terminology and definitions 65
4.3 Display the model in data-space . 66

4.3.1 Tools for visualising high-d data and models 66
4.3.2 Representing models as data . 67
4.3.3 Case study: MANOVA . 68
4.3.4 Case study: Classification models . 70
4.3.5 Case study: Hierarchical clustering 72

4.4 Collections are more informative than singletons 73
4.4.1 Case study: Linear models . 76

4.5 Don’t just look at the final result; explore how the algorithm works 78
4.5.1 Case study: Projection pursuit . 80
4.5.2 Case study: self organising maps . 81

4.6 Pulling it all together: visualising neural networks 84
4.6.1 Model in data space . 85
4.6.2 Looking at multiple models: ensemble 86
4.6.3 Looking at multiple models: random starts 86
4.6.4 Real data . 88

4.7 Conclusion . 89
4.8 Acknowledgements . 90

4

Contents

5 Conclusion and future plans 91
5.1 Practical tools . 91
5.2 Data analysis . 92
5.3 Impact . 92
5.4 Future work . 93
5.5 Final words . 93

Bibliography 94

5

Contents

6

List of Tables

2.1 First few rows of the French fries dataset . 32

3.1 Simple dataset. 38
3.2 Simple dataset with variables named according to the aesthetic that they use. 38
3.3 Simple dataset with variables mapped into aesthetic space. 39
3.4 Simple dataset faceted into subsets. 41
3.5 Local scaling, where data are scaled independently within each facet. Note

that each facet occupies the full range of positions, and only uses one colour.
Comparisons across facets are not necessarily meaningful. 42

3.6 faceted data correctly mapped to aesthetics. Note the similarity to Table 3.3. 42
3.7 Some statistical transformations provided by ggplot2. The user is able to

supplement this list in a straight forward manner. 45
3.8 Specification of Figure 3.11 in GPL (top) and ggplot2 (bottom) syntax. . . . 52

7

List of Tables

8

List of Figures

3.1 Graphics objects produced by (from left to right): geometric objects, scales
and coordinate system, plot annotations. 40

3.2 The final graphic, produced by combining the pieces in Figure 3.1. 40
3.3 A more complicated plot, which is faceted by variable D. Here the faceting

uses the same variable that is mapped to colour so that there is some redun-
dancy in our visual representation. This allows us to easily see how the data
has been broken into panels. 41

3.4 Mapping between components of Wilkinson’s grammar (left) and the lay-
ered grammar (right) . 43

3.5 Difference between GPL (top) and ggplot2 (bottom) parameterisations. . . 44
3.6 Four representations of an interval geom. From left to right: as a bar, as a

line, as a error bar, and (for continuous x) as a ribbon. 46
3.7 Examples of four scales from ggplot2. From left to right: continuous variable

mapped to size and colour, discrete variable mapped to shape and colour.
The ordering of scales seems upside-down, but this matches the labelling of
the y-axis: small values occur at the bottom. 47

3.8 Examples of axes and grid lines for three coordinate systems: Cartesian,
semi-log and polar. The polar coordinate system illustrates the difficulties
associated with non-Cartesian coordinates: it is hard to draw the axes cor-
rectly! . 48

3.9 Difference between GPL (top) and ggplot2 (bottom) parameterisations. Note
that z is included in the position specification for the GPL element. 48

3.10 (Left) Scatterplot of price vs carat. (Right) scatterplot of price vs carat, with
log-transformed scales, and a linear smooth layered on top. 49

3.11 Plot of birth rate minus death rate in selected countries. 51
3.12 Two histograms of diamond price produced by the histogram geom. (Left)

Default bin width, 30 bins. (Right) Custom $50 bin width reveals missing
data. 53

3.13 Variations on the histogram. Using a ribbon (left) to produce a frequency
polygon, or points (right) to produce an unnamed graphic. 54

3.14 Pie chart (left) and bullseye chart (right) showing the distribution of dia-
monds across clarity (I1 is worst, IF is best). A radial chart is the polar
equivalent of the spineplot: in the pie chart, categories have equal radius
and variable angle; in the radial chart, categories have equal angle and vari-
able radius. 55

9

List of Figures

3.15 Bar chart (left) and equivalent Coxcomb plot (right) of clarity distribution.
The Coxcomb plot is a bar chart in polar coordinates. Note that the cate-
gories abut in the Coxcomb, but are separated in the bar chart: this is an
example of a graphical convention that differs in different coordinate systems. 56

3.16 Transforming the data (left) vs transforming the scale (right). From a dis-
tance the plots look identical. Close inspection is required to see that the
scales and minor grid lines are different. Transforming the scale is to be
preferred as the axes are labelled according to the original data, and so are
easier to interpret. The presentation of the labels still requires work. 56

3.17 Transforming the scales (left) vs transforming the coordinate system (right).
Coordinate system transformations are the final step in drawing the graphic,
and affect the shape of geometric objects. Here a straight line becomes a
curve. 57

3.18 Linear model fit to raw data (left) vs linear model fit to logged data, then
back-transformed to original scale (right). 57

4.1 Three interesting projections from the grand tour of the wine data, illus-
trating (from left to right) an outlying blue point, an outlying red point,
and that the groups are fairly distinct. Animated version available at http:
//vimeo.com/823263. 67

4.2 (Far left) The active window containing the brush, and (right) the cor-
responding points brushed in another view, with three snapshots as we
move the brush down. Selected points are enlarged and coloured black.
Here brushing shows us that the data lies in a spiral in 3d: as we move
around the 2d curve from mid-right to bottom-left we move from high
to low values of the conditioned variable. Animated version available at
http://vimeo.com/823262. 68

4.3 Example where MANOVA would detect a difference between the groups, but
two ANOVAs would not. Groups are distinct in 2d (left), but overlap on both
margins (right). 69

4.4 Two projections of the wine data with 84% confidence regions around the
group means. Large points are data, small points are a sample on the surface
of the confidence region. While the confidence ellipsoids appear to overlap
in a few projections (left), in most views we see that the means are distant
(right). The groups may overlap, but their means are significantly different. 69

4.5 A 2d LDA classifier on the wine dataset. (Left) entire classification region
shown and (right) only boundary between regions. Data points are shown
as large circles. 70

4.6 Views of a 3d radial SVM classifier. From left to right: boundary, red, green
and blue regions. Variables used: color, phenols, and flavanoids. Animated
version available at http://vimeo.com/821284. 71

10

http://vimeo.com/823263
http://vimeo.com/823263
http://vimeo.com/823262
http://vimeo.com/821284

List of Figures

4.7 Informative views of a 5d SVM with polynomial kernel. It’s possible to see
that the boundaries are largely linear, with a “bubble” of blue pushing into
the red. A video presentation of this tour is available at . Variables used:
color, phenols, flavanoids, proline and dilution. Animated version available
from http://vimeo.com/823271. 71

4.8 Dendrograms from a hierarchical clustering performed on wine dataset. (Left)
Wards linkage and (right) single linkage. Points coloured by wine variety.
Wards linkage finds three clusters of roughly equal size, which correspond
fairly closely to three varieties of wine. Single linkage creates many clusters
by adding a single point, producing the dark diagonal stripes. 72

4.9 (Right) A informative projection of the flavanoid, colour, and proline vari-
ables for a hierarchical clustering of the wine data, with Wards linkage.
Edges are coloured by cluster, to match the majority variety. The varieties
are arranged in a rough U shape, with a little overlap, and some of the out-
lying blue points have been clustered with the red points. (Left) Only red
links and blue points shown to focus in on the points that clustered with the
wrong group. Animated version available at http://vimeo.com/768329. . . 73

4.10 Relationship between five levels of summary statistics for a collection of lin-
ear models. Arrows indicate one-to-many relationships, e.g. for each model-
level summary, there are many model-observation and model-estimate statis-
tics. 77

4.11 Model summary statistics, each scaled to [0, 1] to aid comparison. A grey
line connects the best models. The intercept only model is not displayed.
Degrees of freedom include calculation of intercept and variance. These
summary statistics suggest that a 6 df/4 variable model has the best tradeoff
between complexity and performance. 77

4.12 (Left) Raw coefficients are useful when variables are measured on a com-
mon scale. (Right) In this case, as with most data sets, looking at the stan-
dardised coefficients is more informative, as we can judge relative strength
on a common scale. The education variable has the most negative coeffi-
cients. Only catholic and infant mortality variables are consistently related
to increased fertility. 78

4.13 (Left) Parallel coordinates plot of standardised coefficient vs variable. (Right)
Scatterplot of R2 vs degrees of freedom. The four models with positive val-
ues of the agriculture coefficient have been highlighted in both plots. These
models all fit the data poorly, and include neither examination nor educa-
tion variables. 79

4.14 (Left) Scatterplot of R2 vs degrees of freedom. (Right) Parallel coordinates
plot of standardised coefficient vs variable. The two best models have been
highlighted in red in both plots. 79

4.15 Variation of the clumpy index over time. Simulated annealing with 20 ran-
dom starts, run until 40 steps or 400 tries. Red points indicate the four
highest values. 81

11

http://vimeo.com/823271
http://vimeo.com/768329

List of Figures

4.16 Four projections of the data with highest values of clumpiness, found by the
simulated annealing shown in Figure 4.15. Plots are ordered left to right
from highest to lowest. All these projections have good separation between
the green group at the others, but not between the red and blue groups.
Looking at the top 15 maxima does not find any projections that separate
these two groups. 81

4.17 One of the guided tour runs of Figure 4.15 with new guided tours launched
from particularly good projections. Red line shows path of original simu-
lated annealing. 82

4.18 (Left) A visualisation of the model space. Each node is represented by a by
a Coxcomb plot which represents the position of that node in the data space.
(Right) A projection of the model embedded in the data space. 82

4.19 (Top) Time series of mean distance from point to corresponding node, over
time. (Bottom) Distance to corresponding node for each individual point.
Note the difference in scale! Mean points are coloured by radius. Alpha is
not displayed, but deceases linearly from 0.05 to 0. 83

4.20 Iterations 1, 5, 25 and 100. After only one iteration the model seems to run
through the centre of groups fairly well, and changes little over the next 99
iterations. The net performs as we expect, extracting the 1d path between
the 3 groups. 84

4.21 Simple two class, two dimension, classification problem. The classes can be
completely separated by an easily seen non-linear boundary. 85

4.22 Visualising the classification surface. (Left) An image plot, showing proba-
bility that a new observation belongs to class B, and (right) a contour plot
showing five iso-probability contour lines (10%, 25%, 50%, 75%, 90%).
This classifier perfectly distinguishes the two classes, and is very sharp. . . . 85

4.23 Visualisation of the hidden nodes of a neural network. (Top) The probability
surfaces for the hidden nodes are displayed side-by-side. (Bottom) The 50%
probability contours from the nodes are overlaid on a single plot. We see
how each node identifies one linear break producing the final classification
boundary shown in Figure 4.22. 87

4.24 Summary of 600 neural networks with two, three and four hidden nodes.
(Top) Scatterplot of prediction accuracy vs internal criterion. (Bottom) His-
tograms of prediction accuracy. Most networks achieve an accuracy of 92%,
with just a few that do much better or much worse. 87

4.25 Classification boundaries from all 600 neural networks, broken down by
number of numbers and groups based on accuracy. Sub-linear models have
accuracy in [0%, 91.5%], linear in [91.5%, 92.5%], super-linear in [92.5%, 98%],
and excellent in [98%, 100%]. Most of the boundaries are linear, a few get
one of the bumps, and quite a few of the four node networks get the overall
form right, even if they are not perfectly accurate. 88

4.26 How the 50% probability line for each node changes with time. 100 runs
with 5 iterations between each. Nodes start similarly, move rapidly in the
first few iterations, then slow down, converging to surfaces that are quite
different. Animated version available at http://www.vimeo.com/767832. . 89

12

http://www.vimeo.com/767832

Acknowledgements

First and foremost, I would like to thank my major professors, Di Cook and Heike Hof-
mann. They have unstintingly shared their fantastic excitement about, and knowledge of,
statistical graphics and data analysis. They have helped me to have a truly international
education and have introduced me to many important figures in the field. They have kept
me motivated throughout my PhD and have bought me far too many coffees and cakes. I
can only hope that I can be as good towards my future students as they have been to me.

Many others have shaped this thesis. The generous support of Antony Unwin and Tony
Rossini allowed me to spend two summers in Europe learning from masters of statistical
graphics and computing. Discussions with Leland Wilkinson and Graham Wills (in person
and over email) have substantially deepened my understanding of the grammar. Philip
Dixon has never hesitated to share his encyclopaedic knowledge of statistical procedures,
and has provided me with so many interesting problems through the AES consulting group.
My entire committee have provided many interesting questions and have challenged me
to think about my personal philosophy of statistics.

Last but not least, I’d like to thank my family for their unceasing love and support (not
to mention the financial rescue packages!) and my friends, in Ames and in Auckland, for
keeping me sane!

13

List of Figures

14

Chapter 1

Introduction

This thesis describes three families of tools for exploring data and models. It is organised
in roughly the same way that you perform a data analysis. First, you get the data in a form
that you can work with; Section 1.1 introduces the reshape framework for restructuring
data, described fully in Chapter 2. Second, you plot the data to get a feel for what is
going on; Section 1.2 introduces the layered grammar of graphics, described in Chapter 3.
Third, you iterate between graphics and models to build a succinct quantitative summary
of the data; Section 1.3 introduces strategies for visualising models, discussed in Chapter 4.
Finally, you look back at what you have done, and contemplate what tools you need to do
better in the future; Chapter 5 summarises the impact of my work and my plans for the
future.

The tools developed in this thesis are firmly based in the philosophy of exploratory data
analysis (Tukey, 1977). With every view of the data, we strive to be both curious and
sceptical. We keep an open mind towards alternative explanations, never believing we
have found the best model. Due to space limitations, the following papers only give a
glimpse at this philosophy of data analysis, but it underlies all of the tools and strategies
that are developed. A fuller data analysis, using many of the tools developed in this thesis,
is available in Hobbs et al. (To appear).

1.1 Reshaping data

While data is a crucial part of statistics, it is not often that the form of data itself is discussed.
Most of our methods assume that the data is a rectangular matrix, with observations in the
rows and variables in the columns. Unfortunately, this is rarely how people collect and
store data. Client data is never in the correct format and often requires extensive work to
get it into the right form for analysis.

Data reshaping is not a traditional statistical topic, but it is an important part of data
analysis. Unfortunately it has largely been overlooked in the statistical literature. It is dis-
cussed in the computer science and database literature (Gray et al., 1997; Shoshani, 1997)
but these communities fail to address particularly statistical concerns, such as missing data
and the need to adjust the roles of rows and columns for particular analyses.

Chapter 2 describes a framework that encompasses statistical ideas of data reshaping
and aggregating. The reshape framework divides the task into two components, first de-
scribing the structure of the input data (melting) and then the structure of the output

15

1 Introduction

(casting). This framework is implemented in the reshape package and the chapter has
been published in the Journal of Statistical Software (Wickham, 2007c).

1.2 Plotting data

Plotting data is a critical part of exploratory data analysis, helping us to see the bulk of our
data, as well as highlighting the unusual. As Tukey once said: “numerical quantities focus
on expected values, graphical summaries on unexpected values.”

Unfortunately, current open-source systems for creating graphics are sorely lacking from
a practical perspective. The R environment for statistical computing provides the richest set
of graphical tools, split into two libraries: base graphics (R Development Core Team, 2007)
and lattice (Sarkar, 2006). Base graphics has a primitive pen on paper model, and while
lattice is a step up, it has fundamental limitations. Compared to base graphics, lattice takes
care of many of the minor technical details that require manual tweaking in base graphics,
in particular providing matching legends and maintaining common scales across multiple
plots. However, attempting to extend lattice raises fundamental questions: why are there
separate functions for scatterplot and dotplots when they seem so similar? Why can you
only log transform scales and not use other functions? What makes adding error bars to
a plot so complicated? Extending lattice also reveals another problem. Once a lattice plot
object is created, it is very difficult to modify it in a maintainable way: the components of
the lattice model of graphics (Becker et al., 1996) are designed for a very specific type of
display, and do not generalise well to other graphics we may wish to produce.

To do better, we need a framework that incorporates a very wide range of graphics.
There have been two main attempts to develop such a framework of statistical graphics, by
Bertin and Wilkinson. Bertin (1983) focuses on geographical visualisation, but also lays
out principles for sound graphical construction, including suggested mappings between
different types of variables and visual properties. All graphics are hand drawn, and while
the underlying principles are sound, the practice of drawing graphics on a computer is
rather different. The Grammar of Graphics (Wilkinson, 2005) is more modern and presents
a way to concisely and formally describe a graphic. Instead of coming up with a new
name for your graphic, and giving a lengthy, textual description, you can instead describe
the exact components which define your graphic. The grammar is composed of seven
components, as follows:

• Data. The most important part of any plot. Data reshaping is the responsibility of
the algebra, which consists of three operators (nesting, crossing and blending).

• Transformations create new variables from functions of existing variables, e.g. log-
transforming a variable.

• Scales control the mapping between variables and aesthetic properties like colour
and size.

• The geometric element specifies the type of object used to display the data, e.g.
points, lines, bars.

16

1.3 Visualising models

• A statistic optionally summarises the data. Statistics are critical parts of certain
graphics (e.g. the bar chart and histogram).

• The coordinate system is responsible for computing positions on the 2d plane of
the plotting surface, which is usually the Cartesian coordinate system. A subset of
the coordinate system is facetting, which displays different subsets of the data in
small multiples, generalisation of trellising (Becker et al., 1996) which allows for
non-rectangular layout.

• Guides, axes and legends, enable the reading of data values from the graph.

Wilkinson’s grammar successfully describes a broad range of graphics, but is hampered
by a lack of an available implementation: we can not use the grammar or test its claims.
These issues are discussed by Cox (2007), which provides a comprehensive review of the
book.

To resolve these two problems, I implemented the grammar in R. This started as a direct
implementation of the ideas in the book, but as I proceeded it became clear that there
are areas in which the grammar could be improved. This lead to the development of
a grammar of layered graphics, described in Chapter 3. The work extends and refines
the work of Wilkinson, and is implemented in the R package ggplot2 (Wickham, 2008).
This chapter has been tentatively accepted by the Journal of Computational and Graphical
Statistics, and a revised version will be resubmitted shortly.

1.3 Visualising models

Graphics give us a qualitative feel for the data, helping us to make sense of what’s going
on. That is often not enough: many times we also need a precise mathematical model
which allows us to make predictions with quantifiable uncertainty. A model is also useful
as a concise mathematical summary, succinctly describing the main features of the data.

To build a good model, we need some way to compare it to the data and investigate
how well it captures the salient features. To understand the model and how well it fits the
data, we need tools for exploratory model analysis Unwin et al. (2003); Urbanek (2004).
Graphics and models make different assumptions and have different biases. Models are not
prone to human perceptual biases caused by the simplifying assumptions we make about
the world, but they do have their own set of simplifying assumptions, typically required
to make mathematical analysis tractable. Using one to validate the other allows us to
overcome the limitations of each.

Chapter 4 describes three strategies for visualising statistical models. These strategies
emphasise displaying the model in the context of the data, looking at many models and ex-
ploring the process of model fitting, as well as the final result. This chapter pulls together
my experience building visualisations for classification, clustering and ensembles of linear
models, as implemented by the R packages clusterfly (Wickham, 2007b), classifly
(Wickham, 2007a), and meifly (Wickham, 2007a). I plan to submit this paper to Compu-
tational Statistics.

17

1 Introduction

18

Chapter 2

Reshaping data with the reshape package

Abstract

This paper presents the reshape package for R, which provides a common framework for
many types of data reshaping and aggregation. It uses a paradigm of ‘melting’ and ‘cast-
ing’, where the data are ‘melted’ into a form which distinguishes measured and identifying
variables, and then ‘cast’ into a new shape, whether it be a data frame, list, or high dimen-
sional array. The paper includes an introduction to the conceptual framework, practical
advice for melting and casting, and a case study.

2.1 Introduction

Reshaping data is a common task in real-life data analysis, and it’s usually tedious and
frustrating. You’ve struggled with this task in Excel, in SAS, and in R: how do you get your
clients’ data into the form that you need for summary and analysis? This paper describes
version 0.8.1 of the reshape package for R (R Development Core Team, 2007), which
presents a new approach that aims to reduce the tedium and complexity of reshaping data.

Data often has multiple levels of grouping (nested treatments, split plot designs, or re-
peated measurements) and typically requires investigation at multiple levels. For example,
from a long term clinical study we may be interested in investigating relationships over
time, or between times or patients or treatments. To make your job even more difficult,
the data probably has been collected and stored in a way optimised for ease and accuracy
of collection, and in no way resembles the form you need for statistical analysis. You need
to be able to fluently and fluidly reshape the data to meet your needs, but most software
packages make it difficult to generalise these tasks, and new code needs to be written for
each new case.

While you’re probably familiar with the idea of reshaping, it is useful to be a little more
formal. Data reshaping involves a rearrangement of the form, but not the content, of the
data. Reshaping is a little like creating a contingency table, as there are many ways to
arrange the same data, but it is different in that there is no aggregation involved. The
tools presented in this paper work equally well for reshaping, retaining all existing data,
and aggregating, summarising the data, and later we will explore the connection between
the two.

In R, there are a number of general functions that can aggregate data, for example

19

2 Reshaping data with the reshape package

tapply, by and aggregate, and a function specifically for reshaping data, reshape. Each
of these functions tends to deal well with one or two specific scenarios, and each requires
slightly different input arguments. In practice, you need careful thought to piece together
the correct sequence of operations to get your data into the form that you want. The
reshape package grew out of my frustrations with reshaping data for consulting clients,
and overcomes these problems with a general conceptual framework that uses just two
functions: melt and cast.

The paper introduces this framework, which will help you think about the fundamental
operations that you perform when reshaping and aggregating data, but the main emphasis
is on the practical tools, detailing the many forms of data that melt can consume and that
cast can produce. A few other useful functions are introduced, and the paper concludes
with a case study, using reshape in a real-life example.

2.2 Conceptual framework

To help us think about the many ways we might rearrange a data set, it is useful to think
about data in a new way. Usually, we think about data in terms of a matrix or data frame,
where we have observations in the rows and variables in the columns. For the purposes of
reshaping, we can divide the variables into two groups: identifier and measured variables.

1. Identifier (id) variables identify the unit that measurements take place on. Id vari-
ables are usually discrete, and are typically fixed by design. In ANOVA notation (Yijk),
id variables are the indices on the variables (i, j, k); in database notation, id variables
are a composite primary key.

2. Measured variables represent what is measured on that unit (Y).

It is possible to take this abstraction one step further and say there are only id variables and
a value, where the id variables also identify what measured variable the value represents.
For example, we could represent this data set, which has two id variables (subject and
time):

subject time age weight height
1 John Smith 1 33 90 2
2 Mary Smith 1 2

as:

subject time variable value
1 John Smith 1 age 33
2 John Smith 1 weight 90
3 John Smith 1 height 2
4 Mary Smith 1 height 2

where each row now represents one observation of one variable. This operation is called
melting and produces ‘molten’ data. Compared to the original data set, the molten data
has a new id variable ‘variable’, and a new column ‘value’, which represents the value of

20

2.3 Melting data

that observation. We now have the data in a form in which there are only id variables and
a value.

From this form, we can create new forms by specifying which variables should form the
columns and rows. In the original data frame, the ‘variable’ id variable forms the columns,
and all identifiers form the rows. We don’t have to specify all the original id variables in
the new form. When we don’t, the combination of id variables will no longer identify one
value, but many, and we will aggregate the data as well as reshaping it. The function that
reduces these many numbers to one is called an aggregation function.

The following section describes the melting operation in detail, as implemented in the
reshape package.

2.3 Melting data

Melting a data frame is a little trickier in practice than it is in theory. This section describes
the practical use of the melt function in R.

In R, melting is a generic operation that can be applied to different data storage objects
including data frames, arrays and matrices. This section describes the most common case,
melting a data frame. Reshape also provides support for less common data structures,
including high-dimensional arrays and lists of data frames or matrices. The built-in docu-
mentation for melt, ?melt, lists all objects that can be melted, and provides links to more
details. ?melt.data.frame documents the most common case of melting a data frame.

The melt function needs to know which variables are measured and which are identifiers.
This distinction should be obvious from your design: if you fixed the value, it is an id
variable. If you don’t specify them explicitly, melt will assume that any factor or integer
column is an id variable. If you specify only one of measured and identifier variables,
melt assumes that all the other variables are the other sort. For example, with the smiths
dataset, as shown above, all the following calls have the same effect:

melt(smiths, id=c("subject","time"),
measured=c("age","weight","height"))

melt(smiths, id=c("subject","time"))
melt(smiths, id=1:2)
melt(smiths, measured=c("age","weight","height"))
melt(smiths)

R> melt(smiths)
subject time variable value

1 John Smith 1 age 33.00
2 Mary Smith 1 age NA
3 John Smith 1 weight 90.00
4 Mary Smith 1 weight NA
5 John Smith 1 height 1.87
6 Mary Smith 1 height 1.54

(If you want to run these functions yourself, the smiths dataset is included in the reshape
package)

21

2 Reshaping data with the reshape package

Melt doesn’t make many assumptions about your measured and id variables: there can
be any number, in any order, and the values within the columns can be in any order too. In
the current implementation, there is only one assumption that melt makes: all measured
values must be of the same type, e.g. numeric, factor, date. We need this assumption
because the molten data is stored in a R data frame, and the value column can be only one
type. Most of the time this isn’t a problem as there are few cases where it makes sense to
combine different types of variables in the cast output.

2.3.1 Melting data with id variables encoded in column names

A more complicated case is where the variable names contain information about more
than one variable. For example, here we have an experiment with two treatments (A and
B) with data recorded on two time points (1 and 2), and the column names represent both
the treatment and the time at which the measurement was taken. It is important to make
these implicit variables explicit as part of the data preparation process, as it ensures all id
variables are represented in the same way.

R> trial <- data.frame(id = factor(1:4), A1 = c(1, 2, 1, 2),
+ A2 = c(2, 1, 2, 1), B1 = c(3, 3, 3, 3))
R> (trialm <- melt(trial))

id variable value
1 1 A1 1
2 2 A1 2
3 3 A1 1
4 4 A1 2
5 1 A2 2
6 2 A2 1
7 3 A2 2
8 4 A2 1
9 1 B1 3
10 2 B1 3
11 3 B1 3
12 4 B1 3

To fix this we need to create a time and treatment column after melting:

R> (trialm <- cbind(trialm,
+ colsplit(trialm$variable, names = c("treatment", "time"))
+))

id variable value treatment time
1 1 A1 1 A 1
2 2 A1 2 A 1
3 3 A1 1 A 1
4 4 A1 2 A 1
5 1 A2 2 A 2

22

2.3 Melting data

6 2 A2 1 A 2
7 3 A2 2 A 2
8 4 A2 1 A 2
9 1 B1 3 B 1
10 2 B1 3 B 1
11 3 B1 3 B 1
12 4 B1 3 B 1

This uses the colsplit function described in ?colsplit, which deals with the simple
case where variable names are concatenated together with some separator. In general
variable names can be constructed in many different ways and may need a custom regular
expression to tease apart multiple components.

2.3.2 Already molten data

Sometimes your data may already be in molten form. In this case, all that is necessary is
to ensure that the value column is named ‘value’. See ?rename for one way to do this.

2.3.3 Missing values in molten data

Finally, it’s important to discuss what happens to missing values when you melt your data.
Explicitly coded missing values usually denote sampling zeros rather than structural miss-
ings, which are usually implicit in the data. Clearly a structural missing depends on the
structure of the data and as we are changing the structure of the data, we might expect
some changes to structural missings. Structural missings change from implicit to explicit
when we change from a nested to a crossed structure. For example, imagine a dataset with
two id variables, sex (male or female) and pregnant (yes or no). When the variables are
nested (ie. both on the same dimension) then the missing value ‘pregnant male’ is encoded
by its absence. However, in a crossed view, we need to add an explicit missing as there will
now be a cell which must be filled with something. This is illustrated below:

sex pregnant value
1 male no 10
2 female no 14
3 female yes 4

sex no yes
1 female 14 4
2 male 10

In this vein, one way to describe the molten form is that it is perfectly nested: there
are no crossings. For this reason, it is possible to encode all missing values implicitly, by
omitting that combination of id variables, rather than explicitly, with an NA value. However,
you may expect these to be in the data frame, and it is a bad idea for a function to throw
data away by default, so you need to explicitly state that implicit missing values are ok. In
most cases it is safe to get rid of them, which you can do by using na.rm = TRUE in the
call to melt. The two different results are illustrated below.

R> melt(smiths)
subject time variable value

23

2 Reshaping data with the reshape package

1 John Smith 1 age 33.00
2 Mary Smith 1 age NA
3 John Smith 1 weight 90.00
4 Mary Smith 1 weight NA
5 John Smith 1 height 1.87
6 Mary Smith 1 height 1.54

R> melt(smiths, na.rm = TRUE)
subject time variable value

1 John Smith 1 age 33.00
2 John Smith 1 weight 90.00
3 John Smith 1 height 1.87
4 Mary Smith 1 height 1.54

If you don’t use na.rm = TRUE you will need to make sure to account for possible missing
values when aggregating (Section 2.4.4, page 28), for example, by supplying na.rm =
TRUE to mean, sum or var.

2.4 Casting molten data

Once you have your data in the molten form, you can use cast to rearrange it into the
shape that you want. The cast function has two required arguments:

• data: the molten data set to reshape

• formula: the casting formula which describes the shape of the output format (if you
omit this argument, cast will return the data frame in the classic form with measured
variables in the columns, and all other id variables in the rows)

Most of this section explains the different casting formulas you can use. It also explains
the use of two other optional arguments to cast:

• fun.aggregate: aggregation function to use, if necessary

• margins: what marginal values should be computed

2.4.1 Basic use

The casting formula has this basic form col_var_1 + col_var_2 ~ row_var_1 + row_var_2.
This describes which variables you want to appear in the columns and which in the rows.
These variables need to come from the molten data frame or be one of the following special
variables:

• . corresponds to no variable, useful when creating formulas of the form . ~ x or
x ~ ., that is, a single row or column.

24

2.4 Casting molten data

• ... represents all variables not already included in the casting formula. Including
this in your formula will guarantee that no aggregation occurs. There can be only
one ... in a cast formula.

• result variable is used when your aggregation formula returns multiple results.
See Section 2.4.6, page 29 for more details.

The first set of examples illustrate reshaping: all the original variables are used. The first
two examples show two ways to put the data back into its original form, with measured
variables in the columns and all other id variables in the rows. The second and third
examples are variations of this form where we put subject and then time in the columns.

R> cast(smithsm, time + subject ~ variable)
time subject age weight height

1 1 John Smith 33 90 1.87
2 1 Mary Smith NA NA 1.54

R> cast(smithsm, ... ~ variable)
subject time age weight height

1 John Smith 1 33 90 1.87
2 Mary Smith 1 NA NA 1.54

R> cast(smithsm, ... ~ subject)
time variable John Smith Mary Smith

1 1 age 33.00 NA
2 1 weight 90.00 NA
3 1 height 1.87 1.54

R> cast(smithsm, ... ~ time)
subject variable 1

1 John Smith age 33.00
2 John Smith weight 90.00
3 John Smith height 1.87
4 Mary Smith height 1.54

Because of the limitations of R data frames, it is not possible to label the columns and
rows completely unambiguously. For example, note the last three examples where the data
frame has no indication of the name of the variable that forms the columns. Additionally,
some data values do not make valid column names, e.g. ’John Smith’. To use these
within R, you often need to surround them with backticks, e.g. df$‘John Smith‘.

The following examples demonstrate aggregation. Aggregation occurs when the combi-
nation of variables in the cast formula does not identify individual observations. In this
case an aggregation function reduces the multiple values to a single one. See Section 2.4.4,
page 28 for more details. These examples use the french fries dataset included in the
reshape package. It is data from a sensory experiment on french fries, where different

25

2 Reshaping data with the reshape package

types of frier oil, treatment, were tested by different people, subject, over ten weeks
time.

The most severe aggregation is reduction to a single number, described by the cast for-
mula . ~ .

R> ffm <- melt(french_fries, id = 1:4, na.rm = TRUE)

R> cast(ffm, . ~ ., length)
value (all)

1 (all) 3471

Alternatively, we can summarise by the values of a single variable, either in the rows or
columns.

R> cast(ffm, treatment ~ ., length)
treatment (all)

1 1 1159
2 2 1157
3 3 1155

R> cast(ffm, . ~ treatment, length)
value 1 2 3

1 (all) 1159 1157 1155

The following casts show the different ways we can combine two variables: one each in
row and column, both in row or both in column. When multiple variables appear in the
column specification, their values are concatenated to form the column names.

R> cast(ffm, rep ~ treatment, length)
rep 1 2 3

1 1 579 578 575
2 2 580 579 580

R> cast(ffm, treatment ~ rep, length)
treatment 1 2

1 1 579 580
2 2 578 579
3 3 575 580

R> cast(ffm, treatment + rep ~ ., length)
treatment rep (all)

1 1 1 579
2 1 2 580
3 2 1 578

26

2.4 Casting molten data

4 2 2 579
5 3 1 575
6 3 2 580

R> cast(ffm, rep + treatment ~ ., length)
rep treatment (all)

1 1 1 579
2 1 2 578
3 1 3 575
4 2 1 580
5 2 2 579
6 2 3 580

R> cast(ffm, . ~ treatment + rep, length)
value 1_1 1_2 2_1 2_2 3_1 3_2

1 (all) 579 580 578 579 575 580

As illustrated above, the order in which the row and column variables are specified is
very important. As with a contingency table, there are many possible ways of displaying
the same variables, and the way that they are organised will reveal different patterns
in the data. Variables specified first vary slowest, and those specified last vary fastest.
Because comparisons are made most easily between adjacent cells, the variable you are
most interested in should be specified last, and the early variables should be thought of
as conditioning variables. An additional constraint is that displays have limited width but
essentially infinite length, so variables with many levels may need to be specified as row
variables.

2.4.2 High-dimensional arrays

You can use more than one ~ to create structures with more than two dimensions. For
example, a cast formula of x ~ y ~ z will create a 3D array with x, y, and z dimensions.
You can also still use multiple variables in each dimension: x + a ~ y + b ~ z + c. The
following example shows the resulting dimensionality of various casting formulas. I don’t
show the actual output here because it is too large. You may want to verify the results for
yourself:

R> dim(cast(ffm, time ~ variable ~ treatment, mean))
[1] 10 5 3

R> dim(cast(ffm, time ~ variable ~ treatment + rep, mean))
[1] 10 5 6

R> dim(cast(ffm, time ~ variable ~ treatment ~ rep, mean))
[1] 10 5 3 2

27

2 Reshaping data with the reshape package

R> dim(cast(ffm, time ~ variable ~ subject ~ treatment ~ rep))
[1] 10 5 12 3 2

R> dim(cast(ffm, time ~ variable ~ subject ~ treatment ~
+ result_variable, range))
[1] 10 5 12 3 2

The high-dimensional array form is useful for sweeping out margins with sweep, or
modifying with iapply (Section 2.5, page 30).

The ~ operator is a type of crossing operator, as all combinations of the variables will
appear in the output table. Compare this to the + operator, where only combinations that
appear in the data will appear in the output. For this reason, increasing the dimensionality
of the output, i.e. using more ~s, will generally increase the number of structural missings.
This is illustrated below:

R> sum(is.na(cast(ffm, ... ~ .)))
[1] 0

R> sum(is.na(cast(ffm, ... ~ rep)))
[1] 9

R> sum(is.na(cast(ffm, ... ~ subject)))
[1] 129

R> sum(is.na(cast(ffm, ... ~ time ~ subject ~ variable ~ rep)))
[1] 129

Margins of high-dimensional arrays are currently unsupported.

2.4.3 Lists

You can also use cast to produce lists. This is done with the | operator. Using multiple
variables after | will create multiple levels of nesting.

R> cast(ffm, treatment ~ rep | variable, mean)
$potato

treatment 1 2
1 1 6.772414 7.003448
2 2 7.158621 6.844828
3 3 6.937391 6.998276

$buttery
treatment 1 2

1 1 1.797391 1.762931

28

2.4 Casting molten data

2 2 1.989474 1.958621
3 3 1.805217 1.631034

$grassy
treatment 1 2

1 1 0.4456897 0.8525862
2 2 0.6905172 0.6353448
3 3 0.5895652 0.7706897

$rancid
treatment 1 2

1 1 4.283621 3.847414
2 2 3.712069 3.537069
3 3 3.752174 3.980172

$painty
treatment 1 2

1 1 2.727586 2.439655
2 2 2.315517 2.597391
3 3 2.038261 3.008621

Space considerations necessitate only printing summaries of the following lists, but you
can see ?cast for full examples.

R> length(cast(ffm, treatment ~ rep | variable, mean))
[1] 5

R> length(cast(ffm, treatment ~ rep | subject, mean))
[1] 12

R> length(cast(ffm, treatment ~ rep | time, mean))
[1] 10

R> sapply(cast(ffm, treatment ~ rep | time + variable, mean),
+ length)
1 2 3 4 5 6 7 8 9 10
5 5 5 5 5 5 5 5 5 5

This form is useful for input to lapply and sapply, and completes the discussion of
the different types of output you can create with reshape. The remainder of the section
discusses aggregation.

29

2 Reshaping data with the reshape package

2.4.4 Aggregation

Whenever there are fewer cells in the cast form than there were in the original data format,
an aggregation function is necessary. This formula reduces multiple cells into one, and is
supplied in the fun.aggregate argument, which defaults (with a warning) to length. Ag-
gregation is a very common and useful operation and the case studies section (Section 2.6,
page 31) contains further examples of aggregation.

The aggregation function will be passed the vector of a values for one cell. It may take
other arguments, passed in through ... in cast. Here are a few examples:

R> cast(ffm, . ~ treatment)
value 1 2 3

1 (all) 1159 1157 1155

R> cast(ffm, . ~ treatment, function(x) length(x))
value 1 2 3

1 (all) 1159 1157 1155

R> cast(ffm, . ~ treatment, length)
value 1 2 3

1 (all) 1159 1157 1155

R> cast(ffm, . ~ treatment, sum)
value 1 2 3

1 (all) 3702.4 3640.4 3640.2

R> cast(ffm, . ~ treatment, mean)
value 1 2 3

1 (all) 3.194478 3.146413 3.151688

R> cast(ffm, . ~ treatment, mean, trim = 0.1)
value 1 2 3

1 (all) 2.595910 2.548112 2.589081

You can also display margins and use functions that return multiple results. See the next
two sections for details.

2.4.5 Margins

It’s often useful to be able to add statistics to the margins of your tables, for example,
as suggested by Chatfield (1995). You can tell cast to display all margins with margins
= TRUE, or list individual variables in a character vector, margins=c("subject","day").
There are two special margins, "grand col" and "grand row", which display margins for
the overall columns and rows respectively. Margins are indicated with ‘(all)’ as the value
of the variable that was margined over.

30

2.4 Casting molten data

These examples illustrate some of the possible ways to use margins. I’ve used sum as
the aggregation function so that you can check the results yourself. Note that changing
the order and position of the variables in the cast formula affects the margins that can be
computed.

R> cast(ffm, treatment ~ ., sum, margins = TRUE)
treatment (all)

1 1 3702.4
2 2 3640.4
3 3 3640.2
4 (all) 10983.0

R> cast(ffm, treatment ~ ., sum, margins = "grand_row")
treatment (all)

1 1 3702.4
2 2 3640.4
3 3 3640.2
4 (all) 10983.0

R> cast(ffm, treatment ~ rep, sum, margins = TRUE)
treatment 1 2 (all)

1 1 1857.3 1845.1 3702.4
2 2 1836.5 1803.9 3640.4
3 3 1739.1 1901.1 3640.2
4 (all) 5432.9 5550.1 10983.0

R> cast(ffm, treatment + rep ~ ., sum, margins = TRUE)
treatment rep (all)

1 1 1 1857.3
2 1 2 1845.1
3 1 (all) 3702.4
4 2 1 1836.5
5 2 2 1803.9
6 2 (all) 3640.4
7 3 1 1739.1
8 3 2 1901.1
9 3 (all) 3640.2
10 (all) (all) 10983.0

2.4.6 Returning multiple values

Occasionally it is useful to aggregate with a function that returns multiple values, e.g.
range or summary. This can be thought of as combining multiple casts each with an
aggregation function that returns one variable. To display this we need to add an extra
variable, result variable that differentiates the multiple return values. By default, this

31

2 Reshaping data with the reshape package

new id variable will be shown as the last column variable, but you can specify the position
manually by including result variable in the casting formula.

R> cast(ffm, treatment ~ ., summary)
treatment Min. X1st.Qu. Median Mean X3rd.Qu. Max.

1 1 0 0 1.6 3.194 5.4 14.9
2 2 0 0 1.4 3.146 5.4 14.9
3 3 0 0 1.5 3.152 5.7 14.5

R> cast(ffm, treatment ~ ., quantile, c(0.05, 0.5, 0.95))
treatment X5. X50. X95.

1 1 0 1.6 11.0
2 2 0 1.4 10.7
3 3 0 1.5 10.6

R> cast(ffm, treatment ~ rep, range)
treatment 1_X1 1_X2 2_X1 2_X2

1 1 0 14.9 0 14.3
2 2 0 14.9 0 13.7
3 3 0 14.5 0 14.0

You can also supply a vector of functions:

R> cast(ffm, treatment ~ rep, c(min, max))
treatment 1_min 1_max 2_min 2_max

1 1 0 14.9 0 14.3
2 2 0 14.9 0 13.7
3 3 0 14.5 0 14.0

R> cast(ffm, treatment ~ result_variable + rep, c(min, max))
treatment min_1 min_2 max_1 max_2

1 1 0 0 14.9 14.3
2 2 0 0 14.9 13.7
3 3 0 0 14.5 14.0

2.5 Other convenience functions

There are many other problems encountered in practical analysis that can be painful to
overcome without some handy functions. This section describes some of the functions that
reshape provides to make dealing with data a little bit easier. More details are provided in
the respective documentation.

32

2.6 Case study: French fries

2.5.1 Factors

• combine factor combines levels in a factor. For example, if you have many small
levels you can combine them together into an ‘other’ level.

• reorder factor reorders a factor based on another variable. For example, you can
order a factor by the average value of a variable for each level.

2.5.2 Data frames

• rescaler performs column-wise rescaling of data frames, with a variety of different
scaling options including rank, common range and common variance. It automati-
cally preserves non-numeric variables.

• merge.all merges multiple data frames together, an extension of merge in base R. It
assumes that all columns with the same name should be equated.

• rbind.fill rbinds two data frames together, filling in any missing columns in the
second data frame with missing values.

2.5.3 Miscellaneous

• round any allows you to round a number to any degree of accuracy, e.g. to the near-
est 1, 10, or any other number.

• iapply is an idempotent version of the apply function. It is idempotent in the sense
that iapply(x, a, function(x) x) is guaranteed to return x for any value of a.
This is useful when dealing with high-dimensional arrays as it will return the array
in the same shape that you sent it. It also supports functions that return matrices or
arrays in a sensible manner.

2.6 Case study: French fries

These data are from a sensory experiment investigating the effect of different frying oils on
the taste of French fries over time. There are three different types of frying oils (treatment),
each in two different fryers (rep), tested by 12 people (subject) on 10 different days (time).
The sensory attributes recorded, in order of desirability, are potato, buttery, grassy, rancid,
painty flavours. The first few rows of the data are shown in Table 2.1.

We first melt the data to use in subsequent analyses.

R> ffm <- melt(french_fries, id = 1:4, na.rm = TRUE)
R> head(ffm)

time treatment subject rep variable value
1 1 1 3 1 potato 2.9
2 1 1 3 2 potato 14.0
3 1 1 10 1 potato 11.0
4 1 1 10 2 potato 9.9
5 1 1 15 1 potato 1.2

33

2 Reshaping data with the reshape package

time trt subject rep potato buttery grassy rancid painty
1 1 3 1.00 2.90 0.00 0.00 0.00 5.50
1 1 3 2.00 14.00 0.00 0.00 1.10 0.00
1 1 10 1.00 11.00 6.40 0.00 0.00 0.00
1 1 10 2.00 9.90 5.90 2.90 2.20 0.00
1 1 15 1.00 1.20 0.10 0.00 1.10 5.10
1 1 15 2.00 8.80 3.00 3.60 1.50 2.30

Table 2.1: First few rows of the French fries dataset

6 1 1 15 2 potato 8.8

2.6.1 Investigating balance

One of the first things we might be interested in is how balanced this design is, and if
there are many different missing values. We are interested in missingness, so we removed
explicit missing values to put structural and non-structural missings on an equal footing.

We can investigate balance using length as our aggregation function:

R> cast(ffm, subject ~ time, function(x) 30 - length(x),
+ margins=T)

subject 1 2 3 4 5 6 7 8 9 10 (all)
1 3 30 30 30 30 30 30 30 30 30 NA 270
2 10 30 30 30 30 30 30 30 30 30 30 300
3 15 30 30 30 30 25 30 30 30 30 30 295
4 16 30 30 30 30 30 30 30 29 30 30 299
5 19 30 30 30 30 30 30 30 30 30 30 300
6 31 30 30 30 30 30 30 30 30 NA 30 270
7 51 30 30 30 30 30 30 30 30 30 30 300
8 52 30 30 30 30 30 30 30 30 30 30 300
9 63 30 30 30 30 30 30 30 30 30 30 300
10 78 30 30 30 30 30 30 30 30 30 30 300
11 79 30 30 30 30 30 30 29 28 30 NA 267
12 86 30 30 30 30 30 30 30 30 NA 30 270
13 (all) 360 360 360 360 355 360 359 357 300 300 3471

Each subject should have had 30 observations at each time, so by displaying the differ-
ence we can more easily see where the data are missing.

R> cast(ffm, subject ~ time, function(x) 30 - length(x))
subject 1 2 3 4 5 6 7 8 9 10

1 3 0 0 0 0 0 0 0 0 0 NA
2 10 0 0 0 0 0 0 0 0 0 0
3 15 0 0 0 0 5 0 0 0 0 0

34

2.6 Case study: French fries

4 16 0 0 0 0 0 0 0 1 0 0
5 19 0 0 0 0 0 0 0 0 0 0
6 31 0 0 0 0 0 0 0 0 NA 0
7 51 0 0 0 0 0 0 0 0 0 0
8 52 0 0 0 0 0 0 0 0 0 0
9 63 0 0 0 0 0 0 0 0 0 0
10 78 0 0 0 0 0 0 0 0 0 0
11 79 0 0 0 0 0 0 1 2 0 NA
12 86 0 0 0 0 0 0 0 0 NA 0

There are two types of missing observations here: a non-zero value, or a missing value.
A missing value represents a subject with no records at a given time point; they did not
turn up on that day. A non-zero value represents a subject who did turn up, but perhaps
due to a recording error, missed some observations.

We can also easily see the range of values that each variable takes:

R> cast(ffm, variable ~ ., c(min, max))
variable min max

1 potato 0 14.9
2 buttery 0 11.2
3 grassy 0 11.1
4 rancid 0 14.9
5 painty 0 13.1

Better than just looking at the ranges is to look at the distribution, with a histogram.
Here we use the molten data directly, facetting (aka conditioning or trellising) by the
measured variable.

R> qplot(value, data=ffm, geom="histogram",
+ facets = . ~ variable, binwidth=1)

2.6.2 Tables of means

When creating these tables, it is a good idea to restrict the number of digits displayed. You
can do this globally, by setting options(digits=2), or locally, by using round any.

35

2 Reshaping data with the reshape package

Since the data are fairly well balanced, we can do some (crude) investigation as to the
effects of the different treatments. For example, we can calculate the overall means for
each sensory attribute for each treatment:

R> options(digits = 2)
R> cast(ffm, treatment ~ variable, mean,
+ margins = c("grand_col", "grand_row"))

treatment potato buttery grassy rancid painty (all)
1 1 6.9 1.8 0.65 4.1 2.6 3.2
2 2 7.0 2.0 0.66 3.6 2.5 3.1
3 3 7.0 1.7 0.68 3.9 2.5 3.2
4 (all) 7.0 1.8 0.66 3.9 2.5 3.2

It doesn’t look like there is any effect of treatment. This could be confirmed using a more
formal analysis of variance.

2.6.3 Investigating inter-rep reliability

Since we have a repetition over treatments, we might be interested in how reliable each
subject is: are the scores for the two repetitions highly correlated? We can explore this
graphically by reshaping the data and plotting the data. Our graphical tools work best
when the things we want to compare are in different columns, so we’ll cast the data to
have a column for each rep. In quality control literature, this is known as a Youden plot
(Youden, 1959).

The correlation looks strong for potatoey and buttery, and poor for rancid and painty.
Grassy has many low values, particularly zeros, as seen in the histogram. This reflects the
training the participants received for the trial: they were trained to taste potato and buttery
flavours, their grassy reference flavour was parsley (very grassy compared to French fries),
and they were not trained on rancid or painty flavours.

If we wanted to explore the relationships between subjects or times or treatments we
could follow similar steps.

36

2.7 Where to go next

2.7 Where to go next

You can find a quick reference and more examples in ?melt and ?cast. You can find
some additional information on the reshape website http://had.co.nz/reshape, includ-
ing copies of presentations and papers related to reshape.

I would like to include more case studies of reshape in use. If you have an interesting ex-
ample, or there is something you are struggling with please let me know: h.wickham@gmail.com.

2.8 Acknowledgements

I’d like to thank Antony Unwin for his comments about the paper and package, which have
lead to a significantly more consistent and user-friendly interface. The questions and com-
ments of the users of the reshape package, Kevin Wright, François Pinard, Dieter Menne,
Reinhold Kleigl, and many others, have also contributed greatly to the development of the
package.

This material is based upon work supported by the National Science Foundation under
Grant No. 0706949.

37

http://had.co.nz/reshape
mailto:h.wickham@gmail.com

2 Reshaping data with the reshape package

38

Chapter 3

A layered grammar of graphics

Abstract

A grammar of graphics is a tool which enables us to concisely describe the components of a
graphic. A grammar of graphics allows us to move beyond named graphics and gain insight
into the deep structure that underlies statistical graphics. This paper builds on Wilkinson
(2005), describing extensions and refinements developed while building an open source
implementation of the grammar of graphics for R, ggplot2.

The topics in this paper include an introduction to the grammar by working through the
process of creating a plot, and discussing the components that we need. The grammar is
then presented formally and compared to Wilkinson’s grammar, highlighting the hierarchy
of defaults, and the implications of embedding a graphical grammar into a programming
language. The power of the grammar is illustrated with a selection of examples that ex-
plore different components, and their interactions, in more detail. The paper concludes by
discussing some perceptual issues, and thinking about how we can build on the grammar
to learn how to create graphical “poems”.

3.1 Introduction

What is a graphic? How can we succinctly describe a graphic? And how can we create the
graphic that we have described? These are important questions for the field of statistical
graphics.

One way to answer these questions is to develop a grammar, “the fundamental principles
or rules of an art or science” (OED Online, 1989). A good grammar will allow us to gain
insight into the composition of complicated graphics, and reveal unexpected connections
between seemingly different graphics (Cox, 1978). A grammar provides a strong founda-
tion for understanding a diverse range of graphics. A grammar may also help guide us on
what a well-formed or correct graphic looks like, but there will still be many grammatically
correct but nonsensical graphics. This is easy to see by analogy to the English language:
good grammar is just the first step in creating a good sentence.

The seminal work in graphical grammars is “The Grammar of Graphics” by Wilkinson
et al. (2005), which proposes a grammar which can be used to describe and construct a
wide range of graphics. This paper proposes an alternative parameterisation of the gram-
mar, based around the idea of building up a graphic from multiple layers of data. The

39

3 A layered grammar of graphics

grammar differs from Wilkinson’s in its arrangement of the components, the development
of a hierarchy of defaults, and in that it is embedded inside another programming language.
These three sections form the core of the paper, and compare and contrast to Wilkinson’s
grammar. These sections are followed by some implications of the grammar, a discussion
of perceptual issues otherwise not mentioned by the grammar, and finally some ideas for
building higher level tools to support data analysis.

The ideas presented in this paper have been implemented in the open-source R pack-
age, ggplot2, available from CRAN. More details about the grammar and implementa-
tion, including a comprehensive set of examples, can be found on the package website
http://had.co.nz/ggplot2. Ggplot2 is the analogue of GPL, the implementation of
Wilkinson’s grammar in SPSS.

3.2 How to build a plot

When creating a plot we start with data. We will use the trivial dataset shown in Table 3.1
as an example. It has four variables, A, B, C, and D, and four observations.

A B C D

2 3 4 a
1 2 1 a
4 5 15 b
9 10 80 b

Table 3.1: Simple dataset.

Let’s draw a scatterplot of A vs. C. What exactly is a scatterplot? One way to describe
it is that we’re going to draw a point for each observation, and we will position the point
horizontally according to the value of A, and vertically according to C. For this example,
we will also map categorical variable D to the colour of the points. The first step in making
this plot is to create a new dataset which reflects the mapping of x-position to A, y-position
to C and colour to D. x-position, y-position and colour are examples of aesthetics, things
that we can perceive on the graphic. We will also remove all other variables that do not
appear in the plot. This is shown in Table 3.2.

x y colour

2 4 a
1 1 a
4 15 b
9 80 b

Table 3.2: Simple dataset with variables named according to the aesthetic that they use.

We can create many different types of plots using this same basic specification. For
example, if we were to draw lines instead of points we would get a line plot. If we used
bars, we’d get a bar plot. Bars, lines and points are all examples of geometric objects.

40

http://had.co.nz/ggplot2

3.2 How to build a plot

The next thing we need to do is to convert these numbers measured in data units to
numbers measured in physical units, things that the computer can display. To do that we
need to know two things: that we’re going to use linear scales, and a Cartesian coordinate
system. We can then convert the data units to aesthetic units, which have meaning to the
underlying drawing system. For example, to convert from a continuous data value to a
horizontal pixel coordinate, we need a function like the following:

floor(
x−min(x)
range(x)

∗ screen width)

In this example, we will scale the x-position to [0, 200] and the y-position to [0, 300]. The
procedure is similar for other aesthetics, such as colour: here we map “a” to red, and “b”
to blue. The results of these scalings are shown in Table 3.3. These transformations are
the responsibility of scales, described in detail in Section 3.3.2.

x y colour

25 11 red
0 0 red

75 53 blue
200 300 blue

Table 3.3: Simple dataset with variables mapped into aesthetic space.

In general, there is another step that we’ve skipped in this simple example: a statistical
transformation. Here we are using the identity transformation, but there are many others
that are useful, such as binning or aggregating. Statistical transformations, or stats, are
described in detail in Section 3.3.1.

Finally, we need to render this data to create the graphical objects that are displayed
on the screen. To create a complete plot we need to combine graphical objects from three
sources: the data, represented by the point geom; the scales and coordinate system, which
generates axes and legends so that we can read values from the graph; and the plot anno-
tations, such as the background and plot title. These components are shown in Figure 3.1.
Combining and displaying these graphical objects produces the final plot, as in Figure 3.2.

3.2.1 A more complicated plot

Now that you are acquainted with drawing a simple plot, we will create a more complicated
plot. The big difference with this plot is that we’ll use faceting. Faceting is also known
as conditioning, trellising and latticing, and produces small multiples showing different
subsets of the data. If we facet the previous plot by D we will get a plot that looks like
Figure 3.3, where each value of D is displayed in a different panel.

Faceting splits the original dataset into a dataset for each subset, so the data that under-
lies Figure 3.3 looks like Table 3.4.

The first steps of plot creation proceed as before, but new steps are necessary when
we get to the scales. Scaling actually occurs in three parts: transforming, training and
mapping.

41

3 A layered grammar of graphics

Figure 3.1: Graphics objects produced by (from left to right): geometric objects, scales and coordi-
nate system, plot annotations.

Figure 3.2: The final graphic, produced by combining the pieces in Figure 3.1.

42

3.2 How to build a plot

Figure 3.3: A more complicated plot, which is faceted by variable D. Here the faceting uses the
same variable that is mapped to colour so that there is some redundancy in our visual representa-
tion. This allows us to easily see how the data has been broken into panels.

x y colour

a 2 4 red
a 1 1 red
b 4 15 blue
b 9 80 blue

Table 3.4: Simple dataset faceted into subsets.

• Scale transformation occurs before statistical transformation so that statistics are
computed on the scale-transformed data. This ensures that a plot of log(x) vs log(y)
on linear scales looks the same as x vs y on log scales. See Section 3.6.3 for more
details. Transformation is only necessary for non-linear scales, because all statistics
are location-scale invariant.

• After the statistics are computed, each scale is trained on every faceted dataset (a
plot can contain multiple datasets, e.g. raw data and predictions from a model). The
training operation combines the ranges of the individual datasets to get the range
of the complete data. If scales were applied locally, comparisons would only be
meaningful within a facet. This is shown in Table 3.5.

• Finally the scales map the data values into aesthetic values. This gives Table 3.6
which is essentially identical to Table 3.2 apart from the structure of the datasets.
Given that we end up with an essentially identical structure you might wonder why
we don’t simply split up the final result. There are several reasons for this. It makes
writing statistical transformation functions easier, as they only need to operate on
a single facet of data, and some need to operate on a single subset, for example,
calculating a percentage. Also, in practice we may have a more complicated training
scheme for the position scales so that different columns or rows can have different x
and y scales.

43

3 A layered grammar of graphics

x y colour

a 200 300 red
a 0 0 red
b 0 0 red
b 200 300 red

Table 3.5: Local scaling, where data are scaled independently within each facet. Note that each
facet occupies the full range of positions, and only uses one colour. Comparisons across facets are
not necessarily meaningful.

x y colour

a 25 11 red
a 0 0 red
b 75 53 blue
b 200 300 blue

Table 3.6: faceted data correctly mapped to aesthetics. Note the similarity to Table 3.3.

3.2.2 Summary

In the examples above, we have seen some of the components that make up a plot:

• data and aesthetic mappings,

• geometric objects,

• scales,

• and faceting.

We have also touched on two other components:

• statistical transformations,

• and the coordinate system.

Together, the data, mappings, statistical transformation and geometric object form a layer.
A plot may have multiple layers, for example, when we overlay a scatterplot with a
smoothed line.

3.3 Components of the layered grammar

To be precise, the layered grammar defines the components of a plot as:

• A default dataset and set of mappings from variables to aesthetics.

• One or more layers, each composed of a geometric object, a statistical transformation,
and a position adjustment, and optionally, a dataset and aesthetic mappings.

44

3.3 Components of the layered grammar

• One scale for each aesthetic mapping used.

• A coordinate system.

• A faceting specification.

These high-level components are quite similar to those of Wilkinson’s grammar, as shown
in Figure 3.4. In both grammars, the components are independent, meaning that we can
generally change a single component in isolation. There are more differences within the
individual components, which are described in the details which follow.

Figure 3.4: Mapping between components of Wilkinson’s grammar (left) and the layered grammar
(right)

The layer component is particularly important as it determines the physical representa-
tion of the data, with the combination of stat and geom defining many familiar named
graphics: the scatterplot, histogram, contourplot, and so. In practice, many plots have (at
least) three layers: the data, context for the data, and a statistical summary of the data.
For example, to visualise a spatial point process, we might display the points themselves, a
map giving some context to the locations of points, and contours of a 2d density estimate.

This grammar is useful for both the user and the developer of statistical graphics. For
the user, it makes it easier to iteratively update a plot, changing a single feature at a
time. The grammar is also useful because it suggests the high level aspects of a plot that
can be changed, giving us a framework to think about graphics, and hopefully shortening
the distance from mind to paper. It also encourages the use of graphics customised to a
particular problem, rather than relying on generic named graphics.

For the developer, it makes it much easier to add new capabilities. You only need to
add the one component that you need, and continue to use the all the other existing
components. For example, you can add a new statistical transformation, and continue to
use the existing scales and geoms. It is also useful for discovering new types of graphics,
as the grammar effectively defines the parameter space of statistical graphics.

45

3 A layered grammar of graphics

3.3.1 Layers

Layers are responsible for creating the objects that we perceive on the plot. A layer is
composed of four parts:

• data and aesthetic mapping,

• a statistical transformation (stat),

• a geometric object (geom)

• and a position adjustment.

These parts are described in detail below.
Usually all the layers on a plot have something in common, which is typically that they

are different views of the same data, e.g. a scatterplot with overlaid smoother.
A layer is the equivalent of Wilkinson’s ELEMENT. However, the parameterisation is

rather different. In Wilkinson’s grammar, all the parts of an element are intertwined, while
in the layered grammar they are separate, as shown by Figure 3.5. This makes it possible
to omit parts from the specification and rely on defaults: if the stat is omitted, the geom
will supply a default; if the geom is omitted, the stat will supply a default; if the mapping is
omitted, the plot default will be used. These defaults are discussed further in Section 3.4.
In Wilkinson’s grammar, the dataset is implied by the variable names, while in the layered
grammar it can be specified separately.

line(position(smooth.linear(x * y)), colour(z))
layer(aes(x = x, y = y, colour = z), geom="line", stat="smooth")

Figure 3.5: Difference between GPL (top) and ggplot2 (bottom) parameterisations.

Data and mapping

Data is obviously a critical part of the plot, but it is important to remember that it is
independent from the other components: we can construct a graphic that can be applied
to multiple datasets. Data is what turns an abstract graphic into a concrete graphic.

Along with the data, we need a specification of which variables are mapped to which
aesthetics. For example, we might map weight to x position, height to y position and age
to size. The details of the mapping are described by the scales, Section 3.3.2. Choosing a
good mapping is crucial for generating a useful graphic, as described in Section 3.8.

Statistical transformation

A statistical transformation, or stat, transforms the data, typically by summarising it in
some manner. For example, a useful stat is the smoother, which calculates the mean of
y, conditional on x, subject to some restriction that ensures smoothness. Table 3.7 lists
some of the stats available in ggplot2. To make sense in a graphic context a stat must be
location-scale invariant: f(x + a) = f(x) + a and f(b · x) = b · f(x). This ensures that the

46

3.3 Components of the layered grammar

Name Description
bin Divide continuous range into bins and count
boxplot Compute statistics necessary for boxplot
contour Calculate contour lines
density Compute 1d density estimate
identity Identity transformation, f(x) = x
jitter Jitter values by adding small random value
qq Calculate values for quantile-quantile plot
quantile Quantile regression
smooth Smoothed conditional mean of y given x
summary Aggregate values of y for given x
sortx Sort values in order of ascending x
unique Remove duplicated observations

Table 3.7: Some statistical transformations provided by ggplot2. The user is able to supplement
this list in a straight forward manner.

transformation is invariant under translation and scaling, which are common operations
on a graphic.

A stat takes a dataset as input and returns a dataset as output, and so a stat can add new
variables to the original dataset. It is possible to map aesthetics to these new variables. For
example, one way to describe a histogram is as a binning of a continuous variable, plotted
with bars whose height is proportional to the number of points in each bin, as described in
Section 3.6.1. Another useful example is mapping the size of the lines in a contour plot to
the height of the contour.

The actual statistical method used by a stat is conditional on the coordinate system. For
example, a smoother in polar coordinates should use circular regression, and in 3d should
return a 2d surface rather than a 1d curve. However, many statistical operations have not
been derived for non-Cartesian coordinates and we so we generally fall back to Cartesian
coordinates for calculation, which, while not strictly correct, will normally be a fairly close
approximation. This issue is not discussed in the Wilkinson’s Grammar.

Geometric object

Geometric objects, or geoms for short, control the type of plot that you create. For example,
using a point geom will create a scatterplot, while using a line geom will create a line plot.
We can classify geoms by their dimensionality:

• 0d: point, text

• 1d: path, line (ordered path)

• 2d: polygon, interval

Geometric objects are an abstract component and can be rendered in different ways.
Figure 3.6 illustrates four possible renderings of the interval geom.

47

3 A layered grammar of graphics

Figure 3.6: Four representations of an interval geom. From left to right: as a bar, as a line, as a
error bar, and (for continuous x) as a ribbon.

Geoms are mostly general purpose, but do require certain outputs from a statistic. For
example, the boxplot geom requires the position of the upper and lower fences, upper and
lower hinges, the middle bar and the outliers. Any statistic used with the boxplot needs to
provide these values.

Every geom has a default statistic, and every statistic a default geom. For example, the
bin statistic defaults to using the bar geom to produce a histogram. Over-riding these
defaults will still produce valid plots, but they may violate graphical conventions.

Each geom can only display certain aesthetics. For example, a point geom has position,
colour, and size aesthetics. A bar geom has all those, plus height, width and fill colour. Dif-
ferent parameterisations may be useful. For example, instead of location and dimension,
we could parameterise the bar with locations representing the four corners. Parameter-
isations which involve dimension (e.g. height and width) only make sense for Cartesian
coordinate systems. For example, height of a bar geom in polar coordinates corresponds to
radius of a segment. For this reason location based parameterisations are used internally.

Position adjustment

Sometimes we need to tweak the position of the geometric elements on the plot, when
otherwise they would obscure each other. This is most common in bar plots, where we
stack or dodge (place side-by-side) the bar to avoid overlaps. In scatterplots with few
unique x and y values, we sometimes randomly jitter (Chambers et al., 1983) the points to
reduce overplotting. Wilkinson calls these collision modifiers.

3.3.2 Scales

A scale controls the mapping from data to aesthetic attributes, and so we need one scale
for each aesthetic property used in a layer. Scales are common across layers to ensure a
consistent mapping from data to aesthetics. Some scales are illustrated in Figure 3.7.

A scale is a function, and its inverse, along with a set of parameters. For example, the
colour gradient scale maps a segment of the real line to a path through a colour space. The
parameters of the function define whether the path is linear or curved, which colour space
to use (eg. LUV or RGB), and the start and end colours.

The inverse function is used to draw a guide so that you can read values from the graph.
Guides are either axes (for position scales) or legends (for everything else). It may seem
like some mappings don’t have an inverse (e.g. map treatments A and B to red, and C, D
and E to blue), but this can be thought of as collapsing some of the data values prior to
plotting.

48

3.3 Components of the layered grammar

Figure 3.7: Examples of four scales from ggplot2. From left to right: continuous variable mapped
to size and colour, discrete variable mapped to shape and colour. The ordering of scales seems
upside-down, but this matches the labelling of the y-axis: small values occur at the bottom.

Scales typically map from a single variable to a single aesthetic, but there are exceptions.
For example, we can map one variable to hue and another to saturation, to create a single
aesthetic, colour. We can also create redundant mappings, mapping the same variable to
multiple aesthetics. This is particularly useful when producing a graphic that works in both
colour and black and white.

The scale of the layered grammar is equivalent to the SCALE and GUIDE of Wilkinson’s
grammar. There are two types of guides: scale guides and annotation guides. In the
layered grammar, the guides (axes and legends) are largely drawn automatically based on
options supplied to the relative scales. Annotation guides are not necessary as they can
be created with creative use geoms if data dependent, or the underlying drawing system
can be accessed directly. Scales are also computed somewhat differently as it is possible to
map a variable produced by a statistic to an aesthetic. This requires two passes of scaling,
before and after the statistical transformation.

3.3.3 Coordinate system

A coordinate system, coord for short, maps the position of objects onto the plane of the
plot. Position is often specified by two coordinates (x, y), but could be any number of coor-
dinates. The Cartesian coordinate system is the most common coordinate system for two
dimensions, while polar coordinates and various map projections are used less frequently.
For higher dimensions, we have parallel coordinates (a projective geometry), mosaic plots
(a hierarchical coordinate system) and linear projections onto the plane.

Coordinate systems affect all position variables simultaneously and differ from scales
in that they also change the appearance of the geometric objects. For example, in polar
coordinates, bar geoms look like segments of a circle. Additionally, scaling is performed
before statistical transformation, while coordinate transformations occur afterward. The
consequences of this are shown in Section 3.6.3.

Coordinate systems control how the axes and grid lines are drawn. Figure 3.8 illustrates
three different types of coordinate systems. Very little advice is available for drawing these
for non-Cartesian coordinate systems, so a lot of work needs to be done to produce polished
output.

49

3 A layered grammar of graphics

Figure 3.8: Examples of axes and grid lines for three coordinate systems: Cartesian, semi-log
and polar. The polar coordinate system illustrates the difficulties associated with non-Cartesian
coordinates: it is hard to draw the axes correctly!

3.3.4 Faceting

There is also another thing that turns out to be sufficiently useful that we should include
it in our general framework: faceting (also known as conditioned or trellis plots). This
makes it easy to create small multiples of different subsets of an entire dataset. This is a
powerful tool when investigating whether patterns hold across all conditions. The faceting
specification describes which variables should be used to split up the data, and how they
should be arranged in a grid.

In Wilkinson’s grammar, faceting is an aspect of the coordinate system, with a somewhat
complicated parameterisation: the faceting variable is specified within the ELEMENT and
a separate COORD specifies that the coordinate system should be faceted by this variable.
This is simplified in the layered grammar as the faceting is independent of the layer and
within-facet coordinate system. This is less flexible, as the layout of the facets always occurs
in a Cartesian coordinate system, but in practice is not limiting. Figure 3.9 illustrates the
specification.

COORD: rect(dim(3), dim(1,2))
ELEMENT: point(position(x * y * z))

geom_point(aes(x, y)) + facet_grid(. ~ z)

Figure 3.9: Difference between GPL (top) and ggplot2 (bottom) parameterisations. Note that z is
included in the position specification for the GPL element.

3.4 A hierarchy of defaults

The five major components of the layered grammar allow us to completely and explicitly
describe a wide range of graphics. However, having to describe every component, ev-
ery time, quickly becomes tiresome. This section describes the hierarchy of defaults that
simplify the work of making a plot. There are defaults present in GPL, but they are not
described in the Grammar of Graphics (Wilkinson, 2005). This section will also serve to
demonstrate the syntax of the ggplot2 package.

To illustrate how the defaults work, I will show how to create the two graphics of Fig-
ure 3.10. These plots show the relationship between the price and weight (in carats) of

50

3.4 A hierarchy of defaults

1000 diamonds.

Figure 3.10: (Left) Scatterplot of price vs carat. (Right) scatterplot of price vs carat, with log-
transformed scales, and a linear smooth layered on top.

The full specification of the scatterplot of price vs carat is:

ggplot() +
layer(

data = diamonds, mapping = aes(x = carat, y = price),
geom = "point", stat = "identity", position = "identity"

) +
scale_y_continuous() +
scale_x_continuous() +
coord_cartesian()

We start with ggplot() which creates a new plot object, and then add the other com-
ponents: a single layer, specifying the data, mapping, geom and stat, the two continuous
position scales and a Cartesian coordinate system. The layer is the most complicated and
specifies that we want to:

• use the diamonds dataset,

• map carat to horizontal (x) position, and price to vertical (y) position, and

• display the raw data (the identity transformation) with points.

Intelligent defaults allow us to simplify this specification in a number of ways. First, we
only need specify one of geom and stat, as each geom has a default stat (and vice versa).
Second, the Cartesian coordinate system is used by default, so does not need to be specified.
Third, default scales will be added according to the aesthetic and type of variable. For
position, continuous values are transformed with a linear scaling, and categorical values
are mapped to the integers; for colour, continuous variables are mapped to a smooth path
in the HCL colour space, and discrete variables to evenly spaced hues with equal luminance
and chroma. The choice of a good default scale is difficult, and is touched on in Section 3.7.

This leads us to the following specification:

51

3 A layered grammar of graphics

ggplot() +
layer(

data = diamonds, mapping = aes(x = carat, y = price),
geom = "point"

)

Typically, we will specify a default dataset and mapping in the ggplot call, and use a
shorthand for the layer:

ggplot(diamonds, aes(x = carat, y = price)) +
geom_point()

Any aesthetics specified in the layer will override the defaults. Similarly, if a dataset
is specified in the layer, it will override the plot default. To get to the second plot of
Figure 3.10 we need to add another layer, and override the default linear-transforms with
log-transformations:

ggplot(diamonds, aes(x = carat, y = price)) +
geom_point() +
stat_smooth(method = lm) +
scale_x_log10() +
scale_y_log10()

which is short hand for:

ggplot() +
layer(
data = diamonds, mapping = aes(x = carat, y = price),
geom = "point", stat = "identity", position = "identity"
) +
layer(
data = diamonds, mapping = aes(x = carat, y = price),
geom = "smooth", position = "identity",
stat = "smooth", method = lm
) +
scale_y_log10() +
scale_x_log10() +
coord_cartesian

Even with these many defaults, the explicit grammar syntax is rather verbose, and usu-
ally spans multiple lines. This makes it difficult to rapidly experiment with different plots,
very important when searching for revealing graphics. For this reason the verbose gram-
mar is supplemented with qplot, short for quick plot, which makes strong assumptions
to reduce the amount of typing needed. It also mimics the syntax of the plot function,
making ggplot2 easier to use for people already familiar with base R graphics.

The qplot function assumes that multiple layers will use the same data and aesthetic
mappings, and defaults to creating a scatterplot. This allows us to recreate the first plot
with this concise code:

52

3.5 An embedded grammar

qplot(carat, price, data = diamonds)

The second plot is not much longer:

qplot(carat, price, data = diamonds,
geom = c("point", "smooth"),
method = "lm", log = "xy"

)

Note the use of the log argument, which mimics the plot function in base and specifies
which axes should be log-transformed. The geom argument can take a vector of geoms,
which are added sequentially to the plot. Everything else is taken to be a layer parameter.
The limitations to this approach are obvious: which layer does the method argument apply
to?

3.5 An embedded grammar

The previous section hints at an important point: the specification of the layered grammar
is tightly embedded within an existing programming language, R. This section discusses
some of advantages and disadvantages of such an approach. This discussion is centred
around R, but many of the issues apply regardless of language. To make this section
concrete Table 3.8 shows the syntax of GPL and ggplot2 used to create Figure 3.11, which
has been adapted from Wilkinson (2005, Figure 1.5, page 13).

Figure 3.11: Plot of birth rate minus death rate in selected countries.

The advantages of embedding a graphical grammar into another programming language
are obvious: one immediately gains all of the existing capabilities of that language. We can
use all the facilities of a full programming language to automate repetitive tasks: loops to
iterate over variables or subsets, variables to store commonly used components, and func-
tions to encapsulate common tasks. For example, ggplot2 provides a set of plot templates,
which are functions that generate plot specifications for more complicated graphics, like
the parallel coordinates plot and scatterplot matrix.

53

3 A layered grammar of graphics

DATA: source("demographics")|
DATA: long, lati = map(source("World"))
TRANS: bd = max(birth - death, 0)
ELEMENT: point(position(lon * lat), size(bd), color(color.red))
ELEMENT: polygon(position(long * lati))
COORD: project.mercator()

demographics <- transform(demographics,
bd = max(birth - death, 0))

ggplot(demographics, aes(x = lon, y = lat))
+ geom_point(aes(size = bd), colour="red")
+ geom_polygon(data = world)
+ coord_map(projection = "mercator")

Table 3.8: Specification of Figure 3.11 in GPL (top) and ggplot2 (bottom) syntax.

With R in particular, we gain a wide range of pre-packaged statistics useful for graph-
ics: loess smoothing, quantile regression, density estimation, etc. Additionally, we can
also use the host’s facilities for data import and manipulation. In order to have data to
plot, any graphics tool must have at least rudimentary tools for importing, restructuring,
transforming and aggregating data. By relying on other tools in R, ggplot2 does not need
three elements of Wilkinson’s grammar: the DATA component, the TRANS component and
the algebra.

The DATA component is no longer needed as data is stored as R data frames; it does
not need to be described as part of the graphic. The TRANS stage can be dropped be-
cause variable transformations are already so easy in R; they do not need to be part of
the grammar. The example uses the transform function, but there are a number of other
approaches. The algebra describes how to reshape data for display and, in R, is replaced by
the reshape package (Wickham, 2005). Separating data manipulation from visualisation
allows you to check the data, and the same restructuring can be used in multiple plots.
Additionally, the algebra can not easily perform aggregation or subsetting, but reshape
can.

The disadvantages of embedding the grammar are somewhat more subtle, and centre
around the grammatical restrictions applied by the host language. One of the most impor-
tant features of the grammar is its declarative nature. To preserve this nature in R, ggplot2
uses + to create a plot by adding pieces together. The ggplot function creates a base ob-
ject, to which everything else is added. This base object is not necessary in a stand-alone
grammar.

3.6 Implications of the layered grammar

What are some of the implications of defining a graphic as described above? What is now
easy that was hard? This section discusses three interesting aspects of the grammar:

54

3.6 Implications of the layered grammar

• The histogram, which maps bar height to a variable not in the original dataset, and
raises questions of parameterisation and defaults.

• Polar coordinates, which generate pie charts from bar charts.

• Variable transformations, and the three places in which they can occur.

3.6.1 Histograms

One of the most useful plots for looking at 1D distributions is the histogram, as shown in
Figure 3.12. The histogram is rather special as it maps an aesthetic (bar height) to a vari-
able created by the statistic (bin count), and raises some issues regarding parameterisation
and choice of defaults.

The histogram is a combination of a binning stat and a bar geom, and could be written
as:

ggplot(data = diamonds, mapping = aes(x = price)) +
layer(geom = "bar", stat = "bin", mapping = aes(y = ..count..))

One interesting thing about this definition is that it does not contain the word histogram:
a histogram is not a primitive, but is a combination of bars and binning. However, we do
want to create histograms, without having to specify their composition, and so we add the
histogram geom as an alias of the bar geom, with a default bin stat, and a default mapping
of bar-height to bin count. This lets us produce the same plot in either of the following
two more succinct ways:

ggplot(diamonds, aes(x = price)) + geom_histogram()
qplot(price, data=diamonds, geom="histogram")

Figure 3.12: Two histograms of diamond price produced by the histogram geom. (Left) Default bin
width, 30 bins. (Right) Custom $50 bin width reveals missing data.

The choice of bins is very important for histograms. Figure 3.12 illustrates the difference
changing bin widths can make. In ggplot2, a very simple heuristic is used for the default
number of bins: it uses 30, regardless of the data. This is perverse, and ignores all of the

55

3 A layered grammar of graphics

research on selecting good bin sizes automatically, but sends a clear message to the user
that they need to think about and experiment with the bin width. The histogram geom fa-
cilitates this experimentation by being parameterised by bin width (as opposed to number
of bins, as is common elsewhere in R). This is preferable as it is directly interpretable on
the graph. If you need more control you can use an alternative specification: the breaks
argument lists exactly where bin breaks should occur.

The separation of statistic and geom enforced by the grammar allows us to produce
variations on the histogram, as shown in Figure 3.13. Using a ribbon instead of bars
produces a frequency polygon, and using points produces a graphic that doesn’t have its
own name.

Figure 3.13: Variations on the histogram. Using a ribbon (left) to produce a frequency polygon, or
points (right) to produce an unnamed graphic.

The histogram is interesting for another reason: one of the aesthetics, the y-position, is
not present in the original data, but is the count computed from the binning statistic. In
the ggplot2 this is specified as aes(y = ..count..). The two dots are a visual indicator
highlighting that variable is not present in the original data, but has been computed by the
statistic. There are other variables produced by the binning statistic that we might want to
use instead, e.g. aes(y = ..density..) or aes(y = ..density../sum(..density..)).
A less common mapping is aes(y = ..count.. / max(..count..)), which creates a
histogram with a vertical range of [0, 1], useful for faceted and interactive graphics.

The histogram also knows how to use the weight aesthetic. This aesthetic does not
directly affect the display of the data, but will affect stat: instead of counting the number
of observations in each bin, it will sum the weights in each bar.

3.6.2 Polar coordinates

In ggplot2, the user is offered the choice of a number of coordinate systems. One coordi-
nate system that is used very commonly in business graphics is the polar coordinate system,
used to produce pie charts and radar plots. The polar coordinate system parameterises the
two-dimensional plane in terms of angle, θ, and distance from the origin, or radius, r. We
can convert to regular Cartesian coordinates using the following equations:

56

3.6 Implications of the layered grammar

x = r · cos(θ)
y = r · sin(θ)

As with regular Cartesian coordinates, we can choose which variable is mapped to angle
and which to radius. It can also be useful to tweak the range of the radius: having a
minimum radius that is greater than zero can be useful because it avoids some of the
compression effects around the origin.

The angle component is particularly useful for cyclic data because the starting and end-
ing points of a single cycle are adjacent. Common cyclical variables are components of
dates, for example, days of the year, or hours of the day, and angles, e.g. of wind direction.
When not plotted on polar coordinates, particular care needs to be taken with cyclic data
to ensure that we don’t miss patterns occurring across the arbitrary start and end points.

In the grammar, a pie chart is a stacked bar geom drawn in a polar coordinate system.
Figure 3.14 shows this, as well as a bullseye plot, which arises when we map the height to
radius instead of angle. A regular bar chart converted into polar coordinates produces an-
other type of graphic: the coxcomb plot, popularised by Florence Nightingale (Nightingale,
1857). A comparison between a bar chart and Coxcomb chart is shown in Figure 3.15.

Figure 3.14: Pie chart (left) and bullseye chart (right) showing the distribution of diamonds across
clarity (I1 is worst, IF is best). A radial chart is the polar equivalent of the spineplot: in the pie
chart, categories have equal radius and variable angle; in the radial chart, categories have equal
angle and variable radius.

3.6.3 Transformations

There are three ways to transform values in ggplot2: by transforming the data, by trans-
forming the scales and by transforming the coordinate system. Transforming the data or
the scales produces graphs that look very similar, but the axes (and grid lines) are different:
everything else remains the same. This is because statistics operate on data that has been
transformed by the scale. Figure 3.16 shows an example of this using a scatterplot with a
smoothed fit.

Transforming the coordinate system does something quite different, as shown in Fig-
ure 3.17. The coordinate transformation occurs at the very end of the plotting process,

57

3 A layered grammar of graphics

Figure 3.15: Bar chart (left) and equivalent Coxcomb plot (right) of clarity distribution. The Cox-
comb plot is a bar chart in polar coordinates. Note that the categories abut in the Coxcomb, but
are separated in the bar chart: this is an example of a graphical convention that differs in different
coordinate systems.

Figure 3.16: Transforming the data (left) vs transforming the scale (right). From a distance the
plots look identical. Close inspection is required to see that the scales and minor grid lines are
different. Transforming the scale is to be preferred as the axes are labelled according to the original
data, and so are easier to interpret. The presentation of the labels still requires work.

58

3.6 Implications of the layered grammar

and alters the appearance of geoms. Here, the smooth is performed on the raw data, pro-
ducing a straight line, but is then stretched into the new logarithmic coordinate system.

Figure 3.17: Transforming the scales (left) vs transforming the coordinate system (right). Coor-
dinate system transformations are the final step in drawing the graphic, and affect the shape of
geometric objects. Here a straight line becomes a curve.

We can also use the scales and coordinate system together to display a smooth calculated
on the logged data and then back-transform it to the original scale. This is shown in Fig-
ure 3.18. This is equivalent to fitting the model log(y) ∼ log(x) and then back-transforming
predicted values.

Currently the placement of the tick marks are sub-optimal, as raw vs transformation
and back-transformation generate different tick positions when arguably they should be
the same. This would mean that the scales in Figure 3.17 should be the same. This has
the drawback of concealing whether the transformation was applied to the scale or the
coordinate system. The nature of the transformation would need to be indicated in some
other way, either in the caption of the graphic or elsewhere on the plot. This raises an
interesting philosophical question: should we be able to uniquely identify the specification
of a graphic from its rendering?

Figure 3.18: Linear model fit to raw data (left) vs linear model fit to logged data, then back-
transformed to original scale (right).

59

3 A layered grammar of graphics

3.7 Perceptual issues

The grammar describes the components of the plot, but not their appearance. To create
appealing, useful graphics it is necessary to devote considerable effort to these “minor”
construction details, bearing in mind the cognitive psychology of perception. Difficulty
arises because many of these issues are subjective: they may look nice to me, but look
horrid to you, and there is little research available to guide these design choices. The
points below illustrate some of the decisions which we have made, and some of the issues
that we have struggled with.

• Grey background and white grid lines. This follows from the advice of Tufte (1990,
1997, 2001, 2006) and Brewer (1994a); Carr (1994, 2002); Carr and Sun (1999).
We can still see the gridlines to aid in the judgement of position (Cleveland, 1993),
but they have little visual impact and we can easily “tune” them out. The grey back-
ground gives the plot a similar colour (in a typographical sense) to the remainder of
the text, ensuring that the graphics fit in with the flow of a text without jumping out
with a bright white background. Finally, the grey background creates a continuous
field of colour which ensures that the plot is perceived as a single visual entity.

• Data points are not plotted next to the margins of the plot. This is an old, but
important, guideline from Cleveland and McGill (1987). Data points need to be
placed some distance from the axis so that the components of the axis and the data
are not confused. In ggplot2 there are different rules depending on whether the axis
is continuous or discrete. For continuous data, 5% extra space is added, and for
discrete data half a bar is added. These can be fine tuned by the user if necessary.

• Placing tick marks on axes is difficult, and currently ggplot2 uses the pretty func-
tion in base R. This is original work by Martin Maechler (personal comm.), which has
not been published. I also experimented with the heuristics discussed in Wilkinson
(2005), but to my eye these produced poor results. Other methods are discussed in
Murdoch (2000); Nelder (1976); Sparks (1971); Stirling (1981); Thayer and Storer
(1969). There has been little recent work on “optimal” tick mark placement, es-
pecially for non-linear scales. Minor grid lines are also displayed, by default, one
between each major tick mark. This helps judge if scale is non-linear.

A wide range of scales are implemented in ggplot2 (any function with an inverse),
so a rule was needed for placing minor tick marks. Following the typical display of a
log-log plot, major tick marks are evenly spaced on the plot, while minor tick marks
are evenly spaced in the original data space.

• The direct representation of the data, the geom, is the most important. While scales
and coordinate systems are important in that we need to be able to trust them, and
may sometimes want to read off values, typically we will use other tools to get exact
values (eg. interactive identification, or reading off table of values), and we are
largely interested in the gestalt. In ggplot2, we spent most ink on the geom, not on
the guides.

60

3.8 A poetry of graphics?

• The colour of default colour scales is difficult. Initially ColorBrewer (Brewer, 1994a,b)
palettes were used. Unfortunately, they have a major drawback in that they are de-
signed for maps, where the coloured areas are large and contiguous. For scatterplots,
where the colour regions are small and separate, the colours are not very distinguish-
able. In general, smaller areas require brighter, more saturated colours. There is a
perceptual interaction between the colour and the size of the region that is coloured
(Ihaka, 2003) that is difficult to model and adjust for.

Currently, different scales are used for categorical or continuous variables. For contin-
uous data, a colour scale generated by linearly interpolating between two colours in
HCL space (eg. blue and yellow). Categorical variables are mapped to evenly spaced
hues, with equal luminance and chroma. These choices are good, but not great: the
categorical colours can look muddy and unattractive, and print to black and white
as indistinguishable shades of grey; and much care needs to be taken when choosing
starting colours for the continuous scale.

3.8 A poetry of graphics?

The grammar tells us what words make up our graphical “sentences”, but offers no advice
on how to write well. How can we build on top of the grammar to help data analysts build
compelling, revealing graphics? What would a poetry of graphics look like? The ideas in
this section draw inspiration from the tools that word processors provide to try and help
us write better.

With ggplot2, we already have the equivalent of a spelling checker: the plot simply
won’t work unless the components have been correctly specified. How about a grammar
checker? This tool would identify common mistakes and warn the user. This is a helpful
first step: a grammar checker ensures that you haven’t made any obvious mistakes, but
will not significantly improve your prose, and sometimes the warnings may be incorrect.
For graphics, some readily detected problems and possible solutions are:

• Too many variables. It is hard to see the relationship between more than three vari-
ables in a single panel: two position and one other. We should warn the user when
too many aesthetics are used, and suggest alternatives, such as faceting.

• Overplotting. It is easy to draw incorrect conclusions about the distribution of points
in the presence of overplotting. There are many possible solutions. We could sup-
plement the plot with the contours of a 2d density estimate, or colour each point by
the local density (Unwin et al., 1996). Other solutions are suggested in Carr et al.
(1987); Cleveland and McGill (1984); Huang et al. (1997).

• Alphabetical ordering. Categorical variables are often displayed in alphabetical or-
dering. Wainer (2000, 2004) calls this mistake “Alabama first!” due to the propensity
for states to be listed in alphabetical order. Ordering by some property of the data
(e.g. mean or median) often makes the plot more useful (Becker et al., 1996).

• Polar coordinates. We know that humans are better at judging length than angle or
area (Cleveland and McGill, 1987), and polar coordinates have a singularity at the

61

3 A layered grammar of graphics

origin which makes it difficult to judge angle for objects with small radius. Should
we always warn users when they choose to use this coordinate system?

We can also provide tools to help the analyst get started; instead of a blank page, we
could start with a template, containing some potentially useful views. One approach is
to calculate a measure of interest for a wide number of possible plots and then show
the most interesting. This is the basic idea behind scagnostics (Wilkinson et al., 2005)
and projection pursuit (Cook et al., 2008b; Friedman, 1987), which explore the space of
scatterplots generated by projection. We can also explore other parameter spaces, as the
aspect ratio of the plot, as in Heer and Agrawala (2006), which create multiple plots each
banking a different component to 45◦ (as recommended by Cleveland (1993)). Similarly,
instead of displaying the histogram with the optimal bin width, we could display the five
or ten most revealing.

Beyond that, it seems difficult to see how to do much more algorithmically, and we need
to turn to education and training. The grammar provides a good foundation for teaching,
as it helps students to see the deeper themes underlying different graphics, as well as
providing a tool for describing and drawing graphics.

3.9 Conclusions

The aim of the grammar is to “bring together in a coherent way things that previously
appeared unrelated and which also will provide a basis for dealing systematically with
new situations” (Cox, 1978). How well have we succeeded?

With the histogram, we saw how a familiar graphic can be broken into its component
parts, and then those parts changed independently to get variations on an old friend. In
the polar coordinates examples, we saw the deep similarities that underlie the bar chart,
pie chart and Coxcomb chart. We also accidentally created an unusual chart, the bullseye
plot, and saw how it is like the polar equivalent of the spineplot. The transformation
examples showed the usefulness of multiple transformation stages, and how we can mimic
the common statistical practice of back-transformation using graphics alone.

One area where this grammar is not so strong is area plots: bar charts, spineplots, his-
tograms, mosaic plots, etc. (Hartigan and Kleiner, 1981; Hofmann, 2003). While they
can be constructed with the grammar, it gives no great insight into their underlying struc-
ture, or how we can create new, useful, variations. This suggests that it may be fruitful to
describe “sub-grammars” for particular families of plots.

The layered grammar does not include user interaction with plot; all plots are static and
separate. Clearly there is huge scope for adding interaction to this grammar. Some types
of interaction will be easier to add than others. For example connecting a slider to the bin
width of a histogram. Here we connect some user interface element to some specification
of the plot. This type of interaction includes zooming and panning (changing scale limits),
but not linked brushing. Linked brushing is an example of interaction with the underly-
ing data, and incorporating this type of interaction into the grammar will require deeper
thought. Speed is also a challenge; to be seamlessly perceived an interactive graphic must
be updated multiple times a second, whereas many ggplot2 graphics take over a second to
draw.

62

3.10 Acknowledgements

The grammar is powerful and useful, but not all encompassing. As well as specialising
the grammar for particular families of graphics, we also need to support the creation of
attractive, useful plots. The ideas outlined in the last section suggest ways to build on top
of the grammar to support graphical data analysis and exploration.

ggplot2 is available from http://had.co.nz/ggplot2.

3.10 Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant No. 0706949.

63

http://had.co.nz/ggplot2

3 A layered grammar of graphics

64

Chapter 4

Visualising statistical models
Removing the blindfold

Abstract

This paper discusses strategies for visualising statistical models. It is organised around
three strategies: display the model in the data space; look all members of a collection;
and explore the process of model fitting, not just the end result. Case studies develop
visualisations for MANOVA, classification algorithms, hierarchical clustering, ensembles of
linear models, projection pursuit, self organising maps and neural networks.

4.1 Introduction

There are very many well-known techniques for visualising statistical data, but far fewer
for statistical models. This paper pulls together some general techniques for visualising
statistical models, stressing the importance of displaying the model in the context of the
data. Why do we need to be able to visualise statistical models? What should a good visu-
alisation of a model help us to do? There are three questions that graphics are particularly
well suited to answering:

• What is the model? While we always know the general form of the model, inspection
of the numerical parameters may give no insight into the details of its structure. For
example, looking at the estimates for natural spline terms in a linear model will not
reveal the shape of the curve. A graphical summary of the model will often be more
interpretable, particularly to non-statisticians.

• How well does the model fit the data? Graphics allow us to compare the shape of the
model to the data, giving us diagnostics that not only indicate if something is wrong,
but also suggest ways to fix the problem.

• How can we do better? Graphics also provide us with inspiration. The form of a
model is fixed and it is unlikely to surprise us. A linear model will never reveal a
non-linear relationship, or that there are clusters in the data. If we know exactly
what we are looking for, then numerical methods are provably most efficient. But
how often does that occur?

65

4 Visualising statistical models: Removing the blindfold

Developing good visualisations for models requires some general strategies. This paper
is organised around three of them:

• Display the model in data space (not data in the model space). We should strive to
display the essence of model in the high-d data space, rather low-d summaries of the
data produced by the model.

• Look at all members of a collection, not just one. Multiple models will often give
more insight than a single model; looking at many local optima may give more insight
than look at a single global optimum; looking at multiple summaries statistics is more
informative than looking at one.

• Explore the process of fitting, not just the end result. Understanding how the al-
gorithm works allows us to better understand how the data contributes to the final
model.

Each strategy is described in detail in the following sections, and is illustrated by one or
more case studies. The paper concludes with a larger case study that develops informative
new visualisations for neural networks, using all of the strategies discussed in the paper.

Many of these techniques have grown out of our work with rggobi (Temple Lang et al.,
2007), an R package which connects the statistical programming environment of R (?)
with the interactive and dynamic graphics of GGobi (Swayne et al., 2003). This paper ties
together the ideas underlying three R packages that use rggobi: classifly (Wickham,
2007a), clusterfly (Wickham, 2007b), and meifly (Wickham, 2006). The importance
of a tight connection between statistical and graphical environments has long been recog-
nised, particularly in Lisp-Stat (Tierney, 1990), the ancestors of rggobi (Swayne et al.,
1991), Datadesk (Velleman, 1992), ViSta (Young et al., 1993), ARC (Cook, 1998), Mon-
drian (Theus, 2003) and iplots (Urbanek and Wichtrey, 2007). A recent trend has been
to use R as the statistical computation engine and develop interactive graphics in another
language. This is the approach of Mondrian, iplots, rggobi, Klimt (Urbanek, 2002b) and
Gauguin (Gribov, 2007).

The techniques described in this paper make extensive use of dynamic and interactive
graphics. To supplement the static snapshots of these tools, we have provided a number
of movies. Each movie is hyperlinked from the section it is used, and a complete listing is
available at http://www.vimeo.com/album/8875. These movies should work on any mod-
ern browser, but a broadband internet connection is recommended. As well as interactive
graphics, good static graphics play an important role, especially when communicating re-
sults in papers and presentations. This paper uses the ggplot2 package (Wickham, 2008)
extensively to rapidly go from graphics in our heads to graphics on the page. The majority
of graphics in this paper were produced with a few lines of code. This is a considerable
help when exploring a wide range of possible representations: the less time it takes to
produce a single representation, the more time you have to try other options.

One dataset (Asuncion and Newman, 2007) is used throughout this paper. It contains in-
formation on 178 wines made with grapes from 3 varieties, and with 13 variables describ-
ing physical composition (including chemical constituents and colour). As the variables
are not directly comparable, we have standardised them to range [0, 1]. In addition to this

66

http://www.vimeo.com/album/8875

4.2 What is a model? Terminology and definitions

dataset, there several simpler simulated datasets are used to focus attention on specific
points.

4.2 What is a model? Terminology and definitions

Before we continue, it’s worth discussing in more detail what exactly a model is, since
“model” is such an overloaded term. We use it to refer to different levels of specificity:
model family, model form and fitted model, as described below.

• The model family describes, at the broadest possible level, the connection between
the variables of interest. For example, the linear model predicts a single continuous
response to a linear combination of predictor variables, and assumes normally dis-
tributed error, Y |X ∼ Normal(µ = AX, σ). The model family is almost always speci-
fied by the statistician (i.e. you can’t use a test to determine whether you should use
a linear model or model-based clustering).

• The model form specifies exactly how the variables of interest are connected within
the framework of the model family. For example, the model form of a linear model
specifies which variable is the response, and which variables are the predictors, e.g.
height|age, sex ∼ Normal(µ = b + a1 · age + a2 · sex, σ). The model form might be
specified a priori by the statistician, or chosen by a model-selection procedure.

• The fitted model is a concrete instance of the model form where all parameters have
been estimated from data, and the model can be used to generate predictions. For
example, height|age, sex ∼ Normal(µ = 10 + 5 · age + 3 · sex, σ = 4). Typically,
the fitted model optimises some criterion for the given data, e.g. the linear model
minimises the total squared deviation between responses and predictions.

Bayesian models can be described in a similar manner, although there we tend to focus
on the the distributions of the parameters given the data, rather than a single estimated
value.

Not all techniques used by statisticians have these explicit probabilistic models, but the
basic breakdown remains the same. For example, neural networks are a model family,
the model form specifies the variables and number of nodes, and the fitted model will
have estimates for the parameters of each node. Neural networks are a good example of
where going from the model form to the fitted model is difficult. We must use numerical
methods, and convergence to a global optimum is not guaranteed. This means to find
the “best” fitted model (i.e. the model with the highest criterion value) we need multiple
random starts. We will come back to this in Section 4.6.

Knowing the model family and form does not guarantee we know what the fitted model
looks like. For example, the parameters of the linear model can be interpreted as the
change in the response when the predictor is changed by one unit, if all other variables
are held constant. This seems easy to interpret, but most models have interdependencies
between the predictors which means variables do not change independently, as with in-
teractions or polynomial terms. For more complex models, there may never be any direct
interpretation of any of the model parameters.

67

4 Visualising statistical models: Removing the blindfold

4.3 Display the model in data-space

A major theme of this paper is the importance of visualising the model in the context of the
data, displaying the model in the high-dimensional data space, or for short, showing the
m-in-ds. This is important because it allows us see how well (or how poorly) the model
responds to the data. The opposite of visualising the model in data space is visualising the
data in the model space (d-in-ms), where the data is displayed in some low-dimensional
space generated by the model. Both methods have their uses, but m-in-ds displays are
particularly helpful for understanding and critiquing the model.

To compare these approaches, think of a linear model. One of the most common diag-
nostics is a plot of fitted values versus residuals. This is a d-in-ms display because we are
plotting summary statistics from the model in a low-d view. An m-in-ds approach would
be to generate the full regression surface, and visualise it in the context of the data; this
is hard, but often revealing. For an m-in-ds approach, we can still use the residuals, but
we would want to see them in the context of the entire predictor space. For categorical
predictors, another approach would be to use population marginal means (Searle et al.,
1980) to summarise the categorical coefficients in such way that they are interpretable in
the data space.

More generally, what will a model embedded in the data space look like? We define
the data space to be the region over which we can reliably make inferences, usually a
hypercube containing the data, unless the variables are highly dependent, in which case
the data space might be a small subspace of the full cube. We can say a few things about the
form of models in general because almost all models share two important characteristics:
they summarise the data and interpolate the data space. This means that the model will
have many fewer dimensions than the data, and it will take values over the entire data
space, even where there are no data. This implies that models are manifolds, or high-d
surfaces.

It will be challenging to visualise the model in the data space: we have high-d data
points and a high-d model manifold. The following subsections describe some general tools
for high-d visualisation, and develop some ideas for representing the model in the data
space. Finally, three case studies illustrate the m-in-ds strategy for MANOVA, classification
algorithms and hierarchical clustering.

4.3.1 Tools for visualising high-d data and models

To visualise data and models in many dimensions, we need some good tools. While it
is possible to investigate high-d objects with only static graphics, it is much easier to do
so interactively. We will use two basic tools extensively: the grand tour, to look at many
projections of the data; and linked brushing, to interactively conditioning the data and
look at many subsections of the data. These tools are described briefly below, and in
more detail in Cook and Swayne (2007). Other tools, such as the parallel coordinate plot
(Inselberg, 1985; Wegman, 1990), are also useful, but we prefer the tour because for low
to moderate-d it gives a more immediately interpretable view of the data.

When we have a 3d object, how do we figure out what shape it is? We pick it up and look
at it from multiple sides, joining a sequence of 2d views into a 3d model. The grand tour
generalises this idea to more than n-d, generating a sequence of 2d projections of an n-d

68

4.3 Display the model in data-space

object. It chooses new projections randomly and smoothly rotates between them. The new
projections are selected at random so that if we watch the tour long enough we’ll see every
possible view, but we’ll never get stuck in the same uninteresting region for long. Among
other things, the grand tour can be used to identify multivariate outliers and clusters in
the data, as the snapshots in Figure 4.1 illustrate. A variant of the grand tour is the guided
tour, where new projections are selected according to an index of interestingness, and is
described in Section 4.5.1.

The limitation of the grand tour is that it is only useful for continuous variables. Con-
ditioning is useful for exploring a few categorical variables, but if the data contains many
categorical variables, it will be necessary to use more specialised tools such as the mosiac
plot (Hartigan and Kleiner, 1981; Hofmann, 2000).

Figure 4.1: Three interesting projections from the grand tour of the wine data, illustrating (from
left to right) an outlying blue point, an outlying red point, and that the groups are fairly distinct.
Animated version available at http://vimeo.com/823263.

Brushing is an interactive conditioning tool, analogous to trellis plots, but much more
flexible. Brushing links multiple views together by styling observations consistently across
views. We use a brush to colour observations in one plot and see the same observations
change colour in other views. Figure 4.2 shows one use of the brush, as a 1d conditioning
tool. We sweep a long and narrow brush across one plot and observe where that slice falls
in the context of another plot. As in the figure, we will often need to use a combination
of tours and linked brushing as the combination of projections and sections can be more
revealing than either one alone (Furnas and Buja, 1994).

4.3.2 Representing models as data

Representing the model as data is challenging and requires some creativity and imagina-
tion. You can draw inspiration from existing d-in-ms plots, but otherwise coming up with a
good representation requires some thinking and experimentation. Here we describe some
techniques that we have found useful.

For predictive models with a continuous response we want to be able to show the pre-
diction surface, z = f(a, b, c, ...). For complex models, it’s often difficult to describe this
surface parametrically, and we have few tools to display high-d surfaces, so we suggest us-
ing an approximation. The simplest method is to generate a dense sample of points lying
on the surface. One way to do this is to sample from the predictor space and compute a

69

http://vimeo.com/823263

4 Visualising statistical models: Removing the blindfold

Figure 4.2: (Far left) The active window containing the brush, and (right) the corresponding points
brushed in another view, with three snapshots as we move the brush down. Selected points are
enlarged and coloured black. Here brushing shows us that the data lies in a spiral in 3d: as we
move around the 2d curve from mid-right to bottom-left we move from high to low values of the
conditioned variable. Animated version available at http://vimeo.com/823262.

prediction for each sample. Borrowing from the terminology of spatial statistics, we can
sample the predictor space in a stratified, random or non-aligned manner. Non-aligned
sampling tends to work best: stratified sampling creates a grid that can produce distract-
ing visual artefacts, and uniform sampling generally needs many more points to create the
illusion of a continuous surface.

If we want to display more information about the predictive distribution than its ex-
pected value, what can we do? One approach is to also display other quantities from the
distribution. For example, with a linear model, we might display the mean and the 5%
and 95% quantiles. This is straightforward when the predictor only enters the distribution
through a single parameter (e.g. the mean), but maybe complex if it enters through multi-
ple parameters. In that case, an alternative is to draw random samples from the predictive
distribution (Gelman and Hill, 2006).

For models that incorporate connections between components it can be useful to display
these connections explicitly with lines. This technique is used for hierarchical clustering in
Section 4.3.5 and for self organising maps in Section 4.5.2. This approach is useful for any
model with a neighbourhood structure.

The case studies highlight some of these different techniques: for MANOVA we display
a quantile from the predictive distribution; for classification algorithms we sample from
the data space and display prediction regions; and for hierarchical clustering we draw
inspiration from 2d plots and make explicit the implicit connections.

4.3.3 Case study: MANOVA

MANOVA is a multivariate extension of ANOVA where there are multiple continuous re-
sponses instead of just one. Correspondingly, the error distribution of MANOVA is the multi-
variate normal, with mean 0 and variance-covariance matrix Σ. Because MANOVA looks at
response variables simultaneously it can identify differences that individual ANOVAs cannot,
as shown in Figure 4.3.

This case study explores adding MANOVA model information to the raw data. We will in-
vestigate a simple MANOVA with a single categorical explanatory variable, and discuss how
we might extend the ideas the more general multivariate linear model. In this simple case,
the model is that each group is multivariate normal with the same variance-covariance

70

http://vimeo.com/823262

4.3 Display the model in data-space

Figure 4.3: Example where MANOVA would detect a difference between the groups, but two ANOVAs
would not. Groups are distinct in 2d (left), but overlap on both margins (right).

matrix. To summarise this model we’ll display a 84% confidence region around the mean.
84% corresponds to 1.4 standard errors of the mean, used because the standard error of
the difference is 1.4× (

√
2) that of standard error of the mean. If two 84% confidence

regions don’t overlap, then the means must be at least 2 standard errors apart and thus
significantly different at the 5% level.

Generating the points on the surface of the confidence region is straightforward. First,
we draw points from a d-dimensional standard multivariate normal, then project these onto
the surface of a sphere by normalising each row to distance 1. Next, we skew this sphere
to match the desired variance-covariance matrix, blow it up to give the appropriate cl-level
confidence ellipsoid, and translate it by the group mean. This generates a p-dimensional
ellipsoid, which in 2d projections will look like a filled ellipse. Figure 4.4 shows the result
of this approach applied to the wine data.

Figure 4.4: Two projections of the wine data with 84% confidence regions around the group means.
Large points are data, small points are a sample on the surface of the confidence region. While the
confidence ellipsoids appear to overlap in a few projections (left), in most views we see that the
means are distant (right). The groups may overlap, but their means are significantly different.

Extending this idea to deal with multivariate linear models is straightforward, although
visualising the resulting surfaces will be difficult. If the model contains continuous vari-
ables, then we will no longer have point predictors of the mean, but instead continuous
functions each surrounded by a confidence region. We can generate these confidence
regions by randomly sampling the predictor space and then generating the confidence re-
gion for each sampled point as for MANOVA. Visualisation is complicated when we have
multiple response and predictor variables as we want to keep them separate, e.g. a linear

71

4 Visualising statistical models: Removing the blindfold

combination of a predictor and a response variable probably doesn’t make much sense. A
potentially useful tool here is the correlation tour (Buja et al., 1996), a version of the tour
which uses separate sets of variables for the x and y axes.

4.3.4 Case study: Classification models

A classifier is a model with a categorical response. Typically, the classifier is treated as a
black box and the focus is on finding classifiers with high predictive accuracy. For many
problems the ability to predict new observations accurately is sufficient, but it is interesting
to learn about how the algorithms operate by looking at the boundaries between groups.
Understanding the boundaries is important for the underlying real problem because it tells
us where the groups differ. Simpler, but equally accurate, classifiers may be built with
knowledge gained from visualising the boundaries, and problems of overfitting may be
intercepted.

Much of what we know of how a classifier works is based on the knowledge of the
algorithm. Each family of classifiers partitions the data space in a different way: LDA

divides up the data space with hyperplanes, while trees recursively split the space into
boxes. Most classifiers produce connected areas for each group, but there are exceptions,
e.g. k-nearest neighbours. To visualise the model in the data space, we can either display
the complete prediction regions or just their boundaries. These two approaches are shown
in Figure 4.5.

Figure 4.5: A 2d LDA classifier on the wine dataset. (Left) entire classification region shown and
(right) only boundary between regions. Data points are shown as large circles.

Generating the complete prediction region is straightforward: sample many points from
data space and classify each one. Generating only the boundary is more difficult. We may
be able to use a closed form expression if available, but otherwise we can start with the full
region and then remove non-boundary points. To determine if a point is near a boundary,
we look at the predicted class probabilities. If the highest and second highest probabilities
are nearly equal, then the classifier is uncertain about the class, so the point must be near
a boundary. We call this difference in probabilities the advantage, and to find the boundary
we discard points with values above a tolerance. The thickness of the resulting boundary
is controlled by this cut off, and it should be small enough to give a sharp boundary, but

72

4.3 Display the model in data-space

large enough that the set of boundary points is dense. This is a tricky trade-off. It may be
possible to use adaptive sampling, sampling more densely in regions closer to the boundary,
to do better.

If the classification function does not generate posterior probabilities, a k-nearest neigh-
bours approach on the grid of predictions can be used. If the neighbours of a point are
all the same class, then the point is not on a boundary. This method can be applied to
any classification function, but is slow, O(n2), because it computes all pairwise distances
to find the nearest neighbours. In practice, this imposes a limit of around 20,000 points.

Figure 4.6 illustrates the results of a support vector machine (Cortes and Vapnik, 1995)
with radial kernel fitted to three variables from the wine data. We see the red region
is contained almost completely inside the blue region, except where it abuts the green
region. The boundaries and regions are straightforward to understand because our brains
are adept at 3d modelling. http://www.vimeo.com/821284 explores the boundaries in
another way, by brushing along the advantage variable. This shows that the boundaries
are equal sharp between the different groups.

As we move beyond 3d it gets harder to see what is going on, but if we persevere we
can find informative views. Figure 4.7 shows three informative views of a polynomial
kernel with five variables. It looks like the boundary is largely flat (linear), apart from
a region that bulges out of the blue into red. This is easier to see interactively, as at
http://vimeo.com/823271.

Figure 4.6: Views of a 3d radial SVM classifier. From left to right: boundary, red, green and
blue regions. Variables used: color, phenols, and flavanoids. Animated version available at http:
//vimeo.com/821284.

Figure 4.7: Informative views of a 5d SVM with polynomial kernel. It’s possible to see that the
boundaries are largely linear, with a “bubble” of blue pushing into the red. A video presentation of
this tour is available at . Variables used: color, phenols, flavanoids, proline and dilution. Animated
version available from http://vimeo.com/823271.

73

http://www.vimeo.com/821284
http://vimeo.com/823271
http://vimeo.com/821284
http://vimeo.com/821284
http://vimeo.com/823271

4 Visualising statistical models: Removing the blindfold

These ideas are implemented in the R package classifly (Wickham, 2007a), which
can visualise classifiers generated by LDA and QDA (Venables and Ripley, 2002), SVM (Dim-
itriadou et al., 2006), neural networks (Venables and Ripley, 2002), trees (Therneau and
Atkinson, 2008), random forests (Liaw and Wiener, 2002) and logistic regression; and it
can easily to be extended to deal with other classifiers. More specific visualisations may
also be useful for each of these families of models: Section 4.6 discusses neural networks;
Cook et al. (2008a), support vector machines; and KLIMT provides many tools for visualis-
ing trees (Urbanek, 2002a,b, 2003).

4.3.5 Case study: Hierarchical clustering

Agglomerative hierarchical clustering methods build up clusters point by point, iteratively
joining the two closest points or clusters. This requires a distance metric, and a method for
calculating the distance between two clusters (linkage). There are a number of common
methods: use the closest distance (simple linkage), the largest distance (complete linkage),
the average distance (UPGMA), or the distance between cluster centroids (Ward’s). Each
of these methods finds clusters of somewhat different shapes: single linkage forms long
skinny clusters, average linkage forms more spherical clusters.

The most common visualisation of a hierarchical clustering is a dendrogram, a d-in-
ms display. There are also a number of other methods of this type: icicles (Kruskal and
Landwehr, 1983), silhouettes (Trauwaert et al., 1989) and clustergrams (Schonlau, 2002).
Figure 4.8 shows two dendrograms produced by clustering the wine dataset with Wards
linkage and single linkage. These dendrograms aren’t very informative. For the Wards
clustering we can see that there are three major clusters, and for single linkage the clusters
seem to grow mainly by adding a single point to an existing cluster. We can’t see what the
clusters have in common, or what variables are important for the clustering.

Figure 4.8: Dendrograms from a hierarchical clustering performed on wine dataset. (Left) Wards
linkage and (right) single linkage. Points coloured by wine variety. Wards linkage finds three
clusters of roughly equal size, which correspond fairly closely to three varieties of wine. Single
linkage creates many clusters by adding a single point, producing the dark diagonal stripes.

To do better we need to display the model in data space. Buja et al. (1996) draws in-
spiration from the dendrogram and suggests an interesting idea: connect the observations
in the data space according to their hierarchy in the clustering. For intermediate nodes in
the hierarchy, representing clusters containing more than one point, we supplement the

74

4.4 Collections are more informative than singletons

data with extra points located at the cluster centroid. An extension would be to connect
clusters in the same way as inter-cluster distances are calculated, i.e. connect closest points
for single linkage, most distant for complete, and centroids for Wards. A related technique
is supplementing a low-dimensional ordination with a the minimum spanning tree of the
original data (Gower and Ross, 1969; Kim et al., 2000).

Figure 4.9 displays some views of the wine dataset supplemented with a hierarchical
clustering with Wards linkage. It is easy to see the three groups and the hierarchical links
in the tour, as shown at http://www.vimeo.com/768329.

Figure 4.9: (Right) A informative projection of the flavanoid, colour, and proline variables for a
hierarchical clustering of the wine data, with Wards linkage. Edges are coloured by cluster, to
match the majority variety. The varieties are arranged in a rough U shape, with a little overlap, and
some of the outlying blue points have been clustered with the red points. (Left) Only red links and
blue points shown to focus in on the points that clustered with the wrong group. Animated version
available at http://vimeo.com/768329.

An implementation of these ideas is available in the clusterfly package (Wickham,
2007b).

4.4 Collections are more informative than singletons

So far we have looked at visualising a single model in the data space, and many modern
methods use collections of models. What can we do if we want to explore such a collection?
One approach is to visualise all of the model simultaneously. This is the strategy of trace
plots Urbanek (2005), which show hundreds of tree models simultaneously. This makes it
possible to see the space of models, showing both the common and the unusual. However,
in most cases we will not be able to view more than a couple of models simultaneously
because they will overlap and obscure one another. To deal with this we need tools to
help us to select smaller subsets of interesting models. We can do this by calculating de-
scriptive statistics on multiple levels, then using linked brushing to connect these statistics
to one another and to displays of the model. These ideas grow out of exploratory model
analysis as described by Unwin et al. (2003); Urbanek (2004) and draw on the notions of

75

http://www.vimeo.com/768329
http://vimeo.com/768329

4 Visualising statistical models: Removing the blindfold

descriptive statistics (Bickel and Lehmann, 1975a,b).
Collections of models arise in many ways, and in most cases most of the models are

ignored and we only look at the best model. This is perilous as we may miss alternative
models that explain the data almost as well as the best model, and suggest substantially
different explanations for the phenomenon of interest. Here are some collections that may
arise in practice:

• From exploring the space of all possible models. For a given model family, we can
generate all possible model forms. e.g. for a linear model, we can generate all
possible linear models with main effects. This will often produce too many models
to possibly fit or compare, so typically we will use some model selection algorithm
to explore the space of “best” models. Typically, only the best, or maybe the two or
three best models are examined.

• During the the process of data analysis. When analysing a data set, we may create
and discard many models in an attempt to reveal the salient features of the data. It
may be useful see all of these models simultaneously.

• While trying to find a global optima. When model fitting is not guaranteed to con-
verge to a global optimum, we may have a collection generated from multiple ran-
dom starts. This is useful for multidimensional scaling, neural networks, k-means
clustering, and self organising maps. Typically, only the model with the highest crite-
rion value is examined.

• By varying model settings. If a model has some tuning parameters, we can system-
atically alter them and observe the result, e.g. the penalty parameter in lasso, or the
degrees of freedom in a smoothing term. Often, cross-validation is used to select a
single optimal model.

• By fitting the same model to different datasets. These datasets might be groups
within a larger dataset (perhaps a prequel to fitting mixed effects model), or might
have been generated by leaving-one-out, cross validation, bootstrapping, permuting,
simulating, as part of a sensitivity analysis or by adding random noise to the response
(Luo et al., 2006). Typically, these multiple models are collapsed into a small set of
summary statistics.

• As an intrinsic part of the model. Certain model families use ensembles of simple sub-
models: neural networks (ensembles of logistic models), random forests (ensembles
of trees), bagging, and boosting. Typically, we just look at the overall model, and
ignore how each part contributes to the whole.

• By treating each iteration as a model. If we are interested in exploring the process
of model fitting, and the algorithm is iterative, we might treat each iteration as a
separate model. This gives a unique ordering to the models and is described in depth
in Section 4.5. Typically, we only look at the last iteration.

In this section, we focus on displaying the space of models, with the assumption that
this space will be linked to additional m-in-ds displays. These extra displays will help us

76

4.4 Collections are more informative than singletons

tune our descriptive statistics to best match features of the model that we are interested in.
Just as we would never look at a plot of a single data point, here we will never look at just
the single “best” model. Best implies that there is some complete ordering of the models,
which is often constructed with some ready made tradeoff between model complexity and
fit built, like AIC or BIC.

This suggests a set of descriptive statistics to start with: model-level summaries of com-
plexity and performance. Model complexity is often summarised by degrees of freedom,
but there may be more informative measures for specific model families, e.g. the number
of hidden nodes in a neural network. Model fit can be summarised with the likelihood
at the parameters for models fit with ML, or by some measure of predictive ability. These
statistics help us explore overall model quality and the tradeoff between quality and com-
plexity, but do not give any information about how the models differ, how the fit of a given
observation varies between models, or what exactly the parameters estimates are.

To explore these aspects of the model, we need descriptive statistics at other levels. A
good example of a statistical procedure with built in summary statistics at additional levels
is the random forest (Breiman, 2001), an ensemble method which uses many simple trees
fit to random subsets of the variables and observation. As well as the model-level sum-
maries described above, random forests provide tree-level, variable-level and observation-
level descriptive statistics:

• Tree-level. Each tree in the ensemble has its own test and training data sets and so
can computes an unbiased estimate of classification error. Inspecting these errors
allows us to find trees that perform particularly well or poorly. Looking at many
good trees in the data space, allows us to see commonalities (suggesting important
variables) and differences (suggesting correlations between variables).

• Variable-level. Each variable is ranked by how by the drop in model performance
when that variable is randomly permuted. This is a summary of a tree-variable statis-
tic, which computes variable importance for each tree.

• Observation-level. For each observation we have the distribution of predictions
across all trees. This can show which observations are easy (or hard) to classify,
and which classes are most often confused.

For other models, we will need to develop and calculate our own descriptive statistics.
Often there will be a large existing literature which can be probed for ideas. Another ap-
proach is to calculate a familiar summary statistic over an unfamiliar population. For exam-
ple, we could calculate an observation-level summary by computing the average residual
over the models. If models in the collection have common parameters, we might create
parameter-level summaries of the distribution of the estimates over the models. The impor-
tant thing is to generate descriptive statistics at multiple levels, in order to gain maximum
insight into the models.

Once we have computed the summary statistics, we need to explore them. Static plots
are helpful, but make it difficult to link between summaries at different levels. For example,
we might want to see how the model-estimate summaries differ between the best and
second best models. Linked brushing is particularly useful here. We can have one plot of

77

4 Visualising statistical models: Removing the blindfold

model-level statistics and one of model-estimate-level statistics and use brushing to link
between them. This idea is described in more detail in the case study.

The RAFT tool (Breiman and Cutler, 2008) for visualising random forests provides a
good set of static graphics, but provides no way to link between the plots, and no m-in-ds
visualisations. This is a problem: if we found a single tree that did a particularly good job,
we would like to see how it divides up the data space. Without linked graphics it is difficult
to see exactly what is going on within a random forest, and to see how they compare to
other models.

4.4.1 Case study: Linear models

In this case study we’ll explore a collection of linear models containing all possible main
effects models for a given dataset (or a large subset of these models). We will assume we
have m models describing a data set with n observations and p variables. If all possible
main effects models are fit, there will be 2p − 1 models in the collection. We will explore
summary statistics on five levels:

• Model level: model fit statistics. m observations.

• Model-estimate level: coefficient estimates on various scales. m× p observations.

• Estimate level: summary of estimates over the models. p observations.

• Model-observation level: residuals and influence measures. m× n observations.

• Observation level: the original data, plus summaries of residual behaviour. n obser-
vations.

The relationship between these different levels is shown schematically in Figure 4.10. In
this case study, we will focus on the the model and model-estimate level summaries. The
remainder are discussed more fully in Wickham (2007d).

We will use a data set on fertility in French-speaking Swiss provinces in the late 1800’s
(Mosteller and Tukey, 1977). We are interested in predicting fertility based on the pro-
portional of agricultural workers, average performance on an army examination, amount
of higher education, proportion of Catholics and infant mortality. There are 47 observa-
tions and six predictor variables, giving a collection containing 31 (25 − 1) models. The
data itself is rather irrelevant but it is a well-worn dataset which presents many interesting
features.

Figure 4.11 shows the model-level summary statistics: a measure of model complexity,
degrees of freedom; and five measurements of model fit, log-likelihood, AIC, BIC, R2 and
adjusted R2. The pattern is very similar across measures, with improvement in model
quality decelerating as model complexity increases. The improvement plateaus after six
degrees of freedom, suggesting that a six df/four variable model is the ‘best’ (one degree
of freedom is used by the estimate of intercept, and one by the estimate of the variance).

Each model contains between 1 and p variables, and for each variable in each model we
calculate:

• The raw estimate. Useful when all covariates are on the same scale.

78

4.4 Collections are more informative than singletons

Figure 4.10: Relationship between five levels of summary statistics for a collection of linear models.
Arrows indicate one-to-many relationships, e.g. for each model-level summary, there are many
model-observation and model-estimate statistics.

Figure 4.11: Model summary statistics, each scaled to [0, 1] to aid comparison. A grey line connects
the best models. The intercept only model is not displayed. Degrees of freedom include calculation
of intercept and variance. These summary statistics suggest that a 6 df/4 variable model has the
best tradeoff between complexity and performance.

79

4 Visualising statistical models: Removing the blindfold

• The standardised estimate, from model fit to data standardised to mean 0, standard
deviation 1. Useful as measure of relationship strength. Can be interpreted as the
change in predictor when response changes by one standard deviation, if all other
variables are held constant.

• The t-value and absolute t-value. Allow us to assess the significance and direction of
the relationship between the response and predictor.

We can use this graphic to explore the variance-covariance matrix of the predictors.
There are two interesting examples of this in Figure 4.12. First, the standardised coeffi-
cients of infant mortality are very similar across all models. This indicates that this variable
is largely independent of the other explanatory variables. Another interesting phenomenon
is the behaviour of the agriculture variable. For four of the models the relationship between
fertility and agriculture is positive, while for all others it is negative. Figure 4.13 highlights
these models and reveals that they all fit the data poorly, and do not include examination
or education covariates.

Figure 4.12: (Left) Raw coefficients are useful when variables are measured on a common scale.
(Right) In this case, as with most data sets, looking at the standardised coefficients is more in-
formative, as we can judge relative strength on a common scale. The education variable has the
most negative coefficients. Only catholic and infant mortality variables are consistently related to
increased fertility.

Figure 4.14 shows another way to use these lined plots, by highlighting the two best
models and then inspecting their standardised coefficients. We can see that the best and
second best models differ on inclusion of the examination variable.

These ideas are implemented in the meifly package (models explored interactively)
which uses R to fit the models and calculate the summary statistics, and GGobi to display
them.

80

4.4 Collections are more informative than singletons

Figure 4.13: (Left) Parallel coordinates plot of standardised coefficient vs variable. (Right) Scatter-
plot of R2 vs degrees of freedom. The four models with positive values of the agriculture coefficient
have been highlighted in both plots. These models all fit the data poorly, and include neither
examination nor education variables.

Figure 4.14: (Left) Scatterplot of R2 vs degrees of freedom. (Right) Parallel coordinates plot of
standardised coefficient vs variable. The two best models have been highlighted in red in both
plots.

81

4 Visualising statistical models: Removing the blindfold

4.5 Don’t just look at the final result; explore how the algorithm works

Whenever we can gain insight into the process of model fitting, we should. Observing
iterations helps us understand how the algorithm works and can reveal potential pitfalls.
Developing suitable visualisations forces you to think deeply about exactly what the algo-
rithm does and can suggest possible avenues for improvement. For some algorithms, it
may be possible to intervene, contributing a more global perspective to help the algorithm
escape local maxima.

Many statistical algorithms are inherently iterative: IRLS in the generalised linear model,
the Newton-Raphson method in maximum likelihood, the EM algorithm, multidimensional
scaling, and k-means clustering. Some these methods are guaranteed to converge to global
optimum (e.g. IRLS, EM), but most are not. We can think of each iteration as its own model,
and we want to explore the changes over time. Many of the messages of Section 4.4 also
apply here: we should look at each step, not just the last one; we should try and display
all models on a single plot where possible; and if not, we should develop good summary
statistics. The specific feature of collections generated by iteration is that there is a unique
ordering of the models.

This ordering suggests two approaches to visualisation: ordering in space, to make time
series plots, and ordering in time, to make movies. The time series plot displays time on
the x-axis and some summary statistic on the y-axis, and shows at a glance the progress of
a single parameter. This only works for a small number of numeric summaries, so for more
complicated summaries we can make a movie. A movie strings together many static plots,
each of which captures the state of the model at a single point in time. The animation
package (Xie, 2008) is a rich source of animations in R, but only provides one animation
that displays the progress of an algorithm, k-means clustering.

To capture the data we need for these plots, we can either stream data updates, replacing
the values from the previous iteration; or store all iterations for later exploration. Stream-
ing updates allows us to intervene in the algorithm and observe the effect of our changes,
while storing everything allows us to later run time forwards and backwards. A particu-
larly nice example of intervening in the progress of an algorithm is ggvis (Buja et al., To
appear), an interactive tool for multidimensional scaling that allows you to manually drag
points out of local optima.

Being able to extract this data is dependent on the implementation of the algorithm. If
you are an algorithm developer, you need to provide either a hook into the algorithm which
calls a function at every iterations; or the ability to run the algorithm for a fixed number
of steps, and to be able to start the fitting process from the results of a previous run. This
is not always straightforward as many algorithms also have time-varying parameters that
must be captured and recreated. Typically, extracting and saving this data will slow down
the algorithm considerably, often by an order of magnitude.

The following two case studies illustrate some of these ideas. The first case study, on
projection pursuit, visualises the use of simulated annealing to find interesting projections
of the data. The second case study explores the fitting process of self organising maps, as
implemented by the kohonen package.

82

4.5 Don’t just look at the final result; explore how the algorithm works

4.5.1 Case study: Projection pursuit

The guided tour (Cook et al., 1995) is a combination of the grand tour and projection
pursuit. Instead of randomly picking new projections, as in the grand tour, the guided tour
only picks new projections that are more interesting, by optimising an index of interesting-
ness with simulated annealing (Kirkpatrick et al., 1983). This case study investigates how
we can gain insight into the path that the simulated annealing takes. The indices we use
in this example come from the graphic theoretic scagnostics of Wilkinson et al. (2005) and
are implemented in the scagnostics package (Hofmann et al., 2006).

Figure 4.15 shows a time series of the scagnostic index being optimised, clumpiness,
which is takes high values when the data is grouped into distinct clumps. We can see that
the paths are not monotone: there is a stochastic component to simulated annealing which
helps it avoid local optima. Each of the points on the plot corresponds to a projection
matrix, and it is interesting to see if all the peaks correspond to the same or different
projections. Figure 4.16 shows the four projections with highest clumpiness. Visualising
the projection matrices themselves is difficult (each column corresponds to a point on a
p-dimensional hypersphere) but can be revealing (Cook et al., 2008b).

Figure 4.15: Variation of the clumpy index over time. Simulated annealing with 20 random starts,
run until 40 steps or 400 tries. Red points indicate the four highest values.

Figure 4.16: Four projections of the data with highest values of clumpiness, found by the simulated
annealing shown in Figure 4.15. Plots are ordered left to right from highest to lowest. All these
projections have good separation between the green group at the others, but not between the red
and blue groups. Looking at the top 15 maxima does not find any projections that separate these
two groups.

83

4 Visualising statistical models: Removing the blindfold

We can also use interaction with this plot to do something rather interesting: restart the
simulated annealing from one of the local optima and see if it can do better in that same
location. Figure 4.17 restarts from a local optima and shows that it is difficult to do better.

Figure 4.17: One of the guided tour runs of Figure 4.15 with new guided tours launched from
particularly good projections. Red line shows path of original simulated annealing.

4.5.2 Case study: self organising maps

A self-organising map (SOM) is a machine learning algorithm which simultaneously per-
forms clustering and dimension reduction (Kohonen, 2001). SOMs are often described as
a type of neural network, but they are more easily understood as a type of constrained
k-means. They are intuitively simple: we are wrapping a net of points into the data cloud.
The knots in the net are called nodes, and are constrained by their neighbours. Each node
has a position in the data space (like a cluster centroid), and the model space (a grid coor-
dinate on the net). In this case study we will look at the self organising maps implemented
in the kohonen package (Wehrens and Buydens, 2007).

We first need a method for visualising the model in the data space. The majority of SOM

displays show the data in the model space, and give little insight into the quality of the
model. An idea for a visualisation comes immediately from the net metaphor: we’ll display
the data, the nodes, and the connections between neighbouring nodes; a net wrapped
through the data. Figure 4.18 contrasts a typical d-in-ms view with a m-in-ds view for 10
× 3 node svm fit to the wine data.

The algorithm for fitting a SOM is very similar to k-means, but instead of updating a
single node at a time, we also update that node’s neighbours:

1. Randomly initialise nodes to positions in data space.

2. Iterate through each data point, and assign it to the closest node

a) Update the location of node: (1− α) · node + α · point
b) Also update the location of all neighbouring nodes within distance r on grid

3. Decrease α and r, and repeat step 2 until stopping condition is met

84

4.6 Pulling it all together: visualising neural networks

Figure 4.18: (Left) A visualisation of the model space. Each node is represented by a by a Coxcomb
plot which represents the position of that node in the data space. (Right) A projection of the model
embedded in the data space.

For the wine dataset, we’ll fit a 10 × 3 net: we know the data seems to fall along a
1d path, but maybe there’s something interesting along another dimension. To record the
progress of the model fit, we’ll save the following information at each of 100 iterations:
the positions of the nodes, the values of r and α, and the distance from each point to its
corresponding node.

Figure 4.19 summarises the quality of the model fit over time, by plotting the distance
between each point and its corresponding node. Looking at the mean alone is misleading:
there is a dramatic drop in mean distance when switching from a radius of three to two.
However, when we look at the complete distribution, we can see that this drop is small
compared to the total variation. We also see a number of outlying points that never get
close to a node. The variation in those lines might also make us wonder if we have stopped
the algorithm too soon.

To see how the model changes over, Figure 4.20 displays the model in the data space for
four selected iterations. A movie showing more iterations, more views of the model, and
interaction between the model and model summaries is available at http://vimeo.com/
823541. It’s interesting to note that the green and blue groups are close in the data space,
but distant in the model space. We could improve our SOM model by joining the two ends.
We also might have expected that the middle of the net would go through the blue group.

When we first used this package, it was not possible to break up the iterations into single
steps, because there wasn’t sufficient control over the changes to r and α. After asking the
package author to give access to the iterations, this visualisation revealed some problems
with the implementation of the SOM. The m-in-ds visualisation also revealed that the nets
were twisted and tangled up. The author has since fixed these bugs.

4.6 Pulling it all together: visualising neural networks

This case study pulls together all three themes of the paper to develop visualisations that
investigate the fit of single-hidden-layer neural networks, as implemented by the nnet
package (Venables and Ripley, 2002). Much like self organising maps, neural networks
are often treated as black boxes, and are used purely for prediction and not to give insight
into the data. We want to dig deeper, and explore how they work, how well they work,

85

http://vimeo.com/823541
http://vimeo.com/823541

4 Visualising statistical models: Removing the blindfold

Figure 4.19: (Top) Time series of mean distance from point to corresponding node, over time.
(Bottom) Distance to corresponding node for each individual point. Note the difference in scale!
Mean points are coloured by radius. Alpha is not displayed, but deceases linearly from 0.05 to 0.

and what we need to do to get the best performance. This longer case study is broken up
into three parts:

• In Section 4.6.1 we will develop a visualisation of the output of the neural network
in the data space, based on ideas from the classification section.

• The definition of neural networks reveals that they are an ensemble model, composed
of multiple logistic regressions. In Section 4.6.2 this insight will lead us to develop a
visualisation that shows what the internal sub-models are doing.

• The parameters of a neural network are estimated with a numerical method and
often get stuck in local optima. Section 4.6.3 explores why this happens and how
to ensure we get a good fit, by visualising many random starts and the process of
iteration.

We will illustrate this section with a simple two class, two dimension, classification prob-
lem, shown in Figure 4.21. The two classes can be completely separated by a non-linear
boundary, easily drawn in by hand: the human neural network can easily solve this prob-
lem! Even a simple linear classifier does well on this dataset, correctly classifying 92% of
the points. This is a simple problem but it will reveal many interesting features of neural
networks.

86

4.6 Pulling it all together: visualising neural networks

Figure 4.20: Iterations 1, 5, 25 and 100. After only one iteration the model seems to run through
the centre of groups fairly well, and changes little over the next 99 iterations. The net performs as
we expect, extracting the 1d path between the 3 groups.

Figure 4.21: Simple two class, two dimension, classification problem. The classes can be completely
separated by an easily seen non-linear boundary.

4.6.1 Model in data space

Assume we have been given a fitted neural network model. How can we visualise it? The
basic output from the model is a prediction surface for each class, giving the probability
that a new observation at (x, y) belongs to that class. In the two class case, we only need
to look at one of these surfaces, as the two probabilities must sum up to 1. To visualise this
surface, we have two basic options, shown in Figure 4.22. We could draw an image plot
showing the probability at each location, or summarise the shape with a few contour lines,
here at 10%, 25%, 50%, 75% and 90%. The 50% boundary determines whether a new
observation will be classified as class A or B. Both displays show that the boundary does
what we intuitively expect, and that the classification boundary is very sharp; this classifier
is quite certain which class a new observation should be given.

4.6.2 Looking at multiple models: ensemble

A single-hidden-layer neural network is composed of a set of submodels, logistic regres-
sions, whose outputs are combined using another logistic regression. In the terminology of
neural networks, the sub-models are hidden nodes, and the number of these nodes is the

87

4 Visualising statistical models: Removing the blindfold

Figure 4.22: Visualising the classification surface. (Left) An image plot, showing probability that a
new observation belongs to class B, and (right) a contour plot showing five iso-probability contour
lines (10%, 25%, 50%, 75%, 90%). This classifier perfectly distinguishes the two classes, and is
very sharp.

single most important tuning parameter. The hope is that these sub-models will identify
important lower-level features which can then be combined to reveal important high-level
features, much in the same way that biological neural networks (brains) work.

To be more precise, the probability that unit y with values x1, ..., xp belongs to class j is

P (y ∈ classj |x1, ..., xp) = k · φ(α+
s∑

h=1

whjφ(αh +
p∑

i=1

wihxi))

where s is the number of hidden nodes, p is the number of explanatory variables, and k
is a normalisation constant which ensures that the probabilities for all classes add up to
one. The function φ can be anything but is usually taken to be the logit for classification
problems.

So far we have just looked at the overall output of the model, but we can also dig in
and see what the hidden nodes are doing. Each internal node is a logistic regression, so
we can visualise it the same way as the overall output, except that now we need to display
the output for each node. Since there only a few models, we can display each side-by-
side, or superimpose the 50% contour line on a single plot. Note that output from the
internal nodes does not map directly to a prediction class, but is used by the final logistic
regression to generate classification probabilities. For our model, these displays are shown
in Figure 4.23. Each internal node has a sharp boundary which identifies part of the piece-
wise linear path that separates the groups.

This plot hints at some of the difficulties faced when estimating the model parameters.
The parameters are over-specified, as we can swap any two hidden nodes, or flip the
direction of logistic regressions along the boundary lines, and still get the same overall
model.

88

4.6 Pulling it all together: visualising neural networks

Figure 4.23: Visualisation of the hidden nodes of a neural network. (Top) The probability surfaces
for the hidden nodes are displayed side-by-side. (Bottom) The 50% probability contours from the
nodes are overlaid on a single plot. We see how each node identifies one linear break producing
the final classification boundary shown in Figure 4.22.

89

4 Visualising statistical models: Removing the blindfold

4.6.3 Looking at multiple models: random starts

The parameters of the neural network are estimated by numerical optimisation. Neural
networks often converge to local optima and it is customary to try multiple random starts
to find the global optima. For our dataset, we will try 200 random starts each for neural
networks with 2, 3 and 4 hidden nodes. This gives a total of 600 neural networks fit to the
data. Figure 4.24 summarises the results. There is a striking variation in the ability of the
neural network to correctly separate the two classes, with prediction accuracy ranging from
80% to 100%. Most of the networks correctly classify 92% of the points, no better than
a linear boundary. Only one network classifies the training data perfectly! Interestingly,
increasing the number of nodes doesn’t affect the predictive ability of the majority of the
networks, but, surprisingly, does increase the number of very good and very bad models.

Figure 4.24: Summary of 600 neural networks with two, three and four hidden nodes. (Top)
Scatterplot of prediction accuracy vs internal criterion. (Bottom) Histograms of prediction accuracy.
Most networks achieve an accuracy of 92%, with just a few that do much better or much worse.

Figure 4.25 shows the classification boundaries of all 600 neural networks roughly bro-
ken down by model quality. There is a lot of overplotting, but we can see that many of the
networks have a linear classification boundary, some seem to get one of the gaps, but not
both, and a number of the four-node models capture the essence of the boundary, even if
they are not completely correct.

We can also use this same idea to explore the process of model fitting, treating each
iteration as a model in its own right. The video at http://www.vimeo.com/767832 shows
the changes in the hidden nodes as the algorithm proceeds. An alternative approach to
display the iterations simultaneously by only showing the 50% boundary, as in Figure 4.26.
We can see the boundaries move rapidly at first, and then appear to stabilise.

90

http://www.vimeo.com/767832

4.6 Pulling it all together: visualising neural networks

Figure 4.25: Classification boundaries from all 600 neural networks, broken down by number of
numbers and groups based on accuracy. Sub-linear models have accuracy in [0%, 91.5%], linear in
[91.5%, 92.5%], super-linear in [92.5%, 98%], and excellent in [98%, 100%]. Most of the boundaries
are linear, a few get one of the bumps, and quite a few of the four node networks get the overall
form right, even if they are not perfectly accurate.

Figure 4.26: How the 50% probability line for each node changes with time. 100 runs with 5
iterations between each. Nodes start similarly, move rapidly in the first few iterations, then slow
down, converging to surfaces that are quite different. Animated version available at http://www.
vimeo.com/767832.

91

http://www.vimeo.com/767832
http://www.vimeo.com/767832

4 Visualising statistical models: Removing the blindfold

4.6.4 Real data

Even though we have used a very simple example we have still discovered many inter-
esting features of the neural network algorithm. In real life the neural network will be
considerably more complicated: more data points, more internal nodes, and more possible
classes. However, we can continue to use the same ideas, with a few tweaks:

• If there are more than two classes, we can longer summarise the model with a single
probability surface, but we will need one for each class. When computing classi-
fication boundaries we will need to use the advantage statistic developed in Sec-
tion 4.3.4.

• If there are more than two input variables, we will need to use high-dimensional tools
to visualise the classification surface. These were also described in Section 4.3.4.

• More data points shouldn’t affect our choice of visualisations, but it will make the
neural networks slower to fit. This may affect our ability to try the many possible
random starts necessary to find a good fit.

4.7 Conclusion

We have presented three important strategies for visualising models: visualise the model
in data space, collections are more informative than singletons and explore the process of
model fitting. These were illustrated with many case studies that developed informative
visualisations using the strategies outline in the paper. The tight connection between R
and GGobi facilitated the development of all of the examples, and has resulted in the
development of R packages that one can easily download and try out.

To make these tools useful in practical model building we need to improve our ability
to visualise high-d data and surfaces. We have the basic tools, but as the number of di-
mensions increases, the number of potential views becomes overwhelming. How can we
provide support for finding revealing views, while maintaining the ability of the analyst
to look for the unexpected? We have touched on projection pursuit for finding interesting
views of the data, and we expect developing descriptive statistics that summarise both the
model and data to be a fruitful approach. The challenge is, as always, developing good
summaries, but our graphical tools can help us develop these for low-d data for application
to high-d data.

We also need better tools to visualise high-d surfaces. In this paper we have gone to
considerable lengths to approximate high-dimensional surfaces with a dense set of points.
Development of better sampling methods would be useful, but the development of higher
dimensional drawing primitives is more of a priority. GGobi currently provides 0d (points)
and 1d (lines) primitives, can we supplement these with 2d primitives (triangles?) as well?
The development of adaptive contouring algorithms for high-d would also be useful.

The case studies in this paper are just a beginning and we hope that others pick up these
ideas to develop visualisations for more models in a wider array of statistical and graphical
environments.

92

4.8 Acknowledgements

4.8 Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant No. 0706949.

93

4 Visualising statistical models: Removing the blindfold

94

Chapter 5

Conclusion and future plans

The three papers in this thesis described three practical tools for exploring data and models.
Chapter 2, “Reshaping data with the reshape package”, described a framework for reshap-
ing data. Chapter 3, “A layered grammar of graphics”, described a framework for static
statistical graphics. Chapter 4, “Visualising statistical models: removing the blindfold”,
described strategies for visualising statistical models. These papers are united by their
practical nature and their philosophy of data analysis. In this conclusion I will expand on
these unifying themes, investigate the impact of my work and discuss future directions.

5.1 Practical tools

A particular emphasis of my work is the development of practical tools. The ideas pre-
sented in this thesis are implemented in the open-source R packages reshape, ggplot2,
classifly, clusterfly, and meifly, all of which are available from CRAN.

This emphasis on practical tools grows out of my experiences in consulting and teaching.
The variety of data formats provided by my consulting clients and the difficulty restructur-
ing them with existing tools led to the reshape package, while ggplot2 grew out of my
frustration with existing graphics tools in R, particularly the plots that were easy to imag-
ine but took hours of work to create. For me, reshape and ggplot2 substantially reduce
the time between the conception and realisation of a data structuring or graphic, giving me
more time to dig into the data. This has also increased the number of investigations that I
can perform on the fly, while in front of a client, which is particularly useful for shortening
the communication loop.

Teaching R forces you to re-see R through the eyes of a beginner. You are forced to
reconsider all of the idiosyncrasies that you once struggled with, but have now become
so internalised that you don’t realise they are there. R has some delights. The modelling
framework is particularly strong: once you have mastered the linear model, you can easily
use extensions like the generalised linear or the mixed effects model, and learning new
model classes is straightforward. But data analysis is not just about fitting models, and
other aspects of R are not so pleasant. For example, the built-in graphics and data manipu-
lation tools seem to consist only of special cases, all with different parameters and different
outputs. This requires much rote memorisation to master, and makes it hard for students
to see the underlying themes. By building consistent frameworks for thought and action,
reshape and ggplot2 make it much easier to teach data analysis because you can focus on

95

5 Conclusion and future plans

the big picture and not worry so much about the minor details.
The tools for models visualisation are also pedagogically useful, as they give students a

way to see how the methods work. They fit naturally in to the process of data analysis and
force students to consider their models in the light of the data.

5.2 Data analysis

The process of data analysis is not a straight line from point A to B, but involves much
circling back, and looking at the map to see we’ve been and where we should go next.
Often we will need to return to previous findings to reinterpret them in terms of what we
have since learned. Not only will our models of the data change, but also our visualisations
and even the form of the data itself. Velleman (1997) captures this spirit well with his
aphorism “The process of data analysis is one of parallel evolution. Interrelated aspects of the
analysis evolve together, each affecting the others.” While presented separately, in practice
the three tools of this thesis work together to build our understanding of the data. This
process can be seen in more depth in Hobbs et al. (To appear), which involved multiple
re-expressions of the data, and many plots and models that never saw the light of day.

While powerful, these tools are lacking in one respect. They fail to combat what Francis
Bacon describes as “The human understanding, on account of its own nature, readily sup-
poses a greater order and uniformity in things than it finds. And . . . it devises parallels and
correspondences and relations which are not there.” We need tools to combat the innate
human ability to see patterns in random data, and the innate desire to tell stories about
data. To balance our curiosity we need methods to encourage scepticism and remind us to
question what we see. Of course classical statistics provides a great number of these tools,
but how can we apply them in an exploratory, graphical situation? Buja et al. (1988);
Swayne et al. (1998) provide some initial ideas from which I hope to build from in the
future.

5.3 Impact

It is difficult to judge the impact of your work. Unfortunately, because of the way that
CRAN is set up, it is not possible to know exactly how many times my packages have been
downloaded. However, last month around 1,600 people viewed package related pages on
my website and 18 people emailed me a question about one of my packages. An additional
indicator of impact is that for graphics and data manipulation problems posed on R-help,
others will offer a solution using reshape or ggplot. For my reshape paper, the Journal of
Statistical Software tracks the number of downloads and as of March 28 2008, the paper
has been download 982 times, approximately five times per day on average since it was
published.

Professionally, my work has resulted in an invitation to teach a 3-day course at the
University of Zurich in July 2007, and to speak at the World Congress for Probability and
Statistics in Singapore in July 2008.

96

5.4 Future work

5.4 Future work

I see much of my future work evolving around two obvious deficiencies of the layered
grammar: it is purely static, with no interaction; and it gives no insight into area plots
for categorical data. I am also interested in developing other frameworks that facilitate
common tasks in data analysis, and in building a toolkit for graphical inference.

Interactive graphics are an important family of tools because they speed up the process
of data analysis. With a well designed interactive graphics package, the time between
steps is further decreased because we can modify the previous representation, rather than
having to start from scratch. This makes it important to extend the layered grammar to also
describe interaction. Currently, the layered grammar is purely static; it does not describe
how we can interact with the plot to change what it displays.

Extending the grammar to include interaction will be challenging. In preparation for
this work, I have begun studying the types of interaction present in GGobi (Swayne et al.,
2003), Mondrian (Theus, 2003), MANET (Unwin et al., 1996) and Excel. A particularly im-
portant component of interactive graphics is linked brushing, and am currently working on
a paper about this with Graham Wills. One of the biggest challenges in adapting ggplot2
to incorporate interaction will be ensuring that plotting is fast enough so that the sequence
of static plots is seamless. To this end, I have been working on the data pipeline which un-
derlies GGobi (Wickham et al., Accepted), particularly how the pipeline coordinates events
across different views of the same data.

The grammar poorly describes area plots for categorical data: spine charts, mosaic plots,
equal-bin-size plots, fluctuation diagrams (Hartigan and Kleiner, 1984; Hofmann, 2001;
Unwin et al., 1996), and the closely related treemaps (Shneiderman, 1992) and dimen-
sional stacking (LeBlanc et al., 1990). These plots represent each combination of categor-
ical levels by a rectangle with area proportional to the number of observations, hence the
name area plot. The plots differ primarily in whether they focus on conditional or joint
distributions, and whether or not marginal distributions are visible. With Heike Hofmann,
I am working on an extension to the grammar that describes all of these plots in a consis-
tent framework, helping us to see the underlying commonalities and to suggest new plot
types. There is also an interesting connection with log-linear models, particularly as a tool
for removing marginal effects once they have been recognised.

I am also interested in developing better tools for other data analysis tasks. For example,
a common problem-solving strategy is to break a big problem into small chunks, operate
on each chunk individually and then join them all back together. In R, there are a number
of functions that support parts of this strategy, but they are scattered and inconsistent.

5.5 Final words

This thesis has presented three practical tools that support data analysis, improving our
ability to explore data and models. The tools are not just computational, but also provide
mental tools that support a cohesive philosophy of data analysis that stresses iteration and
progressively building our understanding of the data.

97

5 Conclusion and future plans

98

Bibliography

A. Asuncion and D. Newman. UCI machine learning repository, 2007. URL http://www.
ics.uci.edu/~mlearn/MLRepository.html.

R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design and control of trellis
display. Journal of Computational and Graphical Statistics, 5(2):123–155, 1996.

J. Bertin. Semiology of Graphics. University of Wisconsin Press, Madison, WI, 1983.

P. J. Bickel and E. L. Lehmann. Descriptive statistics for nonparametric models. I: Introduc-
tion. The Annals of Statistics, 3:1038–1044, 1975a.

P. J. Bickel and E. L. Lehmann. Descriptive statistics for nonparametric models. II: Location.
The Annals of Statistics, 3:1045–1069, 1975b.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman and A. Cutler. RAFT Documentation, 2008. URL http://www.
webcitation.org/5WCgv1oW9. Accessed from http://www.stat.berkeley.edu/

~breiman/RandomForests/cc_graphicsdoc.htm on 2008-03-09.

C. A. Brewer. Color use guidelines for mapping and visualization. In A. MacEachren
and D. Taylor, editors, Visualization in Modern Cartography, chapter 7, pages 123–147.
Elsevier Science, Tarrytown, NY, 1994a.

C. A. Brewer. Guidelines for use of the perceptual dimensions of color for mapping and
visualization. In Color Hard Copy and Graphic Arts III, Proceedings of the International
Society for Optical Engineering (SPIE), San Jose, volume 2171, pages 54–63, 1994b.

A. Buja, D. Asimov, C. Hurley, and J. A. McDonald. Elements of a viewing pipeline for data
analysis. In Dynamic Graphics for Statistics. Wadsworth, Inc., 1988.

A. Buja, D. Cook, D. Asimov, , and C. Hurley. Theory and computational methods for
dynamic projections in high-dimensional data visualization. Technical report, ATT,
1996. URL http://www.research.att.com/~andreas/papers/dynamic-projections.
ps.gz.

A. Buja, D. F. Swayne, M. L. Littman, N. Dean, and H. Hofmann. Interactive data visualiza-
tion with multidimensional scaling. Journal of Computational and Graphical Statistics, To
appear. URL http://www-stat.wharton.upenn.edu/~buja/PAPERS/paper-mds-jcgs.
pdf.

99

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.webcitation.org/5WCgv1oW9
http://www.webcitation.org/5WCgv1oW9
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_graphicsdoc.htm
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_graphicsdoc.htm
http://www.research.att.com/~andreas/papers/dynamic-projections.ps.gz
http://www.research.att.com/~andreas/papers/dynamic-projections.ps.gz
http://www-stat.wharton.upenn.edu/~buja/PAPERS/paper-mds-jcgs.pdf
http://www-stat.wharton.upenn.edu/~buja/PAPERS/paper-mds-jcgs.pdf

Bibliography

D. Carr. Using gray in plots. ASA Statistical Computing and Graphics Newsletter, 2(5):11–14,
1994. URL http://www.galaxy.gmu.edu/~dcarr/lib/v5n2.pdf.

D. Carr. Graphical displays. In A. H. El-Shaarawi and W. W. Piegorsch, editors, Encyclopedia
of Environmetrics, volume 2, pages 933–960. John Wiley & Sons, Ltd, Chichester, 2002.
URL http://www.galaxy.gmu.edu/%7Edcarr/lib/EnvironmentalGraphics.pdf.

D. Carr and R. Sun. Using layering and perceptual grouping in statistical graphics. ASA
Statistical Computing and Graphics Newsletter, 10(1):25–31, 1999.

D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scatterplot matrix tech-
niques for large n. Journal of the American Statistical Association, 82(398):424–436,
1987.

J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical methods for data analysis.
Wadsworth, 1983.

C. Chatfield. Problem Solving : A Statistician’s Guide. Chapman & Hall, 1995.

W. Cleveland. A model for studying display methods of statistical graphics. Journal of
Computational and Graphical Statistics, 2:323–364, 1993. URL http://stat.bell-labs.
com/doc/93.4.ps.

W. S. Cleveland and R. McGill. Graphical perception: Theory, experimentation and ap-
plication to the development of graphical methods. Journal of the American Statistical
Association, 79(387):531–554, 1984.

W. S. Cleveland and R. McGill. Graphical perception: The visual decoding of quantitative
information on graphical displays of data. Journal of the Royal Statistical Society. Series
A (General), 150(3):192–229, 1987.

D. Cook and D. F. Swayne. Interactive and Dynamic Graphics for Data Analysis: With Exam-
ples Using R and GGobi. Springer, 2007.

D. Cook, A. Buja, J. Cabrera, and C. Hurley. Grand tour and projection pursuit. Journal of
Computational and Graphical Statistics, 4(3):155–172, 1995.

D. Cook, D. Caragea, and H. Wickham. Visual methods for examining SVM classifiers. In
S. Simoff, M. H. Böhlen, and A. Mazeika, editors, Data Mining: Theory, Techniques and
Tools for Visual Analytics, LNCS State of the Art Surveys. 2008a.

D. Cook, E.-K. Lee, A. Buja, and H. Wickham. Grand tours, projection pursuit guided tours
and manual controls. In C.-h. Chen, W. Härdle, and A. Unwin, editors, Handbook of
Data Visualization, Springer Handbooks of Computational Statistics, chapter III.2, pages
295–314. Springer, 2008b.

R. D. Cook. Regression Graphics: Ideas for Studying Regressions through Graphics. John
Wiley Sons, 1998.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

100

http://www.galaxy.gmu.edu/~dcarr/lib/v5n2.pdf
http://www.galaxy.gmu.edu/%7Edcarr/lib/EnvironmentalGraphics.pdf
http://stat.bell-labs.com/doc/93.4.ps
http://stat.bell-labs.com/doc/93.4.ps

Bibliography

D. R. Cox. Some remarks on the role in statistics of graphical methods. Applied Statistics,
27(1):4–9, 1978.

N. J. Cox. The grammar of graphics. Journal of Statistical Software, 17, 2007. URL
http://www.jstatsoft.org/v17/b03/v17b03.pdf.

E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, , and A. Weingessel. e1071: Misc Functions
of the Department of Statistics (e1071), TU Wien, 2006. R package version 1.5-16.

J. H. Friedman. Exploratory projection pursuit. Journal of American Statistical Association,
82:249–266, 1987.

G. W. Furnas and A. Buja. Prosection views: Dimensional inference through sections and
projections. Journal of Computational and Graphical Statistics, 3(4):323–353, 1994.

A. Gelman and J. Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press, 2006.

J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster analysis.
Applied Statistics, 18:54–64, 1969.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, and M. Venkatrao. Data cube:
A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data
Mining and Knowledge Discovery, 1:29–53, 1997.

A. Gribov. Gauguin (grouping and using glyphs uncovering individual nuances), 2007.
URL http://rosuda.org/software/Gauguin/gauguin.html.

J. A. Hartigan and B. Kleiner. Mosaics for contingency tables. In Computer Science and
Statistics: Proceedings of the 13th Symposium on the Interface, pages 268–273, Fairfax
Station, VA, 1981. Interface Foundation of North America, Inc.

J. A. Hartigan and B. Kleiner. A mosaic of television ratings. The American Statistician, 38
(1):32–35, 1984.

J. Heer and M. Agrawala. Multi-scale banking to 45 degrees. IEEE Transactions on Visual-
ization and Computer Graphics, 12(5), 2006.

J. Hobbs, H. Wickham, H. Hofmann, and D. Cook. Glaciers melt as mountains warm: A
graphical case study. Computational Statistics, To appear. Special issue for ASA Statistical
Computing and Graphics Data Expo 2007.

H. Hofmann. Exploring categorical data: Interactive mosaic plots. Metrika, 51(1):11–26,
2000.

H. Hofmann. Graphical Tools for the Exploration of Multivariate Categorical Data. BOD,
2001.

H. Hofmann. Constructing and reading mosaicplots. Computational Statistics and Data
Analysis, 43(4):565–580, 2003.

101

http://www.jstatsoft.org/v17/b03/v17b03.pdf
http://rosuda.org/software/Gauguin/gauguin.html

Bibliography

H. Hofmann, L. Wilkinson, H. Wickham, D. T. Lang, and A. Anand. scagnostics: Compute
scagnostics., 2006. R package version 0.1.0.

C. Huang, J. A. McDonald, and W. Stuetzle. Variable resolution bivariate plots. Journal of
Computational and Graphical Statistics, 6:383–396, 1997.

R. Ihaka. Colour for presentation graphics. In Proceedings of the 3rd International Workshop
on Distributed Statistical Computing (DSC 2003), 2003. URL http://www.ci.tuwien.ac.
at/Conferences/DSC-2003/Proceedings/Ihaka.pdf.

A. Inselberg. The Plane with Parallel Coordinates. The Visual Computer, 1:69–91, 1985.

S.-S. Kim, S. Kwon, and D. Cook. Interactive visualization of hierarchical clusters using
MDS and MST. Metrika, 51(1):39–51, 2000.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Science.
Springer, 2001.

J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for hierarchical clustering.
The American Statistician, 37:162–168, 1983.

J. LeBlanc, M. Ward, and N. Wittels. Exploring n-dimensional databases. In Proceedings of
Visualization ’90, pages 230–237, 1990.

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22,
2002. URL http://CRAN.R-project.org/doc/Rnews/.

X. Luo, L. A. Stefanski, and D. D. Boos. Tuning variable selection procedures by adding
noise. Technometrics, 48(2):165–175, 2006.

F. Mosteller and J. W. Tukey. Data Analysis and Regression: A Second Course in Statistics.
Addison-Wesley, Reading Mass., 1977.

D. Murdoch. Drawing a scatterplot. Chance, 13(3):53–55, 2000.

J. A. Nelder. Algorithm AS 96: A simple algorithm for scaling graphs. Applied Statistics, 25
(1):94–96, 1976.

F. Nightingale. Notes on matters affecting the health, efficiency and hospital administration
of the British Army. Private publication, London, 1857.

OED Online. The Oxford English Dictionary. Oxford University Press, 2nd ed edition, 1989.
URL http://dictionary.oed.com/cgi/entry/50097652.

R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2007. URL http:
//www.R-project.org. ISBN 3-900051-07-0.

102

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/Ihaka.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/Ihaka.pdf
http://CRAN.R-project.org/doc/Rnews/
http://dictionary.oed.com/cgi/entry/50097652
http://www.R-project.org
http://www.R-project.org

Bibliography

D. Sarkar. lattice: Lattice Graphics, 2006. R package version 0.14-16.

M. Schonlau. The clustergram: A graph for visualizing hierarchical and non-hierarchical
cluster analyses. The Stata Journal, 3:316–327, 2002. URL http://www.schonlau.net/
clustergram.html.

S. R. Searle, F. M. Speed, and G. A. Milliken. Population marginal means in the linear
model: An alternative to least squares means. The American Statistician, 34(0):216–221,
1980.

B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans.
Graph., 11(1):92–99, 1992. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/102377.
115768.

A. Shoshani. Olap and statistical databases: Similarities and differences. In Proc. ACM
PODS ’97, pages 185–196, 1997.

D. N. Sparks. Algorithm AS 44: Scatter diagram plotting. Applied Statistics, 20(3):327–331,
1971.

W. D. Stirling. Algorithm AS 168: Scale selection and formatting. Applied Statistics, 30(3):
339–344, 1981.

D. Swayne, A. Buja, and N. Hubbell. XGobi meets S: integrating software for data analysis.
Computing Science and Statistics, 23:430–434, 1991.

D. F. Swayne, D. Cook, and A. Buja. Xgobi: Interactive dynamic data visualization in the x
window system. Journal of Computational and Graphical Statistics, 7(1):113–130, 1998.

D. F. Swayne, D. Temple Lang, A. Buja, and D. Cook. GGobi: Evolving from XGobi into an
extensible framework for interactive data visualization. Computational Statistics & Data
Analysis, 43:423–444, 2003.

D. Temple Lang, D. Swayne, H. Wickham, and M. Lawrence. rggobi: Interface between R
and GGobi, 2007. URL http://www.ggobi.org/rggobi. R package version 2.1.7.

R. P. Thayer and R. F. Storer. Algorithm AS 21: Scale selection for computer plot. Applied
Statistics, 18(2):206–208, 1969.

T. M. Therneau and B. Atkinson. rpart: Recursive Partitioning, 2008. R port by Brian Ripley.
R package version 3.1-39.

M. Theus. Interactive data visualiating using Mondrian. Journal of Statistical Software, 7
(11):1–9, 2003.

L. Tierney. Lisp-Stat: an object-oriented environment for statistical computing and dynamic
graphics. John Wiley & Sons, New York; Chichester, 1990.

E. Trauwaert, P. Rousseeuw, and L. Kaufman. Some silhouette-based graphics for clustering
interpretation. Belgian Journal of Operations Research, Statistics and Computer Science,
29(3):35–55, 1989.

103

http://www.schonlau.net/clustergram.html
http://www.schonlau.net/clustergram.html
http://www.ggobi.org/rggobi

Bibliography

E. R. Tufte. Envisioning information. Graphics Press, Chesire, Connecticut, 1990.

E. R. Tufte. Visual explanations. Graphics Press, Chesire, Connecticut, 1997.

E. R. Tufte. The visual display of quantitative information. Graphics Press, Chesire, Con-
necticut, 2001.

E. R. Tufte. Beautiful evidence. Graphics Press, Chesire, Connecticut, 2006.

J. W. Tukey. Exploratory data analysis. Addison Wesley, 1977.

A. Unwin, C. Volinsky, and S. Winkler. Parallel coordinates for exploratory modelling
analysis. Computational Statistics & Data Analysis, 43(4):553–564, 2003. URL http:
//rosuda.org/~unwin/AntonyArts/uvwCSDA.pdf.

A. R. Unwin, G. Hawkins, H. Hofmann, and B. Siegl. Interactive graphics for data sets
with missing values - MANET. Journal of Computational and Graphical Statistics, 5(2):
113–122, 1996.

S. Urbanek. Exploring statistical forests. In Proceedings of the Joint Statistical Meetings,
2002a. URL http://simon.urbanek.info/research/pub/urbanek-jsm02.pdf.

S. Urbanek. Different ways to see a tree - klimt. In Proceedings of the 14th Conference
on Computational Statistics, Compstat 2002, 2002b. URL http://simon.urbanek.info/
research/pub/urbanek-cs02.pdf.

S. Urbanek. Interactive construction and analysis of trees. In Proceedings of the
Joint Statistical Meetings, 2003. URL http://simon.urbanek.info/research/pub/
urbanek-jsm03.pdf.

S. Urbanek. Exploratory Model Analysis. An Interactive Graphical Framework for Model
Comparison and Selection. PhD thesis, Universität Augsburg, 2004.

S. Urbanek. Following traces of lost models. In Proceedings of the Joint Statistical Meetings,
2005. URL http://simon.urbanek.info/research/pub/urbanek-jsm05.pdf.

S. Urbanek and T. Wichtrey. iplots: iPlots - interactive graphics for R, 2007. URL http:
//www.iPlots.org/. R package version 1.1-1.

P. F. Velleman. Data desk. The New Power of Statistical Vision. Data Description Inc, 1992.
URL http://www.datadesk.com/products/data_analysis/datadesk/.

P. F. Velleman. The philosophical past and the digital future of data analysis: 375 years
of philosophical guidance for software design on the occassion of john w. tukey’s 80th
birthday. In The practice of data analysis: Essays in honor of John W. Tukey. Princeton
University Press, 1997.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York,
fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-
95457-0.

104

http://rosuda.org/~unwin/AntonyArts/uvwCSDA.pdf
http://rosuda.org/~unwin/AntonyArts/uvwCSDA.pdf
http://simon.urbanek.info/research/pub/urbanek-jsm02.pdf
http://simon.urbanek.info/research/pub/urbanek-cs02.pdf
http://simon.urbanek.info/research/pub/urbanek-cs02.pdf
http://simon.urbanek.info/research/pub/urbanek-jsm03.pdf
http://simon.urbanek.info/research/pub/urbanek-jsm03.pdf
http://simon.urbanek.info/research/pub/urbanek-jsm05.pdf
http://www.iPlots.org/
http://www.iPlots.org/
http://www.datadesk.com/products/data_analysis/datadesk/
http://www.stats.ox.ac.uk/pub/MASS4

Bibliography

H. Wainer. Visual revelations: graphical tales of fate and deception from Napoleon Bonaparte
to Ross Perot. Lawrence Erlbaum, 2000.

H. Wainer. Graphic discovery: A trout in the milk and other visual adventures. Princeton
University Press, 2004.

E. J. Wegman. Hyperdimensional data analysis using parallel coordinates. Journal of the
American Statistical Association, 85(411):664–675, 1990.

R. Wehrens and L. Buydens. Self- and super-organising maps in R: the kohonen package.
Journal of Statistical Software, 21(5), 2007. URL http://www.jstatsoft.org/v21/i05.

H. Wickham. classifly: Explore classification models in high dimensions, 2007a. URL http:
//had.co.nz/classifly. R package version 0.2.3.

H. Wickham. clusterfly: Explore clustering interactively using R and GGobi, 2007b. URL
http://had.co.nz/clusterfly. R package version 0.2.3.

H. Wickham. ggplot2: An implementation of the Grammar of Graphics, 2008. URL http:
//had.co.nz/ggplot2. R package version 0.6.

H. Wickham. meifly: Interactive model exploration using GGobi, 2006. URL http://had.
co.nz/meifly. R package version 0.1.1.

H. Wickham. reshape: Flexibly reshape data., 2005. URL http://had.co.nz/reshape/. R
package version 0.7.1.

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21
(12), 2007c. URL http://www.jstatsoft.org/v21/i12/paper.

H. Wickham. Meifly: Models explored interactively. Technical Report 4, Department
of Statistics, Iowa State University, 2007d. URL http://www.stat.iastate.edu/
preprint/articles/2007-04.pdf.

H. Wickham, M. Lawrence, D. Cook, A. Buja, H. Hofmann, and D. F. Swayne. The plumbing
of interactive graphics. Computational Statistics, Accepted. Special issue for Proceedings
of the 5th International Workshop on Directions in Statistical Computing.

L. Wilkinson. The Grammar of graphics. Statistics and Computing. Springer, 2nd edition,
2005.

L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic scagnostics. In IEEE Symposium
on Information Visualization, pages 157–164, 2005.

Y. Xie. animation: Demonstrate Animations in Statistics, 2008. URL http://R.yihui.name.
R package version 0.1-7.

W. Youden. Graphical diagnosis of interlaboratory test results. Industrial Quality Control,
15:24–28, 1959.

F. W. Young, R. A. Faldowski, and M. M. McFarlane. Multivariate statistical visualization.
In C. Rao, editor, Handbook of statistics, volume 9, pages 959–998. Elsevier, 1993.

105

http://www.jstatsoft.org/v21/i05
http://had.co.nz/classifly
http://had.co.nz/classifly
http://had.co.nz/clusterfly
http://had.co.nz/ggplot2
http://had.co.nz/ggplot2
http://had.co.nz/meifly
http://had.co.nz/meifly
http://had.co.nz/reshape/
http://www.jstatsoft.org/v21/i12/paper
http://www.stat.iastate.edu/preprint/articles/2007-04.pdf
http://www.stat.iastate.edu/preprint/articles/2007-04.pdf
http://R.yihui.name

	List of tables
	List of figures
	Acknowledgements
	1 Introduction
	1.1 Reshaping data
	1.2 Plotting data
	1.3 Visualising models

	2 Reshaping data with the reshape package
	Abstract
	2.1 Introduction
	2.2 Conceptual framework
	2.3 Melting data
	2.3.1 Melting data with id variables encoded in column names
	2.3.2 Already molten data
	2.3.3 Missing values in molten data

	2.4 Casting molten data
	2.4.1 Basic use
	2.4.2 High-dimensional arrays
	2.4.3 Lists
	2.4.4 Aggregation
	2.4.5 Margins
	2.4.6 Returning multiple values

	2.5 Other convenience functions
	2.5.1 Factors
	2.5.2 Data frames
	2.5.3 Miscellaneous

	2.6 Case study: French fries
	2.6.1 Investigating balance
	2.6.2 Tables of means
	2.6.3 Investigating inter-rep reliability

	2.7 Where to go next
	2.8 Acknowledgements

	3 A layered grammar of graphics
	Abstract
	3.1 Introduction
	3.2 How to build a plot
	3.2.1 A more complicated plot
	3.2.2 Summary

	3.3 Components of the layered grammar
	3.3.1 Layers
	3.3.2 Scales
	3.3.3 Coordinate system
	3.3.4 Faceting

	3.4 A hierarchy of defaults
	3.5 An embedded grammar
	3.6 Implications of the layered grammar
	3.6.1 Histograms
	3.6.2 Polar coordinates
	3.6.3 Transformations

	3.7 Perceptual issues
	3.8 A poetry of graphics?
	3.9 Conclusions
	3.10 Acknowledgements

	4 Visualising statistical models: Removing the blindfold
	Abstract
	4.1 Introduction
	4.2 What is a model? Terminology and definitions
	4.3 Display the model in data-space
	4.3.1 Tools for visualising high-d data and models
	4.3.2 Representing models as data
	4.3.3 Case study: MANOVA
	4.3.4 Case study: Classification models
	4.3.5 Case study: Hierarchical clustering

	4.4 Collections are more informative than singletons
	4.4.1 Case study: Linear models

	4.5 Don't just look at the final result; explore how the algorithm works
	4.5.1 Case study: Projection pursuit
	4.5.2 Case study: self organising maps

	4.6 Pulling it all together: visualising neural networks
	4.6.1 Model in data space
	4.6.2 Looking at multiple models: ensemble
	4.6.3 Looking at multiple models: random starts
	4.6.4 Real data

	4.7 Conclusion
	4.8 Acknowledgements

	5 Conclusion and future plans
	5.1 Practical tools
	5.2 Data analysis
	5.3 Impact
	5.4 Future work
	5.5 Final words

	Bibliography

