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General Comments

Conjunctive cognitive diagnosis models (CDM’s), a.k.a. diagnostic classification models (DCM’s),
are two-layer bayes nets/ graphical models defined by bipartite graphs connecting binary latent at-
tribute variablesA1, . . . , Ak to binary observable response variablesR1, . . . ,Rm. These models are of
great interest in cognitive/educational testing, and have applications in other geontype/phenotype-
style probabilistic classification problems as well. The edges at each nodeRi indicate the relevant
attributesA j which must be present together (in conjunction) in order to change (usually increase)
the probability of a positive response forRi. TheQ matrix is the incidence matrix for the bipartite
graph. Specific CDM’s specify probability models for theA’s andR’s subject to these constraints.
An open problem in the CDM literature is inference about the structure of theQ matrix, given only
the observable response data (iid observations of theR’s).

The present ms. is the first, to my knowledge, to provide general, principled, and potentially
useful sufficient conditions for consistent estimation of the identifiable parts ofQ from just the
response data, under one common CDM, the DINA model. (The DINA model specifies response
probabilitiesP[Ri = 1] = 1 − si when all the relevant attributes are present, andP[Ri = 1] = gi

when one or more relevant attributes is missing.)
The key insight is to formulate the problem as a kind of variable selection problem in a least-

MAD linear model predicting margins of the 2m table cross-classifyingR’s, and then chooseQ (se-
lecting variables) to minimize the residuals in this linearmodel. Mean absolute deviation (MAD)
is chosen over likelihood-based calculation, with an eye toward computational efficiency in appli-
cations. Further results allow for joint estimation ofQ and some of the response probabilities under
the DINA model.

This is a very nice paper. It provides insights that have beenabsent until now. Someone reading
this paper could write code immediately to do the estimationsuggested here. Moreover the linear
algebra machinery in the latter parts of the paper may be useful for other conjunctive CDM’s. As a
first paper breaking this ground there is much more to do, but this is a great start.

I have made several suggestions and corrections below, but all are addressible quickly by the
authors. In addition to these comments I would like to add that the paper could use some light
copy-editing to clean up English usage.

Specific Suggestions and Corrections

p3, two lines after (2.1), and throughout ms.“conjunctive” would be a better word than “non-
compensatory”, here and throughout. A conjunction (“AND”)of the relevant attributes is
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needed to produce a positive response on each item. Other noncompensatory schemes are
not fully conjunctive.

p 7, Remark 2.5, and throughout ms.The applicability of these models is broader than cogni-
tive testing; see for example

Rupp, A. A., & Templin, J. L. (2008). Unique characteristicsof diagnostic classification
models: A comprehensive review of the current state-of-the-art.Measurement, 6, 219–
262.

p 7 conditions C1–C4 since you often refer to C1 and C2 by english names (completeness, satu-
ration) and english labels exist for C3 and C4 also (iid, nondegenerate attribute distribution),
it would be mnemonically better to refer to all by name and drop the abstract labesl C1–C4.

p 8, Remark 2.8 The situation is reminiscent of

Reckase, M. D. (1990).Unidimensional data from multidimensional test and multidimen-
sional data from unidimensional tests. Paper presented at the Annual Meeting of the
American Educatioal Research Association, Boston MA, April 16–20, 1990. Obtained
from http://eric.ed.gov/PDFS/ED318758.pdf.

and in subsequent work. A less trivial example might help drive home the point more con-
vincingly.

p 8, section 3 and beyondThe notation here forsi is reversed from what is common in the liter-
ature for the DINA model. That is, what is referred to assi here is referred to as (1− si) in
the rest of the literature. Since a single letter is convenient for this paper I suggest defining,
e.g.,ci to be the probability of a correct response, given that the relevant skills are known,
and remarking thatci = 1− si elsewhere in the literature.

p 9 bottom the ability to deal withci < gi is useful.

p 11, remark 3.2 This is really important for scaling as I imagine will be increasingly relevant as
the use of CDM’s grows.

p 11, sect 4, treatment ofgi’s There are a couple of aspects of this discussion of assuming the
gi’s are known that strike me as naive.

• Practical empirical experience with an item response theory (IRT) model known as the
3PL model (basically mixed effects logistic regression with a nonzero lower asymptote
that functions analogously togi suggests that for multiple choice questions it is often
the case that a data-based estimate ˆgi is not equal to 1/nc where there arenc choices.
This has a lot to do with how the incorrect choices are designed/written, for example.
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Similarly, while open-ended questions often arguably havegi = 0, this need not be the
case (indeed, you allow that chance of guessing “(3+ 2)× 2 =?” is very small, rather
than 0).

• What you are able to estimate withsi is really the differencesi − gi. Sometimes we
will know gi but sometimes perhaps we will knowsi – E.g. if the student knows all
the skills they are sure to the the item right, but if they are missing some they may still
be able to guess with some probability that is interesting (perhaps associated with the
prevalence of an alternate solution strategy not involvingthe skills specified for itemi
in the present Q matrix).

p 11, eq. (4.1)since consistency of ˜s is not dealt with in the paper (but only assumed when needed
later on), I am not sure why not to includeg in the argmin as well. Or is there a more general
argument that I missed thats and g are not separately identifiable (even ifp∗ is suitably
constrained)?

p 13, remark 4.3, first sentenceIt’s remarkable that consistency ofQ̂ŝ(g) doesn’t depend on con-
sistency of ˆs. This seems to hinge on Prop. 6.6, which maybe should be played up a bit more.

p 13, remark 4.3, remainder Two related questions:

• what does the rest of this remark say about existing MCMC and E-M algorithms in
the CDM literature, that purport to estimates, g and p∗, for the DINA and related
conjunctive models?

• In many applications,p∗ has special structure: the components ofA may be modeled
as independent bernoulli’s, or multivariate curved exponential family (IRT structure),
or as probits with underlying correlated multidimensionalnormals. All of these reduce
the dimensionality of the parameter space from 2k

−1+ k to something that is basically
linear or quadratic ink andm. This seems to greatly reduce the practical impact of your
counter-example, doesn’t it?

p 13 bottom I am not sure that the results in this paper can be applied to general noncompen-
satory models but the basic supporting results in Section 6 seem potentially relevant to other
conjunctive models in the CDM/DCM world.

p 14 top I have the following comments about the to-do list:

• Your ideas about constraints on the Q matrix (or really the distribution ofA, I think)
may provide better examples for Remark 2.8 above.

• penalized optimization to incorporate expert knowledge isa nice idea.

• estimation of number of skills is important. I am not sure howserious the BIC sugges-
tion is, though, since it will require something like a likelihood calculation, in contra-
diction to the scaling benefits suggested in remark 3.2.
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• If I had one wish to weaken your sufficient conditions, it would be to weaken the
completeness requirement onQ.

• It’s surprising not to see joint estimation ofs andg on the to-do list. This is certainly
of practical/applied importance.

• Two other important practical to-do item would be convergence rates for the limit the-
orems, and some practical computational costs, as a function of problem size, for im-
plementing these methods.
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