
1 Introduction

Latent variable models for measuring cognitive constructs (e.g., proficiency in a particular

domain of mathematics) are ubiquitous in education research and institutional reporting.

Item response theory (IRT) models (van der Linden & Hambleton, 1997; Fox, 2010) offer the

machinery needed to handle sophisticated item- and person-sampling schemes in complex

survey data. Even in simpler settings these models offer proficiency estimates with high

reliability and precision, due to their efficient use of assessment data. Econometricians,

policy analysts, and other social scientists increasingly rely on the results of latent variable

measurement models for inputs.

Studies that characterize students achievement under different curricula, compare stu-

dents belonging to different social groups, or evaluate achievement differences across coun-

tries, use estimated proficiency as the dependent variable in their analyses. Studies that

focus on downstream outcomes, such as earnings in the labor market, might assess the direct

effect of academic proficiency on the outcome, or control for proficiency in trying to assess

the influence of other variables of interest. In these latter cases estimated proficiency is an

independent variable in the analysis.

Whether latent proficiency variables play the role of dependent or independent variables,

the issue of measurement error must be addressed. If the proficiency variables were estimated

without error, they could be used directly with no adjustments. If, as is usually the case,

proficiencies are estimated with some uncertainty, it will affect both the precision and bias of

estimated effects. Precision can be accurately reported using appropriately adjusted standard

errors or similar calculations. Bias must be dealt with by conditioning proficiency estimates

on an appropriate set of covariates.

The appropriate conditioning model has been discussed at length by Mislevy (1991),

Mislevy, Beaton, Kaplan & Sheehan (1992) and others. A key motivating application is the
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release of data for secondary analysis by large institutional surveys, such as the U.S. National

Assessment of Educational Progress (NAEP, Allen, Carlson & Zelenak, 1999), or other large-

scale national and international surveys of education that have a similar structure (e.g., the

National Adult Literacy Survey, NALS, Kirsch, et al, 2000; and Trends in International

Mathematics and Science Study, TIMSS, Olson, Martin & Mullis, 2008). In a data release

that provides individual-level proficiency measures, a fixed number of multiple imputations

(Rubin, 1987, 1996) for each individual’s ability are released. These imputations, known as

plausible values (PVs) in this context, are adjusted to account for degraded precision and bias

due to measurement error, in two ways. First, they are Monte Carlo draws from posterior

proficiency distributions for each individual, and hence incorporate all sources of uncertainty

(including measurement error). Second, the posterior distribution is conditioned not only on

the individual responses to items on a cognitive assessment, but also on a set of demographic

and other background variables. PV methodology provided in Mislevy (1991), Mislevy et

al. (1992), and other sources allows secondary analysts to account for measurement error in

subsequent analyses by employing PVs in appropriate ways (e.g., Mislevy, 1991 and 1993,

and Von Davier, Gonzalez & Mislevy, 2009). Typically, agencies release five PVs for each

individual, along with instructions for using PVs to estimate regression coefficients and other

effects. (For more on current PV methodology see Li, Oranje & Jiang, 2009).

Given standard practice, there is a subtle but important question about the conditioning

model used to generate PVs: What data, aside from the item response data themselves,

should be incorporated in generating the posterior distribution from which PVs are drawn?

Based on an argument developed by Mislevy (1991), institutions that release PVs typically

condition on a fixed but extremely large set of covariates to account for the large universe

of studies that a secondary analyst might undertake. In particular, any contrast (such as a

comparison between mean proficiencies in two social groups of interest) that a hypothetical

secondary analyst might be interested in must be included, directly or by proxy, in the condi-
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tioning model used by the institution to generate PVs. In Section 2 and Section 3 we review

this argument and see that when proficiency is a dependent variable the release of institu-

tional PVs based on an extremely large conditioning model allows a secondary analyst to

conduct estimation that is unbiased but perhaps statistically inefficient. When proficiency is

an independent variable, however, we provide a disquieting result. In Section 4 we show that

secondary analysis is susceptible to substantial wrong-model bias when using institutional

PVs with the standard methodology prescribed for them. Because of the complex nature of

the conditioning model, a secondary analyst has essentially no chance of specifying a model

consistent with the survey institution’s modeling choices. The wrong-model bias involves not

only the regression coefficient for proficiency in the model, but also regression coefficients

for other predictors, whether they are latent or not.

An immediate consequence of these results is that the use of institutional PVs based on

a large, fixed conditioning model may introduce substantial bias when proficiency is not the

dependent variable in a secondary analysis. More broadly, analysts who wish to use latent

variables to predict other outcomes should use conditioning models that are customized to

their particular prediction problem; in Section 5 we discuss workable machinery to do this.

Our results are stated in considerable generality. Nevertheless we show an example in

Section 6 to demonstrate the size and direction of the bias when the secondary analyst’s

model is not compatible with the institution’s conditioning model. In the example, the

structural model of interest is a linear regression model in which proficiency serves as an

independent variable predicting weekly wages and the measurement model is a standard

IRT model. We use data from the 1992 National Adult Literacy Survey (NALS) to show

the wrong-model bias resulting from including Y in the conditioning set of the PVs. We

demonstrate the bias that occurs when we do not include the covariates in the conditioning

set in our model built from scratch.
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2 Modeling Components for the Analysis of Education

Surveys

Before discussing the key results of Mislevy (1991) and Mislevy et al. (1992) in Section 3

and exploring their extension to models that use proficiency to predict other outcomes in

Section 4, it is important to describe and discuss the two sets of analysis that modern large

scale education surveys are designed to serve, and to discuss, in abstract terms, the tools

that they use to make inferences from the survey data.

In order to focus the discussion on these two sets of analysis and their inferential tools,

we will ignore some complexities of education surveys, such as complex student-sampling

designs (which are generally accounted for with design-based survey weights and jackknife

or Taylor linearization variance adjustments), and complex item-sampling designs (which

are generally accounted for with incomplete likelihoods in the measurement model, e.g.,

items not administered are missing completely at random or MCAR by design). All of these

complexities, and the tools developed to address them, are crucial for practical inference

from education survey data, and are well described in the technical documentation for these

surveys (e.g., Allen, Carlson & Zelenak, 1999; Allen, Donoghue & Schoeps, 2001; Kirsch

et al., 2000; NCES, 2009; and Olsen, Martin, & Mullis, 2009). But to review them in

detail would distract from the essential structure of the inferential problems faced both by

primary analysts working on behalf of the survey institution, and by secondary analysts who

use public-use and restricted-use data to answer questions not envisioned in the reports

published by the survey institution.

In Section 2.1 we review the survey institution’s measurement model, a generative psy-

chometric model that describes the relationships between particpants’ proficiency in a par-

ticular cognitive domain, and their responses to particular cognitive items in the survey. In

Section 2.2 we review the survey institution’s population model, also known as the condi-
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tioning model, which describes variation in cognitive proficiency across groups defined by

demographic, jurisdictional, and other background covariates. We then briefly discuss in

Section 2.3 the kinds of inference made by primary analysts working on behalf of the survey

institution. Finally, in Section 2.4, we discuss two basic classes of models used by secondary

analysts to explore research questions not contemplated in the survey institution’s reports.

2.1 The Measurement Model

For simplicity we suppose there are N participants (students or other respondents) in the

education survey and J test items. We denote the response of participant i to question j as

Xij, and the set of all responses as X = [Xij]
N,J
i=1,j=1. We also denote the latent proficiency

of the ith participant as θi, and the set of all N proficiencies as θ = (θ1, . . . , θN). The

measurement model

p(X|θ) (1)

is the generative model chosen by the survey institution to model the likelihood of observing

response matrix X, given latent proficiencies θ. The measurement model may depend on

other parameters, which do not concern our analysis here.

The formulation in (1) is intended to be quite general and cover a broad variety of possible

stochastic models for measurement, including:

• Classical unidimensional dichotomous item response theory (IRT) models, which take

the form

p(X|θ) =
N∏
i=1

J∏
j=1

P (θi|γj)Xij(1− P (θi|γj))1−Xij

where Xij = 0 or 1, indicating a wrong or right response, θi is a single real number

indicating a level of proficiency, P (θ) is a standard item characteristic curve, such as

the 2-parameter logistic (2PL) model, and γj is a set of item parameters for item j,
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such as discrimination aj and difficulty bj, in which case γj = (aj, bj);

• Multidimensional IRT (MIRT) models, in which θi is a vector of d real numbers,

θi = (θ1i, . . . , θdi), denoting proficiencies on d latent constructs, and P (θ) and γj are

modified accordingly;

• Polytomous variations on the IRT or MIRT models above, in which Xij can take values

in a discrete set of categories, and P (θ) and γj are modified accordingly;

• Cognitive diagnosis models (CDMs), in whichXij may take dichotomous or polytomous

values, θi is a d-dimensional vector of discrete indicators denoting the presence or

absence of d specific skills or knowledge components, and P (θ) and γj are modified to

specify a specific CDM such as the DINA or DINO model;

• Factor analysis (FA) models in which Xij are continuous responses, θi is a vector of

continuous factor scores, and p(X|θ) is a typical FA model;

• Other models in which Xij is a more complex (multivariate, graphical, etc.) response,

and/or θi is a more complex proficiency variable, and/or the measurement model

p(X|θ) may reflect violations of, or variations on, many standard assumptions such

as local independence, monotonicity, experimental independence, complete data, etc.

In most modern large-scale education surveys, the measurement model (1) is some form of

an IRT or MIRT model. Whatever the measurement model is, it is usually pre-calibrated so

that any item parameters γ1, . . . , γJ can be thought of as fixed and known for all subsequent

analyses. We will assume this in our development below. In the case that the γj’s are

estimated along with other quantities, however, there is no essential change in the message

of our work.
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2.2 The Population (Conditioning) Model

In a typical large-scale education survey, the survey institution is primarily interested in

reporting on features of the population distribution

pPA(θ|Z) . (2)

The subscript PA in (2) is intended to remind that this distribution is the focus of the

primary analysis performed by the survey institution or its contractors. The variable Z

denotes an entire set of conditioning variables that are of interest in the primary analysis.

These might typically include

• Primary reporting variables;

• Survey design variables;

• Jurisdictional or institutional variables that describe the institutions (typically schools,

school districts, governmental jurisdictions, etc.) that the individual participants (typ-

ically students) are members of;

• Variables concerning participants’ education contexts, such as teacher questionnaires;

• Participant demographic variables, such as gender, race/ethnicity, age, SES;

• Other background variables for individual participants, such as education experience,

number of hours of TV watched, which might be collected through a background

questionnaire administered to individual participants.

The conditioning variables Z in our setup subsume both the collateral variables Y and the

design variables Z in the setup of Mislevy (1991) and Mislevy et al. (1992). The distinction

between design variables and collateral variables is not important for our development, and

we wish to reserve Y for the (observable) dependent variable in a prediction model.
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The model in (2) is highly multivariate in both θ and Z. Indeed, Z generally spans

“reporting variables” that serve primary analyses and reports by the survey institution, other

demographic, background and jurisdictional variables that may serve secondary analysts, and

many interactions between them. Thus, (2) usually conditions on a large set of covariates

Z, and so it is also known as the conditioning model for the survey.

2.3 Primary Analysis: Reporting and Plausible Values

It is typically not possible to do inference on small jurisdictional units or individual par-

ticipants, for a variety of legal and technical reasons. Many education surveys, such as the

National Assessment of Educational Progress, operate under laws that proscribe the public

identification of individual students, schools, or organizations that participate in the survey.

More broadly, it is generally unethical to break confidentiality and privacy commitments

typically made to survey participants. At a more technical level, the participant sample is

usually not designed to provide reliable inferences at the level of a school or even a school

district of moderate size (and would be prohibitively expensive if it were so designed), and

the number of cognitive items asked of any individual participant is small enough (to manage

time and fatigue constraints) that inference for an individual is usually not reliable either.

Instead, the targets of inference for primary analysis by the survey institution are typically

means, percentiles, and other summaries for major reporting groups, defined by reporting

variables such as race/ethnicity, gender, age, region, larger jurisdictions, as well as some

background variables.

The “institutional model” described by equations (1) and (2) is essentially a two-stage

generative model for the cognitive data collected in the survey: first, θ is generated from its

conditional distribution given Z, and then X is generated from its conditional distribution

given θ. The objects of inference for primary analyses are features of the θ distribution,

after collecting the survey data. This suggests a Bayesian, or at least empirical Bayes,
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approach. Indeed, the measurement model in (1) can be though of as a likelihood for θ,

and the conditional model in (2) can be thought of as a prior distribution for θ. Then the

posterior distribution of θ may be written as

pPA(θ|X,Z) ∝ p(X|θ, Z)pPA(θ|Z)

= p(X|θ)pPA(θ|Z) (3)

under the assumption that X ⊥⊥ Z | θ, which is usually true by design of the measurement

process producing X (if the measurement process is well-designed, X should be conditionally

independent of any other variable, given θ). In typical settings, a great deal of X is missing

by design, to reduce testing time, fatigue, etc., for individual participants. The mechanics

of implementation of the measurement model (1), as reported in the technical documenta-

tion for any large-scale education survey—such as Allen, Carlson & Zelenak (1999), Allen,

Donoghue & Schoeps (2001), Kirsch, et al. (2000), NCES (2009), and Olsen, Martin, &

Mullis (2009)—allow reporting for all groups of students on a common θ scale. Thus differ-

ent groups are equated on a common θ scale, even though they may have seen disjoint sets

of items.

The summaries (e.g., conditional means or percentiles) produced in primary reports by

the survey institution are either functionals of the posterior distribution pPA(θ|X,Z)—that

is, they can be obtained by computing the integral1

∫
s(θ, Z)pPA(θ|X,Z)dθ (4)

for some appropriate function s(θ, Z)—or they can be derived from functionals of pPA(θ|X,Z).

1As suggested in Section 2.1 and Section 2.2, X, Z and θ are extremely general multidimensional objects;
they may have components that are continuous, discrete, etc. For ease of exposition, we will express all
appropriate probability calculations as integrals, as if the variables involved were continuous. For other
variable types, the integrals can be replaced with appropriate sums, Riemann-Stieltjes integrals, etc., as
needed. The essential message of our work is the same.
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The quantities in (3) and (4) may be estimated using Bayesian methods (Johnson & Jenkins,

2005), or marginal maximum likelihood and other methods (Allen, Donoghue & Schoeps,

2001).

Following the work of Mislevy (1991), Mislevy et al. (1992), and others, many survey

institutions compute and publish plausible values (PVs) for θ in large scale education surveys.

PVs, known in the statistics literature as multiple imputations (Rubin, 1996), are sets of

random draws from the posterior distribution (3). Their primary use, as noted by Mislevy

et al. (1992, p. 142), is as a Monte Carlo numerical integration tool for integrals such as

(4). PVs and their appropriate use have been discussed recently by von Davier, Gonzalez

& Mislevy (2009), and the consequences of their misuse in certain contexts was recently

discussed by Carstens & Hastedt (2010).

2.4 The Secondary Analyst’s Research Models

In addition to primary reports generated by the survey institution and its contractors, impor-

tant substantive and methodogical work has been performed by secondary analysts (NCES,

2008; Robitaille & Beaton, 2002), that is, researchers acting independently of the survey

institution, investigating questions outside the scope of the primary reports. Substantive

questions for secondary analysts often revolve around some feature of a distribution such as

pSA(θ|Z̃) , (5)

where the subscript SA is intended as a reminder that this is a model chosen by the sec-

ondary analyst. For example, if the components of θ = (θ1, . . . , θN) are continuous and

unidimensional, and Z̃ can be separated into participant-level pieces Z̃ = (Z̃1, . . . , Z̃N), then
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pSA(θ|Z̃) might be expressed as a linear model

θi = β0 + β1Z̃i + εi , εi ∼ N(0, σ2) . (6)

In general Z̃i need not be univariate, in which case β1 is a vector of regression coefficients.

In addition Z̃ may or may not be identical to Z in (2). Indeed, the most interesting and

innovative secondary analyses usually involve Z̃ not contemplated by the survey institution.

Because θ appears as the dependent variable in the regression form of (5), we refer to models

of the form (5) as θ-dependent models.

The object of inference in the θ-dependent case is typically some function s(θ, Z̃), which

captures some feature of pSA(θ|Z̃) of interest. For example in the linear regression case, the

secondary analyst might be interested in the least-squares estimate of β1,

s(θ, Z̃) = β̂1 =
Ĉov(θ, Z̃)

V̂ar(Z̃)
,

where Ĉov(·, ·) and V̂ar(·) denote sample covariance and variance calculations suitable for

the design of the survey. More generally, the posterior distribution of β1,

s(θ, Z̃) = p(β1|θ, Z̃) ,

and similar quantities, may also be of interest.

Another class of models considered by secondary analysts, especially those interested in

using cognitive proficiency in predicting later outcomes Y , is of the form

pSA(Y |θ, Z̃) . (7)
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Under suitable assumptions, this might also be expressible as a regression model such as

Yi = β0 + β1θi + β2Z̃i + εi , εi ∼ N(0, σ2) , (8)

where, once again, Z̃ may or may not be identical to Z, and either or both of θi and Z̃i might

be multidimensional. Since θ appear as an independent variable in the regression form of

(7), we refer to models of the form (7) as θ-independent models.

The object of inference in the θ-independent case is again some function s(θ, Y, Z̃), which

now captures some feature of pSA(Y |θ, Z̃) of interest. In the linear regression case, the

secondary analyst might be interested in the least-squares estimate of some regression coef-

ficient(s) or the posterior distribution of the regression coefficient(s), for example.

3 The θ-dependent case

We consider first the θ-dependent case. Here the secondary analyst has a research model of

the form of (5), i.e.

pSA(θ|Z̃) ,

in which θ appears as the dependent variable, and the object of inference is a function s(θ, Z̃)

related to pSA(θ|Z̃). Because θ is completely missing, the most the secondary analyst can

hope to learn is some feature of a marginal quantity such as

s(X, Z̃) =

∫
s(θ, Z̃)pSA(θ|X, Z̃)dθ = ESA[s(θ, Z̃)|X, Z̃] . (9)

We can now state, in modern terms, the problem identified and solved by Mislevy (1991)

and Mislevy et al. (1992): What tool can the primary analysts provide to the secondary

analyst, so that (a) an integral of the form of (9) can be calculated or approximated appro-
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priately, and (b) the results of the secondary analysis are numerically consistent with the

primary survey reports? The answer is the publication of institutional PVs, as discussed

above at the end of Section 2.3.

With institutional PVs the secondary analyst can approximate the quantity

s(X, Z̃, Z) =

∫
s(θ, Z̃)pPA(θ|X,Z)dθ = EPA[s(θ, Z̃)|X,Z] , (10)

which is a functional of the form (4). The following theorem lays out conditions under

which calculation of (10) leads to an unbiased estimate of s(X, Z̃), providing the underlying

justification for the use of PVs as outlined by Mislevy (1991) and subsequent authors.

Theorem 3.1. If Z̃ ⊆ Z, then s(X, Z̃, Z) is an unbiased estimate of s(X, Z̃).

By the notation Z̃ ⊆ Z, we mean that the σ-field generated by Z̃ is a subfield of the

σ-field generated by Z (see Billingsley, 1986, for definitions). Informally, this means that Z̃

is a deterministic function of Z.

Proof. We calculate

ESA{s(X, Z̃, Z)|X, Z̃} = ESA{EPA[s(θ, Z̃)|X,Z]|X, Z̃}

= ESA[s(θ, Z̃)|X, Z̃]

= s(X, Z̃)

by the “telescoping” property of conditional expected values, when Z̃ ⊆ Z (Billingsley, 1986,

p. 470). 2

Biases arising when Z̃ 6⊆ Z have been illustrated by Mislevy et al. (1992), von Davier et

al. (2009), and Carstens & Hastedt (2010).

The standard procedure for using institutional PV’s, described by Mislevy (1991, pp.

14



181–182), amounts to calculating

sm = s(θm, Z̃) , m = 1, . . . ,M

for each of M imputations θm drawn from pPA(θ|X,Z), and then averaging. This produces

s̄ =
1

M

M∑
1

sm ≈
∫
s(θ, Z̃)pPA(θ|X,Z)dθ = EPA[s(θ, Z̃)|X,Z] ,

the Monte Carlo numerical approximation to s(X, Z̃, Z) in (10). A further between/within

variance calculation (Mislevy, 1991, p. 182) approximates the posterior variance Var PA[s(θ,

Z̃) | X, Z].

Theorem 3.1 works for any function s(θ, Z̃), but it is useful to know that the same result

applies when computing formal posterior distributions of parameters of interest, such as the

regression coefficient β1 in (6). The corollary below extends Theorem 3.1 to this case, as

well as any other case where β is some parameter (or set of parameters) of interest.

Corollary 3.1. Let β be a parameter in the model pSA(θ|Z̃) and let s(θ, Z̃) = pSA(β|θ, Z̃).

If Z̃ ⊆ Z and β ⊥⊥ X | θ, Z̃, then s(X, Z̃, Z) is an unbiased estimate of pSA(β|X, Z̃).

The condition β ⊥⊥ X | θ, Z̃ is essentially guaranteed by design of the measurement

process leading to X.

Proof. Observe that

s(X, Z̃) =

∫
s(θ, Z̃)pSA(θ|X, Z̃)dθ

=

∫
pSA(β|θ, Z̃)pSA(θ|X, Z̃)dθ

=

∫
pSA(β|θ,X, Z̃)pSA(θ|X, Z̃)dθ

= pSA(β|X, Z̃) ,

15



where the second to last line follows from the assumption that β ⊥⊥ X | θ, Z̃. 2

Theorem 3.1 gives a positive result, in the case that the secondary analyst’s Z̃ is a function

of the survey institution’s Z. Since Z̃ is “invented” by the secondary analyst, however, there

is a good chance that Z̃ 6⊆ Z. In that case, the amount of bias is simply

ESA{EPA[s(θ, Z̃)|X,Z]|X, Z̃} − ESA[s(θ, Z̃)|X, Z̃] . (11)

We generally expect that this bias should decrease as the number of items J in X increases,

or equivalently, as the reliability with which θ can be measured by X increases. Mislevy

(1991) shows this in the case of a classical true score theory model, and Mislevy et al. (1992)

illustrate the same point numerically with an application to SAT testing data. Here we give

an informal argument that this should be true even more generally. Note that the term on

the right in (11) is

ESA[s(θ, Z̃)|X, Z̃] =

∫
s(θ, Z̃)p(θ|X, Z̃)dθ

=

∫
s(θ, Z̃)

p(Z̃|θ,X)

p(Z̃|X)
p(θ|X)dθ .

In any measurement model for which there is a consistent estimator θ̂(X) based on the

response variables X, we expect that θ ⊆ X will become true as J grows (Ellis & Junker,

1997, show a somewhat stronger result for general class of locally independent monotone

latent variable models, for example); hence p(Z̃|θ,X)/p(Z̃|X) → 1. Moreover, as J grows,

p(θ|X) should converge to a point mass at the participants’ true θ values, θTRUE.2 Thus, as

2Chang & Stout (1993) give a result implying this for IRT models, and a similar result can be obtained
for other psychometric models, by further generalizing the work of Walker (1969).
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J →∞,

ESA[s(θ, Z̃)|X, Z̃] ≈
∫
s(θ, Z̃)p(θ|X)dθ

→ s(θTRUE, Z̃) .

A similar line of reasoning, beginning with the inner expected value EPA[s(θ, Z̃)|X,Z] in the

term on the left in (11), shows that this term too converges to s(θTRUE, Z̃) as J →∞, and

hence the bias (11) vanishes as J grows.

Since Z̃ is determined by the secondary analyst long after the survey institution has done

the primary analyses, survey institutions try to make Z as large as possible, to accomodate

any possible Z̃ that secondary analysts may be interested in. A typical conditioning model

(e.g., Kirsch et al., 2000; Mislevy et al., 1992; Dresher, 2006) will involve Z containing all

of the variables listed in Section 2.2 as well as their two-way interactions. This generally

produces a Z with many hundreds of columns. This is reduced by principal components

analysis (PCA) to a Z with just a few hundred columns and this is used for all subsequent

primary analyses, including the generation of plausible values. Such a large Z is thought to

contain a good proxy for any Z̃ that a secondary analyst could define, so that Z̃ ⊆ Z nearly

holds, and the bias (11) in s(X, Z̃, Z) is minimal, even when θ is not measured with high

reliability.

Although the construction of such a large Z may seem awkward, it represents an elegant

solution to the problem of making primary and secondary analyses logically and arithmeti-

cally consistent. For both primary and secondary analysts, computation is simply a matter

of summing over plausible values to approximate the functional in (4). If the primary and

secondary analysts are using the same set of plausible values, based on a Z designed to

contain good proxies for any possible Z̃, then the primary reports are margins of the table of

all possible secondary analysis results. If we are able to aggregate across secondary analyses
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to produce a reporting quantity such as the mean proficiency for female students, this must

produce the same answer as the primary analysis did by calculating that mean directly, since

it amounts to summing across plausible values in a different order. Thus any inconsistencies

between primary and secondary analyses must be due to arithmetic errors, or conceptual

errors in setting up the quantity to be computed, rather than differences in computational

methods or tools.

Finally we note in passing that making Z much larger than Z̃ causes some inefficiency,

as can be seen from examining the variability of s(X, Z̃, Z) over random replications of the

survey,

Var
(
s(X, Z̃, Z)

)
= E

[
Var

(
s(X, Z̃, Z)

∣∣∣X, Z̃)]+ Var
(
E
[
s(X, Z̃, Z)

∣∣∣X, Z̃])
= E

[
Var

(
s(X, Z̃, Z)

∣∣∣X, Z̃)]+ Var
(
s(X, Z̃)

)
,

where the last line follows directly if Z̃ ⊆ Z. However, since there are no replications of

surveys in practice, this inefficiency is usually overlooked.

4 The θ-independent case

Suppose now that the secondary analyst has a research model of the form of (7), namely

pSA(Y |θ, Z̃) ,

in which θ now plays the role of an independent variable, and again the secondary analyst

is interested in a quantity of the form s(θ, Y, Z̃). Once again, θ is completely missing, and

so it is natural to consider a marginal quantity like

s(X, Y, Z̃) =

∫
s(θ, Y, Z̃)pSA(θ|X, Y, Z̃)dθ .
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By replacing Z̃ with (Y, Z̃), we immediately obtain natural corollaries to Theorem 3.1 and

Corollary 3.1. For these corollaries, stated below, we also define

s(X, Y, Z̃, Z) =

∫
s(θ, Y, Z̃)pPA(θ|X,Z)dθ

for the institutional posterior distribution pPA(θ|X,Z), perhaps available to secondary ana-

lysts through the publication of plausible values. We then immediately obtain

Corollary 4.1. If (Y, Z̃) ⊆ Z, then s(X, Y, Z̃, Z) an unbiased estimate of s(X, Y, Z̃).

Corollary 4.2. Let β be a parameter in the model pSA(Y |θ, Z̃) and let s(θ, Y, Z̃) = p(β|θ, Y, Z̃).

If (Y, Z̃) ⊆ Z and β ⊥⊥ X | θ, Y, Z̃, then s(X, Y, Z̃, Z) is an unbiased estimate of p(β|X, Y, Z̃).

Corollary 4.1 and Corollary 4.2 assert that Y , which is already a dependent variable in

the secondary analyst’s model pSA(Y |θ, Z̃), should also be an independent variable in the

primary analyst’s conditioning model pPA(θ, Z), in order that the standard PV methodology

produces unbiased estimates of s(X, Y, Z̃). While mathematically correct, this imposes a

serious restriction on what the secondary analyst’s model can be.

For ease of exposition, we consider the case in which Z = (Y, Z̃); as we see in Section 6

below, we can expect a similar behavior in the more general case Z ⊇ (Y, Z̃).

Theorem 4.1. p(Y |θ, Z̃) is completely determined by p(θ|Y, Z̃) and the conditional distri-

bution p(Y |Z̃).

Note that p(Y |Z̃) is entirely determined by the observable relationship between Y and

Z̃; consequently p(Y |θ, Z̃) is completely determined once p(θ|Y, Z̃) is specified.

Proof. Observe that

p(Y |θ, Z̃) =
p(θ|Y, Z̃)

p(θ|Z̃)
· p(Y |Z̃) . (12)
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For the denominator in (12), we note

p(θ|Z̃) =

∫
p(θ, Y |Z̃)dY =

∫
p(θ|Y, Z̃)p(Y |Z̃)dY (13)

Clearly, equations (12) and (13) depend only on p(θ|Y, Z̃) and p(Y |Z̃), and completely

determine p(Y |θ, Z̃). 2

Theorem 4.1 imposes very strong constraints on the choices that the secondary analyst

can make. If the secondary analyst’s model pSA(Y |θ, Z̃) is the same as the one determined

by Theorem 4.1 from p(θ|Y, Z̃), then the PV methodology will ensure that s(X, Y, Z̃, Z) is

an unbiased estimate of s(X, Y, Z̃). Otherwise, s(X, Y, Z̃, Z) is vulnerable to wrong-model

bias, as an estimate of s(X, Y, Z̃).

In fact, the same problem exists, even if the survey institution’s conditioning model

contains a proxy U for Y , however poor, as the next proposition shows.

Corollary 4.3.

(a) If Y ⊥⊥ U |θ, Z̃, then p(θ|U, Z̃) places no constraint on p(Y |θ, Z̃).

(b) If Y 6⊥⊥ U |θ, Z̃, then p(θ|U, Z̃) and p(U |Z̃) determine p(Y |θ, Z̃).

Proof. We first observe that, as in the proof of Theorem 4.1,

p(U |θ, Z̃) =
p(θ|U, Z̃)

p(θ|Z̃)
· p(U |Z̃) ,

which again depends only on p(θ|U, Z̃) and p(U |Z). Then,

p(Y |θ, Z̃) =

∫
p(Y, U |θ, Z̃)dU

=

∫
p(Y |θ, U, Z̃)p(U |θ, Z̃)dU . (14)
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If Y ⊥⊥ U |θ, Z̃ then the first term under the integral in (14) reduces to p(Y |θ, Z̃), and there

is no constraint. However, if Y 6⊥⊥ U |θ, Z̃, then (14) determines p(Y |θ, Z̃). 2

Taken together, these results are pessimistic about the use of standard PV methodology

to explore predictive inference using θ and other covariates: in order to ensure unbiased

estimation of s(X, Y, Z̃) by s(X, Y, Z̃, Z), the variable to be predicted, Y , must be in the

institutional conditioning model, and the secondary analyst’s model pSA(Y |θ, Z̃) must be the

one implied by the survey institution’s conditioning model. The bias when these conditions

are violated can be substantial, as we will show below in Section 6, and may lead to incorrect

scientific or policy conclusions.

As survey institutions typically release only the plausible values and not the details of the

model associated with them, it is unlikely that the secondary analyst can specify pSA(Y |θ, Z̃)

correctly. Thus, for predictive inference using θ, the secondary analyst is better off building

a model from scratch, not making use of institutional PVs. We turn to this process in the

next section.

5 A Workable Approach to the θ-independent Case

In Section 4, we argued that the usual plausible values methodolgy, using institutional PVs

generated from a large, fixed conditioning model in order to calculate unbiased estimates of

s(X, Y, Z̃), is not usually a tenable practice. An alternative would be to build a model directly

for the secondary analyst’s research question. The following easy proposition summarizes the

essential features of a marginal likelihood or Bayesian model built by the secondary analyst.

Proposition 5.1. Let β be any parameter(s) of interest. Then, under the setup of Section 2,

if X ⊥⊥ Z̃, β|θ and θ ⊥⊥ β|Z̃,
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