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Designing Cognitive-Developmental Assessments:
A Case Study in Proportional Reasoning

Linking testing and teaching in ways that promote high levels of understanding

and achievement is a fundamental and enduring concern in education.  Yet, despite

more than a decade of efforts to redesign curricula, refocus instruction, and promote

new conceptions of what it means to know and learn, questions about the quality of

education persist.  An important tool in answering these questions is an assessment

system that is sensitive to changes in subject-matter competence as students proceed

through a program of instruction.  The pivotal intellectual and practical challenge in

designing this assessment system is establishing a cognitive-developmental map in

which age-appropriate skills and knowledge competencies can be specified, along with

the kinds of performances that can and should be observed under particular

circumstances.  Explicit descriptions of the development of understanding of a topic can

be used to monitor progress toward targeted learning goals, provide visible examples of

developing competence, make apparent the gaps in understanding, and suggest

activities for promoting further development. To this end, we integrate research on

cognition and development with advances in psychometric technique to produce a

mathematics assessment system that is diagnostic of programmatic strengths in terms of

relevant aspects of student knowledge and performance (Pellegrino, Baxter, Glaser,

1999; Shepard, 2000).

Our work builds on the work of others in mathematics (e.g., Carpenter &

Fennema, 1999; Case, 1996) and science (e.g., Hunt & Minstrell, 1994; Minstrell, 2000;

Wilson & Sloane, 2000) and is similar in broad concept to the "Progress Maps"

developed by ACER in Australia.  For example, Masters and Forster (1996) write that,

"An essential feature of a progress map is that it describes developing competence in

words and examples.  A progress map describes the knowledge, skills and

understandings of a learning area in the sequence in which they typically develop and

provides examples of the kinds of performances and student work typically observed at

particular levels of attainment” (pg. 4).  Despite the general similarity to the approach
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described here, our work must be successful in the more heterogeneous environment of

U.S. education where curricular goals and foci vary considerably.  In particular we aim

to report on student performance variation with respect to specific, and necessarily

multidimensional aspects, not unlike the DIAGNOSER project (cf. Minstrell, 2000)

rather than with respect to unidimensional task difficulty as induced by the order of

exposure to topics and skills in a particular (and shared) curriculum.

Design Considerations.  We have begun to explore the design of cognitive-

developmental assessments in mathematics.  We conceive of this assessment system as

a set of four interrelated components:

(a) A cognitive developmental map that displays the key ideas/concepts

and what the literature and teacher-experience say about development

of these ideas/concepts during the middle school years;

(b) A set of assessment tasks that elicit knowledge-based variations in

student performance such as flexibility of strategy use, quality of

explanation, or nature of problem representation;

(c) Score criteria that reflect these knowledge-based variations in student

performance; and

(d) A summary of performance so teachers can see how students’

performances are related to the cognitive developmental map within

and across grade levels.

In selecting topics for a middle school mathematics assessment, we chose

to focus on a set of thinking and reasoning skills that: (a) are not dependent on

any one curricula but rather they appear (more or less explicitly) in all exemplary

middle school mathematics curricula (cf. U.S. Department of Education, 1999);

(b) have some prominence in disciplinary standards in mathematics (National

Council for Teachers of Mathematics, 1989; 2000) and science (National Research

Council, 1996); and (c) have been identified as central to scientific literacy and

understanding (cf. American Association for the Advancement of Science, 1993).
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In doing so, we can keep cognitive and statistical tasks tractable while at the

same time designing an assessment system that is of maximal formative use to

teachers.  In this paper, we discuss the design considerations involved in

constructing a cognitive-developmental map for proportional reasoning.1

Constructing a Cognitive-Developmental Map

A cognitive-developmental map is a succinct depiction of the performance

expectations of developing competence.  The "map" when complete, suggests the kinds

of tasks or test situations that will elicit knowledge-based differences in student's

performance, and the considerations for scoring and reporting methods that capture

and reflect relevant variations in the quality of observed performance (cf. Messick,

1994).  Thus the formulation of the map is critical to the entire assessment design

process.  Once drafted, the map undergoes reviews by a group of experts selected

specifically for their knowledge/experience with the topic of study, disciplinary

standards or curricula, and by a number of selected teachers either individually or in

focus groups.  The purpose of these reviews is to examine the map and check for

consistencies or inconsistencies between the progression of understanding as

represented by the map and the progression suggested by those most knowledgeable in

the field.

To begin the map design process, we convened a heterogeneous group of

scholars and practitioners for a succession of one or two-day meetings over a six-month

period.  This multidisciplinary team reviewed literature (developmental, cognitive, and

mathematics education), collected and analyzed “exemplary” curricula, and considered

existing items/tasks designed (in various contexts) to test students’ understanding of

proportion and ratio.  Our goals, broadly speaking, were to describe, to the extent

possible, the sequence in which students’ knowledge, skills and understandings

typically develop and to characterize the nature and patterns of students’ performances

1 Discussion of items/tasks, score criteria, and score summaries awaits data from field trials.
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that can be associated with particular levels of attainment (cf. Carpenter & Fennema,

1999; Case, 1996; Masters & Forster, 1996).

Four pieces of information are necessary if we are to realize this goal: (1) a

working definition of proportional reasoning, (2) a list of the typical problem types and

contexts in which students are required to reason proportionally, (3) a delineation of the

aspects of students’ performances that constitute evidence of understanding of

proportional reasoning, and (4) a description of developmental changes that have been

empirically documented.  We describe each in turn with attention to the design

challenges and implications of each for assessment design.

Definition of Proportional Reasoning

Proportional reasoning is a psychological construct, not a mathematical one.

“The essential characteristic of proportional reasoning is that it focuses on describing,

predicting or evaluating the relationship between two relationships (i.e., a second-order

relationship) rather than simply a relationship between two concrete objects (or two

directly perceivable quantities)” (Piaget & Inhelder, 1975 as cited in Lesh, Post, & Behr,

1992, pg. 94).  This is an important and difficult conceptual leap for students;

mathematical experiences in elementary school focus primarily on countable objects

and first-order relationships.  In proportional situations students must replace additive

reasoning and notions of change in an absolute sense with multiplicative reasoning and

notions of change in a relative sense.

In defining proportional reasoning for assessment purposes, we consider three

perspectives: psychological, mathematical, and curricular/situational (i.e., the kinds of

situations or contexts generated by curricula [for students] or life experiences [for

adults] where the problem solver might see proportion and ratio).  From a

psychological perspective, Vergnaud (1983) has suggested that there is essentially one

situational model involved in the understanding of simple proportional relationships,

which he terms the isomorphism of measures model of situations.  In the isomorphism

of measures model, each variable remains independent of the other; parallel
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transformations are carried out within or between variables thereby maintaining their

values proportional.

Measure 1 Measure 2

A B

C D

Figure 1. Vergnaud model for simple proportions (1983)

Mathematically, there is one general model (y = kx) that could describe the

relationship between any two variables linearly related, provided that the y-intercept

equals zero.  It has no implied directionality: given any three values, y, x and y’, the

corresponding x’ value can always be computed.  Although all proportional reasoning

situations can formally be reduced to y=kx, students are seldom aware of this.

Students’ curricular experiences expose them to two related mathematical

models during the middle school years, first equal ratios, expressed as a/b = c/d or a:b

= c:d, and later linear scaling y=kx.  Typically, each model is presented (independent of

the other) as an algorithm for solving some set of problems.  Perhaps due to the

sequence in which these models are presented, beginning students see mixing, sharing,

and rate comparison problems, in which computing and comparing ratios is

appropriate, as quite different from shrinking/stretching problems and those involving

familiar intensive quantities (e.g., miles per hour) in which computing with y=kx may

be appropriate.

Problem Types and Contexts

There are two major problem types: missing value (a/b = c/d) and comparison

(which is the better buy?).  Continuous scaling problems in which direct use of y=kx

would be natural are not encountered until late in most middle school curricula.  Here

we focus on missing value problems.  All missing value problems have the same

general format.  Students are given three of four values (say a, b, and c), two of the
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values are presented as a ratio (a/b) and the task is to determine the missing value (in

this case d) such that the ratio of c/d = a/b.

Experience with proportion and ratio topics often provide students with their

first formal introduction to constants and variables, covariation, invariance, solving for

unknowns, and modeling apparently disparate real-world situations with the same

linear functions.  These experiences begin in some elementary form in the early grades

(e.g., sharing pizza) and extend through multiple topics in mathematics and science.

For example, proportional reasoning is:

(a) related to several key areas of the elementary mathematics curricula

including, for example, equivalent fractions (5/3 = n/m), long division

(805/23=n/1), place value and percents (n% =75/100), and ratios and rates

(15ft./2sec. = n miles/hour);

(b) inherently involved with some of the most important algebraic

understandings having to do with equivalence, variables, and

transformations,

(c) required for everyday situations such as converting currency ($1

Canadian = $.75 U.S.), comparing costs to determine “best buy” (which

is the better buy: 12 tickets for $15 or 20 tickets for $23), or adjusting

recipes for more or fewer people, and

(d) central to many concepts in science such as density, velocity, and pressure.

Despite its centrality in mathematics and science, students seldom advance beyond

rote use of the familiar a/b = c/d algorithm. Indeed U.S. 8th grade students scored

below the international average on proportionality on TIMMS (National Center for

Education Statistics, 1999).  Further, research has shown that student performance is

highly sensitive to task and context factors such as type of ratio quantity requested

(Karplus, Pulos, & Stage, 1983); the particular numbers in the task (Hart, 1984); and the

context of the problem (Noelting, 1980a, b; Vergnaud, 1983).  For example, it is

generally the case that problems involving common numbers (5, 10, 100, integers, and
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familiar fractions (such as 1/2 and 1/3 and later 1/4) are easier than problems

involving uncommon numbers, non-integers, and non-familiar fractions or decimals.

Finally, we note that in a systematic analysis of missing value problems, Harel and Behr

(1989) identified 512 missing-value problem structures!  Consistent with Vergnaud

(1983), they find that location of the unknown and nature of the ratio (e.g., familiar

multiples like 3: 9 or 1:4 easier) influence task difficulty.

Evidence of Understanding

In considering evidence of student’s understanding of proportional reasoning,

three broad categories appear relevant: moderating effects such as arithmetic difficulty,

or cover story for the task (i.e., context), solution strategies, and conceptual

underpinnings.  Context was discussed in the previous section. Here we focus on

solution strategies and conceptual underpinnings.

Strategy Use.  A review of the literature suggests that a key distinguishing

feature of performance is strategy use.  Recall, Vergnaud (1983, 1994) characterizes

simple direct proportions as isomorphism of measures problems that include situations

(or contexts) such as equal sharing, constant price, or uniform speed.  He elaborates on

four subclasses of problems as formulated in table 1 below.  The particular formulation

has implications for student strategy use and probability of getting the correct answer

(see below).

We point out four features of these general categories of problems.  First,

categories 1, 2, and 3 all provide a unit value f(1) which facilitates problem solution.

Second, category 1 and 4 problems require multiplication (scaling up) and category 2

and 3 problems require division (scaling down).  Scaling up (e.g., if one doll costs $5,

how much do 3 cost?) is easier than scaling down (e.g., if 3 dolls cost $15, how much

does one doll cost?).

Third, categories 1 and 2 present a simple ratio or comparison (one involving a

unit rate, 1 as part of the ratio) within a single measure space or variable and categories

1 and 3 present a ratio or comparison between measure spaces.  The simple ratio

suggests a scalar solution strategy that focuses upon changes within a measure space or
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variable. In such approaches a person compares, for example, how many items were

bought in the first instance (for a given price) with the number of items to be bought in

the second instance.  The essential idea is that the relative increase (or decrease) in

goods cost should be directly related to the increase (or decrease) in goods purchased.

Table 1. Isomorphism of Measures Problems (from Vergnaud 1983).

Missing Value Problems

1 2 3 4

Given f(1) and x, find
f( x)

Given x and f(x), find
f(1).

Given f(x) and f(1),
find x

General case: none of
the values is set to 1.

Richard buys 4 cakes
at 15c each, how much
does he have to pay?

Susan ‘s mother gave
her 12 sweets to share
with her friends Barbie
and Ken.  How many
sweets will each get?

Peter has $15 to
spend and he would
like to buy miniature
cars.  They cost $3.00
each.  How many
cars can he buy?

When making jam, my
grandmother uses 3.5
kg of sugar for 5 kg of
berries. How much
sugar does she need for
8 kg. of berries.

Cakes Cost Friends Sweets Cars Cost Sugar Berries

A = 1 C = 15 A = 1 C = ?? A = 1 C = 3 A = 3.5 B = 5

B = 4 D = ?? B = 3 D = 12 B = ?? D = 15 C = ?? D = 8

Presented ratio: either
(within or between)

Presented ratio: within Presented ratio:
between

Presented ratio: either

Suggested strategy:
either

Suggested strategy:
within (scalar)

Suggested strategy:
between (functional)

Suggested strategy
 a/b = c/d

Resulting ratio: either Resulting ratio: between
(unit rate)

Resulting ratio:
within (scale factor)

Resulting ratio: either

In contrast, presenting a simple ratio between measure spaces suggests a

functional approach that focuses on relationships between variables or measure spaces.

The emphasis here is on how one variable varies as a function of the other variable.

There is strong evidence in the literature that “within” comparisons are easier than

“between” comparisons, perhaps because they allow for pseudo-scalar strategies such

as pattern matching, coordinated build-up and factor of change which are intuitive

extensions of students’ early understandings of covariance and invariance (cf. Kaput &

West, 1994). These strategies are not typically taught in school but arise naturally in-

and out-of-school contexts.  For this reason, for example, studies of both in- and out-of-
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school proportional reasoning (Hoyles, Noss, & Pozzi, 2001; Schliemann & Nunes, 1990;

Schliemann & Carraher, 1993; Vergnaud, 1983) show that problem solvers tend to

strongly prefer “within” or  “scalar” strategies even when “between” or “functional”

ones are easier computationally (as in category 3 above).

Finally, a quick review of the four problem types indicates that each problem can

be correctly solved in several different ways (e.g., scalar, functional, build up, unit

factor).  The correct answer is not an indicator of strategy use and indeed students often

choose a strategy not predicted by the problem type (see table 1 above).  The diagnostic

value of the item can be improved by providing each rule or strategy-based rationale

with its corresponding numerical response.  This is similar to the DIAGNOSER

approach; Students are given feedback on the consistency between their answer and

their explanation or strategy use (cf. Hunt & Minstrell, 1994; Minstrell, 2000).

While on the surface this matching of answer to strategy might seem like a

suitable approach (particularly for multiple-choice items), it does not address the

variation in strategy use across contexts.  A number of different studies that vary with

respect to age of student, type of problem, and variation in problem contexts (Hart,

1984; Karplus, Pulos, & Stage, 1983; Kaput & West, 1994; Noelting, 1980a,b) have found

that students’ strategies are inconsistent across tasks and sometimes students change

strategies during a task (e.g., when the number relationships, perceptual distractors, or

contextual variables are changed slightly).  For many students with some experience in

proportional reasoning, their strategy use may appear “expert-like” in familiar

situations, but changes in the problem context (e.g., difficult arithmetic generally, or

presenting integer values in a between-measure-spaces comparison that are very close

together) often results in them opting for an incorrect additive reasoning representation

and strategy (cf. Kaput & West, 1994).

Conceptual Underpinnings.   Recall that proportional situations require students

to reason about the relation between relations.  For any given context, students must

distinguish between situations in which comparisons are proportional or multiplicative

(e.g., money exchange) versus additive (e.g., father’s age to son’s age) and then carry
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out a solution strategy such that the component measures of a ratio are varied in such a

way that the original ratio relationship remains invariant (i.e., covariance and

invariance).  Some problems and/or students’ solutions (as noted above) do not

provide direct information on students’ understanding of these key ideas.  Direct

probes may be necessary if we are to provide diagnostic information to inform

instruction (cf. Lamon, 1993a, b; 1994; 1999a and Figure 2).

Students must be able to
understand changes in two
different perspectives: absolute and
relative.

Store A advertises a sale of $10.00 off. Store B advertises a
sale of 10% off.  If both stores sell the same things, which
store offers the best sale?

Students must be able recognize the
invariant nature of relationships
under change.

In Mr. Trent’s science lab, there are 3 people to each table.
For mid-morning break, Mr. Trent put 2 candy bars on
each table and told the students to split them fairly.
“Before you start your snacks, though,” says Mr. Trent, “I
would like you to push all four tables together. Would
you rather get your share of the candy before the tables
are pushed together or after?”

Students must be able to make
decisions in real-world contexts.

Suppose you have 5 cookies and three children.  If they
share fairly, how many cookies does each child get?
Now suppose you have 5 books and 3 children.  Can they
still share fairly?

Students must be able to
understand part-whole and part-
part comparisons.

In a group consisting of 24 boys and 6 girls, what
percentage of the class are girls?

Figure 2.  Conceptual underpinnings.

Developmental Sequence. Proportional reasoning has a rich history of research in

developmental psychology (e.g., Kaput & West, 1994; Noelting, 1980a, b), mathematics

education (Lamon, 1994, 1999a; Lesh, Post, & Behr, 1988), and science education

(Karplus, Pulos, & Stage, 1983).  From this work we know that proportional reasoning

develops over a long period of time and continues to be problematic for students in

middle school and beyond (e.g., Hart, 1984; Kaput & West, 1994).    For example only

12% of 8th graders could use proportions (or rates) to solve a problem as seen on a

recent NAEP survey in mathematics (Wearne, & Kouba, 2000).  Despite the difficulty

students have with proportional reasoning, numerous studies suggest that progress

(albeit slow) can be traced through a set of developmental stages. As proposed, these
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stages are distinguished by qualitative changes in the nature of students’ responses to

proportional reasoning problems (see Figure 3).  Key among the changes is a shift from

additive to multiplicative reasoning and from use of context-specific strategies to a

generalized understanding of functions.

Qualitative.  Young students generally possess a good deal of knowledge about quantity
that permits them to answer questions about more and less (e.g., which drink is
sweeter?) or fairness (e.g., divide pizza or cookies so everyone gets a fair share).

Early Attempts at Quantifying.  Early attempts at quantifying often involve constant
additive differences (i.e., a - b = c - d) rather than multiplicative relationships.  Still rely
on counting up or down.

Recognition of Multiplicative Relationship.  Students have the intuition that the
differences change with the size of the numbers and that the change may be
multiplicative in nature, but they do not necessarily realize that they need to consider
the constantly increasing/decreasing difference between the related terms of each pair,
that is, of each ratio.  They rely on pattern matching or build-up strategies that are
sometimes additive in nature.  Problems with unit factors or sharing are easily solved
but others may lead to additive solution strategies.

Accomodating Covariance and Invariance.  Students begin to develop a change model
that recognizes that while some quantities may be changing, relationships among the
quantities remain invariant.  However, they rely on coordinated build up, unit factor
and other scalar approaches.  Often strategies are context specific and not generalizable.
May revert to additive strategies in unfamiliar or challenging situations.

Functional and Scalar Relationships.  Students recognize the invariant nature of the
relationships between pairs of changing quantities.  Have generalized model for solving
proportionality problems. This is not to say that they use the same strategy in every
context, rather they have a repertoire of strategies and use the most efficient for a given
situation.
Figure 3. Development of proportional reasoning.

As in other domains, “expertise” in proportional reasoning is marked, not by use

of a single most sophisticated strategy but, by a familiarity with--and facility moving

between--several strategies and problem representations in response to different

situational conditions or problem constraints (e.g., Anderson, 1985; Siegler, 1988).  It

should be noted that the school-taught algorithm may not be the most efficient strategy

in some situations. Although it is almost never used outside of school, it can facilitate a

solution when the numbers are hard or the context less familiar; Use of this strategy

does not necessarily signal understanding of proportions or proportional relationships.
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As noted in our discussion of strategies, students have a preference for scalar

over functional strategies or the rule-of-three strategy.  We believe that part of what

makes scalar strategies attractive is that they are easy to remember within the semantics

of early encounters with covariance and invariance and early manipulation of fractions.

Thus we view the many versions of scalar strategies (skip counting, parallel build up,

abbreviated build up (cf. Lamon 1999; Kaput and West, 1996) as early procedural tools

that children acquire to solve specific kinds of problems, before their understanding of

proportional reasoning is complete enough to allow them to select strategies more or

less independently of the semantics of the problem context or cover story.  Evidence

from studies in out-of-school contexts where dealing with proportional situations is a

part of everyday life such as street vendors (computing cost of goods), or construction

workers (scaling up from blue prints), and nurses (calculating dosage of medicine)

suggests something similar is going on in adults who have not acquired a broad, more

or less context independent, understanding of proportional reasoning (cf. Hoyles, Noss,

& Pozzi, 2001; Schliemann & Carraher, 1993.)

Thus, we might expect most middle school students to exhibit performances

somewhere between recognition of multiplicative relationships and accommodating

covariance and invariance.  We expect few students in middle school to regularly

employ fully scalar or functional strategies, and we also expect few to employ only

qualitative understandings.  Further within these general stages, we expect to see

substantial variation in students’ problem solving performance in direct response to

variations in aspects of the problem such as context, location of the unknown (as in

Vergnaud models above), or difficulty of the numbers.

Some Remarks on Modeling

Although this paper has only touched on a part of the domain of proportional

reasoning, from psychological, mathematical and curricular/situational perspectives, it

is clear that we can enumerate most or all of the various possible strategies, qualitative

understandings, and moderating hurdles (arithmetic, context) that students bring to
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proportional reasoning tasks.  From the literature reviewed here, we know for example

that, (1) observed performance (or perhaps we should say strategy) is dependent on

context, (2) a given answer can reflect several different strategies, and (3) particular

strategy use is less important than flexibility and efficiency of strategy use across

contexts.

These aspects of performance present some significant challenges for choosing

number and type of tasks (given practical constraints on testing time), and for scoring

(modeling), and reporting. With unlimited testing time and careful elicitation and

recording of students’ behaviors as evidence, we could make more or less direct

inferences about the specific “location” of individual students within the web of skills,

strategies and understandings that constitutes proportional reasoning.

However, we do not have infinite testing time, and we may have quite some

difficulty eliciting and recording informative behaviors from each student.  Thus for

each student there will be missing data: not all questions that we might like to ask will

be asked, and not all behaviors that would be informative about students can or will be

observed.  One way to deal with this “missing data” problem is to use latent variable

models because they provide a convenient way to share and borrow information across

students in a testing situation, in a way that is equivalent to the sharing of information

in a hierarchical Bayesian model or a Bayes network.

For example, consider the item-response-theory-like framework for modeling

strategy shifts in problem solving processes formally introduced by Rijkes (1996).  In the

Rijkes framework, each student is modeled in terms of three components: (1) a

continuous latent variable representing “level of development” in proportional

reasoning, (2) a limited set of “ideal” categories, or types, of responses for each task

(representing alternative solution strategies, alternative qualitative understandings, etc.,

as is appropriate to the task), and (3) a limited number of patterns of observed evidence

produced by examinees’ task performances (e.g. types of verbal explanations, types of

intermediate calculation, etc.) related to the ideal response types.
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Among the “ideal” types of responses there may be several that lead to a

“correct” final answer and several that lead to an “incorrect” final answer.  Thus the

“ideal” types are not ideal in the sense that they lead to the right answer, but rather they

are ideal in that they are well matched to typical strategy choices or understandings

about the task at various levels of development.  These “ideal” types are related to the

latent variable representing students’ developmental level via a standard latent variable

polytomous logistic regression model, such as Bock’s (1972) nominal response model.

From this perspective, a high level of development favors this ideal response type; a

lower level favors an alternate response type.  The ideal types may be repeated for

different tasks, and need not be ordered in the same way on different tasks, reflecting

the notion discussed above that problem solvers move between strategies and problem

representations in response to different situational conditions or problem constraints.

The probability of seeing a certain pattern of observable evidence in a student’s task

performance varies with the ideal response type (strategy, understanding, etc.) used by

the student.  Conversely the pattern of evidence can be used to infer which ideal

response type was used by the student (in a probabilistic sense).

Thus, the pattern of evidence within a task performance allows us to make

inferences about which strategies, representations and understandings the student is

employing within each task; and the pattern of these strategies, representations and

understandings across tasks allows us to make inferences, through estimation of the

latent variable, about the level of development of proportional reasoning for each

student.  These inferences can be generalized to groups of students, and progress may

be tracked over time, through estimation of the latent variable distribution and

subsequent prediction of task performance for a group of students.  Recent experience

with a mathematically related model (Patz, Junker, & Johnson, 2000) suggests that

estimation and inference issues with this model will be tractable.

A potential drawback of this approach is that the continuous latent variable

representing level of development may impose developmental ordering constraints that

are not matched by student’s actual progress in proportional reasoning.  For example,
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depending on curricular and out-of-school experiences, it may be that not all children

pass through the stages Qualitative, Early Quantitative, Multiplicative,

Covariance/Invariance, and Functional/Scalar in exactly the order presented in Figure

3 above.  This may be especially true in the middle grades where curricular choices may

affect whether one moves, for example, from the early stages to the Multiplicative and

then the Covariance/Invariance stages, or from the early stages to

Covariance/Invariance, followed by a more formal recognition of Multiplicative

relationships.

We may correct this drawback by replacing the continuous level-of-development

variable in the first part of Rijkes’ framework with a discrete latent class variable

indicating a student’s current “location” in one of five developmental stages.  The

remaining two parts of Rijkes’ framework remain essentially the same.  Such an

approach allows us to (a) accommodate different developmental paths and avoid

assigning an order to the developmental stages in the statistical model; and (b) test

hypotheses about the order of the developmental stages, for example by comparing this

“unordered” version of the model with a version that imposes ordinal constraints.

Similarly, progress of a group of students over time (or cross-sectional comparisons),

will “emerge” as the proportion of students in each developmental category changes

with various characteristics of the students such as age or grade level.

The modified, latent class version of the Rijkes’ model is in fact a version of the

discrete Bayes networks that have proven to be useful in other cognitively-motivated

assessment settings (e.g., Martin & VanLehn, 1995).  It is also closely related to the fuzzy

set approach taken by Moore, Dixon, and Haines (1991) in their analysis of proportional

reasoning in certain mixture tasks. An apparent strength of the Rijkes’ modeling

framework is that it does not put any constraints on the task format that can be used to

generate evidence with which to make inferences about students’ understanding.

Coded student work on missing value and comparison problems of the type discussed

above (see section on problem types and contexts) can be used, as can coded student

responses to conceptual questions of the types discussed in the section on evidence of
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student understanding. The coding can be done by hand from raw student work (verbal

or written explanations, intermediate written work, etc.) or it can be done automatically

in an intelligently-designed multiple choice format, as in the DIAGNOSER assessments.

Two things distinguish our approach from many past implementations.  First,

we have explicit interests in reliably tracking the progress of a group of learners as they

move across relatively large, coherent stages of development in a domain; thus our

descriptors of the “ingredients” of a task performance are more coarse and allow more

flexibility for “falling off” the map (through the probabilistic relationship between ideal

response types and observable patterns of performance) than are typical in some other

settings (cf. Nichols, Chipman, & Brennan, 1995).  Second, both the discreteness and the

coarseness of our approach suggest that simple summaries computable by teachers or

administrators in classrooms and schools should be closely related to parameter

estimates when the full model is fitted.  Some exploration of this latter issue is already

under way with a related, simpler model (Junker and Sijtsma, 2000; see also Junker

2001.)

Concluding Comment

The challenge in designing a cognitive-developmental map is incorporating what

we know about student performance variation and its relationship to student

understanding in ways that can guide assessment design, scoring and reporting. We

have begun to meet this challenge with one topic in mathematics, proportional

reasoning.  Here we reported on the definition of proportional reasoning, the problem

types and contexts in which they are situated, and some observable features of student

performance that are indicative of more or less proficiency (e.g., strategies) as derived

from our synthesis of the extant literature.   Taken together, these pieces of information

provide a set of expectations (or hypotheses) that can guide task design and empirical

evaluation in the next phase of our work.
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