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Unfolding response models, a class of item response theory (IRT) models that
assume a unimodal item response function (IRF), are often used for the measure-
ment of attitudes. Verhelst and Verstralen (1993) and Andrich and Luo (1993) inde-
pendently developed unfolding response models by relating the observed responses
to a more common monotone IRT model using a latent response model (LRM; Maris,
1995). This article generalizes their approach, and suggests a data augmentation
scheme for the estimation of any unfolding response model. The article introduces
two Markov chain Monte Carlo (MCMC) estimation procedures for the Bayesian
estimation of unfolding model parameters; one is a direct implementation of MCMC,
and the second utilizes the data augmentation method. We use the estimation
procedure to analyze three data sets, one simulated, and two from real attitudi-
nal surveys.
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1.

A number of methods have been developed in the past eight decades for the mea-
surement of attitudes in surveys and other self-report instruments. Such attitudes
range from students’ attitudes towards topics of instruction or teaching styles, to
changes in smokers’ attitudes as they approach successive change (e.g., Noël, 1999),
to citizens’ attitudes towards major policy issues (e.g., Formann, 1988) or towards
staying informed about politics generally (Muhlberger, 1999). One of the methods
suggested in the literature to study such attitudes is the direct response method. In the
direct response method respondents are given a set of J items (statements or other
stimuli) and asked to examine each one and determine whether or not to endorse it.

Item response theory (IRT) can be used to model direct response unfolding data,
if the central assumption of monotonicity of the item response functions (IRF’s) is
suitably modified. Standard, unidimensional IRT assumes that there is a single, real-
valued latent variable θ being measured; in unfolding models the sign of θ represents
the valence of the respondent’s attitude (political liberalism versus conservatism,
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for example) and the magnitude θ represents the intensity of the respondent’s atti-
tude. When the items are statements that the respondent can endorse (denoted Xj = 1)
or not (denoted Xj = 0), the usual item response function (IRF),

still plays a central role in modeling.
One of the original direct response methods, suggested by Thurstone (1927,

1928), prescribes that, in order to measure the unidimensional latent attitudes of
subjects, θ, we should first premeasure the survey items. This premeasurement is
achieved by giving the items to a number of judges who are asked to rank the items
from one extreme to the other on the latent scale. These ranks are used to estimate
the locations, βj, of each item on the real line. The items are then given to survey
respondents, and the location of these respondents on the real line is estimated as
the average location of those items, which are endorsed.

Thurstone’s procedure has the disadvantage that it requires two stages of estima-
tion. Coombs (1964) suggests a method, which he calls unfolding that allows for the
joint estimation of item and respondent locations with a single data collection step.
His method, based on the assumption that subjects agree with those items, and only
those items which are located near their location on the latent scale, implies that the
IRF Pj(θ) for endorsing the item is deterministic, that is, Pj(θ) takes only the values
0 and 1. Both Thurstone’s and Coombs’ methods imply that the item response func-
tion is a unimodal function of θ. The assumption of unimodality of the IRF is in con-
trast to the usual assumption in applications of IRT to testing in which the probability
that an examinee correctly responds to a test item is a nondecreasing function of θ.
Item response models that assume a unimodal item response function are called
unfolding response models.

In any unimodal item response model, we may define the location of item j as
the point at which the IRF reaches a maximum (or the midpoint of the interval of
all such points), that is,

We may further define the latitude of acceptance for each item, as the (minimum)
radius of the set of θ for which the probability of endorsing the item is high,

for some predetermined ε > 0.
Although Coombs’s method allows for measurement of the survey stimuli

using the survey responses, its assumption of a deterministic response function,
specifically
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is too restrictive. For example, if there are four ordered stimuli A, B, C, D, then at
most 11-item response patterns are valid because no pattern can contain the triplet
1, 0, 1. For example a person who agreed with A and C, but not B, violates the
deterministic model.

The inflexibility of the deterministic model prompted the development of prob-
abilistic unfolding models (Davison, 1977; Andrich, 1988; Hoijtink, 1990; Luo,
1998). The probabilistic unfolding models assume conditional independence (CI),
unidimensionality (U), and unimodality of the response function [i.e., the response
function is single peaked] (SP). The probabilistic parameterizations of the IRF
Pj(θ) allow for statistical inferences to be made on both the subject’s location θ,
and the item locations βj. The squared logistic model and the hyperbolic cosine
model are two examples of probabilistic unfolding models.

The squared logistic model

The simplest example of a probabilistic unfolding IRF is the squared logistic
model (SLM; Andrich, 1988). The SLM assumes that the logit of the item response
function is quadratic in the subject’s location. The IRF is parameterized

The SLM IRF is symmetric around βj and reaches a maximum of 
when θ = βj.

The hyperbolic cosine model

Andrich and Luo (1993) and Verhelst and Verstralen (1993) independently
developed an unfolding response model with the aid of a latent response model
(LRM; Maris, 1995). The formulation assumes that each respondent has a one-
dimensional trichotomous latent response that indicates one of “Disagree Below,”
“Agree,” or “Disagree Above.” The observed responses are then simply a mapping
of these responses. A latent response of “Agree” maps to the observed response
“Agree” and the two disagree latent responses map to the one observable “Disagree”
category. If the latent responses are observed, rather than unobserved, the researcher
has a large number of models from standard item response theory with which to
measure the latent attitude θ. Verhelst and Verstralen (1993) and Andrich and Luo
(1993) developed the hyperbolic cosine model [HCM] by assuming the partial
credit model (PCM; Masters, 1982) for the latent responses. The resulting model
parameterizes the item response model with the equation
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The IRF is symmetric around the location βj, and the maximal endorsement prob-
ability is a function of what Andrich and Luo (1993) call the
item-unit parameter γj. The item-unit parameter γj in Equation 2 is a parameter asso-
ciated with the item that measures of how likely a subject located at βj is to endorse
item j. Figure 1 displays three HCM item response functions located at β1 = −2, 
β2 = 0, β3 = 3 with item-unit parameters γ1 = γ3 = 2 and γ2 = 3.

Section 2 introduces three examples that will be discussed throughout the arti-
cle. The first is a survey from Formann (1988) that studies the opinions of indi-
viduals on the use of nuclear power plants. The second is a survey developed to
study the psychological reasons people follow politics (Mulhberger, 1999). The
third is an artificial data set simulated from the HCM to resemble Formann’s
nuclear power plant data, used to illustrate parameter recovery with the estimation
procedures described below.

The LRM formulation for unfolding models is reviewed in Section 3. This for-
mulation suggests a straightforward data augmentation method useful for estima-
tion of such models. Section 4 explores the data augmentation method and suggests
a generalization of the latent response formulation of the unfolding models sug-

Pj j j
β γ( ) = + −{ }

1
1 2exp
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FIGURE 1. The item response functions of the hyperbolic cosine model located
at β1 = −2, β2 = 0, β3 = 3, with item units γ1 = γ3 = 2 and γ2 = 3.



gested by Andrich and Luo (1993) and Verhelst and Verstralen (1993); the gener-
alization is useful for unfolding response models such as the squared logistic model
that do not naturally have a “nice” latent response formulation.

Estimating unfolding IRT models has been a serious problem in the litera-
ture (Hoijtink, 1990; Verhelst & Verstralen 1993) until quite recently (Roberts,
Donoghue, & Laughlin, 2000; Luo, 2000; Maris & Maris, 2002). In Section 5.1 we
review some methods of estimation that have been tried and some weaknesses of
these methods, and in the remainder of Section 5 we introduce a hierarchical Bayesian
framework for unfolding models and two MCMC approaches to estimating the
model in this framework. In Section 6 we illustrate these methods using the three data
sets introduced in Section 2, and illustrate the flexibility of the data-augmentation
based estimation methods described in sections 4 and 5.

2. Examples

This article explores different approaches to the estimation of unfolding response
model parameters using three examples. The first two examples come from actual
surveys. The third data set is a set of data simulated from the hyperbolic cosine model
(HCM; Verhelst & Verstralen, 1993; Andrich and Luo, 1993) in such a way to resem-
ble real data.

2.1 Attitudes on Nuclear Power Plants

Formann (1988) uses five opinions on nuclear power to measure the attitudes of
600 college students on the subject. Each subject is asked to either agree with the
statement [coded as 1], or disagree with the statement [coded as 0]. The five items,
translated from German (Formann, 1988) are:

1. In the near future, alternate sources of energy will not be able to substitute
nuclear energy.

2. It is difficult to decide between the different types of power stations if one
carefully considers all the pros and cons.

3. Nuclear power stations should not be put into operation before the problems
of radioactive waste have been solved.

4. Nuclear power stations should not be put into operation before it is proven
that the radioactive waste caused by them is harmless.

5. The foreign [sic] power stations now in operation should be closed down.

2.2 Survey of Political Motivation

Muhlberger (1999) presents a data set containing 113 subjects’ responses to 
16 items studying the psychological reasons individuals have for following poli-
tics. Muhlberger suggested that the survey items could be split into two groups.
The first group, containing seven items, are assumed to measure political agency.
The second group, containing nine survey items are believed to measure politi-
cally integrated motivation, with one of these nine items possibly removed from
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this group. With this item removed from the list, Muhlberger hypothesizes that
these items represent, in order, more “developmentally adequate responses.”
These eight items are:

1. I follow politics because that’s what I’m expected to do (not true / true).
2. I follow politics so people won’t be upset with me (true / not true).
3. I follow politics because I will feel bad about myself if I don’t (true / not

true).
4. I follow politics because it bothers me when I don’t (not true / true).
5. I follow politics because I want to learn new things (true / not true).
6. I follow politics because I think it’s important (true / not true).
7. I follow politics because it’s fun (not true / true).
8. I follow politics because I enjoy it (true / not true).

The subjects were asked to respond to the items on a 48-point scale. In some cases
this scale indicates the level of agreement of the subject with the item (e.g., Item 1)
where a score close to 48 indicates that the subject believes the statement is true. In
other cases the scale is reversed (e.g., Item 2) where a response near 48 indicates that
the subject believes the statement is not true about themselves. The differences in
direction are indicated by the (not true / true) and (true / not true) parenthetical remarks
at the end of each item.

In order to facilitate the discussion of the binary unfolding response models the
items have been dichotomized. Responses from 1 to 24 have been coded as 0, and
responses from 25 to 48 have been coded as 1. Histograms of the original responses
appear in Figure 2.

Figure 2 contains barplots for each of the eight political motivation items. Each
bar represents three response categories, with the number of respondents given by
the height of the bar. For example, examining the barplot for the second item, we
find that 60 respondents selected one of the first three response categories. The
eight barplots seem to indicate that respondents tend to endorse low categories
(between zero and ten) much more than high categories, and the middle categories
(around 24) seem to be much more popular than surrounding categories (15–20
and 30–35). Although some information is lost because of the dichotomization, the
effect is expected to be relatively small because of the response tendencies of the
respondents.

2.3 Simulated Data

Using the HCM described in Equation 2, the responses of 1,000 individuals are
simulated for each of five items. The model parameters used to simulate the data were
selected to resemble the estimates reported for the Formann’s nuclear power plant
data in Section 2. The latent attitudes, θ, were drawn from a normal distribution with
mean zero and standard deviation σ = 2.0. The agreement, or disagreement with each
of the five items was determined using location parameters β = (−2.5, −1.0, −0.9, 1.5,
4.0), and item unit parameters γ = (1.62, 1.72, 3.85, 4.05, 3.97). The five item
response functions for the simulated data appear in Figure 3.

200

Johnson and Junker



3. The Unfolding Model as a Latent Response Model

Unfolding models developed by Andrich and Luo (1993), Verhelst and Ver-
stralen (1993), and Roberts, Donoghue, and Laughlin (2000) assume the existence
of an underlying latent response model (LRM; Maris, 1995) that defines the
response behavior of the respondents. The LRM formulation assumes that the
observed responses are simply standard responses from a monotone item response
model that are recoded; this recoding parallels the ambiguity associated with the
information lost using unfolding items.

Definition 3.1. Suppose there exists a set of M latent responses ξij = (ξij1, . . . , ξijM)t

for each observed item response Xij and a M → 1 mapping of the latent responses
called the condensation rule by Maris (1995), such that this mapping, denoted by
C(�), maps the latent responses onto the observed responses,
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FIGURE 2. Barplots of the number of observed responses in each of the forty-eight categories
for the eight political motivation items. The total number of respondents on the survey was 113.



Then define the latent response model by the equation

where δ(�) is the Kronecker delta function:

Note: Although the focus here is on dichotomous responses, Maris’ treatment allows
the responses to be discrete or continuous, scalar or vector-valued.

Verhelst and Verstralen (1993) and Andrich and Luo (1993) assume that the
latent response model is a monotone item response model with trichotomous
responses. The basic assumptions are that each subject i = 1, . . . , N has an ordered,
trichotomous latent response ξij to each survey item j = 1, . . . , J, indicating sub-
ject i’s attitude or opinion regarding item j. For example, if a political survey is
being conducted, a latent response of ξij = 0 may indicate that subject i views item
j as too far right politically for his liking. Similarly, ξij = 1 indicates agreement of
subject i with survey item j, and ξij = 2 denotes disagreement of subject i with item
j because the opinion in item j is too far left on the political scale.

δ y
y
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FIGURE 3. The five hyperbolic cosine item response functions from which the responses
of the 1,000 simulated respondents were simulated.
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Denote the observed response of subject i to item j by Xij, where Xij = 0 indicates
disagreement of subject i to item j, and Xij = 1 indicates agreement of the subject
to the item. Note that the Xj = 0 is a catch-all-disagree category for item j. In the
political survey example, the observed response is coded as disagree (Xij = 0)
whether a subject disagrees with an item because they believe the item is too far
left or too far right for their liking. Mathematically this is written

which Maris (1995) calls the collapsing condensation rule. Given the responses of
N subjects to J unfolding-type survey items define the N × J response matrix

where element xij is the response of subject i to item j.
If the latent responses are observed, rather than unobserved, the researcher has a

large number of models from item response theory to measure the latent attitude θ.
Let

denote such a model. Typically Rjk is defined by the following conditions.

Definition 3.2. An item response model with dichotomous or polytomous response
variable ξj is called a monotone response model if the following three conditions
hold:

• (CI) conditional independence: given the subject’s latent trait θ, the responses
ξ = (ξ1, . . . , ξJ) are conditionally independent. That is

• (U) unidimensionality: the latent trait is unidimensional, θ ∈ IR;
• (M) monotonicity of the item response functions: Pr (ξj > t θ) is non-decreasing

in θ, for all j and t.

See Holland and Rosenbaum (1986) for a similar development.
Combining Equations 3 and 5 leads to the general form of the latent response

unfolding model:
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A number of unfolding response models can be derived for the observed responses
by choosing different forms of the latent response model Rj(θ). One such model, the
hyperbolic cosine model (Andrich & Luo, 1993; Verhelst & Verstralen, 1993) is
summarized. For other examples of unfolding response models as latent response
models see Roberts et al. (2000) and Maris and Maris (2002).

The Hyperbolic cosine model

Andrich and Luo (1993) and Verhelst and Verstralen (1993) model unfolding
responses as a latent response model where the latent responses are assumed to fol-
low a partial credit model (PCM; Masters, 1982). The partial credit model assumes
that the adjacent category logits are linear in θ with unit slope. The probabilities of
disagree below ξ = 0, agree ξ = 1, and disagree above ξ = 2 for the partial credit
model can therefore be parameterized:

for an item located at βj, and an item-unit of γj. Rj0(θ) and Rj2(θ) are monotone
decreasing, and monotone increasing respectively. This setup induces the hyperbolic
cosine model (HCM) for unfolding responses defined in Equation 2.

4. Augmentation Methods for Unfolding Models

The latent response formulation of the unfolding model suggests a simple data
augmentation method for the analysis of unfolding responses. We generalize the
latent response formulation of the unfolding model in order to define a data aug-
mentation method for all dichotomous unfolding models, whether or not the model
has a “nice” latent response formulation. This new data augmentation method
requires that the IRF is dominated by the category response function for the middle
response in a monotone IRT model (i.e., ξ = 1).

Definition 4.1. A response function Pj (θ) is dominated by the response function
Q(θ) if and only if

Proposition 4.1. Let Pj(θ) denote the unfolding IRF describing the probability
of agreement for item j, and R j(θ) = [Rj1(θ), Rj2(θ), Rj3(θ)]t denote the vector of
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category response functions for a monotone item response model for trichotomous
responses. If Pj(θ) is dominated by the middle category response function Rj1(θ),
and the conditional distribution of X given the latent response ξ is:

then the marginal (unconditional) distribution of Xj is defined by the unfolding
response model Pj(θ).

Note: Setting Rj1(θ) = Pj(θ) (Pj(θ) does dominate Pj(θ) according to Definition 1)
leads to the original latent response model formulation of the unfolding model sug-
gested by Verhelst and Verstralen (1993) and Andrich and Luo (1993).

Proposition 4.1 (whose proof is sketched in the Appendix) shows that a LRM with
ordered, trichotomous latent responses can be constructed for any dichotomous-
response unfolding model, as long as the middle category of the LRM dominates the
IRF for endorsement for each dichotomous response variable. The proposition
shows how to generalize the collapsing condensation rule in Equation 4 by re-
weighting the probability of response in the LRM, so that the desired dichotomous
unfolding IRF results, even when the middle category of the LRM does not match
exactly the unfolding IRF. In this sense Proposition 4.1 is a sort of importance sam-
pling result (Ripley, 1987) for constructing LRM representations of unfolding
models. It is also important to note that Proposition 4.1 implies that LRM representa-
tions for unfolding models are not necessarily unique. The choice of representation
cannot be made on psychometric grounds but rather as a matter of mathematical
or computational convenience.

Theorem 4.1 derives a converse of Proposition 4.1, and provides the complete
conditional probabilities needed to use an LRM representation in a data augmen-
tation (c.f. Tanner, 1996, pp 90–136) strategy (for example, within an EM or
MCMC algorithm) for estimating dichotomous unfolding models. A sketch of the
proof of Theorem 4.1 can be found in the Appendix.

Theorem 4.1. Suppose that Pj(θ) is the item response function describing the prob-
ability of agreement for item j, and that Rj(θ) = [Rj0(θ), Rj1(θ), Rj2(θ)] is a mono-
tone item response model for trichotomous responses, such that Pj(θ) is dominated
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by the category response function Rj1(θ), for j = 1, . . . , J. If the conditional distri-
bution of the latent response ξ is defined by

then the marginal distribution of the latent response ξ is the monotone item response
model Rj(θ).

Note that under the deterministic LRM formulation of Equations 6 and 7, Pr{ξ =
1 θ, X = 0} must be identically 0, as can be seen from Equation 10 since Pj(θ) = Rj1(θ)
for all θ. On the other hand, when Pj(θ) < Rj1(θ) for some θ s, Pr{ξ =1 θ, X = 0} can
be quite arbitrary as a function of θ, as illustrated by Example 4.1 and Figure 4.
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Contrary to the LRM formulation of the unfolding model, the data augmenta-
tion method derived in Theorem 4.1 does not assume the latent agreement response
(ξ = 1) implies the observed response is also agree (X = 1); rather it states the
observed response is agree (X = 1) with probability equal to when the latent
response is agree (ξ = 1).

The beauty of Theorem 4.1 lies in its application to unfolding response models
where the IRF is not the middle category response function of a well-known poly-
tomous model. In such situations the result allows us to connect the model with any
polytomous model with a dominating middle category response function.

One such unfolding response model is the SLM defined by assuming the logit
of the endorsement probability is quadratic in θ. The following example uses
Proposition 4.1 and Theorem 4.1 to derive a representation and a data augmenta-
tion procedure that connects the SLM to the well-known partial credit model.

Example 4.1 (Augmenting the squared logistic model with partial credit model
latent responses). Recall the parameterization of the squared logistic model (SLM)
in Equation 1 that parameterizes the probability of endorsement for an individual
with latent attitude θ by the equation

We develop a simple estimation algorithm for the SLM using a pre-existing pro-
gram that estimates the parameters of the partial credit model [PCM] and noting
that a PCM with a middle category response function of

dominates the SLM IRF P(θ).
Applying Theorem 4.1 we estimate the model parameters of the SLM by itera-

tively simulating latent responses conditional on the current estimates of the model
parameters according to the following probabilities
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and then re-estimating the PCM parameters with these latent responses. Figure 4
contains the plot of the function in Equation 14.

5. Estimation

5.1 Maximum Likelihood

As Holland (1990) states, “one of the curiosities of estimating IRT models is the
number of different procedures that all claim to result in ‘maximum likelihood esti-
mates’.” One of these procedures known as the joint maximum likelihood [JML] pro-
cedure considers both respondent parameters [θ] and item parameters [(β, γ)] as fixed
effects and maximizes the joint likelihood with respect to all parameters simultane-
ously. The joint likelihood of the model parameters given the response matrix X is

where Pj(�) is a function of βj, β = (β1, . . . , βJ) and θ = (θ1, . . . , θN). The estimation
procedure sets out to maximize this joint likelihood in Equation 15 with respect to the
subject parameters [θ] and item parameters [β] simultaneously. DeSarbo and Hoffman
(1986), Andrich (1988), Andrich and Luo (1993), Andrich (1996), and Roberts et al.
(2000) all use this method for estimating the parameters of their respective models.

Andrich and Luo (1993) note that JML estimates for β when there is a fixed
number of item parameters, and an increasing number of survey respondents are
not consistent. This is also true for monotone IRT models such as the Rasch model
(Andersen, 1970). For the HCM, Andrich and Luo (1993) notice problems for fif-
teen to twenty items answered by 500 subjects; and report that the noticeable incon-
sistency of estimates starts to disappear as the number of items reaches 100.

A second maximum likelihood procedure popular in random effects models is
to condition on a simple (possibly multidimensional) sufficient statistic for the ran-
dom effects or nuisance parameters, in this case θ. The resulting conditional like-
lihood is independent of the nuisance parameter θ. The parameters that maximize
this conditional likelihood are called the conditional maximum likelihood (CML)
estimates. Although CML estimation is not typically possible for unfolding response
models, Johnson (2001) suggests a method for the CML estimation of the squared
logistic model. The technique is similar to that introduced by Verhelst and Glas
(1995) for the two-parameter logistic model for monotone item responses.

The final maximum likelihood procedure removes the latent variable θ from the
likelihood in a different fashion. Maximum marginal likelihood (MML) estimation
assumes a population distribution G(θ) for the nuisance parameter θ and integrates
the parameter out of the likelihood. The procedure then maximizes the resulting
marginal likelihood,

with respect to the item parameters.
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The marginal likelihood LM depends on the choice of the population distribution
G(�). An extreme example would be to assume the attitude distribution G(θ) is a
point mass [e.g., G(θ) = δ(θ)]. In this extreme case the marginal likelihood corre-
sponds to the independence model likelihood. Maximizing the marginal likelihood
in Equation 16 with respect to the location vector β and item-unit vector γ yields
the MML estimates.

If the integration in Equation 16 is simple then MML estimation is straight-
forward. When no simple analytical solution exists, a numerical integration method
is used. Marginal maximum likelihood estimation in item response models is often
carried out using the EM-algorithm (Dempster et al., 1977) where the latent attitude
variables, θi, are considered missing data.

Hoijtink (1990), Verhelst and Verstralen (1993), and Roberts et al. (2000) have
employed MML estimation for a number of different unfolding response models.
Section 6 provides MML estimates of the hyperbolic cosine model parameters and
their approximate standard errors for the simulated and nuclear power plant data sets
assuming G is the normal distribution with mean zero and variance σ2. We carry out
the MML estimation by approximating the normal distribution with a discrete dis-
tribution with mass on each of the normal quantiles σΦ−1 , k = 1, . . . , 50. The
maximization was carried out using the function optim in the statistical package R
(available from www.r-project.org), and standard errors were approximated using
the inverse of the Hessian matrix.

Limitations of maximum likelihood estimation

Maximum likelihood estimation for unfolding response models tends to have un-
attractive features. Suppose the latent attitudes of five respondents are fixed and
known at θ = (−3, −1, 0, 2, 3), and that Subject 1 and Subject 5 agree with a given
item, and the other three subjects disagree with the item. The likelihood function for
the item location, displayed in Figure 5, is bi-modal.

Any maximum likelihood procedure using numerical methods to optimize the
likelihood might converge to the wrong mode, or even the anti-mode.

It should be noted that the multimodality of the likelihood has meaning in the
unfolding response model. If the two most extreme subjects agree with an item and
all other N − 2 subjects disagree with the item, then intuitively the item should be
located near one of the two subjects that agreed with the item, and not in the middle
of the latent dimension.

In situations where the likelihood for a parameter is multimodal, standard methods
for the approximation of standard errors may not be valid, and standard summaries
based on these standard errors do not express the multi-modal nature of the likelihood.
The following section introduces a hierarchical Bayesian model for the analysis of
unfolding responses. Because the Bayesian analysis summarizes the whole posterior
distribution, the multimodal nature of the distribution need not be lost.

5.2 Hierarchical Bayes Formulation of the Hyperbolic Cosine Model

Bayesian estimation has a number of advantages over the maximum likelihood
estimation of unfolding models. A Bayesian analysis of the unfolding response

k
51( )1

50
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model, like joint maximum likelihood, allows all parameters to be estimated. By
specifying prior probability distributions for each of the unknown model parame-
ters, the hierarchical Bayesian model defines the joint posterior distribution of the
model parameters (conditional on the observed data). From the posterior distribu-
tion probabilistic summaries of the model parameters are calculated (e.g., credible
intervals and quantiles) without relying on asymptotic results.

Because analytic solutions to the integrals needed to derive the posterior distrib-
ution are intractable, we use Markov chain Monte Carlo (MCMC; Gelman, Carlin,
Rubin, & Stern, 1995) techniques to simulate parameter values from a Markov chain
whose stationary distribution is the posterior distribution of the model parameters.
With a large enough sample from this approximate posterior distribution, it is possi-
ble to calculate summary statistics (e.g., means, standard deviations) to any desired
degree of accuracy.

For ease of exposition we focus on a Bayesian approach to the HCM in the
remainder of Section 5 and most of Section 6. However the same ideas apply to other
unfolding models, whether estimated directly or with an LRM-based data augmen-
tation scheme. Indeed at the end of Section 6 we show how the same methodology
can be applied to the SLM of Example 4.1. For specific unfolding response models
there may be more efficient MCMC algorithms for the approximation of the poste-
rior distribution of the model parameters. Maris and Maris (2002) for example
develop a Gibbs sampler for the estimation of their model.
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FIGURE 5. The conditional likelihood of the location parameter β in the HCM given γ = 2,
β = (−3, −1, 0, 2, 3)t, and X = (1, 0, 0, 0, 1)t.



The Bayesian formulation of the hyperbolic cosine model is similar to that used
in marginal maximum likelihood estimation, in that it assumes respondents’ latent
attitudes (θ) are drawn from some population, denoted FΘ(θ λ), and that the prob-
ability of endorsement is defined by the hyperbolic cosine model in Equation 2:

for i = 1, . . . , N, and j = 1, . . . , J, where λ is a vector of parameters describing the
attitude distribution (e.g., the mean and variance).

In addition to assuming the Bernoulli model and the HCM probabilities, a
Bayesian analysis must define prior distributions for all model parameters to reflect
the uncertainty, or prior information, we have about these parameters. Let Πλ, GB,
and HΓ (with densities π, g, and h) denote the prior distributions for the model param-
eters λ, β and γ respectively. One type of prior information that is incorporated into
the model through the prior distributions is constraining information that is neces-
sary to ensure identifiability of the model. Two types of constraints are necessary in
unfolding models:

• Origin constraints: This type of constraint is necessary because a constant c added
to each attitude θi and to each item location βj does not affect the likelihood. One
such constraint requires the mean of the latent attitude distribution to be fixed.
Typically the mean is fixed at zero. A second, equivalent constraint forces the sum
of item locations to be fixed at some constant (typically zero).

• Directional constraint: A directional constraint is necessary because each atti-
tude, and each item location can be multiplied by −1 without affecting the likeli-
hood. Constraining the sign of a single item’s location is one method for ensuring
identifiability (e.g., β1 < 0).

5.3 General Markov Chain Monte Carlo Method

The goal of MCMC methods is to simulate a random walk process in the para-
meter space φ = (β, γ, θ, . . .) that converges to the joint posterior distribution
f (φ X). The two Markov chains used here are the Gibbs sampler and the Metropolis-
Hastings algorithm, both defined below.

Gibbs Sampler (Geman & Geman, 1984; Gelman et al., 1995): The parameter
vector φ is split into d components, or subvectors, φ = (φ1, . . . , φd). For each iteration
of the simulation, the d subvectors of φ are simulated from the posterior distribution
of the subvector conditioned on the values of the other d − 1 subvectors.

For t = 1, 2, . . . , I

For s = 1, . . . , d

Sample φ(t)
−s ~ f (φs φ (t−1)

−s , X).
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where φ (t−1)
−s represents all sub-vectors of the parameter vector, except for subvec-

tor s, at their current value.

Because the distribution of φ(t+1) given the current state of the parameter vector φ(t)

does not depend further on the history of the sequence {φ(1), . . . , φ(t−1)}, the
sequence {φ(1), φ(2), . . .} is a Markov chain. As the length of the chain increases,
the distribution of parameter vectors φ(t) converges to the posterior distribution of
φ given the observed data X (Tanner & Wong, 1987).

The Gibbs sampler requires a method to draw the parameter vector φs from the
conditional posterior f (φs φ (t−1)

−s , X). For instances where simulation from the con-
ditional posterior is not straightforward, an alternative method is used. One alter-
native, used here, is the Metropolis-Hastings algorithm.

Metropolis-Hasting Algorithm (Metropolis & Ulam, 1949; Metropolis et al.,
1953; Hastings, 1970; Chib & Greenberg, 1995). Given a target distribution g(ψ X)
(e.g., the conditional posterior in the Gibbs sampler), which can be computed up to
a constant, a sequence of random values can be simulated whose distribution con-
verges to the target distribution using the following algorithm.

For t = 1, . . . , I

1. Simulate a candidate ψ* from a candidate distribution that depends on the
previous value of the parameter.

2. Calculate the acceptance probability

3. Set

The following sections introduce the MCMC procedure for two hierarchical for-
mulations of the hyperbolic cosine model of Andrich and Luo (1993). The first
assumes the dichotomous responses follow the HCM, ignoring everything about the
underlying latent responses. The second method takes advantage of data augmen-
tation and existing methods for estimation of the partial credit model (PCM; Mas-
ters, 1982) to develop an MCMC estimation procedure.

5.4 Direct MCMC Implementation for the HCM

This section introduces the Markov chain Monte Carlo algorithm for the Bayesian
estimation of the hyperbolic cosine model parameters. The algorithm draws param-
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eter values from a Markov chain whose stationary distribution is the joint posterior
distribution of all model parameters, including both item and subject parameters.

Algorithm 1. Iterate the following steps for n = 1, . . . , I.

• For each respondent i = 1, . . . , N sample the latent attitude θ(n) by:

1. Draw candidate θ∗
i ~ Jt(θi θ(n−1)) independently for each i = 1, . . . , N.

2. Calculate the acceptance probability for each candidate

3. Set

• Update each of the item locations β (n)
j for j = 1, . . . , J by:

1. Choose a candidate location β*
j ~ Jn(βJ β(n−1)).

2. Calculate the acceptance probabilities for the candidate locations

3. Set

• Update each of the item unit parameters γ (n)
j for j = 1, . . . , J by:

1. Choose a candidate item unit γ*
j ~ Jn(γj γ (n−1)

j ).
2. Calculate the acceptance probabilities for the candidate locations
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3. Set

• Update the hyper-parameters, λ, for the distribution of latent attitudes by:

1. Draw candidate hyper-parameters λ*
k ~ Jn(λ λ(n−1)) for k = 1, . . . , K.

2. Calculate acceptance probabilities for the candidate hyper-parameters

where .

3. Set

5.5 Data Augmentation MCMC Method for Estimation

A second MCMC method for estimation of the HCM takes advantage of a pre-
existing MCMC procedure for the estimation of the partial credit model. Recall
from Section 3 the latent response model formulation of the hyperbolic cosine
model. The following hierarchical model defines the latent response formulation
of the hyperbolic cosine model:

where PCM(θi, βj) is the partial credit model for trichotomous choices defined in
Equation 9.

The following algorithm describes a method for the estimation of the HCM param-
eters by taking advantage of a pre-existing MCMC algorithm for the PCM (see for
example: Johnson et al., 1999; Patz & Junker, 1999; Patz et al., 2002). The MCMC
algorithm augments the data by simulating the latent responses and then uses the
existing MCMC procedure for the estimation of the model parameters given the
latent responses. The first step of the algorithm applies Theorem 4.1 in order to sim-
ulate the latent responses ξ.
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Algorithm 5.2. Iterate the following steps for n = 1, . . . , I.

1. Given the current values of the model parameters β(n−1), γ (n−1), and θ(n−1), sim-
ulate the latent response vectors ξ from the conditional posterior distribution

defined by substituting the probabilities from the partial credit model in Equation 9
into Equations 12 and 13. The conditional posterior distribution for ξij is defined by

2. Update the model parameters according to one step of the pre-existing MCMC
procedure for the partial credit model. Let β(n), γ (n), λ(n), and θ(n) denote these updated
parameters estimates.

5.6 Reparameterization

Preliminary analyses found that item unit parameters γ1, . . . , γJ estimated sep-
arately exhibit an identifiability problem for the items located away from the cen-
ter of the attitude distribution. This is attributable to the fact that 2cosh(t) ≈ e(t)
for t >> 0, and 2cosh(t) ≈ e(−t) for t << 0 which implies the HCM item response
function satisfies:

for βj >> 0. In fact, if γj = βj + bj, then the HCM approaches the Rasch model with
difficulty bj as βj increases. This near-indeterminacy caused the estimates of the
unit parameter γ and the item location parameter β to be strongly correlated for
extreme items in the MCMC procedure. In one instance this correlation was as
strong as −0.99.

The problem of a near-indeterminacy between item units γ and item locations β
has also been noted by Verhelst and Verstralen (1993) and Luo (2000). Luo (2000)
suggests first estimating the model with item-units constant across all items. That is
γj = γ for all j = 1, . . . , J. Let γ̂ denote this estimated grand-item-unit parameter. With
γ̂ estimated, Luo (2000) re-estimates the unfolding model by relaxing the constraint
on the item units so the average item-unit is equal to the estimated grand-item unit.
That is, the item units are constrained by
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This procedure works well for the JML method Luo (2000) uses. A hierarchical
Bayesian version of this idea was implemented but performed no better than the
original parameterization.

High correlation between item parameters γj and βj suggest the MCMC procedures
introduced here may perform more efficiently under another parameterization. The
parameterization adopted here estimates the difference between the item unit and
item location, and the sum of the two parameters. That is, the reparameterized
model is

where

ηj = βj + γj and δj = βj + γj .

Using this reparameterization on the same set of data that produced an observed
correlation of −0.99 between β and γ, produced a correlation of 0.04 between δ and
η, thus allowing the MCMC algorithm to move through the parameter space more
efficiently.

5.7 Prior Distributions

For the analyses in Section 6, prior distributions are defined for all HCM para-
meters. The two sets of item parameters, η and δ, are independent of each other,
and all other model parameters, and are both normally distributed with mean zero
and diagonal variance-covariance matrix with diagonal element τ. The hyperpara-
meter τ can be chosen to reflect any prior information a researcher may have about
the parameters. To reflect the fact that no prior information is available the analy-
ses in the upcoming section use τ = 100.

Conditional on the hyper-parameter vector λ = (µ, σ2), the attitude distribution
FΘ(θ λ) is the normal distribution with mean µ and variance σ2. The prior distribu-
tion of the attitude distribution variance is σ2 ~ Γ−1 (0.5, 0.5). To ensure identifia-
bility of the model, the mean of the attitude distribution is fixed at zero (µ ≡ 0).

5.8 Jumping Distributions

The MCMC algorithm proposed requires that jumping kernels be specified for
each of the model parameters. We have found that normal distributions centered
around the previous draw for the parameter work well for item parameters ηj and
δj and the latent attitudes θi. Our algorithm draws
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independently for all j = 1, . . . , J and i = 1, . . . , N. The variances of the jumping
distributions are adjusted for each data set so that approximately 30% of the pro-
posed draws are accepted by the Metropolis-Hastings algorithm (Gelman et al.,
1995, pp 334–335). The conditional posterior distribution of σ2 [assuming the
inverse-gamma prior distribution σ2 ~ Γ−1 ] is the inverse-gamma distribution 

σ2 ~ Γ−1 ; therefore the Metropolis-Hastings algorithm is
not necessary for drawing σ2.

6. Bayesian Analyses of the Three Example Data Sets

In the following sections we use the data augmentation Markov chain Monte
Carlo algorithm to perform Bayesian estimation of the hyperbolic cosine model
parameters for the three data sets introduced in Section 2. In each example we ran the
MCMC algorithm for 100,000 iterations, removed the first 10,000 iterations as
“burn-in,” and thinned the remaining 90,000 iterations by selecting every tenth iter-
ation. The results reported are thus based on 9,000 draws from the Markov chain.

Results from the direct Markov chain Monte Carlo implementation are indistin-
guishable from the data augmentation MCMC method up to Monte Carlo error. How-
ever, the data augmentation does take more computational time for each iteration and
does require a larger number of iterations for burn-in than does the direct method. So,
the data augmentation method’s real value is in its ease of implementation.

For comparison we also compute marginal maximum likelihood estimates and
their approximated standard errors, as described in Section 5.1, for the first two exam-
ples. The C++ source code for the MCMC estimation procedures and the R code for
MML estimation are available by email from Matthew_Johnson@baruch.cuny.edu.

6.1 The Simulated Data

The data augmentation MCMC procedure is applied to the data simulated for
five items from Section 2.3. Table 1 presents the estimated 95% equal-tailed cred-
ible intervals, and posterior medians found using the data augmentation MCMC
procedure, and the marginal maximum likelihood estimates and standard errors for
the five item locations [β], and item units [γ].

The 95% equal-tailed credible intervals for all item parameters contain the simu-
lating value, and the posterior median is very close to the MLE for all item parame-
ters except for the location and unit parameters for Item 5. The posterior distributions
for Item 5’s parameters are both positively skewed, and an approximation of the pos-
terior mode more closely resembles the MLE.

The widths of the credible intervals and the standard errors of the MLEs tend to
decrease for both the location and the item-unit parameters as the magnitude of the
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item location decreases, indicating that the data provides more information about
items near the middle of the attitude distribution than it does for those in the tails
of the distribution.

The posterior median for the attitude standard deviation σ is 2.11 and the 95%
equal-tailed credible interval for the parameter is (1.89, 2.34) which contains the
true simulating σ = 2.00. The MLE for the attitude standard deviation is σ̂ = 2.33
and has a standard error of 0.12.

Table 2 contains the simulating value, posterior median, and 95% credible inter-
val for each of ten simulees from the simulated data set. The first five simulees have
somewhat unusual response patterns. The first simulee endorsed none of the items
the second endorsed all items, the third endorsed statements that that are far from
each other, the fourth endorsed every second item, and the fifth endorsed all but the
central item. The final five simulees are examples of “good” response patterns (only
adjacent items were selected). For all simulees, the 95% equal-tailed credible inter-
vals contain the simulating value θ.

In this simulation study the width of the credible intervals tend to shrink as the
number of endorsed items increases, and with “nice” response patterns (agree with
adjacent items only). The widths of the intervals are approximately 12.3 when no
items are endorsed, 5.6 when only the last item is endorsed, 6.2 when only extreme
items are endorsed, 4.7 when the last two items are endorsed, and 4.4 when the
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TABLE 1
MCMC Estimated Posterior Medians, 95% Equal-Tailed Credible Intervals, Marginal
Maximum Likelihood Estimates (MLE) and the Standard Error of the MLE for the Ten
Sets of Item Parameters

Bayesian MML

95% Credible 
Parameter Mdn interval MLE SE True

Item 1
Location β1 −2.39 (−2.87, −1.97) −2.39 0.22 −2.50
Unit γ1 1.77 (1.47, 2.12) 1.76 0.15 1.62

Item 2
Location β2 −0.96 (−1.26, −0.65) −0.98 0.16 −1.00
Unit γ2 1.76 (1.57, 1.98) 1.85 0.09 1.72

Item 3
Location β3 −0.67 (−1.02, −0.37) −0.67 0.17 −0.90
Unit γ3 4.00 (3.71, 4.32) 4.11 0.12 3.85

Item 4
Location β4 1.25 (0.89, 1.64) 1.15 0.17 1.50
Unit γ4 3.74 (3.42, 4.10) 3.79 0.13 4.05

Item 5
Location β5 5.69 (3.18, 12.16) 3.37 0.59 4.00
Unit γ5 5.43 (3.01, 11.97) 3.18 0.53 3.97

Note. Simulating parameter values are provided in the right-most column.



last three, or middle three items are endorsed, and 3.9 when four or five items are
endorsed.

6.2 Measuring Attitudes on Nuclear Power Plants

The analysis of the nuclear power plant data follows the same procedure as the
analysis of the simulated data. Table 3 contains the MCMC (data augmentation
method) approximated posterior medians, 95% equal-tailed credible intervals,
MLEs and standard errors for the item locations and item-units for the five nuclear
power items.

The HCM analysis of the nuclear energy data suggests the items are ordered from
one to five along the latent scale, suggesting that the latent dimension being mea-
sured may run from pro-nuclear energy to anti-nuclear energy attitudes. If a subject
has a highly negative latent attitude we believe that person is for nuclear energy; con-
versely a high positive value indicates the subject is against nuclear power. Like the
simulated data set, the widths of the credible intervals for the item parameters, β and
γ, decrease as the magnitude of item locations decrease, with a slight exception for
the second and third items.

Items three through five, all anti-nuclear energy items have high item unit esti-
mates, ranging from 3.85 to 4.05. This suggests that anti-nuclear energy respondents
are much more likely to endorse these items than a respondent who is pro-nuclear
energy is to endorse items one or two, the pro-nuclear energy items. The five
response functions, calculated using the median of the posterior distributions for the
items parameters, appear in Figure 3.

Table 4 contains the approximated posterior medians and 95% credible inter-
vals for nine respondents selected for either their unusual or “nice” response patterns.

The posterior distributions of latent attitudes behave similarly to those from the
simulated data set, with relatively wide credible intervals for respondents endorsing
non-adjacent items, and narrower credible intervals for those individuals endorsing
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TABLE 2
MCMC Estimated Posterior Median and 95% Equal-Tailed Credible Intervals for Ten of
the 1,000 Simulees’ Latent Attitudes θ for the Simulated Data Set

Parameter Mdn 95% Credible Interval True Response Pattern

Subject 1 −4.60 (−7.26, 5.00) −4.20 00000
Subject 2 −0.25 (−2.11, 1.67) −0.39 11111
Subject 3 −1.39 (−3.59, 2.53) 0.30 11001
Subject 4 −1.10 (−3.51, 2.70) −0.41 10101
Subject 5 0.24 (−2.33, 2.56) −0.21 11011
Subject 6 4.28 (1.31, 6.91) 3.19 00001
Subject 7 2.95 (0.64, 5.29) 2.47 00011
Subject 8 1.71 (−0.61, 3.94) 1.64 00111
Subject 9 0.68 (−1.31, 2.72) 0.48 01111
Subject 10 −0.34 (−2.64, 1.65) −0.28 01110

Note. Actual parameter values, and the response patterns for the subjects are given in the two right-most columns.
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TABLE 3
The MCMC Approximated Posterior Medians, 95% Credible Intervals and the Marginal
Maximum Likelihood Estimates and Standard Errors for the Item Locations and Units for
the Five Nuclear Energy Stimuli

Bayesian MML

95% Credible 
Parameter Mdn interval MLE SE

Item 1 −2.54 (−3.33, −1.93) −2.47 0.28
Location β1 1.62 (1.22, 2.21) 1.57 0.19
Unit γ1

Item 2 −1.05 (−1.44, −0.64) −1.05 0.20
Location β2 1.71 (1.44, 1.99) 1.79 0.11
Unit γ2

Item 3 −0.87 (−1.29, −0.46) −0.83 0.19
Location β3 3.85 (3.46, 4.25) 3.96 0.15
Unit γ3

Item 4 1.42 (0.99, 1.91) 1.39 0.21
Location β4 4.05 (3.60, 4.53) 4.16 0.18
Unit γ4

Item 5 3.97 (2.94, 5.53) 5.85 15.15
Location β5 3.97 (3.03, 5.52) 5.85 15.14
Unit γ5

Attitude Distribution Variance σ2 4.16 (3.08, 5.44) 5.28 0.75

TABLE 4
MCMC Estimated Posterior Median and 95% Equal-Tailed Credible Intervals for the
Latent Attitudes of Nine of the 600 Survey Respondents

Parameter Mdn 95% Credible Interval Response Pattern

Subject 1 −4.42 (−7.08, 6.15) 00000
Subject 2 −0.44 (−2.20, 1.51) 11111
Subject 3 −1.31 (−3.65, 2.13) 10101
Subject 4 0.15 (−2.40, 2.37) 11011
Subject 5 4.05 (−0.71, 6.76) 00001
Subject 6 2.82 (0.53, 5.01) 00011
Subject 7 1.51 (−0.94, 3.81) 00111
Subject 8 0.55 (−1.41, 2.56) 01111
Subject 9 −0.47 (−2.82, 1.49) 01110

Note. The response patterns for the subjects are given in the last column.

more items. Figure 6 displays the posterior distributions for nine subjects’ latent
attitudes.

The posterior distributions for individuals endorsing none of the items (re-
sponse pattern 00000) in this example is unimodal but severely positively
skewed. The skewness is due to the fact that the unit parameter estimates for the



three right-most items are much larger than the unit parameters for the two left-
most items. This fact also leads to the fat tails for the posterior distributions for
individuals endorsing only the last item, or the last two items (i.e., patterns 00001
and 00011).

6.3 Analysis of Muhlberger’s Politically Integrated Motivation Survey Items

6.3.1 Analysis with the HCM

This section applies the Bayesian formulation of the hyperbolic cosine model
(HCM; Andrich and Luo, 1993; Verhelst and Verstralen, 1993, see Chapter 2) to
the political motivation data. Table 5 contains the parameter estimates for the HCM
item parameters.
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FIGURE 6. Posterior distributions of latent attitudes for nine of the 600 subjects respond-
ing to the five questions about nuclear energy.
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The second and third columns of numbers in the table correspond to the median
of the posterior distribution, and the 95% equal-tailed posterior credible interval
for the items locations βj, and item unit parameters γj found using the data aug-
mentation MCMC procedure discussed earlier in this chapter. Muhlberger (1999)
hypothesized that the items represent varying levels of political maturity. The low
numbered items represent politically immature reasons for following politics, and
the high numbered items represent mature reasons. The HCM parameter estimates
suggest the items are ordered (1, 2, 3, 4, 5, 8, 7, 6). The HCM analysis provides
more than just an ordering of the items, it also gives estimates for the locations of
the eight items. For example, Item 3 is estimated to be closer than Item 5 to Item
4 on the latent dimension. The median of the posterior distribution of σ is 4.12; all
items fall within one standard deviation of the average respondent.

Examining the item-unit parameters (γj) we find that item 2 has the lowest
item-unit γ2 = −1.24; this item was endorsed (responded above 24) by only three
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TABLE 5
The MCMC Approximated Posterior Medians and 95% Equal-Tailed Credible Intervals
for Item Locations and Item Units for Muhlberger’s Political Motivation Data

Parameter Mdn 95% Credible Interval

1. Expected
Location β1 −3.39 (−5.12, −1.69)
Unit γ1 0.67 (−0.19, 1.62)

2. Upset
Location β2 −2.99 (−5.49, −0.58)
Unit γ2 −1.24 (−2.63, −0.06)

3. Feel bad
Location β3 −1.89 (−3.60, −0.18)
Unit γ3 −0.14 (−0.86, 0.52)

4. Bother
Location β4 −0.87 (−2.22, 0.61)
Unit γ4 1.86 (1.21, 2.56)

5. Learn
Location β5 0.54 (−0.89, 1.91)
Unit γ5 3.63 (2.88, 4.43)

6. Important
Location β6 1.50 (−0.16, 3.30)
Unit γ6 5.17 (4.09, 6.42)

7. Fun
Location β7 1.25 (−0.27, 3.13)
Unit 1.69 (1.06, 2.40)

8. Enjoy Politics
Location β8 0.87 (−0.54, 2.67)
Unit γ8 2.60 (1.93, 3.36)

Attitude Distribution Variance σ2 17.02 (10.47, 26.61)



of the 113 respondents. The item with the largest item-unit parameter estimate is
Item 6 (γ6 = 5.16). Eighty-two of the 113 respondents responded positively to Item
6. Figure 7 illustrates how the probability of responding positively on a given item
(the y-axis) is affected by the respondent’s location on the political motivation
scale (the x-axis).

Table 6 and Figure 8 study the posterior distribution of four of the 113 respon-
dents’ latent attitudes.

The posterior distributions of latent attitudes again show the distribution for an
individual endorsing no items is bimodal, which was not the case in the previous
example. Not only is the posterior for this individual bimodal, but also there is almost
zero probability that the individual’s latent attitude θ falls in the range (0, 3). A 95%
equal-tailed credible interval ignores important information about the distribution.
In this case it makes more sense to examine the 95% highest posterior density region
[HPD]. For a subject endorsing none of the items the 95% HPD is (−12.3, −2.2) ∪
(4.5, 11.6).

6.3.2 Analysis with the squared logistic model

This section reanalyzes the political motivation data with the squared logistic
model (SLM) defined in Equation 1. To estimate the SLM parameters we apply The-
orem 4.1 to generate the latent responses ξij so that they follow a simple monotone
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FIGURE 7. The item response functions for the eight political agency items estimated
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item response model, and then use the augmented data to estimate the item parame-
ters of that model. Table 7 contains the parameter estimates for the SLM model para-
meters and Figure 9 contains the estimated posterior densities of four respondents.

Although the estimates for the item location from the SLM are not on the same
scale as the estimates of the HCM item locations, the two methods order the items
exactly the same (1, 2, 3, 4, 5, 8, 7, 6) and the shapes of the posterior densities for the
four respondents look almost identical. The difference in the scale is obvious when
we compare the two estimates of the attitude distribution variances. The HCM esti-
mates the standard deviation of the attitude distribution as σh = 4.12 whereas the SLM
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TABLE 6
The MCMC Approximated Posterior Medians and 95% Equal-Tailed Credible Intervals
for the Latent Attitudes of Four of the 113 Respondents in Muhlberger’s Political
Motivation Data

Parameter Mdn 95% Credible Interval Response Pattern

Subject 1 −5.48 (−11.39, 10.41) 00000000
Subject 2 −0.88 (−2.75, −1.19) 01111111
Subject 3 −3.56 (−5.71, −1.52) 11000001
Subject 4 −0.94 (−3.70, 3.93) 00011100
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FIGURE 8. Posterior distributions of latent attitudes for four of the 113 students respond-
ing to Muhlberger’s survey of political motivation under the hyperbolic cosine model.



estimates the standard deviation as σs = 1.91. This difference in scale is accountable
to the fact that the SLM item response functions approach zero as θ moves away from
the item location at a much faster rate than the HCM item response functions.

7. Discussion

In the last 15 years several authors have developed probabilistic unfolding mod-
els as a way to study the responses to attitudinal questionnaires. In this article we
describe two methods for the Bayesian estimation of unfolding responses models.
One method is based on the direct implementation of Markov chain Monte Carlo
methods; the second method takes advantage of a generalization of the latent
response formulation of the unfolding response models.
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TABLE 7
Posterior Medians and 95% Credible Intervals for the Squared Logistic Model
Parameters for the Muhlberger (1999) Political Motivation Data Set

Parameter Mdn 95% Credible Interval

Item 1
Location −1.42 (−1.93, −0.92)
Unit 0.11 (−0.77, 1.17)

Item 2
Location −1.35 (−2.27, −0.47)
Unit −1.97 (−3.55, −0.56)

Item 3
Location −0.68 (−1.19, −0.21)
Unit −0.48 (−1.24, 0.31)

Item 4
Location −0.05 (−0.41, 0.33)
Unit 1.08 (0.43, 1.82)

Item 5
Location 0.71 (0.39, 1.04)
Unit 2.96 (2.12, 3.96)

Item 6
Location 1.09 (0.75, 1.48)
Unit 4.95 (3.65, 6.86)

Item 7
Location 0.93 (0.53, 1.29)
Unit 0.76 (0.17, 1.44)

Item 8
Location 0.78 (0.42, 1.11)
Unit 1.73 (1.07, 2.52)

Attitude Distribution Variance 3.62 (2.41, 5.53)
Subject 1 3.39 (−4.28, 6.12)
Subject 2 −0.14 (−0.75, 0.53)
Subject 3 −1.28 (−1.86,−0.66)
Subject 4 −0.01 (−1.13, 1.95)



Bayesian methods have clear advantages over maximum likelihood estimation
procedures for unfolding models. Even when the item locations are known, the
likelihood for the respondents’ latent attitudes are often multimodal, making MLEs
difficult to find with numerical methods, and standard errors even more difficult to
approximate. A Bayesian analysis on the other hand can construct any summaries
of the model parameters without relying on asymptotic results. For example, we
can construct the 95% highest posterior density (HPD) credible regions for each of
the model parameters from the converged MCMC procedure. As we demonstrate
in the examples, the HPD regions may or may not be connected sets.

The Bayesian analyses of the three example data sets demonstrate the advantages
of the Bayesian analysis in unfolding methods. Joint maximum likelihood methods
remove any individuals who endorse no items from the analysis claiming no infor-
mation about these individuals can be extracted from the data, and that these indi-
viduals provide no information about item parameters. The Bayesian analysis, like
MML estimation, does retrieve useful information from the data by assuming a latent
attitude distribution for θ. However a Bayesian analysis is able to derive the poste-
rior distributions of item locations and respondent locations simultaneously, whereas
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FIGURE 9. Posterior distributions of latent attitudes for four of the 113 students
responding to Muhlberger’s survey of political motivation under squared logistic model.
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MML estimation first estimates the item parameters and then uses empirical Bayes
methods to estimate the respondent’s locations.

One of the difficulties estimating unfolding models is the near-indeterminacy of
the item-unit parameters for items that are far from the center of the attitude distri-
bution. The re-parameterization we suggest is promising; however, because unfold-
ing models approach monotone response models as the item location increases to
infinity or decreases to negative infinity, it may be advantageous to develop an esti-
mation algorithm that allows the extreme items (those located very high or low on
the scale) to be parameterized as monotone (either increasing, or decreasing) items.

Appendix

A.1 Proof of Proposition 4.1

Proof. To find the conditional distribution of X given the latent variable θ margin-
alize the probabilities in Equations 9, 10 and 11 over the conditional distribution
of the latent response ξ given θ. That is,

so the required identities hold. �

A.2 Proof of Theorem 4.1

Proof. Note from Equations 12 and 13 that all probabilities are less than or equal
to 1 for all θ.
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Similarly, For k = 1

So the functions in Equations 12 and 13 are between zero and one.
Secondly, the conditional distributions in Equations 12 and 13 must imply the cor-

rect marginal probabilities for the latent responses (conditional on the model param-
eters). For ξ = 0 the category response function is defined by

Similarly Pr{ξj = 2 θ} = Rj2(θ) for the conditional distributions defined in Equa-
tions 12 and 13. The category response function for ξ = 1, Rj1(θ), is

Hence the conditional distributions imply the correct marginal distributions. �
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