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Abstract

Given that autism spectral disorder (ASD) is a neurological disorder that affects

roughly 1-2% of individuals in the United States, it is imperative for biologists to

understand the genetic cause of ASD. Previous research in this direction analyze the

BrainSpan dataset, which contains microarray gene expression samples from brain

tissues from varying brain region and developmental periods. Since the covariance

among gene expressions has been shown to vary with respect to the spatiotemporal

properties of the brain tissue on average, previous research focused on only samples

originating from a particular brain region and developmental period and discarded

the remaining samples prior to analyzing the data. While this was done to avoid the
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issue of heterogeneity, it also leads to potential loss of statistical power when detecting

risk genes. In this article, we develop a new method to find a subset of samples that

share the same population covariance matrix in order to retain a larger and more

homogenous set of samples for the downstream analysis. We apply an existing method

on these selected samples to identify genes that are liable for developing ASD, and we

see an improvement in the genes we identify.

1 Introduction

The genetic cause of autism spectrum disorder (ASD), a neurodevelopmental disorder that

affects roughly 1-2% individuals in the United States, remains an open problem despite

decades of research (Autism and Investigators, 2014). ASD is characterized primarily by

impaired social functions and repetitive behavior (Kanner et al., 1943; Rutter, 1978). To

better understand this disorder, scientists identify specific genes that are liable for increasing

the chance of developing ASD when damaged or mutated (Sanders et al., 2015). These are

genes are called risk genes. While breakthroughs in genomic technologies and the availability

of large ASD cohorts have led to the discovery of dozens of risk genes, preliminary studies

suggest there are hundreds of risk genes still unidentified (Buxbaum et al., 2012). In this

work, we build upon the current statistical methodologies to further improve our ability to

identify risk genes.

We focus on statistical methods that use gene co-expression networks to help identify

risk genes. These networks are estimated from microarray expression data from brain tissue.

Since these gene co-expression networks provide insight into genes that regulate normal

biological mechanisms in fetal and early brain development, it was hypothesized that risk

genes that alter these mechanisms should be clustered in these networks (Šestan et al.,

2012). Early findings confirmed this hypothesis (Gilman et al., 2011; Parikshak et al., 2013;
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Willsey et al., 2013). These results led to the development of the Detection Association With

Networks (DAWN) algorithm, which identifies new risk genes based on their connectivity

to previously identified risk genes (Liu et al., 2014, 2015). However, the previous DAWN

analyses suffer from statistical limitations that we will investigate and resolve in this article.

We challenge DAWN’s assumptions regarding the homogeneity of the covariance matrix

in microarray expression data. Previous DAWN analyses assume that microarray expression

samples from the same brain tissue-type must share the same covariance matrix. This

assumption was influenced by the findings in Kang et al. (2011) and Willsey et al. (2013),

which showed that gene co-expression patterns differ among different brain regions and

developmental periods on average. Statistically, this means that the covariance matrix among

the genes’ microarray expressions may differ with respect to the spatio-temporal properties of

the brain tissue. Despite the findings in Kang et al. (2011) and Willsey et al. (2013) however,

no statistical analysis was performed in Liu et al. (2014) or Liu et al. (2015) to check how

homogenous the specific samples used in previous DAWN analyses were. Furthermore, since

previous DAWN analyses limited themselves to microarray samples of a specific brain tissue-

type, many other microarray samples assumed to be heterogeneous are thrown out, leading to

a potential loss of power when estimating the gene co-expression network and in identifying

risk genes.

To overcome these limitations, we aim to select a subset of microarray expression dataset

that is more homogenous and larger in sample size than ones used in previous analyses. We

take advantage of the recent developments in high-dimensional covariance testing (Chang

et al., 2015a; Cai et al., 2013) to determine whether two microarray expression datasets

originating from different brain tissues share the same population covariance matrix. This is

paired with a multiple-testing method called Stepdown that accounts for the dependencies

among many hypothesis tests (Romano and Wolf, 2005; Chernozhukov et al., 2013). We
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show that the tailoring the Stepdown method to perform many covariance tests leads to

an improvement in identifying risk genes. This article addresses the numerous algorithmic

challenges needed to implement this idea.

In Section 2, we describe the data and statistical model for heterogeneity in the covariance

matrix. In Section 3, we provide a visual diagnostic to question the homogeneity assumptions

of previous DAWN analyses. In Section 4, we describe the different stages of our procedure

to find a subset of homogenous samples within a dataset. In Section 5, we illustrate the

properties of our procedure on synthetic datasets. In Section 6, we apply our procedure

on microarray expression data to show that, in the end, when combined with DAWN, we

identify an improved set of risk genes. Section 7 provides an overall summary and discussion.

2 Data and model background

Datasets recording the gene expression patterns of brain tissue are hard to come by due to

the difficulty to obtain and preserve brain tissue. One dataset part of the BrainSpan project

(the “BrainSpan dataset” henceforth) contributes one of the largest transcriptome datasets

in this direction, sampling tissues from 57 postmortem brains that showed no sign large-scale

genomic abnormalities (Kang et al., 2011). Many studies have favored this dataset since its

1,340 microarray samples captures the the spatial and temporal changes in gene expression

that occur in the brain during development (De Rubeis et al., 2014; Cotney et al., 2015;

Dong et al., 2014).

The heterogeneity of gene expression due to the spatiotemporal differences in brain tis-

sues presents statistical challenges. As documented in detail in Kang et al. (2011), the region

and developmental period of the originating brain tissue contribute more to the heterogene-

ity than other variables such as sex and ethnicity. To understand this heterogeneity, we

4



partition the dataset using the following schema. Each microarray sample is categorized

into one of 16 spatio-temporal window, or window for short, depending on which brain re-

gion and developmental period the brain tissue is derived from. Within each window, all

microarray samples originating from the same brain are further categorized into one of 212

Individual (ID) spatio-temporal partition, or partition for short. Figure 1 summarizes how

the 1,340 microarray samples are categorized into different windows and partitions. This

figure highlights the importance of Window 1B. Willsey et al. (2013) found that the co-

expression among known risk genes varies greatly from window to window, and are most

co-expressed within the 107 samples from Window 1B, representing the prefrontal cortex

and primary motor-somatosensory cortex from 10 to 19 postconceptual weeks. As a result,

previous DAWN analyses focused on only these 107 samples, assuming that these samples

from were all homogenous without further statistical investigation, and discarded the re-

maining 1235 samples, (Liu et al., 2014, 2015). We seek to improve upon this, first by

formalizing a statistical model.

2.1 Modeling approach

We now describe a Gaussian mixture model that assumes that samples from the same par-

tition are homogenous while samples from differing partitions could be heterogeneous. For

the pth partition, let X
(p)
1 , . . .X

(p)
np ∈ Rd denote np i.i.d. microarray samples, and let w(p)

denote the window that partition p resides in. These np samples are drawn from either a

Gaussian distribution with covariance Σ, or a Gaussian distribution with a different covari-

ance matrix Σp. Our notation emphasizes that Σ is the covariance matrix shared among all

partitions, while Σp may vary from partition to partition. A fixed but unknown parameter

γw(p) ∈ [0, 1] controls how frequently the partitions in window w are drawn from these two

distributions, meaning it controls the amount of heterogeneity. For each partition p, this
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Figure 1: (Left) A schematic exemplifying the relation between the 107 microarray samples grouped
by the originating 10 brains. This forms 10 different partitions. Since all these partitions originate
from the same brain region and developmental period, they are further grouped into the same
window. (Right) The number of partitions (r) and microarray samples (n) in each window (w) for
the BrainSpan data. The 57 postmortem brains belong to 4 different developmental periods. Each
brain is dissected and sampled at 4 different brain regions, contributing 6 to 12 microarray samples
per region. In total, over the 212 partitions, there are 1,340 microarray samples, each measuring
the expression of over 14,370 genes. Window 1B (outlined in black) is the window that previous
work (Liu et al., 2015) focused on, and the hierarchical tree from Willsey et al. (2013) is shown to
the right.
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mixture model is succinctly describe as,

I(p) ∼ Bernoulli(γw(p)),

X
(p)
1 , . . . ,X(p)

np

i.i.d.∼


N(0,Σ) if I(p) = 1

N(0,Σp) otherwise,

(2.1)

where I(p) is the latent variable that determines whether or not the samples in partition p

have covariance Σ or Σp. With this model setup, our task becomes determining the set of

partitions that originated from the covariance matrix Σ, which we will call

P =
{
p : I(p) = 1

}
. (2.2)

The findings of Kang et al. (2011) and Willsey et al. (2013) inform us on how much

heterogeneity with a window to expect via γw(p). While analyses such as Liu et al. (2015)

assumed that all the samples in Window 1B were homogenous, it was noted in Kang et al.

(2011) that sampling variability in brain dissection and in the proportion of white and gray

matter in different brain tissues can cause variability in the gene expression patterns. This

means that scientifically, we do not expect all the partitions in Window 1B to be homogenous

(i.e., γw(p) = 1). Furthermore, Willsey et al. (2013) found a hierarchical clustering among

the four brain regions. This is illustrated in Figure 1, where the gene expression patterns in

the brain regions represented in first row are most similar to those in the second row and

least similar to those in the fourth row. The authors also found a smooth continuum of gene

expression patterns across different developmental periods, represented as the columns of the

table in Figure 1. Hence, we expect γw(p) to decrease smoothly as the window w becomes

more dissimilar to Window 1B, in both the spatial and temporal direction.
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2.2 Connections

Other works have used models similar to (2.1) on microarray expression data to tackle the

different co-expression patterns between different tissues and subjects, but their methods

differ from ours. One direction is to directly cluster the covariance matrices of each partition

(Ieva et al., 2016). However, this approach does not factor in the variability in the empirical

covariance matrix, unlike our hypothesis-testing based method. Another approach is to

explicitly model the population covariance matrix for each partition as the summation of

a shared component and a partition-specific heterogenous component. This is commonly

used in batch-correction procedures where the analysis tries to remove the heterogeneous

component from each partition (Leek and Storey, 2007). However, we feel such an additive

model is too restrictive for analyzing the BrainSpan dataset, as we do not believe there is

a shared covariance matrix across all regions of the brain. Instead, our approach will find

specific set of partitions with statistically indistinguishable covariance matrices.

3 Elementary analysis

In this section, we develop a visual diagnostic to investigate if the 107 samples used in pre-

vious works (Liu et al., 2014, 2015) are as homogeneous as these previous analyses assumed.

Using a hypothesis test for equal covariances, our diagnostic leverages the following idea: We

divide the samples among all partitions into two groups and apply the hypothesis test to the

samples between both groups. If all the partitions were truly drawn from distributions with

equal covariances, then over many possible divisions, a QQ-plot of the resulting p-values

should look roughly uniform. The less uniform the p-values look, the less we are inclined to

interpret our partitions were all drawn from distributions with equal covariances.

Algorithm 1: Covariance homogeneity diagnostic
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1. Loop over trials t = 1, 2, . . . , T :

(a) Randomly divide the selected partitions in the set P̂ into two sets, P̂(1) and P̂(2),

such that P̂(1) ∪ P̂(2) = P̂ and P̂(1) ∩ P̂(2) = ∅.

(b) For each partition p ∈ P̂(1), center the samples X
(p)
1 , . . . ,X

(p)
np . Then aggregate

all samples in P̂(1) to form the set of samples

X =
{
X

(p)
1 , . . . ,X(p)

np
: p ∈ P(1)

}
.

Similarly, form the set of samples Y from the set of partitions P(2).

(c) Compute the p-value for the hypothesis test that tests whether or not the samples

in X and Y have the same covariance matrix.

2. Plot the QQ-plot of the resulting T p-values to see if empirical distribution of the

p-values is close to a uniform distribution.

We remind the reader that the above procedure is a diagnostic, not necessarily a recipe

for a goodness-of-fit test. This is because the T p-values are not independent, so it is difficult

to analyze the theoretical properties of this diagnostic. However, as we will demonstrate in

later sections of this article, this diagnostic is nonetheless able to display large-scale patterns

in our dataset.

3.1 Specification of covariance hypothesis test

To complete the above diagnostic’s description, we describe the procedure to test equal-

ity of covariance matrice. Let X = {X1, . . . ,Xn1} and Y = {Y1, . . . ,Yn2} be n1 and n2

i.i.d. samples from d-dimensional distributions with covariance ΣX and ΣY respectively,

both with an empirical mean of 0. We define X ∈ Rn1×d and Y ∈ Rn2×d as the matrices
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formed by concatenating these samples row-wise. Define empirical covariance matrices as

Σ̂X = X>X/n1, and Σ̂Y = Y>Y/n2, where we denote individual elements of these matrices

as Σ̂X = [σ̂X,ij]1≤i,j≤d and likewise for Σ̂Y . We now discuss two possible hypothesis tests for

equal covariance, H0 : ΣX = ΣY that we consider in this article.

Method 1 (With normalization): The first method defines the test statistic according

to Chang et al. (2015a) which extends Cai et al. (2013). In these works, the authors note that

if ΣX = ΣY , then the maximum element-wise difference between ΣX and ΣY is 0. Hence,

Chang et al. (2015a) defines the test statistic as the maximum of element-wise differences

squared between Σ̂X and Σ̂Y , each normalized by its variance. Specifically, the test statistic

is

T̂ = max
ij

(
tij
)

where t̂ij =

(
σ̂X,ij − σ̂Y,ij

)2
ŝX,ij/n1 + ŝY,ij/n2

, i, j ∈ 1, . . . , d, (3.1)

where ŝX,ij =
∑n1

m=1(XmiXmj − σ̂X,ij)
2/n1 is the empirical variance of the variance-estimator

σ̂X,ij, and ŝY,ij is defined similarly.

Then, Chang et al. (2015a) constructs an empirical null distribution of T̂ under H0 :

ΣX = ΣY using the multiplier bootstrap (Chernozhukov et al., 2013). On each of the

b ∈ {1, . . . , B} trials, the multiplier bootstrap computes a bootstrapped test statistic T̂ (b) by

weighting each of the n1 + n2 observations by a standard Gaussian random variable drawn

independently of all other variables, denoted collectively as (g
(b)
1 , . . . , g

(b)
n1 , g

(b)
n1+1, . . . , g

(b)
n1+n2

).

Specifically, we construct the bootstrap statistic for the bth trial as

T̂ (b) = max
ij

(
t̂
(b)
ij

)
where t̂

(b)
ij =

(
σ̂
(b)
X,ij − σ̂

(b)
Y,ij

)2
ŝX,ij/n1 + ŝY,ij/n2

, i, j ∈ 1, . . . , d, (3.2)

where σ̂
(b)
X,ij =

∑n1

m=1 g
(b)
m (XmiXmj − σ̂X,ij)/n1 and σ̂

(b)
Y,ij =

∑n2

m=1 g
(b)
n+m(YmiYmj − σ̂Y,ij)/n2. We

compute the p-value by counting the proportion of bootstrap statistics are larger than the
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test statistic, i.e.,

p-value =
Cardinality

(
{b : |T̂ (b)| ≥ |T̂ |}

)
B

.

Chang et al. (2015b) proves that this test has asymptotically 1 − α coverage under the

null hypothesis for distributions with sub-Gaussian and sub-exponential tails, even in the

high-dimensional regime where d� max(n1, n2).

Method 2 (Without normalization): The second method is similar to the first,

except we replace the denominators shown in (3.1) and (3.2) with 1, meaning we do not

normalize the element-wise squared difference between the two covariance matrices ΣX and

ΣY by its variance. While Chang et al. (2015a) do not originally consider this formulation,

as we will see in Subsection 4.2, this modification offers practical computational advantages

for our partition selection procedure. Specifically,

T̂ = max
ij

(
tij
)

where t̂ij =
(
σ̂X,ij − σ̂Y,ij

)2
, i, j ∈ 1, . . . , d, (3.3)

and we make a similar modification for T̂ (b). While this method will still yield a valid

hypothesis test, we will see later on that the lack of normalizing the element-wise differences

results in a less powerful test.

3.2 Application to BrainSpan

Equipped with a complete description of the diagnostic, we apply it to the BrainSpan dataset.

Among the 10 partitions in the PFC-MSC 10-19 PCW window, we divide the partitions into

two groups in 500 uniformly randomly chosen ways, and compute a p-value using Method 1

(with normalization) for each division. The QQ-plot of the resulting p-values are shown in

Figure 2 (left), where we see that the empirical distribution of the p-values is right-skewed.

Furthermore, we apply this diagnostic to all 125 partitions in the BrainSpan dataset, and we
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see that the distribution of the p-values become even more right-skewed. This suggests that

the 125 partitions in the BrainSpan dataset, specifically the 10 partitions in Window 1B, do

not seem to all share the same covariance matrix, implying heterogeneity in the dataset. In

the next section, we develop a method to resolve this issue by finding the largest subset of

partitions possible among the 125 partitions in the BrainSpan dataset that share the same

covariance matrix.
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Figure 2: QQ-plots of the 500 p-values generated when applying our diagnostic to the BrainSpan
dataset. Left: Using only the partitions in the PFC-MSC 10-19 PCW window. Right: Using all
125 partitions in the BrainSpan dataset.

4 Methods

While we have discussed methods to test for equivalent covariance matrices between any two

partitions in Section 3, we cannot directly apply these methods to the BrainSpan dataset

without suffering a loss of power. This because given there are r = 125 partitions, applying
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the hypothesis test to each pair of partitions results in
(
r
2

)
= 7, 750 dependent p-values.

The p-values are dependent since each of the r partitions is involved in r − 1 hypothesis

tests. Hence, applying standard techniques such as a Bonferroni correction would ignore the

dependencies among all the p-values, likely leading to a loss of power.

To preserve this dependency, we introduce our Stepdown procedure in Subsection 4.1

that simultaneously tests all
(
r
2

)
hypothesis tests. This bootstrap-based procedure is com-

putationally expensive. However, depending on the test statistic used in the
(
r
2

)
hypothesis

tests, we offer a computationally faster alternative in Subsection 4.2. Afterward determining

which of the
(
r
2

)
pairs of partitions do not have statistically significant differences in their

covariance matrices, we develop a clique-based procedure in Subsection 4.3 to select a specific

set of partitions P̂ .

4.1 Stepdown procedure: multiple testing with dependence

We use a Stepdown procedure developed in Chernozhukov et al. (2013) to control the family-

wise error rate. We tailor the bootstrap-based procedure to our specific setting in the

algorithm below. We denote T̂(i,j) as the test statistic formed using either of the two methods,

(3.1) or (3.3), to test if the covariance of samples between those in partition i and partition

j are equal, and T̂
(b)
(i,j) is the corresponding bootstrap statistics on the bth bootstrap trial.

Algorithm 2: Stepdown procedure

1. Initialize the list enumerating all
(
r
2

)
null hypotheses corresponding to the partition

pairs

L(1) =
{

(1, 2), . . . , (r − 1, r)
}
.

2. Loop over steps t = 1, 2, . . .
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(a) Calculate T̂` for all ` ∈ L(t), as stated in (3.1).

(b) For each bootstrap trial b = 1, . . . , B:

i. Generate N =
∑

p np i.i.d. Gaussian random variables, one for each sample

in every partition, and compute T̂
(b)
` for all ` ∈ L(t), as stated in (3.2).

ii. Compute

T̂ (b) = max
{
T̂

(b)
` : ` ∈ L(t)

}
. (4.1)

(c) Remove any ` ∈ L(t) if

T̂` ≥ quantile
(
{T̂ (1), . . . , T̂ (b)}; 1− α

)
.

If not elements are removed from L(t), return the null hypotheses corresponding

to L(t). Otherwise, continue to step t+ 1.

Using techniques in Romano and Wolf (2005) and Chernozhukov et al. (2013), it can be

shown that this algorithmic extension of the covariance test in Chang et al. (2015a) has the

following familywise error guarantee,

P
(

no true null hypothesis among H null hypotheses are rejected
)
≥ 1− α + o(1). (4.2)

The reason the stepdown procedure is able to control the familywise error without using

Bonferroni is because the
(
r
2

)
bootstrapped statistics in each trial are derived the from same

N Gaussian random variables, hence preserving the dependencies among the
(
r
2

)
tests.

4.2 Computational extension for stepdown procedure

The largest drawback to the stepdown procedure as described above lies in its intensive

computational cost. If the number of partitions r is large, then
(
r
2

)
bootstrap statistics need
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to be computed in each bootstrap trial. In this subsection, we reduce the computational

cost by leveraging properties of the bootstrap statistics T̂
(b)
(i,j)’s.

Specifically, we consider only test statistics that satisfy the triangle inequality between

datasets. In our context, a test statistic between datasets satisfies the triangle inequality if

for any bootstrap trial b and for any partitions i, j and k,

T̂
(b)
(i,k) ≤ T̂

(b)
(i,j) + T̂

(b)
(j,k). (4.3)

This property can potentially save expensive calculations when calculating (4.1) in Algorithm

2. Since we only care about the maximum bootstrap statistic T̂ (b), the triangle inequality

gives an upper bound on the bootstrap statistic T̂
(b)
(i,k) between partitions i and k that leverages

bootstrap statistics already calculated within a specific bootstrap trial. If this upper bound

is smaller than the current maximum bootstrap statistic in a specific bootstrap trial, then

we do not need to explicitly compute T̂
(b)
(i,k).

One way to ensure that the bootstrap statistics T̂
(b)
(i,j)’s satisfy the triangle inequality is

to ensure that the statistic is a distance metric between partitions, meaning in addition to

(4.3), we require that T̂
(b)
(i,j) ≥ 0 and T̂

(b)
(i,i) = 0 for partitions i and j. This is why we consider

non-normalized test statistic (3.3) in Section 3. The normalized test statistic shown in (3.1),

while resulting in more powerful tests, can not use this computational extension.

We describe the we developed algorithm below, which represents the bootstrap statistics

as weighted edges in a graph. The algorithm uses Dijsktra’s algorithm to find the shortest

path between vertices. This implicitly computes the upper-bound in the bootstrap statistic

between two partitions using the triangle inequality. This algorithm can provide substantial

improvement in computational speed by leveraging the fact that determining the shortest

path on a fully-dense graph has a computational complexity of O(r2), whereas computing
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T
(b)
(i,j) has a computational cost of O(d2 ·max(n1, n2)).

Algorithm 3: Distance metric-based procedure to compute T̂ (b)

1. Form graph G = (V,E) with r nodes and all
(
r
2

)
edges, and initialize each edge to have

weight equal to (positive) infinity.

2. Arbitrarily construct a spanning tree T and compute all T̂
(b)
(i,j) corresponding to edges

(i, j) ∈ T . Record z = max(i,j)∈T T̂
(b)
(i,j).

3. Construct a set of edges S = L(t)\T which represents the bootstrap statistics between

specific pairs of partitions that have yet to be computed.

4. While S is not empty:

(a) Arbitrarily select an edge (i, j) ∈ S and remove it from S. Compute the shortest-

path distance from vertex i to j in G.

(b) If the shortest-path distance is larger than z, update the edge (i, j) to have weight

T̂
(b)
(i,j), and update z to be max(z, T̂

(b)
(i,j)).

5. Return z.

4.3 Largest partial clique: selecting partitions based on testing

results

After applying the covariance testing with the stepdown procedure described in the previ-

ous two subsections, we have a subset of null hypotheses from H that we accept. In this

subsection, we develop a clique-based method to estimate P defined in (2.2), the subset of

partitions that share the same covariance matrix, from H.
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We conceptualize the task of selecting partitions as selecting vertices from a graph. Let

G = (V,E) be a graph with vertices V and edge set E such that

V =
{

1, . . . , r
}
, E =

{
(i, j) : H0,(i,j) is accepted by the stepdown procedure

}
. (4.4)

Since each of the
(|P|

2

)
pairwise tests among the partitions in P satisfy the null hypotheses,

if none of the null hypotheses were incorrectly rejected, then the vertices corresponding to P

will form a clique in graph G. However, due to the theoretical guarantee stated in (4.2), this

event only occurs with limiting probability 1−α. This means the vertices corresponding to P

have a non-zero probability to be missing edges to form a clique in graph G. Hence, loosely

speaking, the goal becomes to select a subset of vertices in G that are highly connected.

This task is exemplified in Figure 3.

Adjacency matrix

Index locations
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Adjacency matrix (reordered)

Index locations
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x 
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Figure 3: (Left) Visualization of an (example) adjacency matrix that can be formed using Equa-
tion (4.4), where the ith row from top and column from the left denotes the ith vertex. A red
square in position (i, j) denotes an edge between vertex i and j. (Right) Illustration of the desired
goal. The rows and columns were reordered from the left figure, and the dotted box denotes the
vertices that were found to be highly connected.

There are many algorithms in statistics in computer science that can achieve this goal,

but many such algorithms in practice suffer for a lack of monotonicity. Specifically, suppose
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we have an algorithm A that takes in a graph G and outputs a set of partition, denoted by

A(G), and for two graphs G′ and G, let G′ ⊆ G denote that every edge in G′ is in G. Since

we are trying to select a subset of highly connected vertices in G, it would natural to have

the following property:

G′ ⊆ G ⇒ |A(G′)| ≤ |A(G)|. (4.5)

This property is intuitive for whichever algorithm we use since in our context, intuitively,

less partitions should be selected if our stepdown procedure deems more pairs of partitions

to have statistically significant different covariance matrices. More importantly however,

this property is critical in practice since the choice of α used by the stepdown procedure

in Subsection 4.1 is decided by the user. Using the algorithmic description laid out in

Subsection 4.1, it can be shown that

α′ ≤ α ⇒ G′ ⊆ G.

Hence, given the above relationship, an algorithm that does not exhibit the property in

(4.5) will be fragile as a larger α, meaning a stricter test, could counter-intuitively result

in more partitions being selected. As we will demonstrate in Section 5 in simulation and

continue in the appendix, many popular algorithms such a spectral clustering do not exhibit

this property. Therefore, we develop a new algorithm that empirically exhibits the property

(4.5).

Our algorithm finds the largest partial clique in the graph formed by (4.4). We say a set

of k vertices form an γ-partial clique if there are at least γ ·
(
k
2

)
edges among these k vertices.

A largest γ-partial clique is the largest set of vertices that form a γ-partial clique. We justify

the choice to search for the largest γ-partial clique since, by construction of our model in

(2.1), the prevalent covariance structure among the r partitions is the desired covariance

structure we wish to estimate.
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We describe the algorithm we developed below. It starts by finding a list containing all

maximal cliques in the graph based on (4.4). A maximal clique is a vertex set that form a

clique but is not subset of a larger clique. The algorithm then proceeds by determining if the

union of any two vertex sets form a γ-partial clique. If so, this union of vertices is added to

the list of vertex sets. The algorithm returns the largest vertex set discovered when all pairs

of vertex sets are tried and no new γ-partial clique is found. We demonstrate in Section 5

that this algorithm exhibits the monotonicity property (4.5).

Algorithm 4: Clique-based selection

1. Form graph G based on Equation (4.4).

2. Form C, the set of all vertex sets that form a maximal clique in G.

3. While there are vertex sets Ci, Cj ∈ C the algorithm has not tried yet:

(a) Determine if the union of vertices in Ci and Cj form a γ-partial clique in G. If

so, add the union of vertices in Ci and Cj as a new vertex set in C.

4. Return the largest vertex set in C.

While a naive implementation of the above algorithm would require exponential time to

complete in terms of r, by using a queue and three hash tables, our implementation dramat-

ically reduces the computational cost. Mainly, one hash table is used to record all vertex

sets tried on whether or not they form a γ-partial clique. This allows our implementation

to exploit previous calculations using the following heuristic: we only check if a vertex set

forms a γ-partial clique, if for some partitioning of the vertex set, at least one partition of

vertices should form a a γ-partial clique. This idea is illustrated in Figure 4.
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Figure 4: Schematic of Algorithm 4. Step 2 is able to leverage hash tables by checking previous
calculations if the union of vertices in a pair of children sets forms a γ-partial clique, which takes
near-constant calculations to access. This can save tremendous computation time since Step 3,
which checks if the union of vertices in both parent sets form a γ-partial clique, takes quadratic
time in the number of vertices to compute.

5 Simulation study

We perform empirical studies to show that our methods in Section 4 have more power and

yield better estimation of the desired covariance matrix Σ over conventional methods as the

samples among different partitions are drawn from increasingly different distributions.

Setup: We generate synthetic data in different partitions, where the data in each parti-

tion has n = 25 samples and d = 50 dimensions, using the following schema: we construct

Σ = [Σi,j]
d
i,j=1 by Σi,j = i · (d − j + 1)/(d + 1). We generate the first r1 = 15 partitions,

where each partition consists of n i.i.d. samples drawn from N(0,Σ). For a fixed parame-

ter β ∈ (0, 1) which represents the flip percentage, we generate Σ′ by uniformly randomly

shuffling (β · 100)% of the rows and their corresponding columns of Σ. We then generate

the next r2 = 5 partitions, where each partition consists of n i.i.d. samples drawn from

N(0,Σ′). Lastly, we generate the last r3 = 5 partitions in the same fashion, by generating
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Σ′′ by shuffling (β · 100)% of the rows and their corresponding columns of Σ. Hence, we

have a total of r = r1 + r2 + r3 = 25 partitions where we desired goal is to find that the first

r1 partitions share the same covariance structure. In this simulation study, β parameterizes

how “easy” this task is, as a larger β means the hypothesis test described in Section 3 has

more power in distinguishing among samples drawn from the three covariance matrices Σ,

Σ′ and Σ′′. Figure 5 visualizes the covariance matrices Σ and Σ′.

Base Covariance Covariance Shuffled 25% Covariance Shuffled 75%

Figure 5: (Left) Visualization of the covariance matrix Σ. (Middle) Visualization of one possible
covariance matrix Σ′, generated by swapping β = 0.25 fraction of the rows and respective columns
of Σ. (Right) Analogous to the middle plot, but swapping β = 0.75 fraction of the rows and
respective columns of Σ. As the swap percentage increases, the difference between covariance
matrices becomes more apparent.

Multiple testing: We use the stepdown procedure described in Subsection 4.1 and

Subsection 4.2 on our simulated data where β = {0, 0.1, 0.25, 0.75} to see what how true

positive rates and false positive rates vary with β. Let L = {(i1, j1), (i2, j2), . . .} denote the

set of partition pairs that correspond to the accepted null hypothesis. Since our goal is to

find the first r1 partitions, we define the true positive rate to be

True positive rate for hypothesis =

∣∣∣{(i, j) ∈ L : i ≤ r1 and j ≤ r1

}∣∣∣(
r1
2

) .

21



Similarly, we define the false positive rate to be

False positive rate for hypothesis =

∣∣∣{(i, j) ∈ L : i > r1 or j > r1

}∣∣∣(
r
2

)
−
(
r1
2

) .

We plot the RoC curves visualizing the true and false positive rates in Figure 6. Each

curve traces out the median true and false positive rate over 20 simulations as α ranges

from 0 (top-right of each plot) to 1 (bottom-left of each plot), where we use 1000 bootstrap

trials per simulation. In all three plots, we see that as the flip percentage β increases, each

method has more power. The left plot of Figure 6 represents the analysis that did not use

the methods we develop in this article. There, we compute each
(
r
2

)
p-values, one for each

hypothesis test comparing two partitions, and accept hypotheses for varying levels of α after

a Bonferroni correction. The right plot shows the curves for the stepdown procedure using

the normalized statistic (3.1). As we mentioned in Subsection 4.1, there is a considerable

loss of power from the stepdown procedure to the naive family-wise correction since the

Bonferroni correction does not account for dependencies among hypothesis tests, there is a

considerable loss of power.
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Figure 6: RoC curves for the accepted hypotheses, for settings where β = (0, 0.1, 0.25, 0.75), where
each curve traces out the results as α varies from 0 to 1. (Left) The curves resulting from using
a Bonferroni correction to the

(
r
2

)
individual hypothesis tests. (Right) The curves resulting from

using the stepdown procedure with the normalized statistic (3.1).

Partition selection: Using the stepdown procedure using the normalized statistic (3.1),

we proceed to select the partitions as in Subsection 4.3 to understand the monotonicity

property and see how the true and false positive rates for partitions vary with the flip

percentage β.

The left figure of Figure 7 shows how the certain methods to find highly connected

vertices (4.4) fail the monotonicity property (4.5). Here, we compare our largest partial

clique method, described in Subsection 4.3, against spectral clustering, a method used in

network analyses designed to find highly connected vertices in degree-corrected stochastic

block models (Lei and Zhu, 2017). Both methods are applied to the same simulated dataset

and receive the same set of accepted hypotheses as the family-wise error rate α varies.

Recall that since the stepdown procedure accepts more hypotheses as α decreases, the graph

formed by (4.4) becomes denser as α decreases. However, as we see in left figure of Figure 7,

the number of partitions selected by spectral clustering sometimes decreases as number of
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accepted hypotheses increases, hence violating the desired monotonicity property. On the

other hand, we see that our largest partial clique method works empirically satisfies the

monotonicity property. Here, we set our algorithm to find the largest 0.95-partial clique,

and it empirically satisfied the monotonicity property in the simulation suite.
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Figure 7: (Left) Number of selected partitions for a particular simulated dataset as the number
of accepted hypotheses varies with the family-wise error rate α. (Right) Similar RoC curves to
Figure 6, but for selected partitions after using the stepdown procedure with the normalized test
statistic.

The right figure of Figure 7 shows the RoC curves for varying β as the family-wise error

rate α varied during multiple testing. This figure is closely related to the middle plot of

Figure 6. We use our largest partial clique method to find the largest 0.95-partial clique.

Let P̂ denote the selected set of partitions. Similar to before, we define the true and false

positive rate in this setting as

True positive rate for partitions =

∣∣∣{p ∈ P̂ : p ≤ r1

}∣∣∣
r1

,

False positive rate for partitions =

∣∣∣{p ∈ P̂ : p > r1

}∣∣∣
r2 + r3

.
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We see that the power of the largest partial clique method increases as β increases, as

expected.

Covariance estimation: Finally, we show that our method is able to improve the

downstream covariance estimation compared to other approaches. To do this, we use four

different methods to select partitions and compute the empirical covariance matrix among

the samples in those partitions. The first three methods resemble analyses that could be

performed on BrainSpan in practice. The first method is the method we develop with α = 0.7.

The second method always selects all the partitions, which resembles using all the partitions

in the BrainSpan dataset. The third method always selects the same 5 partitions. These 5

partitions are fixed so the 3 partitions contains samples drawn from N(0,Σ), while the other

2 partitions contain samples from each of the remaining two distributions. This resembles

past work (Liu et al., 2015) that considered only partitions in Window 1B. For comparison,

the last method resembles an oracle by selecting exactly the k1 partitions contain samples

drawn from N(0,Σ).

Figure 8 shows that our partition selection method with α = 0.7 performs almost as well

as the oracle method over varying flip percentages β. This figure shows the average spectral

error of the estimated covariance matrix for each method and flip percentage over 10 trials.

Notice that for low β, our method (using a fixed α) and the method using all partitions

yield a smaller spectral error than the method that knows exactly which samples are drawn

from drawn from N(0,Σ). This is because for low β, the covariance matrices Σ, Σ′, and Σ′′

are almost indistinguishable. However, as β increases, the differences among Σ, Σ′, and Σ′′

grows. This means methods that do not adaptively choose which partitions to select become

increasingly worse. However, our method using α = 0.7 remains competitive, performing

almost as if it knew which partitions contain samples drawn from N(0,Σ).
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Figure 8: The average spectral error of each method’s downstream estimated covariance matrix
for varying flip percentage β. The four methods to select partitions shown are our method for
α = 0.7 (red), the method that selects all partitions (green), the method that selects a fixed set of
5 partitions (blue), and the method that selects exactly the partitions that contain samples drawn
from N(0,Σ) (black).

6 Application on BrainSpan study

6.1 Partition selection

We apply our entire selection procedure using the normalized statistic (3.1) on the BrainSpan

dataset and find partitions that matches the scientific intuition described in Willsey et al.

(2013) and obtain a better diagnostic compared to the ones performed in Section 3. To

demonstrate this, we select partitions based on only the 200 genes with the largest risk score

according to an external dataset (De Rubeis et al., 2014). Using 1000 bootstrap trials and

familywise error level α = 0.1, we use the stepdown procedure to find which null hypotheses

are accepted among the
(
125
2

)
hypotheses tested simultaneously. Based on these results, we
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use our clique-based selection method to select the partitions that form the maximal 0.95-

partial clique. To break ties between maximal partial cliques, we use the clique with the

most partitions in Window 1B.

We visualize the results of the stepdown procedure in Figure 9 to illustrate that our

method finds 43 partitions which do not have significantly different covariance matrices.

Since each null hypothesis corresponds to a pair of partitions, we form the graphG connecting

pairs of partitions corresponding to the accepted null hypotheses, as described in (4.4). The

left figure in Figure 9 shows a subgraph of G as an adjacency matrix, while the right figure

shows the graph with all 125 nodes. The nodes in this graph are laid out using a standard

layout algorithm so highly connected sets of nodes are placed compactly (Fruchterman and

Reingold, 1991). Hence, we can see that the 43 partitions we select correspond to 43 nodes

in G that are highly connected.

Figure 9: (Left) The adjacency matrix of a subgraph of G, where each row and corresponding
column represents a different node, similar to Figure 3. A red pixel corresponds to an edge between
two nodes, while a pale pixel represents no edge. The subgraph correspond to all the 43 selected
partitions and 10 randomly chosen partitions not selected. (Right) The graph G containing all 125
nodes. Red nodes correspond to selected partitions, while pale nodes correspond to partitions not
selected.

We visualize the proportion of selected partitions per window in the BrainSpan dataset in
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Figure 10 to demonstrate that our findings are consistent with the findings in Willsey et al.

(2013). As mentioned in Section 2, Willsey et al. (2013) found that partitions in Window

1B were mostly homogenous and were enriched for risk genes. The authors also found that

the gene expression from different brain tissues are more correlated as the developmental

periods are more similar. The authors also estimated a hierarchical clustering among the

four brain regions. Indeed, our results match these finding as we select a large proportion

of partitions in Window 1B. The proportion of selected partitions decreases as the window

represents older developmental periods as well as brain regions more dissimilar to Window

1B.

(1)

(2)

(3)

(4)

(A) (B) (C) (D)

Figure 10: The number of partitions and samples (n) selected within each window. Partitions from
6 different windows are chosen, and the estimated γw is empirical fraction of selected partitions
within each window. The more vibrant colors display a value of γ̂w.

Lastly, we apply the same diagnostic as in Section 3 to show in Figure 11 that the samples

within our 43 selected partitions are much more homogenous than the samples among all

partitions in Window 1B. The p-values we obtain after 500 trials are much closer to uniform

that those shown in Section 3. To re-emphasize, we interpret this result as a diagnostic, not

as a formal goodness-of-fit test as our p-values are not independent, and the partitions were

selected based on the BrainSpan data.
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Figure 11: A QQ-plot of the 500 p-values generated when applying our diagnostic to the 43 selected
partitions, similar in style to Figure 2.

6.2 Gene network and detected risk genes

DAWN uses two datasets of genetic information to identify risk genes. The first dataset has

been the primary focus of this article so far. It contains the microarray samples that our

method selected from the BrainSpan dataset. The second dataset contains risk scores for

each gene that compare the amount of genetic variation found in individuals with ASD to

individuals without ASD (He et al., 2013; De Rubeis et al., 2014). For example, if one type

of genetic variation in a particular gene is found more commonly in individuals with ASD

than individuals without ASD, this gene would have a higher risk score and be more likely

to be a risk gene. As mentioned in Section 1, DAWN combines these two datasets by first

estimating a gene co-expression network using the microarray samples, and then identifying
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risk genes that either have a high risk score or are connected to many other genes with high

risk scores.

Figure 12 illustrates the flowchart of how DAWN combines the gene co-expression net-

work with the risk scores. The first step uses the method we developed in Section 4 to

select 43 partitions from the BrainSpan dataset, as stated in Subsection 6.1. In the second

step, DAWN estimates a Gaussian graphical model from the samples in these partitions to

represent the gene co-expression network. We use neighborhood selection to estimate this

Gaussian graphical model, where the tuning parameter was chosen via 5-fold cross validation

(Meinshausen and Bühlmann, 2006). In the last step, DAWN identifies risk genes using a

Hidden Markov random field model to combine the Gaussian graphical model with the risk

scores. The details are in Liu et al. (2015), but in short, this assumes a mixture model of

the risk scores between risk genes and non-risk genes, and the probability of being risk gene

depends on the graph structure. To enable a fair comparison between our results and those

in Liu et al. (2015), we apply the authors’ screening method to analyze only 6670 genes, and

identify 246 risk genes. The specific risk genes we identify are listed in our online supplement.

Figure 12: Flowchart of how our partition selection procedure (stepdown procedure and largest
partial clique) is used downstream to find risk genes.
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6.3 Investigation on detected risk genes

We demonstrate that the 246 risk genes we identify are more promising than those identified

in Liu et al. (2015) since an independent study found new de novo loss-of-function (dnLoF)

mutations in a higher percentage of our risk genes than before. Specifically, Iossifov et al.

(2014) found 251 genes with dnLoF mutations not already factored into the risk scores used

in our DAWN analysis. These 251 genes are natural candidates to compare our risk genes

against since multiple separate studies found twice as many dnLoF mutations in individuals

with ASD than individuals without (Neale et al., 2012; Iossifov et al., 2012; Sanders et al.,

2012; O’Roak et al., 2012). This makes dnLoF mutations contain the most signal among

all forms of genetic variation. Hence, we are hoping for as many of our 246 risk genes to

overlap with these 251 genes with dnLoF mutations. However, since dnLoF mutations are

rare events, we realistically do not expect a high overlap percentage. For example, De Rubeis

et al. (2014) sequenced more than two thousand ASD trios but found less than two dozen

genes with more than one dnLoF mutations.

We find that 19 of our 246 risk genes (7.8%) had additional dnLoF mutations in Iossifov

et al. (2014), which is an improvement over the previous finding in Liu et al. (2015) where

only 16 of 246 risk genes (6.5%) overlapped. These 19 genes are ADNP, ANK2, ARID1B,

CHD8, DIP2A, DSCAM, DYRK1A, FOXP1, ILF2, KDM5B, KDM6B, MED13L, NCKAP1,

PHF2, POGZ, RANBP17, RIMS1, SPAST, and WDFY3. If we modelled the number of risk

genes that overlap as a Bernoulli random variable, our findings represents roughly a one

standard deviation improvement. That is, an improvement of one standard deviation would

require identifying
√

246 · (16/246) · (1− 16/246) ≈ 3.86 more overlapped risk genes, and

we identify 3 more risk genes.

Furthermore, these 19 overlapped risk genes are robust to the familywise error control α

used in our Stepdown procedure in Section 4. We apply our procedure to a range of α values
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between 0.05 and 0.35 at intervals of 0.025. This results in 13 different sets of risk genes.

In 8 or more of these sets of risk genes, we find the same 19 overlapped risk genes. In fact,

the 246 risk genes themselves are also robust to α. Among the 13 sets of risk genes, 238 risk

genes were identified 8 or more times. All together, our results show that our method is able

to identify risk genes that are more promising than before, and this finding is not dependent

on our method’s tuning parameter α.

7 Conclusion and discussions

In this article, we develop a procedure to select partitions with statistically indistinguishable

covariance matrices and apply it to help identify risk genes. Our procedure first applies a

Stepdown method to simultaneously test all
(
r
2

)
hypotheses, one for testing whether or not

each pair of partitions shared the same population covariance matrix. The Stepdown method

is critical since it can preserve the dependencies among all
(
r
2

)
hypotheses via bootstrapping

the joint null distribution. Then, our procedure uses a clique-based selection method to

select the partitions based on the accepted null hypotheses. The novelty in this procedure is

its ability to preserve monotonicity, a property stating that less partitions should be selected

as the number of accepted null hypotheses gets smaller. We demonstrate empirically that

our procedure achieves this property while common methods such as spectral clustering do

not. When we apply our procedure to the BrainSpan dataset as part of the DAWN analysis,

we find scientifically meaningful partitions based on the findings in Willsey et al. (2013). We

also find a higher percentage of our risk genes overlap with genes identified in an independent

study (Iossifov et al., 2014) compared to previous works (Liu et al., 2015). This result is not

sensitive to the tuning parameter of our procedure.

The theoretical role of the familywise error level α is not well understood mathemati-
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cally. Specifically, while (4.2) provides a theoretical guarantee on the set of null hypothesis

accepted, what we would like to prove is a theoretical guarantee on the set of selected par-

titions P̂ . During the development of this article, it became clear that no guarantees on P̂

can be provided unless we understand the power of the Stepdown procedure.

Our procedure is applied directly to help identify risk genes for ASD, but this line of work

has broader implications in genetics. Due to the improvement of high throughput technolo-

gies, it has been increasingly accessible to gather large amounts of microarray expression

data. However, as we have seen in this article, gene expression patterns can vary wildly

among different tissues and subjects. This makes identifying samples that are relevant to

the scientific task difficult. Beyond analyzing brain tissues, Greene et al. (2015) develop

procedures to select relevant samples amongst a corpus of microarray expression data from

many different tissue types for specific scientific tasks. While that work currently contains

no statistical foundation, our work provides an possible statistical direction for this research

field to move towards.
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A Dataset Details

There are four primary brain regions, each containing smaller, scientifically-interesting brain

regions.

• PFC-MSC: The prefrontal cortex and primary motor-somatosensory cortex consists

five smaller regions: primary motor cortex (M1C), primary somatosensory cortex

(S1C), ventral prefrontal cortex (VFC), medial prefrontal cortex (MFC), dorsal pre-

frontal cortex (DFC) and orbital prefrontal cortex (OFC).

• V1C, ITC, IPC, A1C, STC: A region consisting of the primary visual cortex (V1C),

inferior temporal cortex (ITC), primary auditory cortex (A1C), and superior temporal

cortex (STC).

• STR, HIP, AMY: A region consisting of the stratum (STR), hippocampal anlage or

hippocampus (HIP) and amygdala (AMY).

• MD, CBC: A region consisting of the mediodorsal nucleus of the thalamus (MD) and

the cerebellar cortex (CD).

B Non-normalized analysis

to come, simulation results for non-normalized statistic. ROC curves as well as run-time

improvement.

code?
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