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Abstract

Galaxies evolve by accreting gas from the intergalactic medium and via mergers.

The details of galaxy evolution physics are complex and are linked to the global prop-

erties of the Universe. It is impossible to observe a single galaxy’s evolution; we can

only record its current appearance (or morphology) and estimate its physical proper-

ties. However, by studying how simulated galaxies evolve, we can begin to infer how

galaxies in our own Universe are related across time. In this project, we aim to link

galaxies at a given time to their progenitors. We analyze the statistics of simulated

galaxy data from the Illustris Project at different time points, and we use these results

to build models that predict the past mass rank of a galaxy given its current mass

rank, morphology, and estimated physical properties such as star-formation rate.

1 Introduction

Astronomers have long been interested in linking galaxies across time; for instance, [2] Barro.
et al (2014) studied 45 massive galaxies (mass > 10) to see whether they were progenitors
of any quiescent galaxy. Then in the following year, [3] Papovich et al. (2015) have studied
which galaxies at various time points could be the progenitors of the Milky Way or the
Andromeda galaxy. However, the evolution of galaxies cannot be studied in the observable
Universe. We do not have continuous information about any galaxy across time. To overcome
this obstacle, a standard assumption ([2, 3]) used for the linking process is that the comoving
number density of galaxies3 is constant as a function of time. This furthermore implies that
the relative rank order of galaxies, for example, in mass remains constant over time.

Observation of several galaxies continuously over time is not practically possible. Hence,
instead of using real data, we have to use simulated data in this project for the analyses.

1 Carnegie Mellon University
2 Space Telescope Science Institute
3The comoving number density of galaxies is the density within a volume element whose physical size

expands at the same rate that the Universe as a whole expands.
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One such simulated galaxy data is the Illustris Project (Vogelsberger et al. 2014),4. Wellons
& Torrey (2017), using Illustris data, attempt to construct models linking galaxies which
emitted their light about 2.2 billion years after the Big Bang to galaxies today, 13.8 billion
years after the Big Bang, and vice-versa, and they presented a probabilistic model of linking
galaxies across time. They have used constant number density, evolving number density
and probabilistic number density for linking the galaxies.However, the works in [2, 3 & 6]
have not used information on morphological statistics of the galaxies to their full extent. In
this paper we will check whether we can relax the assumption of constant comoving number
density as well as improve the linking method by including morphological statistics. We
begin by analyzing the simulated galaxy data from two time points followed by constructing
models that link galaxies while taking into account morphological parameters, mass, and
star formation rate. Ultimately, we test the performance of our method on real galaxy data.

We describe the Illustris image dataset and its statistics in Section 2. In Section 3, we
describe data pre-processing and introduce the rank statistic, which we use to track how
galaxy mass changes with time. In Section 4, we analyze the data so as to understand
the relationships among the statistics and see which are effective in explaining the mass
rank of galaxies at a later time given information at a earlier time. In Section 5, we fit a
random forest using cross validation to model the rank of galaxies at earlier and later times
respectively, and compare them with baseline (i.e., constant-rank) models. Also we calculate
the conditional density of mass rank at n earlier time given the data at a later time for each
galaxy. Ultimately, in Section 6, we introduce our method of linking galaxies across time
using the model from Section 5. Initially we calibrate it using Illustris data, then apply it to
observed data collected by the Hubble Space Telescope’s CANDELS program (Appendix 0).

2 Data

This project will eventually feature two sets of data, one simulated and one observed (or
real). In this work, we describe our analyses of simulated data; we will use the results to
predict how observed galaxies evolve in time. For cosmological objects time and distance are
measured in terms of the quantity called redshift5 (denoted by z). The current time (13.8
billion years after Big Bang) corresponds to redshift z = 0 and the further back in time
we move in, the higher the redshift gets. For distance, a greater distance corresponds to a
higher redshift.

4www.illustris-project.org
5Wikipedia on redshift
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Figure 1: Left : A part of an image from Snyder et al. (2014). Image of simulated galaxies

where the horizontal bars correspond to different mass for the galaxies and the vertical bars

correspond to different redshifts. Right: An image from Snyder et al. showing change in

median value of Gini and M20 as a function of redshift.

The Illustris Project dataset consists of information about galaxies measured at many differ-
ent redshifts. In this project, we begin by concentrating on two of those redshifts−z=2 and
z=1−which correspond to times 3.3 and 5.9 billion years after the Big Bang, respectively.
The data are pre-processed as in Snyder et al. (2014) (Figure 1) to make it appear as if they
had been observed from the Hubble Space Telescope at wavelengths 105 nm (Y band), 125
nm (J band), and 160 nm (H band). Currently we work with J-band data only.

A galaxy is considered detected at a given redshift if its mass is ≥ 1010 solar masses (M�).
Since galaxies generally grow in mass, more galaxies are detected at z=1 than at z=2. Our
sample consists of 2144 galaxies that are detected at each redshift.6 The images for each
galaxy are summarized via a number of statistics described in Appendix A; in addition, we
have estimates of relative size (sizes), stellar mass (mass), and star-formation rate (SFR).

Table 1: Ranges of values of galaxy attributes

M I D Gini M20 C A sizes log10mass SFR

Min 0.00 0.00 0.00 0.00 −2.28 0.8 −0.14 0.07 9.90 0

Max 0.33 1.00 1.72 0.57 −0.43 4.8 0.87 2.77 12.05 35000

6 CHECK: REPEATED GALAXIES AT z=1; AFFECT ON RESULTS/INTERPRETATION.
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Each galaxy at each redshift is identified via a “subhalo ID.” This number is not same for a
given galaxy across redshifts.
In Table 2 we show a slice of the data. Each galaxy is observed from four different angles;
in our analysis we randomly choose one angle for each galaxy, and use that angle at each
redshift.

Table 2: Sample of the first, fifth and ninth rows of the data at redshift z=2

M I D Gini M20 C A sizes log10mass SFR Subhalo ID

0.000 0.000 0.096 0.488 -1.624 4.065 0.079 0.349 11.881 58.579 0

0.000 0.000 0.141 0.447 -1.482 3.054 0.087 0.403 10.106 55.132 100199

0.039 0.398 0.561 0.334 -0.762 1.603 0.140 0.877 10.373 40.219 100519

3 Methods

First we want to observe how the masses of galaxies change with time. For this we calculate
the mass quantiles for the galaxies at each redshift. We call these the rank, where rank lies
in (0,1]; a higher rank corresponds to a larger mass.

rankz=i of galaxy x : Ri(x) = P (M∗,z=i ≤ massz=i(x))

The idea is to see how the rank changes for galaxies as we move from one redshift to another.
Figure 2 shows how rank change from z=1 to z=2. Our interest lies in how frequently galaxies
change rank, and by how much. Also, we want to see how the morphological parameters
and star formation rate are related to the rank changes and the rank groups in general. We
present these analyses in Section 4.

4 Exploratory Data Analysis

We want to fit a model that can estimate rank at z=2 based on the rank and other statistics
at z=1. In Section 4.1 we look at the relationship between just the ranks at both redshifts,
and then we look at the conditional density of rank at z=2, given the rank at z=1, in Section
4.2. In Section 4.3 we look at the relationships among the morphological statistics and rank
at z=1, and finally in Section 4.4 we examine the link between morphological statistic values
at z=1 and the change in mass rank from z=1 to z=2.

4.1 Mass rank at z=1 and z=2

We denote the rank at z=1 as R1 and the rank at z=2 as R2. The rank at redshift z = k is

Ri(j) =
1

ngal

ngal∑
i=1

I[M∗,z=k(i) ≤M∗,z=k(j)] ,

4



where ngal = 2144.

Figure 2: Left: Scatter plot of rank at z=1 and z=2. Each point corresponds to a galaxy.

There are more points above the diagonal line compared to below it. However the scatter is

more pronounced below the diagonal line. Even though the actual masses at z=2 are lower

than those at z=1, the relative rank value is more likely to be higher at z=2 compared to at

z=1. Right: Joint density plot for R1 and R2.

In Figure 2 we show the bivariate joint density plot for R1 and R2. As can be seen, the points
near the diagonal have high density. For extreme rank values, the density at the diagonal is
highest compared to the other points in the region.

4.2 Changes in mass rank from z=1 to z=2

In Figure 3 we show a surface plot of the conditional distribution of R2, given R1.
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Figure 3: Conditional density of R2 given R1. The distribution is negatively skewed for low

values of R1, with the skewness gradually turning positive as R1 increases.

We find that the rank at z=1 seems to an informative predictor of the rank at z=2.7 Below
we will see how the other variables can improve this estimation.

4.3 Galaxy morphology at z=1

Here we examine how the morphological statistics, mass, and star-formation rate at z=1 are
related. To visualize the relationships we randomly sample 700 galaxies and create a scatter
plot matrix with statistic values at z=1. See Figure 4.

7 In Appendix B, we show the results of an analysis in which we examine rank groups; specifically, we

group the ranks into quintiles and estimate the probability that a galaxy changes groups from one redshift

to another.
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Figure 4: Scatterplot matrix of variables at z=1.The are some linear relations among the

variables. For example D, M20 and A have linear relation with each other with positive slope.

The suffix 1 with each variable name stands for redshift z = 1.

In Figure 4 we observe that the statistics I, D, M20, A are positively correlated and are all
negatively correlated with Gini and C. Secondly, mass and SFR are positively correlated.
And lastly, mass and rank are strongly correlated, by definition. Even though there are
some non zero correlations, we do not see any strong relationship between the morphological
statistics and any of mass. SFR and rank. Hence, we move on to predict R2 using all the
information at z = 1.
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5 Predicting Mass Rank at an Earlier Epoch

We want to develop a model to link galaxies at z = 1 with their progenitors at z = 2. Rank,
by construction, is a bijection from the set of galaxies to the parse subset subset of (0, 1].
Hence, first we fit model to the data at z = 1 to predict rank at z = 2 (R2) as a function
of R1 and morphological statistics, mass, and star-formation rate at z = 1. We divide the
dataset randomly into eleven equal parts with one part left out as a test set. We apply
ten-fold cross validation on the remaining parts. We then apply the models obtained from
the 10 random forests separately on the test set. We use the predicted value of R2 from the
random forest as one of the estimators of R2.

The random forest estimate is just a point estimate. If we can see a probabilistic estimate
(P(estimatedR2 = r) for r in (0, 1]), it will give us more information about each galaxy.
Hence, use the individual 500 estimates (one estimate from each tree among the 500 trees in
the random forest) of R2 for each galaxy to estimate the conditional density of R2 for each
galaxy given the information of that galaxy at z = 1. Step-by-step we first fit the random
forest model described in the previous paragraph. Then we obtain the R̂2 values for the
given galaxy at each tree. Then we use these individual values and calculate a kernel density
with Gaussian kernel. This density is a probabilistic model for estimation of R2. We use the
mode of the density as one of the estimators for R2. We repeat this after excluding all the
morphological variables except M∗, sizes, and SFR.

frank2(y | morphology,mass, SFR,R at z = 1) =
1

ntrees

ntrees∑
j=1

fN(µj ,σ2)(y),

where µj is a vector of length ntrees containing the values obtained from each tree in the
random forest for R2 of the galaxy under consideration and σ2 fixed variance controlling the
smoothness of the density.

5.1 Predicting mass rank at z=2 given data at z=1

R2. mass and R1 are the most important predictor variables. In Figure 5, shows the
variable importance for the statistics at z=1 to predict R2. Also, it is interesting to note
that morphological statistics M20 and C at z=1 are also effective to some extent in explaining
the prediction even when the gap between the two redshifts is large (∼ 2.5 Gyr).
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(a) Using all variables at z = 1 including

morphologies.

(b) Using only M∗, SFR and R1

Figure 6: Predictive density of 9 galaxies. The blue, the red and the green lines correspond

to R1, R2 and the aggregated estimate of R2 from the random forest.

Figure 5: Variable importance plot for R2 prediction. The parentheses show the extent of

variability calculated by combining the ten random forests. The most important variables in

the rank estimation are mass, rank and SFR at z = 1.

We want to check whether the inclusion of the morphological statistics improves the model.
So we repeat the random forest model fitting and estimation method as earlier but without
the morphological statistics. Morphologies improve the prediction model. In Figure 6, we
plot the density estimated using the data at z = 1 ((a) with morphologies and (b) without
morphologies) for finding R2 for a sample of nine galaxies. It can be seen that the mode can
be used as a predictor of R2. Also, the model with morphologies seems to be a better fit for
R2 in general. thus we conclude that morphologies help to some extent in estimation.

We now compare our model against the model that assumes that galaxies have the same
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rank at z = 2 as they do at z = 1 while using all the information at z = 1. We refer to it as
the ”fixed rank” model. We used mean square error to compare the different methods. In
Table 3, we show how allowing the rank to vary leads to a significant decrease in the mean-
squared error for predicting the mass rank at z = 2. In varying rank without morphologies,
we fit the random forest using only mass, R1 and SFR. Also for either case, we also find
the conditional density of R2 from the random forest model. Then the mode of the density
is also used as an estimator for R2.

Table 3: Errors of different methods estimating rank at z=2. Including morphologies de-

creases the error. Mode of the conditional density estimate has the least error.

Method Error

Fixed rank 0.063± 0.252

Varying rank (with morphologies) 0.009± 0.098

Varying rank (without morphologies) 0.016± 0.125

Mode of cond. density (with morphologies) 0.003± 0.050

Mode of cond. density (without morphologies) 0.015± 0.122

In order to assess the consistency of the model, we also apply it to predict rank at z=1.5
using statistics at z=1 (see Appendix C). The results are consistent with the results in this
section. In Appendix D, we reverse the direction of the prediction, i.e., we estimate rank at
a later epoch using data at an earlier epoch. Our results are consistent with those here, with
the exception that SFR seems to be the most important variable.

6 Linking galaxies at z = 2 to galaxies at z = 1

Here we develop a model to determine the progenitor(s) of a galaxy from a given set of
galaxies at an earlier (higher) redshift. For this we use the random forest model from
Section 5.1.

Linking algorithm:

1. Let Set be the set of galaxies on which we want to apply our method of linking.

2. For each galaxyj ∈ Set, estimate rank at z = 2, R̂2(galaxyj)

3. Then we look at the R2(galaxyk) for each galaxyk ∈ Set

4. We choose the one that has rank closest to R̂2(galaxyj). We call it galaxyj′ .

Hence,
galaxyj −→ galaxyj′
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6.1 Checking performance of linking method with simulated data

To assess model performance in Section 5, we use the mean squared error. But to check
consistency for real data we do not have information of the real progenitor, so utilizing the
mean squared error is not an option. Hence first we check the performance of the linking
method on the simulated data.

6.1.1 Two-sample paired t-test

We use the two-sample paired t-test, assuming as a null hypothesis that the means of the
true and predicted progenitor populations are the same for each morphological statistic. For
each galaxyi in the test set we define

δi = statisticgalaxyi,z=2 − statisticgalaxyi′ ,z=2

for each statistic, where i′ is the galaxy closest in rank to the predicted rank of galaxyi.

Test setup
Assumptions : δi’s are i.i.d.
Assumptions : dependent variable is continuous.
θ ≡ E [δi].
H0 : θ = 0 vs H1 : θ 6= 0
Test statistic : δ̄−0

σ̂δ̄
∼ tn−1.

To compare the performance we repeat the linking method using the fixed rank model. In
the following we assume that the rank of a galaxy at z = 2 is the same as that at z = 1 for
the linking. We plot the boxplots of the δi’s side-by-side in Figure 7.
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Figure 7: Boxplot of δi’s for different morphological statistics for mode of conditional density

using random forest model vs fixed rank model.

It can be clearly seen that the variance of the δi’s is significantly larger for the fixed rank
model. In Table 4, we present the p-value of the two-sample paired t-test for each statistic
for the two methods of linking.

Table 4: Table of p-value of the paired t-test for mode of cond. density model and for the

fixed rank model.

Method M I D Gini M20 C A sizes M∗ SFR sizes

Mode 0.99 0.91 0.29 0.78 0.61 0.88 0.73 0.79 0.12 0.78 0.08

Fixed rank 0.66 0.90 0.65 0.45 0.75 0.94 0.82 0.52 0.96 0.54 0.72

Thus, there is no clear evidence that E [δi] is different from zero. Hence we do not reject the
null.
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6.1.2 Compare k-nearest neighbor with remaining galaxies

Next we want to know whether the morphology statistics of galaxies in the neighborhood
of the predicted galaxy are more similar to the true progenitor galaxy compared to the
remaining galaxies. For this we choose and fix a galaxy and we look at k-nearest neighbor
in rank at z = 2 for the predicted galaxy. Then we calculate δi same as above for all the
galaxies and the true progenitor for each statistic. Ultimately we test whether the k nearest
neighbor galaxies have δi significantly lower than those of the remaining galaxies. In Figure
8 we present the boxplots of the absolute values of the δi’s for

1. linking using mode of conditional density calculated from random forest; and

2. linking assuming the rank at z = 2 is the same as that at z = 1

Formally, we look at the following (difference between true progenitor and galaxyi) for each
galaxyi in the test set

δi = |statisticgalaxytrue,z=2 − statisticgalaxyi,z=2|.

Then for a given galaxyj we define the following two sets :

Setk = {galaxyi : galaxyi is among the k nearest neighbors of galaxyj in terms of R2}
SetCk = Test set− Setk

Below is the formal hypothesis test for the above mentioned problem. Under the alternative
H1, we can say that the linking method is consistent:

H0 : E [{δi : galaxyi ∈ Setk}] = E
[
{δi : galaxyi ∈ SetCk }

]
.

H1 : E [{δi : galaxyi ∈ Setk}] < E
[
{δi : galaxyi ∈ SetCk }

]
.

In Figure 8, we present boxplots of deltai in Setk and SetCk for all the galaxies in the test
set accumulated together for different values of k. We can see in Figure 8, that there is not
much difference in the boxplots for the eight morphology statistics. But for mass, SFR
and for rank the within-knn ball δi has lower median compared to the outside-knn ball
δi for both the linking methods. But for the mode of conditional density linking method,
the performance seems slightly better because the difference between the within-ball and
outside-ball medians is a little larger compared to the fixed rank method.
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Figure 8: Boxplot of δi’s within the k-nearest neighbor (kNN) ball versus outside the ball, for

both the RF-CDE model and the fixed-rank model. We choose k to be 2, 3, 4 and 5. The

result does not seem to depend much on k except for the difference between the medians. The

results are consistent across the k’s.
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Figure 8: Boxplot of δi’s within the k-nearest neighbor (kNN) ball versus outside the ball, for

both the RF-CDE model and the fixed-rank model. We choose k to be 2, 3, 4 and 5. The

result does not seem to depend much on k except for the difference between the medians. The

results are consistent across the k’s.
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For each galaxy in the test set, we performed the hypothesis test described above with
two-sample paired t-test. In Figure 9, we have the boxplots of the p-values of all galaxies
cumulated together for each statistic for the two linking methods.

Figure 9: Boxplot of p-values of two-sample paired t-test for each statistic for the two methods:

mode of conditional density estimate and fixed rank method.

We can see that for statistics M , I, D, Gini and M20 there is not enough evidence to reject
the null for mode of conditional density estimate compared to the fixed rank method. But for
the remaining statistics the result is the opposite. We can see that for the eight morphology
statistics, the median p-value is quite high for both the linking methods indicating that there
is not enough evidence to reject the null.

Next, we will apply the linking method involving the conditional density on the real data in
the following section.

6.2 Checking performance of linking method with real data

The real data comes from HST/CANDELS (Appendix 0) . We have galaxies from the three
redshifts z = 1, 1.5, 2. It is in almost the same format as is the of the simulated data except
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there is no camera angle here. We will apply the linking method on the galaxies from z = 1
and attempt to assign them a progenitor from the set of galaxies at z = 2.

Table 5: Number of galaxies at each redshift in the real data set

redshift (z) 1 2

Number of galaxies 2143 2292

We will be applying the linking method described at the beginning of section 6. Hence we
will check the similarity between the real data and the simulated data at z = 1, 2 in Figure
10 using violin plots. The violin plots have comparable shape for all the morphological
statistics and the rank. But mass and SFR show significant difference. We will continue
with applying the linking method on the real data.

Figure 10: Violin plots of the statistics at z = 1, 2 in the true real and the simulated datasets.

The violin plots for rank are all the same by construction. Violin plots of mass and SFR

in the real dataset seem to differ from those in the simulated dataset.

Real galaxy data does not have the information about individual true progenitor mapping
of the galaxies. Hence we cannot use common error rates to measure the performance of our
linking method. Thus we will compare the whole set of estimated progenitor galaxies with
the whole set of true progenitor galaxies. We use violin plots of all the statistics from the
true and the estimated populations at z = 2 in Figure 11. It can be seen that the violin
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plots for rank and mass are different for the true and estimated population. We will test
the similarity between the two populations more formally.

Figure 11: Violin plots of the statistics at z = 2 in the true vs in the estimated progenitor

population. The plots in the true and the estimated cases seem to match for most of the

variables except mass and rank.

We use Kolmogorov-Smirnov statistic to test whether the statistics in the true progenitor set
and those in the estimated progenitor set come from the same distribution. Let Fstatistic i, true
be the cumulative distribution function of statistic i from the true progenitor population.
Similarly we define for the estimated population. Formally, we can write the following
hypothesis:-

Kolmogorov-Smirnov Test
Fstat i, true(x) = Ptrue(stat i ≤ x)

F̂stat i, true(x) = 1
n

∑n
j=1 I(Xij,true ≤ x)

F̂stat i, estimated(x) = 1
n

∑n
j=1 I(Xij,estimated ≤ x)

H0 : Fstat i, true = Fstat i, estimated vs H1 : Fstat i, true 6= Fstat i, estimated

Test statistic : D = supx|F̂stat i,true(x)− F̂stat i,estimated(x)| ∼ TBD.

The Kolmogorov-Smirnov test has been repeated 100 times with random subsets of the
galaxies from both the true and the estimated progenitor population of sizes 75 − 90%
independently. The p-value of the tests has been shown in Figure 12.
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Figure 12: Histogram of the p-values of Kolmogorov-Smirnov test performed 100 times for

the eleven statistics.

In Figure 12, we can see that the p-values have a left skewed distribution mainly for all the
statistics except intensity, size, M20, mass and rank, where the later three follow degenerate
distribution at 0. For a clearer picture, we present the same result in boxplot below in Figure
13. It can be seen that the median value lies above the 0.05 line only for M , I, A, sizes and
SFR. The rest of the variables except D have median less than 0.01. Thus the true and
estimated progenitor population have similar distribution for M , I, A, sizes and SFR.
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Figure 13: Boxplot of the p-values from the Kolmogorov-Smirnov tests performed 100 times

for the different statistics.

We cannot compare the linking method of using fixed rank model with the mode of condi-
tional density estimate by using Kolmogorov-Smirnov test. Because linking with fixed rank
model does not differentiate between the true and the estimated progenitor population as
a whole. Hence to check consistency with performance of simulated data, we look at the
change in summary statistics between z = 2 and z = 1 for individual galaxies using their
predicted progenitors at z = 2. We compute statisticz=2, i (predicted) − statisticz=1, i for each
galaxy i for the eleven summary statistics. In Figure 14, we plot the mean of the differences
computed using the mode of conditional density method and the fixed rank method along
with the mean of the difference computed using true progenitors in simulated data. We see
that the estimated differences for the real and the simulated data are similar for most of the
variables except mass, SFR and rank. Moreover all these four differences vary from the
true difference for C, sizes, mass, SFR and rank. For real data difference in fixed rank
method is lower then the mode of conditional density method for mass, SFR and rank.
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Figure 14: The mean of differences for mode of conditional density method (green) and

for fixed rank (blue) method (statisticz=2, i (predicted) − statisticz=1, i) where the progenitor is

predicted using one of the two afore mentioned methods. The points in red are the mean

differences for the true progenitors calculated from the simulated data. For checking consis-

tency I also plot the same for the simulated data in gark golden and pink color for the two

prediction methods.

7 Summary and Conclusions

We wanted to test whether linking galaxies without assuming fixed rank gives better results
compared to when we assume fixed rank for galaxies at z = 1 and z = 2. Summarizing what
we learned from the analyses in the preceding sections, first we saw that galaxies are most
likely to maintain their rank value or change by just a fraction as seen in Figure 2. The
morphological statistics I, D, M20 and A are positively correlated and these four attributes
are negatively correlated with Gini and C. Mass is weakly positively correlated with I, D,
M20 and SFR and negatively correlated with Gini and C. In Appendix B.2, we determine
via visual measures that M∗ and SFR at z=1 are most informative variables for predicting
R2, while morphological statistics are less informative. In Section 5.1, we fit a random forest
model to predict R2 using data at z=1 whose results echo those of Appendix B.2: mass,
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R1, and SFR for z = 1 are most important in estimation of R2. The model has better error
rates compared to baseline model where the mass rank is fixed across redshift. Morphologies
help in the estimation to some extent. Mode of conditional density can also be used as an
estimator for R2, but the error is higher than the situation when we used the aggregated
predicted value from the random forest. In Section C in the appendix, we repeat the steps
of Section 5 to predict R1.5 using data at z = 1. The result is consistent with that in Section
5. In Section D in the appendix, we perform two predictions with the direction reversed.
The results are consistent with that of Section 5 with some differences. Star formation rate
becomes the most important when we estimate R1 using z = 2.In Section 6 we describe
the linking method using random forest model and compare it with linking assuming fixed
rank. The linking with the random forest method is slightly better compared to the linking
method using fixed rank assumption. Also, we apply the two methods on the real data from
CANDELS. The performance of random forest on real data is not much different compared
to the method of fixed rank.

Thus, we conclude that relaxing the assumption of constant comoving number density (fixed
rank) and including morphological statistics in the analyses gives better linking results for
the simulated data to link galaxies at z = 1 with their progenitors at z = 2. But we do
not see such improvement when we apply our model on the real galaxy data. This may be
a consequence of the fact that the real and the observed data do not come from the same
distribution. The simulated data is an approximation of the real data but there are still
systematic errors. Our linking method used the estimation model of just rank; i.e. we do
not use the information available at z = 2 except the rank (or mass equivalently). Including
the other statistics may help in building a robust model to nullify the effect of systematic
errors.
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Appendix

0 HST/CANDELs data

A part of our project is based on observations taken by the CANDELS8 Multi-Cycle Treasury
Program with the NASA/ESA HST, which is operated by the Association of Universities for
Research in Astronomy, Inc., under NASA contract NAS5-26555. For each galaxy, we have a
conditional density estimate for redshift (z) (dubbed f(z|x), where x are the predictor vari-
ables entering into the estimation, such as galaxy magnitudes and colors). These conditional
density estimates are summed over (calling the sum p(z)) some range of redshifts from which
x is (are) used and to see if the sum attains some given threshold (p(z) > threshold). The
threshold is used to ensure that the sample size is comparable across redshifts and matches
that of the simulated data. For z = 2, the domain of summation is 1.813 to 2.187 and the
threshold is 0.6. For z = 1, the domain is 0.85 to 1.15 and the threshold is 0.75.

A Summary Statistics

1. Multimode (M) statistic (Freeman et al. 2013)
The M statistic identifies galaxies with disturbed morphologies. Consider an intensity
quantile ql such that a proportion l of the pixel intensities imn are smaller than ql.
(Here mn denotes pixel coordinates.) For a given ql, define a new indicator variable
jmn such that

jmn =

{
1 if imn ≥ ql

0 otherwise
.

Within the image jmn, we obtain the areas of largest and second-largest groups of
contiguous pixels, which we denote Al,(1) and Al,(2) respectively. We define the area
ratio as

Rl =
A2
l,(2)

Al,(1)nseg
,

where nseg is the number of pixels in the segmentation map, i.e., the mask used to
define the extent of the galaxy within the image. This formulation imposes a strict
upper limit on R1 of 1/2 that is achieved if Al,(1) = Al,(2) = nseg/2. The M statistic is
the maximum observed value of Rl over all quantiles l:

M = max
l
Rl .

8HST/CANDELs
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2. Intensity (I) statistic (Freeman et al. 2013)
One of the shortcomings of the M statistic is that it does not consider the summed
intensity within contiguous pixel groups. For instance, a contiguous group with a large
number of pixels may have a smaller summed intensity than other, smaller groups
of pixels. To mitigate this shortcoming we utilize the I statistic. We associate each
pixel mn with a local maximum mnmax by following the maximum gradient ascent
path. All pixels that are associated with a given local maximum mnmax are grouped
together, and for each group, we sum the pixel intensities imn. (Note that in a data
pre-processing step, we smooth the image data with a symmetric Gaussian kernel with
σ ∼ 1 pixel, to decrease the effect that pixel noise has on the construction of pixel
groups.) We rank the summed intensities in descending order and use the first and
second sorted values to compute the I statistic:

I =
I(2)

I(1)

.

3. Deviation (D) statistic (Freeman et al. 2013)
The deviation D statistic is used to capture evidence of galaxy asymmetry. It is the
distance from the local maximum associated with I(1) to the galaxy’s center of mass:

(mcen, ncen) =

(
1

nseg

∑
m

∑
n

mimn,
1

nseg

∑
m

∑
n

nimn

)
, (1)

where the summation is over the nseg pixels within the segmentation map. The D
statistic is:

D =
√

(mcen −mI(1)
)2 + (ncen − nI(1)

)2/
√
nseg/π .

where the normalizing factor
√
nseg/π is a galaxy radius estimate achieved by assuming

that the segmentation map is circular.

4. Gini (Gini) statistic (Lotz et al. 2004)
The Gini coefficient measures the relative distribution of pixel intensities within the
segmentation map: G = 0 means that the intensities are uniform across the galaxy,
while G = 1 means that all of a galaxy’s light falls into a single pixel. The Gini
statistic is defined as

G =
1

īnseg(nseg − 1)

∑
k

(2k − nseg − 1)im(k)n(k)
,

where ī is the sample mean of all intensities within the segmentation map and m(k)n(k)

denotes the coordinates of the pixel with the kth-smallest intensity value.
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5. M20 statistic (Lotz et al. 2004)
M20 describes the spatial distribution of pixel intensities. First, we compute a total
second-order moment:

Mtot =
∑
m

∑
n

imn
[
(m−mcen)2 + (n− ncen)2

]
where mcen and ncen are the coordinates of the galaxy’s center of mass (equation 1)
and the summation in done over all pixels mn within the segmentation map. We then
repeat the summation done above using only the brightest 20% of the pixels; we call
this sum Mbright. Then M20 is

M20 = log10

(
Mbright

Mtot

)
.

6. Concentration (C) statistic (Conselice 2003)
The concentration statistic encapsulates the area over which the bulk of a galaxy’s
summed intensity lies. Its calculation assumes circular symmetry. At a given radius
sizes from the galaxy’s center, we define two quantities: the summed intensity within
the annulus defined by sizes and r + dr, and the overall average summed intensity:

µ(r) =

∫ 2π

0

∫ r+δr
r−δr i(r

′, θ)r′dr′dθ∫ 2π

0

∫ r+δr
r−δr r

′dr′dθ

µ̄(r) =

∫ 2π

0

∫ r+δr
0

i(r′, θ)r′dr′dθ∫ 2π

0

∫ r+δr
0

r′dr′dθ
.

(We show the calculations as integrals for conceptual clarity, but the actual calculations
are done as sums over image pixels.) sizes is the solution of the equation µ(r)/µ̄(r) = ε,
where ε is commonly chosen to be 0.2. We compute the total summed intensity within
the radius sizes, then determine the smaller radii within which there are 20% and 80%
of that total summed intensity. The C statistic is:

C = 5× log (r80%/r20%) .

The smaller r20% is relative to r80%, the higher the value of C, as the galaxy will appear
“more concentrated.”

7. Asymmetry (A) statistic (Conselice 2003)
The A statistic is a measure of how asymmetric a galaxy is after its image is rotated
180◦ the central pixel and then subtracted from the original image. For an asymmetric
galaxy, the difference image will exhibit significant residual structures, leading the A
statistic to differ significantly from zero. The A statistic is defined as

A =

∑
m

∑
n |imn − i180,mn|∑
m

∑
n |imn|

−B180 ,
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where i and i180 are the pixel intensities in the original and rotated images respectively
and B180 is the average background asymmetry, defined using the intensities of pixels
lying outside the segmentation map.

B Rank Group Analysis

B.1 Exploratory Data Analysis

Here, we divide the galaxies into five quintile groups (see Figure 15). In Figure 16, we show
the transition from one rank group to another over redshift. Those with values R̃1=2-4 have
nearly equal probability (≈ 0.3) to remain in their own rank group. And for all values of
R̃1 the probability of transition decreases as the distance between the rank groups at z=2
increases.

Figure 15: Left: Division of data based on quantiles, as shown using histograms of mass M∗
at z=1 and 2. The vertical lines mark the quantiles 20%, 40%, 60% & 80% and partition

the masses into five groups (groups 1 through 5 from left to right). Right: The scatter plot

in Figure 2, showing the rank change for each galaxy.
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Table 6: Change of rank from z=1 to z=2

z=2

rank 1 2 3 4 5 sum

1 232 138 48 8 3 429

2 89 145 124 68 3 429

3 49 70 125 132 52 428

4 41 38 79 131 140 429

5 18 38 52 90 231 429

(a) Numbers of galaxies

z=2

rank 1 2 3 4 5 sum

1 0.54 0.32 0.11 0.02 0.01 1.00

2 0.21 0.34 0.29 0.16 0.01 1.00

3 0.11 0.16 0.29 0.31 0.12 1.00

4 0.10 0.09 0.18 0.31 0.33 1.00

5 0.04 0.09 0.12 0.21 0.54 1.00

(b) Transition probabilities

Figure 16: Probability for each rank group at z=2 conditioned on the rank group at z=1.

To the left in Table 6 we show the number of galaxies for each pair of ranks. The numbers
in the diagonal boxes are the galaxies that stay in the same rank group. To the right, we
take the total number of observations and divide them the total number of galaxies in each
row to determine the proportion of galaxies that change rank as we move from z=1 to z=2.
This part of the table indicates that galaxies are most likely to be in the same rank group
at both redshifts.

We present the same information as is to the right in Table 6 pictorially in Figure 16.
Galaxies which have R̃1=1 and 5 have similar, though mirrored, transitional probabilities.
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B.2 Morphology comparison at z=1 across R̃1 and R̃2

In Figure17, we look at the galaxy morphologies at the five rank groups at z=1 and their
change at z=2. However, here we group the galaxies into three rank groups as defined in
Table 7. The galaxies in R̃1=1 can only increase in rank group, while the galaxies in R̃1=5
can only decrease in rank group. So we look at galaxies with R̃1=1 and 5 separately from
each other and from those with R̃1=2-4.

Table 7: Rank groups at z=1 for morphology comparison

R̃′1 R̃1 R̃2 − R̃1

1 1 0, 1,..., 4

2 2, 3, 4 -3, -2, ..., 3

3 5 -4, -3,..., 0

M and I are close to zero for galaxies with stable morphology. So here we look at the
indicator variable IM and II , which are one if M and I at z=1 are close to zero (DEFINE
CLOSE) and zero otherwise.
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Figure 17: Upper Left: Proportion of galaxies that have stable morphologies at z=1 for each

rank change R̃2 − R̃1 at each R̃′1. The three partitions correspond to the three R̃′1’s and the

columns within each box correspond to rank group changes R̃2− R̃1. Other Panels: Boxplots

of the other variables at z=1.

We observe in the upper left panel of Figure 17 that the proportion of stable galaxies increases
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across R̃2− R̃1 for R̃′1=2. This is consistent with the idea that galaxies that have undergone
mergers, which would lie towards the left, are less disturbed. (We note that the proportion
is very low for galaxies that have R̃1 = 1 and R̃2 = 5. These galaxies were noted above as
anomalous and thus one should refrain from over-interpreting this result.)

As for the morphological statistics, we observe that D, M20 and A at first increase with
R̃2− R̃1 and then decrease for R̃′1 =2 and 3. The exact opposite relation is seen for Gini and
C. However M20 and C have more prominent negative and positive correlation respectively
with R̃2 − R̃1 for R̃′1 =1. Hence the information from D and A are contained in M20. And
C accounts for Gini.

The stellar masses M∗ increase with R̃1 as expected, and we see that for the galaxies in
R̃′1=2, M∗ is negatively correlated with R̃2 − R̃1, which would be consistent with merger
activity.

The star-formation rates SFR show a rough decrease with R̃2 for all groups of R̃′1. As
seen before, SFR is correlated with M∗ and R1. But as seen in Appendix A.2, it contains
additional information about the pairwise relationship between galaxy ranks at z=1 and
z=2.

In the next section we move on to prediction and check for consistency.

B.3 Discretized rank group in prediction of rank at z = 2 using

data at z = 1

We compute ˆ̃R2 for the galaxies in the test set using the R̂2 for each of the five random
forests in the cross validation. In Table 8 we display the confusion matrix. This is just for
interpretation of the model fitting.

Table 8: Confusion matrix for prediction of R̃2

True R̃2

Predicted R̃2 1 2 3 4 5

1 164 60 6 0 0

2 156 205 131 21 6

3 73 113 203 200 43

4 31 43 70 184 296

5 5 8 18 24 84

To quantify the performance for R̃2 we look at the sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV), which are defined in Table 9. Note
that “Group 0” is the group under consideration, while all other groups are combined into
“Others.”

30



Table 9: Definition of sensitivity, specificity, PPV and NPV

Actual quintile group

Group 0 Others Total Sensitivity = TP
TP+FN

Predicted quintile group
Group 0 TP FP TP + FP Specificity = TN

FP+TN

Others FN TN FN + TN PPV = TP
TP+FP

Total TP + FN FP + TN N NPV = TN
FN+TN

In Table 10 we list the results for the five values of R̃2. The quintile classes R̃2=1 and 5 have
similar measures, as do classes R̃2=2-4.

Table 10: Performance statistics for all the five rank groups in the random forest model

Class: 1 Class: 2 Class: 3 Class: 4 Class: 5

Sensitivity 0.38 0.48 0.47 0.43 0.20

Specificity 0.96 0.82 0.75 0.74 0.97

Pos Pred Value 0.71 0.39 0.32 0.29 0.60

Neg Pred Value 0.86 0.86 0.85 0.84 0.83

C Predicting mass rank at z=1.5 given data at z=1

In Figure 18 we display the variable importance.

Figure 18: Variable importance plot for R1.5 prediction using statistics at z=1. The paren-

theses show the extent of variability calculated by combining the ten random forests.
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For this prediction problem, R1 and M∗ are the most important variables but the importance
of SFR is reduced compared to the original prediction problem in Figure 5.

In Figure 19, we have the density estimated using all the statistics at z = 1 for finding R1.5.
Same as in Figure 6, it can be seen that the mode coincides with R1.5 in Figure 19 (a) and
coincides with R1.5 in most cases in (b).
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(a) Using all variables at z = 1 including morphologies.

(b) Using only mass, SFR and R1

Figure 19: Predictive density of nine galaxies. The blue, the red and the green lines corre-

spond to R1, R1.5 and the aggregated estimate of R1.5 from the random forest.
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Table 11: Errors of estimating rank R1.5 using statistics at z=1

Method Error

Fixed rank 0.0310± 0.0001

Varying rank (with morphologies) 0.0259± 0.0001

Varying rank (without morphologies) 0.0281± 0.0002

Mode of cond. density (with morphologies) 0.0314± 0.0001

Mode of cond. density (without morphologies) 0.0344± 0.0002

The random forest model performs better compared to the baseline model in Table 11. As
expected the error for this prediction problem is less than the original prediction problem
because the gap between the two redshifts is smaller.

Looking at the performance of the fitted model, we can conclude that M∗, R1 and SFR
are the most important for rank prediction. The random forest model with cross validation
performs better than the baseline model. Hence the result of the original prediction problem
is consistent with that of the second prediction problem.

D Predicting Mass Rank at a Later Epoch

In this section we will reverse the direction of the prediction and compare with the original
problem. We will consider two cases. First we predict R1 using statistics at z=2, and then
we predict R1.5 using statistics at z=2.

D.1 Predicting mass rank at z=1 given data at z=2

In Figure 20, SFR seems most important. This is different from what is seen previously in
Section 5: if the order of the prediction is reversed, then SFR is most important.
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Figure 20: Variable importance plot for R1 prediction using statistics at z=2. The parenthe-

ses show the extent of variability calculated by combining the five random forests.

Also the importance of M20 has reduced.

Table 12: Estimating R1 using statistics at z=2

Method Error

Fixed rank 0.0592± 0.0003

Varying rank (with morphologies) 0.0425± 0.0002

Varying rank (without morphologies) 0.0490± 0.0002

Mode of cond. density (with morphologies) 0.0574± 0.0002

Mode of cond. density (without morphologies) 0.0663± 0.0002

The error of the random forest model is better than that of the fixed rank model. Also the
prediction error is comparable to that of the prediction problem in Section 5.1.

In Table 13 we display the confusion matrix of the prediction of R1 using statistics at z=2.

Table 13: R̃1 using statistics at z=2

True R̃1

Predicted R̃1 1 2 3 4 5

1 107 16 7 8 0

2 256 169 81 51 34

3 57 219 206 115 99

4 8 25 134 224 146

5 1 0 0 31 150
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Table 14: Performance statistics for all the five rank groups in the random forest model for

estimating R̃1 using z = 2

Class: 1 Class: 2 Class: 3 Class: 4 Class: 5

Sensitivity 0.25 0.39 0.48 0.52 0.35

Specificity 0.98 0.75 0.71 0.82 0.98

Pos Pred Value 0.78 0.29 0.30 0.42 0.82

Neg Pred Value 0.84 0.83 0.85 0.87 0.86

D.2 Predicting mass rank at z=1.5 given data at z=2

In Figure 21 we display the importance plot for prediction of R1.5. This plot is very similar
to the that in Figure 5.

Figure 21: Variable importance plot for R1.5 prediction using statistics at z=2. The paren-

theses show the extent of variability calculated by combining the five random forests.

In Table 15, the random forest model performed better than the fixed rank model. And the
error is less than that of the original model in Table 3 and the model in Table 12 because
the distance between the redshifts is less.
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Table 15: Errors of different methods estimating rank at z=1.5

Method Error

Fixed rank 0.0302± 0.0003

Varying rank (with morphologies) 0.0235± 0.0002

Varying rank (without morphologies) 0.0267± 0.0002

Mode of cond. density (with morphologies) 0.0280± 0.0002

Mode of cond. density (without morphologies) 0.0314± 0.0002

In Table 16 we display the confusion matrix and the prediction performance table for the
model. The results seem similar to those of the previous models.

Table 16: Confusion matrix for prediction of R̃1.5 using statistics at z = 2

True R̃1.5

Predicted R̃1.5 1 2 3 4 5

1 221 36 6 5 1

2 186 261 72 23 23

3 18 125 260 80 49

4 3 7 88 289 77

5 1 0 2 32 279

Table 17: Performance statistics for all the five rank groups in the random forest model for

R1.5 using data at z = 2

Class: 1 Class: 2 Class: 3 Class: 4 Class: 5

Sensitivity 0.52 0.61 0.61 0.67 0.65

Specificity 0.97 0.82 0.84 0.90 0.98

Pos Pred Value 0.82 0.46 0.49 0.62 0.89

Neg Pred Value 0.89 0.89 0.90 0.92 0.92
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