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Open-ended or “constructed” student responses to test items have become a stock
component of standardized educational assessments. Digital imaging of examinee
work now enables a distributed rating process to be flexibly managed, and alloca-
tion designs that involve as many as six or more ratings for a subset of responses
are now feasible. In this article we develop Patz’s (1996) hierarchical rater model
(HRM) for polytomous item response data scored by multiple raters, and show how
it can be used to scale examinees and items, to model aspects of consensus among
raters, and to model individual rater severity and consistency effects. The HRM
treats examinee responses to open-ended items as unobsered discrete varibles, and
it explicitly models the “proficiency” of raters in assigning accurate scores as well
as the proficiency of examinees in providing correct responses. We show how the
HRM “fits in” to the generalizability theory framework that has been the traditional
tool of analysis for rated item response data, and give some relationships between
the HRM, the design effects correction of Bock, Brennan and Muraki (1999), and
the rater bundle model of Wilson and Hoskens (2002). Using simulated and real
data, we compare the HRM to the conventional IRT Facets model for rating data
(e.g., Linacre, 1989; Engelhard, 1994, 1996), and we explore ways that informa-
tion from HRM analyses may improved the quality of the rating process.
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1. Introduction

Rated responses to open-ended or “constructed response” test items have
become a standard part of the educational assessment landscape. Some achieve-
ment targets are easier to emphasize with constructed response formats than with
multiple choice and other selected response formats (Stiggins, 1994, Chap. 5)
and their inclusion is thought to have positive consequences for education (Mes-
sick, 1994). But open-ended items are also frequently challenged on reliability
grounds (e.g., Lukhele, Thissen, & Wainer, 1994). Determining the reliability of
assessments including rated open-ended items requires replication of the scoring
process, leading to multiple ratings of student work. Traditional uses of multiple
ratings include “check-sets” consisting of papers rated in advance by experts and
used to monitor rater accuracy during operational scoring, “blind double reads”
used to monitor consistency of the scoring process, and “anchor papers” with
responses from previous administrations used to monitor year-to-year consistency
in the rating process (Wilson & Hoskens, 2001). Recent improvements in the avail-
ability of imaging technology and computer-based scoring also make multiple rat-
ing designs easier to implement, more effective, and less expensive. With
imagine-based scoring technology as many as six or more truly independent rat-
ings may be gathered for monitoring, evaluation, or experimental purposes (see,
for example, Sykes, Heidorn, & Lee, 1999).

In addition to increasing the precision of examinee proficiency estimates, mul-
tiple ratings allow us to directly model aspects of consensus (or its lack) among
groups of raters, and—as we shall see—to model bias and consistency within
individual raters. With these possibilities come challenges: when using multiple
ratings, we must be sure that the statistical model is appropriately aggregating evi-
dence from the set of ratings for each examinee or item. This affects both preci-
sion of examinee proficiency estimates and assessment of individual rater effects.
Moreover, the benefits of multiple ratings must be weighed against the increased
cost of collecting them. While these costs are greatly mitigated with computer
image-based scoring systems, it is still necessary to do the cost-benefit analysis
in the context of models that appropriately model single and multiple ratings of
responses from the same examinee. Even with as few as one or two ratings per
response, important differences emerge in the ways that various rated response
models handle both single and multiple ratings (Donoghue & Hombo, 2000a;
2000b).

In this article, we develop and illustrate the Hierarchical Rater Model (HRM)
(Patz, 1996). The HRM is one of several recent approaches (see also Bock,
Brennan, & Muraki, 1999; Junker & Patz, 1998; Verhelst & Verstralen, 2001; and
Wilson & Hoskens, 2001) to correcting a problem in how the Facets model within
item response theory (Linacre, 1989) accumulates information in multiple ratings
to estimate examinee proficiency. It is related to other recent approaches to explic-
itly modeling local dependence in IRT data (cf. Bradlow, Wainer, & Wang, 1999;
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Ip & Scott, 2002). The HRM provides an appropriate way to combine information
from multiple raters to learn about examinee performance, item parameters,
etc., because it accounts for marginal dependence between different ratings of the
same examinee’s work. It makes available tools for assessing the rater component
of variability in IRT modeling of rating data analogous to those available in tradi-
tional generalizability models for rating data. The HRM also makes possible cali-
bration and monitoring of individual rater effects that become visible in multiple
rating designs.

In Section 2 we develop the HRM for polytomous data, and show some con-
nections between the HRM and some other approaches to rated examinee perfor-
mance data by analogy with a simple generalizability theory model. In Section 3
we give the specific parameterization and estimation methods for the Bayesian for-
mulation of the HRM that we use in this article (Hombo & Donoghue, 2001, pur-
sued a non-Bayesian formulation). In Section 4 we describe two interesting data
sets: a data set simulated from the HRM itself to explore parameter recovery and
similar issues under the Facets model and the HRM; and a real data set derived
from a study of multiple raters in the Florida State Grade Five Mathematics Assess-
ment (Sykes, Heidorn, & Lee, 1999). These data sets are analyzed in Section 5 to
show how the HRM can be used to identify individual raters of poor reliability or
excessive severity, how standard errors of estimation of examinee proficiency
scores are affected by multiple reads, and how the HRM performs with rating
designs involving large numbers of raters in loosely connected rating designs. We
also briefly discuss overall model fit issues. Some extensions of the HRM, and
speculations about the future of multiple rating designs and analyses, can be found
in Section 6.

2. Some Models for Multiple Ratings of Test Items

Rater effects have been traditionally modeled and analyzed on the raw score
scale using analysis of variance (ANOVA) or generalizability methodology (e.g.,
Brennan, 1992; Cronbach, Linn, Brennan, & Haertel, 1995; Koretz, Stecher,
Klein, & McCaffrey, 1994). When greater measurement precision is required
from a test containing rated responses of examinees to open-ended items, we
may consider obtaining either (a) responses to additional items (i.e., a longer test
with the same rating scheme), or (b) additional ratings per response (i.e.,
unchanged test length but more extensive ratings). The choice between the two (or
a combination of both) may be considered in a generalizability or variance com-
ponents framework. By first estimating (in a “G-study”) a rater variance compo-
nent and an item variance component, we can then explore manipulations of the
test design (in a “D-study’’) to make either component arbitrarily small.

Figure 1 presents a hierarchical view of a simple generalizability theory model
for a situation in which R raters, J items, and N examinees are completely crossed;
incompletely crossed and unbalanced designs are all modifications of this setup. The
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variance components, or facets of variability, are displayed at different levels in
the tree, and labeled at right in Figure 1. The branches of the tree represent prob-
ability distributions that relate parameters or observations at each level. As usual
in such displays, variables at one level of the tree are conditionally independent,
given the “parent” variable(s) to which they are connected at the next higher level

of the tree. The variables 6,,i=1, . . ., N, represent examinee proficiencies, mod-
eled as being randomly sampled from some examinee population of interest. For
each i, the variables E_,l-j, j=1,...,J, are (unobservable) scores representing the

actual quality of examinee i’s response on item j, most likely expressed using
the same rubric that the raters are trained on. For each i and j the variables X,
r=1,...,R, represent the observed rating that rater r has given for examinee i’s
response on item j. Thus, the &; are the values that an ideal rater with no bias and
perfect reliability would assign to each item response, and henceforth the &; will
be referred to as “ideal ratings”. In the usual generalizability theory setup, the
ideal ratings E_\,;, are in fact the expected values, or true scores, for the observed
ratings X,

If we parameterize the branches in Figure 1 with the usual Normal-theory true
score models

0, ~iid.N(u,6°), i=1...,N
& ~iid N(6,07), j=1,...,J, foreachi 6))
X, ~ iid.N(E;,0%), r=1... R, foreachi,j

we obtain a connection between generalizability theory and hierarchical modeling,
that has been noticed several times in the literature (e.g., Lord & Novick, 1968;
Mislevy, Beaton, Kaplan, & Sheehan, 1992). Under this Normal theory model, the
expected a-posteriori (EAP) estimate of an examinee proficiency parameter 0 is
always expressible as the weighted average of the relevant data mean and prior
mean. The generalizability coefficients are the “data weights” in these weighted
averages: the larger the generalizability coefficient, the less the data mean is shrunk
toward the prior mean in the EAP estimate. For example (see Gelman, Carlin,
Stern, & Rubin, 1995, pp. 42ff; compare Bock, Brennan, & Muraki, 1999), focus-
ing on a single branch connecting a 6; to a &; we may compute the posterior mean
of 0, given & as

2 2

(¢} o
E[6,1;] = o fcé u+ e +6§ & = (1 -p)u +p&;,

where p is the usual per-item generalizability. For a set of branches connecting an
examinee’s 0; to his/her ideal ratings &, . . ., &, the sufficient statistic for ; is
& ~ N(8,,0¢/J), sothat
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E[6,1&] = (1 -p)u+ps&.,

where p,;=c6%(c*+ Gé/J ) is the usual test generalizability. And finally, using a sim-
ilar analysis,

E[6]X,.] = (1= puru + pJR)?iu,

where p; = 6°/(6® + 67 /J + 6% /JR) is a generalizability coefficient for the
information in all ratings of examinee i for estimating that examinee’s 6,. Thus, we
reduce the item variance component by increasing test length, and we reduce the rater
variance component by obtaining additional ratings (see for example, Brennan,
1992; and Cronbach et al., 1995). The same manipulations reduce the posterior
standard error G ,,, = [1/(52 + 1/(02/] + (ii/JR)]fl/z for estimating 6, from X..
under the model in Equation 1.

This approach has not been sufficiently developed for applications involving
nonlinear transformations of raw test scores (Brennan, 1997), individual discrete
item responses/ratings, etc., and so has limited ability to quantify the relationships
between raters, individual items, and subjects. A popular (e.g., Engelhard, 1994,
1996; Heller, Sheingold, & Myford, 1998; Myford & Mislevy, 1995; and Wilson &
Wang, 1995) item response theory (IRT) based approach to modeling rater effects
is the “Facets” model (Linacre, 1989), which has the same mathematical form as
the Linear Logistic Test Model (LLTM, Scheiblechner, 1972; Fischer, 1973, 1983).
IRT Facets models and their generalizations (e.g., Patz, Wilson, & Hoskens, 1997)
produce an ANOV A-like decomposition of effects for persons, items and raters on
the logit scale, and thus appear to be directly analogous to generalizability analy-
sis on the raw score scale. For example, a Facets model based on the partial credit
model (PCM) (Masters, 1982) may provide additive fixed effects for rater severity,

logit P[X;;, = k|0;, X, e{k, k —1}] =6, — Bj ~ Y — 0, (2)

where Xj;, is the integer polytomous rating given to examinee i on item j by rater r,
6; is the latent proficiency of the examinee, f; is the item difficulty, v, is the item
step parameter, and ¢, is the rater severity.

The analogy between IRT Facets models and generalizability theory models
breaks down in a fundamental way when multiple measures are obtained from mul-
tiple facets. In IRT Facets models the likelihood for the rating data is typically con-
structed by multiplying together the probabilities displayed in Equation 2 for all
observed examinee X item X rater combination (e.g., the examples in Wu, Adams,
& Wilson, 1997). Figure 2 presents a hierarchical view of this model. Essentially,
the IRT Facets model removes the layer of ideal rating variables &; in the middle
of Figure 1, so that all JR observed ratings X;;, become locally independent given
examinee proficiency ;. This ignores the dependence between ratings of the same
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item J given examinee proficiency 6; that is implicit in the generalizability theory
model, and leads to a distortion in standard error calculations for estimates of 0,
and other model parameters.

Indeed, using standard test information function calculations (e.g., Birnbaum,
1968, Chapter 20), Patz (1996) and Junker & Patz (1998) argued that as the num-
ber of raters per item increases, IRT Facets models appear to give infinitely pre-
cise measurement of the examinee’s latent proficiency 6,, even though the
examinee answers no more items. Wilson and Hoskens (2001) and Bock, Brennan,
and Muraki (1999) have also noted the downward bias of standard errors of estima-
tion in IRT Facets models, and simulation work of Donoghue and Hombo (2000a)
has confirmed empirically that for as few as two raters per item the IRT Facets
model can bias standard errors for 6; well below what would be seen in the corre-
sponding IRT model with no raters. Model fit studies (see Section 5.3; as well as
Wilson & Hoskens, 2001) also suggest that the linear logistic form of the IRT
Facets model may not track the variability in actual rating data as well as models
that explicitly take into account the dependence between ratings due to their nest-
ing within raters on the one hand and within examinees on the other.

The HRM (Patz, 1996) corrects the problem of downward bias of standard
errors in conventional IRT Facets models by breaking the data generation process
down into two stages. In the first stage, the HRM posits ideal rating variables &,
describing examinee i’s performance on item j, as unobserved per-item latent vari-
ables. This ideal rating variable may follow, for example, a standard PCM,

IOgltP[alj = &lei»Xijr G{E:’E: - 1}] = ei - Bj - ’Yjé’ (3)

or any other IRT model appropriate for the application. Conceptually, when we
define a scoring rubric for an item, we are defining a map from the space of all pos-
sible examinee responses to an ordinal set of score points; &; can be viewed as the
result of an ideal application of this mapping to examinee i’s response to item j.
Statistically, the ideal rating &; captures dependence between multiple ratings of
the same piece of examinee work (this is how the HRM corrects the IRT Facets
model’s underestimation of standard errors); it is related to the latent response vari-
ables of Maris (1995) within psychometrics, and to data-augmentation and miss-
ing data models (e.g., Tanner, 1996) in applied Bayesian statistics. In the second
stage, one or more raters produces a rating k for examinee i’s performance on item j,
which may or may not be the same as the ideal rating category. In the HRM, this
rating process is modeled as a discrete signal detection problem, using a matrix of
rating probabilities pg,, = [Rater r rates k lideal rating £] as displayed in Table 1.
The rating probabilities pg, in each row of this matrix can be constrained to
focus attention on specific features of rater behavior. For example, we can posit a
unimodal (unfolding) discrete distribution in each row of the table, with the loca-
tion of the mode indicating rater severity and the spread of the distribution indi-
cating rater unreliability. Estimates of &; might then be viewed as a kind of
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TABLE 1
The Matrix of Rating Probabilities Describing the Signal Detection Process Modeled
in the HRM

Observed Rating (k)
Ideal Rating (&) 0 1 2 3 4
0 Poor Poir DPozr Po3r Posr
1 Pior Pur Pior Pusr Piar
2 P2or P2ir P2or P23 Poar
3 P3or P3ir P3or P33r P3ar
4 Paor Pair Paor Dazr Daar

Note. p;, = P[Rater r rates k [Ideal rating ] in each row of this matrix.

consensus rating for examinee i’s work on item j, among the raters who actually
rated it. Dependence of ratings on various rater covariates (differences in training,
background,) and interactions between raters and items or examinees, may also be
modeled at this stage.

The HRM can immediately be seen as a reparameterization of the lower two sets
of branches in Figure 1:

0, ~ iid. N(u,6),i =1,...,N, (as before);
€; ~ an IRT model (e.g., PCM), j = 1,...,J, foreachi 4)
X, ~ the signal detection model in Table 1, r = 1,..., R, foreach i, j

Thus, the HRM is the generalizability theory model in Figure 1, but with modi-
fications to the distributions that link the facets of variability, to reflect the discrete
nature of IRT rating data. Mariano (2002) confirms that under the Facets model,
test information increases without limit when raters but not items are added. He
also proves rigorously that under the HRM, test information is limited in a natural
way by test length, regardless of the number of raters. In particular, under the HRM,
standard errors of proficiency estimates can never be smaller than they would be in
the corresponding IRT model for &; with no raters.

It is valuable to compare the HRM approach to correcting the IRT Facets model
with other recent approaches. For example, Bock, Brennan, and Muraki (1999)
compare standard errors for estimating 0 under generalizability theory models cor-
responding to Figures 1 and 2. They compute a “design effects” correction that
approximately corrects the conventional IRT Facets likelihood for omitting the
€ layer. Their approach should produce point estimates and standard errors for 0 very
similar to the HRMs.

Verhelst and Verstralen (2001) have developed an IRT-based model for multiple
ratings that is closely related to the HRM, in which a continuous latent “quality”
variable plays a role similar to that of the HRM’s ideal ratings &;, and a logit or pro-
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bit response model plays the role of the discrete rating probabilities in Table 1. This
is very much in line with the view of some authors (e.g., Cronbach et al., 1995, p. 7),
who see examinee performance as developing along a linear continuum, so that ide-
ally a continuous rating would be given to each performance. In this view, categori-
cal or integer ratings are a practical necessity, but they result in a loss of information
relative to the ideal continuous rating that is to be minimized, for example by using
rubrics with many allowable score points, half points, etc.

However, in some settings it does seem reasonable to view examinee performance
as classifiable into qualitatively distinct categories (e.g., Baxter & Junker, 2001). In
such settings, it is natural to interpret &; as resulting from an ideal use of the scoring
rubric to classify examinee performance, and to interpret X;;, as possibly fallible clas-
sifications by raters. This helps clarify what is good or bad about rubrics (e. g., under-
or over-specification), and what is good or bad about ratings (e.g., more or less sever-
ity, under-use of one or more categories, etc.). For example, mismatches between the
granularity (i.e., number of readily distinguishable categories) of examinee perfor-
mance and the granularity of the scoring rubric can be modeled with nonsquare
matrices of rating probabilities in Table 1. More generally, comparing raters’ actual
use of rating categories (as reflected by the X, with the intended categories of the
scoring rubric (as reflected by the &;) may also help to identify changes over time
that are good (e.g., more complete specification of the rubric), and that are bad
(e.g., increasing individual rater severity, individual rater variability, etc.).

Wilson and Hoskens (2001) take a somewhat different approach, building “rater
bundles” (cf. Rosenbaum’s, 1988, item bundles) that explicitly model dependence
between multiple reads of the same examinee work, by replacing the conditional
independence model in each subtree of Figure 2 with an appropriate log-linear
model. This rater bundle model (RBM) works quite well for modeling a few spe-
cific dependencies, between specific pairs of raters, or between specific raters and
specific items. The HRM may be viewed as a kind of restriction of Wilson and
Hoskens’ RBM that is more feasible to implement for larger numbers of ratings per
item, because it provides a simpler model of dependence between ratings.

Finally, we note that the generalizability coefficients indicated at the beginning
of this section do not have direct correspondents in the HRM, because as with most
IRT-based models (and in contrast to models motivated from Normal distribution
theory), location and scale parameters are tied together, so that the sizes of the vari-
ance components that make up the generalizability coefficients change as we move
along the latent proficiency and ideal rating scales. However, our formulation of
the HRM in the next section makes available analogous tools, such as per-rater
measures of reliability, that in some ways improve our ability to monitor rater
uncertainty and incorporate it appropriately into estimates of examinee proficiency.

3. Model Specification and Estimation Methods

In this section we describe the specific version of the HRM used in this article
and lay out a Markov Chain Monte Carlo (MCMC) algorithm for estimating the
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model. The reader interested primarily in how the model performs with data should
skim Section 3.1 and then skip to Section 4.

3.1 The Hierarchical Rater Model

To apply the HRM in practice, we need to make specific modeling choices in
the hierarchy in Equation 4. At the lowest level of Equation 4, we will parame-
terize the rating probabilities in each row of Table 1 so that the model is sensitive
to each individual rater’s severity and consistency. We do this by making the prob-
abilities pg, = [rater r rates k | Ideal rating €] in each row of this matrix propor-
tional to a Normal density in k with mean & + ¢, and standard deviation y,:

Perr = P[ g =k |§t/ = &]wexp{— 2\”2 [k — (€ + q)’)]z}

i=1....,N; j=1...,J; r=1...,R (5)

The parameter ¢, measures rater r’s individual bias or severity. When ¢, = 0,
rater r is most likely to rate in the “ideal” rating category, k = §. When ¢, < —0.5,
rater r is most likely to rate in some category k < & (exhibiting severity relative to
the ideal category), and when ¢, > 0.5, rater r is most likely to rate in some cate-
gory k> & (exhibiting leniency relative to the ideal category). Similarly, the param-
eter , reflects rater ’s individual variability or lack of reliability. When v, is
small, the probability of rater r rating in category k falls to zero quickly as k moves
away from the most likely category, & + ¢,. When y, is large, there is a substantial
probability of a rating in any of several categories k near £ + ¢,. More generally,
we may say that a group of raters have established reliable consensus with each
other to the extent that both ¢, and , are close to zero across all raters.

At the next level in Equation 4, we will assume that the ideal ratings &; follow
a K-category PCM as in Equation 3,

wol$0, 8-

k=1

PSy &Ienﬁpvﬂ;]—i {ﬁe—ﬁ yjk}, (6)

k=1

where sums whose indices run from 1 to O are defined to be zero. In the applica-
tion to follow we will also see that the number of categories K need not be the same
from one item to the next. Finally, at the highest level of Equation 4, we take the
population model for the examinee proficiency distribution to be

0, ~ iid. N(u,6%),i=1,...,N, (7

as indicated in Section 2. Of course any other plausible population distribution for
0 could be used as well.

The model up to this point can be fitted using a variety of methods. For example,
Hombo and Donoghue (2001) explored marginal maximum likelihood for the
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HRM. In this article we develop a Bayesian version of the HRM, since the Bayesian
model-building and model-fitting framework is a natural one in which to explore
novel, highly parameterized latent variable models (see also Patz & Junker, 1999a,
1999b). To do so we need to specify prior distributions on the rating parameters 0,
and v, the item parameters 3; and v;, and the population parameters [ and 62.

Since we do not have strong information about any of the rater parameters in our
analyses below we take the prior distribution for the ¢, to be a relatively uninformative
Normal distribution with mean 0 and variance 10, N(0, 10), and for y, we take a sim-
ilar log-Normal density, log(y,) ~ N(0, 10). In practice it is common for raters to qual-
ify for live scoring by performing sufficiently well on examinee responses for which
the “ideal rating” has been determined in advance. Information from these so-called
“qualifying rounds” and “check-sets” could be analyzed in terms of the rating proba-
bilities in Table 1, and these preliminary analyses might support the use of more infor-
mative prior probabilities on each rater’s parameters ¢, and ,.

In developing priors for f; in the PCM we must address a well-known location
indeterminacy: Either [ or the Bs must be constrained to get an identified model.
We allow the prior for [ to be N(0, 10) and take the Bs to be i.i.d. from the same

. . . -1 .
Normal prior, subject to the sum-to-zero constraint B, = —Z}J_:l B;. This has the

effect of using all the data to estimate overall location once in LI, rather than repeat-
edly inferring overall location information in each [} separately. This makes the
MCMC estimation procedures described below somewhat more stable (see e.g.,
Gilks, Richardson, & Spiegelhalter, 1995).

Turning to priors for the y;s, we first note that for a k-category item, the quantities
B;+ i are the locations of the K—1 points at which adjacent category response curves
cross; so only K—1 vs are formally included in the model. There is still a location
indeterminacy in the s (add a constant to f3; and subtract the same constant from all
the corresponding ;). Thus we take the K — 1 item step parameters Yy to be i.i.d. from
N(0, 10) priors, except that the last y; for each item is a linear function of the others,

. . K-2
according to the sum-to-zero constraint Y ;x_1) = —Zkzl Y k-

Finally, it is convenient to place the prior distribution % ~ Gamma(c, ) on
o

o2, the population variance of 0. To reflect little prior knowledge about 6 we have
chosen o =n = 1 for our analyses.

For incomplete designs, such as the real-data example we consider later, we
include only those factors implied by the model specification in Equations 5-7, that
are relevant to the observed data in the likelihood. This has the effect of treating data
missing due to incompleteness as missing completely at random (MCAR) (e.g.,
Mislevy & Wu, 1996). The MCAR assumption is usually correct for data missing by
design in straightforward survey and experimental designs where missingness is not
informative about the parameters of interest. However, MCAR is not innocuous; for
example Wilson and Hoskens (2001) point out some “multiple-read” designs (such
as formative read-behinds by expert raters) in which the presence or absence of a sec-
ond rating can be quite informative about the quality of the first rating.
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3.2 Markov Chain Monte Carlo Estimation

Estimation of the HRM as in the preceeding text was carried out usinga MCMC
algorithm. Given the ideal rating variables &;, MCMC estimation of the PCM is
straightforward (e.g., Patz & Junker, 1999a, 1999b). Johnson, Cohen, and Junker
(1999) implement MCMC estimation of the PCM model parameters in BUGS
(Spiegelhalter, Thomas, Best, & Gilks, 1996), and we extend their MCMC proce-
dure for the PCM to the HRM by adding steps that draw rater parameters and ideal
ratings from the relevant complete conditional distributions. The result was pro-
grammed in C++, and is available at StatLib (http://lib.stat.cmu.edu).

In the remainder of this subsection we indicate the complete conditional distri-
butions needed to construct a MCMC estimation procedure for the specification of
the HRM laid out in Section 3.1. In what follows, the (incomplete) array of all
observed ratings is denoted X the notationf(a | b, c, . . .) is used generically to indi-
cate the density or probability mass function of parameter a given parameters b, c,
etc.; and underlining such as “a” indicates a vector of parameters with similar
names in the model.

We begin with each subject’s ideal rating &; on each item. The complete condi-
tional distribution for &, i=1,...,N;j=1,...,Jis

ijs

F(5il 8B 7, 0w, X) o
exp{—ZrE&, (xf‘@f“b)}

2y;
K-1
k=0

exp{&. (0, —B;)— v L
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where R;; is the set of raters that graded the response of subject i to item j. Similarly

the complete conditional density distribution for the rater bias parameters 0, is

eXp{—z<,-,,-)es,. (XW_Z&\;J!;M} fa(0,)
¢,)2} o

K-1 (k_& _

f(q)rl er év X) o<

where S, is the set of subject-item pairs that were rated by rater r, and f5(9) is the
prior distribution for each ¢. The complete conditional density for the rater vari-
ability parameter , is almost identical, replacing fo(¢) with fu(y), the prior distri-
bution for each y.

Conditional on the ideal ratings § the PCM parameters are independent of the
data X. The complete conditional density for each item difficulty parameter f; is

exp{-C.; - B,}

TRIS O = e ST ST 6 - ) =7,

I5(B)),
}
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where &, ; = z;v:l €, and sums that run from 1 to 0 are defined to be zero, as in Equa-

tion 6. Similarly the complete conditional density for each item-step parameter 7y, is

exp{mY i}
k| 90 Mj» Q o< K-1 h PR
f(Y] |§ g ) I zh:() eXP{zH U N Yﬂ} i

where 1 = 2;1  Ire, =1y» the number of respondents whose ideal rating category

was k on item j. The conditional posterior distribution for examinee proficiency 6; is

GXP{§i+ 0 - w}

20

T Y e 6 - B - Vi)

where &;, = Zj: 1 €;. The complete conditional density for the variance of the

F(Bi& B . 1. 0%)

examinee proficiency distribution is 62 | 0, w ~ Inverse-Gamma (OL + N/2,n +

Zil 6, —n)? / 2), where a.=1 = 1. Finally, the complete conditional density for |

o/t + X 8,/c 1 ]
/15 + N/o®>  "l/t; + N/o* )’

where L, =0 and 1= 10(e.g., Gelman et al., 1995, pp 42—47).

Correlations between parameters in the posterior distribution can be large, so to
ensure adequate mixing it is necessary to perform moderately long MCMC simu-
lations. For our analyses we have used 10,000 Markov chain steps, after a burn-in
period of 1,000 steps. Fitting the HRM to the Florida assessment data described
below, with 537 examinees, 38 raters and 11 items, our C++ software can do this
analysis in approximately 30 minutes, on a Pentium 4 Linux workstation with a
processor speed of 1.8 GHz.

The Facets model can be estimated via MCMC using essentially the same soft-
ware, by first removing the signal-detection (matrix of rating probabilities) level
of the algorithm, and then using the PCM level of the algorithm to connect each
rater X item combination directly to examinee proficiencies, as separate “virtual
items” (e.g., Fischer & Ponocny, 1994) with additive effects for raters, item loca-
tions and item steps. Thus although the HRM and IRT Facets models are related,
they are not nested in the likelihood-ratio testing sense (there is no locally linear
restriction of the HRM parameters that yields the Facets model; cf. Serfling, 1980,
pp- 151-160), which necessitates the more complex model comparisons in 5.3.

is 16,0 ~ N[

4. The Example Data Sets

We will explore the use of the HRM in two examples. In the first example, we
examine data simulated from the HRM as described in Section 3.1, and compare the
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fit of the HRM itself to the fit of an analogous IRT Facets model. In the second
example, we apply the HRM to data from a rating modality study conducted by
CTB/McGraw-Hill for the Florida Comprehensive Assessment Test (FCAT).

4.1 Simulated Data

Using the HRM as described in Section 3, we simulated a completely crossed
design with R = 3 ratings for each of N = 500 examinees on J = 5 test items, using
five categories per item for both observed and ideal ratings. The examinee profi-
ciencies 0,, were drawn from a N(0, 4) distribution, and the ideal rating variables &,;,
followed the partial credit model (PCM) with item location (difficulty) parameters
B=(2,1,0,-1,-2), and item-step parameters Yix drawn from a N(0, 1) distribution
(subject to a sum-to-zero constraint within each item). Observed ratings were then
simulated according to the matrices of rating probabilities as in Table 1 with rows
modeled as in Equation 5. The values of ¢, and y,, used to simulate the three raters,
r=1,2,3, are given in the rightmost column of Table 3 (see Section 5.1). These val-
ues were chosen to reflect realistic within-rater severity and reliability, at levels we
found in our initial analyses of the FCAT data described below (Section 5.2.1). We
will analyze the observed ratings only, treating the ideal ratings as missing data.

4.2 The Grade 5 Florida Mathematics Assessment

These data come from a study conducted by CTB/McGraw-Hill in support of the
Florida Comprehensive Assessment Test (FCAT), described by Sykes, Heidorn, and
Lee (1999). Responses to a booklet of J = 11 constructed-response items (two
3-category items and nine 5-category items) from a field test of the FCAT Grade 5
Mathematics Exam were scored by raters under several designs for assigning exam-
inee responses to raters, using a computer image-based scoring system. Because of
the reduced logistical burden associated with the management of scoring sessions
under image-based scoring, we are free to choose the rating design that most mitigates
the effects of rater severity and other rater features on differences in student scores.

Three designs, called “scoring modalities” by Sykes et al. (1999), were investi-
gated. In Modality One, raters trained and qualified to score the entire booklet of
eleven items. In Modality Two, a single item was assigned to each rater. In Modal-
ity Three, blocks of three-to-four items were assigned to each rater. The study
design is incomplete and unbalanced in the assignment of items and item responses
to raters, as could be expected to be true of essentially all practical multiple rating
situations; see Table 2.

A total of 557 papers were scored twice in each modality for a total of six rat-
ings per item response. Thirty-eight raters participated in the study, each rater scor-
ing any item in at most one modality. The raters were a subset of the raters used
for operational scoring of the FCAT. Seven raters scored papers only in Modality
One. Eleven raters scored papers only in Modality Two. Fifteen raters scored
papers in Modalities Two and Three (different items in each modality). Five raters
scored papers only in Modality Three. Items within a block were contiguous on the
test form but not passage-linked or otherwise related; the items themselves are not
available for public release.
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TABLE 2
Distribution of Raters Among Modalities and Item Responses Among Raters in the Grade 5
Mathematics Test Rating Modality Study

Modality 1
Rater 1 2 3 4 5 6 7
Responses rated 187 2068 1859 2376 2651 1914 1199

Modality 2
Rater 9 10 11 12 13 15 16 17 18 19
Responses rated 486 412 423 573 530 449 517 537 426 70
Rater 20 21 22 23 24 25 27 28 29 30
Responses rated 550 547 543 915 554 442 433 404 521 502
Rater 31 32 33 36 37 38
Responses rated 306 459 382 557 466 250

Modality 3
Rater 8 9 10 11 12 13 14 15 16 17
Responses rated 244 268 596 276 676 1168 800 792 776 1012
Rater 20 21 23 24 25 26 28 33 34 35

Responses rated 1008 676 279 594 465 620 594 405 378 627

Despite the fact that every piece of student work is rated six times in this study,
the data can be extremely sparse, as illustrated by Figure 3, which tabulates rating
agreements and disagreements among pairs of raters rating Items 9, 10 and 11 in
Modality Two. Considering Item 9 subtable for example, we see that of the
40 occasions on which Raters 12 and 13 both rated an Item 9 response, 20 times
they agreed that the response should be rated 0, four times Rater 12 rated the
response as a 1 and Rater 13 rated it as a 0, three times they agreed on a rating of
1, and so forth. For all three items, most of the action is in the low rating categories,
indicating that these items are relatively difficult for these students.

5. Analyses with the HRM

Our analyses concentrate on the two data sets that we described in Section 4. In
Section 5.1 we describe analyses of the simulated data, comparing a Facets model
with additive effects for items and raters with the analogous HRM. This allows us to
illustrate some qualities of using the HRM when it fits well, and also allows us to
examine the Facets model fit when the data clearly contains more dependence than
the Facets model is designed to accommodate. A more extensive simulation study
comparing the performance of the IRT Facets model and the HRM was reported by
Donoghue and Hombo (2000a). In Section 5.2 we use the HRM to examine three
subsets of the Florida mathematics assessment rater study data. In Section 5.2.1 we
examine a small subset of the Modality Two ratings whose rater X items design is
relatively balanced. In Section 5.2.2, we briefly consider all of the rated items in
Modality Two, which is the same subset of the data that Wilson and Hoskens (2001)
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Item 9
Score Rater Combination
combination 12-13 12-16 13-16 Total
0-0 20 9 235 264
0-1 0 1 37 38
0-2 0 0 9 9
0-3 0 0 0 0
0-4 0 0 0 0
1-0 4 1 9 14
1-1 3 4 22 29
1-2 2 0 4 6
1-3 1 0 0 1
1-4 0 0 0 0
2-0 1 0 1 2
2-1 1 0 20 21
2-2 2 6 54 62
2-3 1 1 5 7
2-4 0 0 1 1
3-0 0 0 2 2
3-1 1 0 2 3
3-2 0 0 14 14
3-3 2 1 14 17
3-4 0 0 0 0
4-0 0 0 2 2
4-1 0 0 1 1
4-2 0 0 3 3
4-3 0 0 4 4
-4 2 4 51 57
Total 40 27 490 557

FIGURE 3.  Cross-tabulations of Modality Two ratings by pairs of raters, for items 9,
10, and 11 of the Florida Grade 5 Mathematics Assessment. (continued on page 358)

used to illustrate the Rater Bundle Model. In Section 5.2.3 we extend the analysis to
all the rating data from all three rating modalities in the Florida rater study and illus-
trate the effects of increasing the number of items and the number of ratings on
shrinking interval estimates of examinee proficiencies. We also consider the effect
of scoring modality on bias and variability of raters. Finally, in Section 5.3 we com-
pare the fits of Facets and HRM models in the simulated and real data sets.
Working with a fully Bayesian formulation of the model, we provide posterior
medians (50th posterior percentiles) as point estimates, and equal-tailed 95% cred-
ible interval (CI) estimates running from the 2.5th posterior percentile to the 97.5th
posterior percentile, for each parameter of interest. Because of heavy skewing and
other deviations from symmetric unimodal shapes that sometimes occur in IRT
posterior distributions, we do not report posterior means and standard deviations.
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Item 10
Score Rater Combination
combination 12-15 12-36 15-36 Total
0-0 45 74 278 397
0-1 0 2 5 7
0-2 0 0 0 0
1-0 0 0 6 6
1-1 4 4 34 42
1-2 4 7 15 26
2-0 0 0 0 0
2-1 0 0 1 1
2-2 3 21 54 78
Total 56 108 393 557
Item 11

Score Rater Combination

combination 12-37  12-38  36-37 37-38 | Total

0-0 231 84 53 146 514

0-1 0 0 0 0 0

0-2 0 0 0 0 0

1-0 0 0 0 0 0

1-1 9 3 0 6 18

1-2 0 0 0 1 1

2-0 0 0 0 0 0

2-1 2 0 0 0 2

2-2 9 4 3 6 22

Total 251 91 56 159 557

FIGURE 3. (Continued)

Table 3 displays the item parameter estimates and proficiency distribution param-
eter estimates found using the two approaches. All parameters for the two models
admit comparison—in the sense that they are intended to be sensitive to the same
effects on the same scale—except for the rater variability parameters \,, which are
only estimated in the HRM, and the rater severities ¢,. Rater severities are reported
for both models for completeness, and to show that at least the direction of the
severity estimates is consistent between models. However, the severity parameters
are estimated on nonequivalent scales: the IRT Facets model estimates rater bias as
an additive shift in the adjacent rating category logits in Equation 2, and the HRM
estimates rater bias as a shift in the modal rating category used by the rater, as in
Equation 5. In addition, there is a sign change: severe raters get positive bias param-

5.1 Simulated Data

eters under Facets, and negative bias parameters under the HRM.
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TABLE 3
MCMC Parameter Estimates for the Additive Facets Model and HRM, Using Data
Simulated from the HRM

Facets Fit HRM Fit True

Parameter Median 95% CI Median 95% CI Value
Proficiency mean [ 0* — -0.13 (=0.32, 0.05) 0
Proficiency variance 6° 3.32 (2.82, 3.89) 4.25 (3.12, 5.40) 4

Item 1 B, -1.79 (=1.99,-1.57) -1.96 (-2.19,-1.69) =2

Item 2 3, —-0.98 (-1.18,-0.78) -0.97 (-1.12,-0.81) -1

Item 3 f3; -0.25 (-0.46,-0.04) -0.16 (-0.27,-0.05) 0

Item 4 B, 0.68 (0.48, 0.87) 0.96 (0.82, 1.10) 1

Item 5 Bs 1.74 (1.52,1.99) 2.13 (1.84,2.37) 2
Item 1

Step 1 v 0.18 (=0.01, 0.34) -0.37 (-0.81,-0.00) -0.26

Step 2 Y12 -0.21 (=0.51, 0.05) 0.34 (—=0.15,0.82) 0.25

Step 3 Vi3 —0.02 (—0.33,0.35) -0.26 (—0.83, 0.25) 0.02
Item 2

Step 1 5 0.27 (0.08, 0.44) —0.08 (-0.48,0.31) -0.21

Step 2 Y5, 0.38 (0.12,0.62) 0.66 (0.22,1.09) 0.58

Step 3 V»3 0.48 (0.27,0.75) 0.62 (0.18, 1.02) 0.77
Item 3

Step 1 3 0.41 (0.22, 0.58) 0.27 (—0.09, 0.60) 0.34

Step 2 a2 0.15 (—=0.07, 0.38) 0.17 (-0.20, 0.60) 0.12

Step 3 V33 0.01 (—=0.22,0.23) -0.04 (—0.43,0.43) -0.07
Item 4

Step 1 Va4 0.89 (0.69, 1.07) 1.03 (0.66, 1.36) 0.79

Step 2 Yar —0.00 (=0.21, 0.20) -0.14 (=0.50, 0.19) 0.03

Step 3 Vi3 —0.48 (-0.68, —0.26) -1.24 (-1.74,-0.74) —1.31
Item 5

Step 1 s, 0.63 (0.28,0.97) —0.06 (—=0.74,0.51) 0.13

Step 2 ¥s» 1.56 (1.22,1.85) 2.21 (1.41,2.84) 2.05

Step 3 ¥s3 —0.30 (=0.46,-0.11) -0.36 (-0.68,-0.06) —0.36
Rater 1

Bias ¢, 0.05 (0.02,0.12) -0.08 (-0.11,-0.06) —0.07

Variability y, 0.43 (0.42,0.44) 0.43
Rater 2

Bias 0, 0.23 (0.16, 0.31) -0.26 (-0.29,-0.22) -0.25

Variability y, 0.73 (0.70, 0.75) 0.72
Rater 3

Bias ¢; 0* — 0.01 (-0.40,0.41) -0.02

Variability y; 0.01 (0.0005, 0.20) 0.06

Note. The posterior median and 95% equal-tailed credible interval (CI) are given for each of the item parameters, the
rater parameters and the standard deviation of the examinee proficiency distribution. Values marked with an asterisk
(*) were fixed at zero to identify the Facets model. Positive rater bias parameters indicate rater severity under the
Facets model; negative bias parameters indicate severity under the HRM. True HRM parameter values used to simu-
late the data are given in the rightmost column.
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We notice in Table 3 that the parameters used to simulate the data are recovered
quite well by the HRM; all true parameter values are contained within the corre-
sponding 95% CI. On the other hand, only two of the five item difficulty param-
eters ([3;s) and eight of the 15 item step parameters (y;s) were contained in the IRT
Facets CI’s. In addition, it appears that the item difficulty parameter estimates (J;s)
found using the IRT Facets model have been shrunk toward zero. The item diffi-
culty estimates for the Facets model are on average 0.2 units closer to zero than
either the HRM estimates or the true values, with the shrinkage effect more pro-
nounced for the more extreme Items 1 and 5. The Facets model also underestimates
the variance 62 of the examinee proficiency distribution.

These estimation biases are to be expected; the IRT Facets model is being fitted to
data that was generated from the HRM and therefore has structure that Facets was not
designed to accommodate. However, the specific nature of the bias excessive shrink-
age in the latent examinee proficiency scale—is interesting and important to think
about. We believe that this shrinkage is exacerbated when individual rater reliability
is poor (as it is with Raters 1 and 2 in this simulation). When the individual rater reli-
abilities are low (rater variability parameters are large), then the “observed” ratings
from an HRM simulation tend be in more middling categories, even if the ideal rat-
ings are extreme. The HRM model automatically discounts this since it estimates
rater reliability directly along with everything else, but the IRT Facets model
assumes, in essence, that all raters have equal reliability and thus takes these amelio-
rated ratings as evidence that the item wasn’t so extremely difficult or extremely easy.
Patz, Junker, and Johnson (1999) found even more extreme shrinkage effects under
the Facets model when raters of even lower reliability were simulated. It is important
to keep this behavior of the IRT Facets model in mind, if it is being fitted to data where
we suspect that some raters have low reliabilities.

Although rater parameters are not directly comparable in the two models, it is
interesting to note that under the HRM, rater bias (¢,) and variability (y,) param-
eters are estimated with little uncertainty for Raters 1 and 2, but with rather high
uncertainty for Rater 3. We will return to this point, which we believe is also due
to high rater reliability (low true ys3), in Section 5.2.1.

Table 4 gives posterior median and 95% credible interval estimates for five of
the simulated examinees in this simulation. The simulated examinees displayed are
located at the minimum, maximum, and quartiles of the simulated 6 distribution.
Except for the most extreme examinees, both models produce interval estimates
that contain the true 0 values. However, we note that the estimates of subject abil-
ity parameters obtained from the Facets model are closer to zero (reflecting again
latent proficiency scale shrinkage in the IRT Facets model due to rater unreliabil-
ity), and have substantially narrower 95% intervals than those from the HRM, even
after accounting for differences in the two models’ estimates of the variance 62 of
the latent proficiency distribution in Table 3. Table 3 also shows that that there is
generally more uncertainty (wider interval estimates) in item parameter estimates
under the HRM than under the Facets model.
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TABLE 4
Estimated Examinee Proficiencies for the Additive Facets Model and HRM, Using Data
Simulated from the HRM

Si Facets Fit HRM Fit

imulated True
proficiency Median 95% Interval Median 95% Interval Value
Minimum: -2.99 (-4.11,-1.97) -3.96 (-6.46, -2.28) -5.64
Ist Quartile: -1.78 (-2.67,-0.91) -2.05 (-3.57,-0.80) -1.53
Median: —0.69 (-1.36,-0.10) —0.83 (-2.03,0.15) —0.13
3rd Quartile: 1.39 (0.81, 2.06) 1.32 (0.35,2.39) 1.21
Maximum: 2.72 (1.98, 3.78) 3.46 (1.89,6.12) 6.03

Note. The simulated examinees displayed are located at the minimum, maximum, and quartiles of the simulated 6 dis-
tribution. MCMC-based posterior median and 95% equal-tailed credible interval (CI) are given for each simulated
examinee. True parameter values used to simulate the data are given in the rightmost column.

Because the data were simulated from the HRM itself, we know the greater uncer-
tainty represented in the HRM item parameter estimates is more appropriate. The
reduction in uncertainty in the IRT Facets parameter estimates is an artifact of that
model’s assumption, discussed in Section 2 and in Junker and Patz (1998), that
response ratings are conditionally independent given examinee proficiencies 6,. This
effect is clearest for standard errors of 0, but it also narrows somewhat the interval
estimates of the item parameters (Table 3) of the underlying PCM model. By con-
trast the HRM assumes that ratings are dependent given examinee proficiencies (they
are conditionally independent only given the ideal ratings &;), and the extra depen-
dence generally drives up uncertainty of parameter estimates. When similar depen-
dence between ratings exists in real data, then the HRM can be used to correct the
downward bias in standard errors from the IRT Facets model. Wilson and Hoskens
(2001) demonstrate a similar effect, by showing that the model reliability for their
rater bundle model (which also accommodates dependence between raters) was
lower than the model reliability of the Facets model, in both simulated and real data.

5.2 The Grade 5 Florida Mathematics Assessment Rater Study
5.2.1 Items 9, 10, and 11 of the Florida data

We first examine Items 9, 10, and 11, scored in Modality Two in the Florida
mathematics assessment rater study, because this data extract exhibited fairly well-
balanced rater x item design (though as illustrated in Figure 3 the rater X examinee
balance is not very good); each response was rated by two of seven raters. Item
nine was rated in five categories (0—4), and Items 10 and 11 were rated in three
categories (0—2). In Table 5 we report the median and 95% equal-tailed credible
intervals (CIs) for HRM parameters for item difficulty, mean and variance of the
examinee proficiency distribution, and rater bias and variability. (For brevity we show
item step parameter estimates only for the full data analysis in Section 5.2.3).

The item difficulty parameter estimates (Bs) show that item 11 is difficult in
comparison to Items 9 and 10; indeed Item 11°s B;; = 0.84 is quite far from the
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TABLE 5

MCMC Estimated Posterior Median and 95% Equal-Tailed Credible Intervals (Cls)
for the HRM Item Difficulty, Rater, and Examinee Proficiency Mean and Variance
Parameters, for These Items

Parameter Median 95% CI
Item 9 (By) -0.53 (—=0.64,-0.41)
Item 10 (B;0) -0.31 (—=0.44,-0.19)
Item 11 (By,) 0.84 (0.66, 1.02)
Mean (W) -1.31 (-1.51,-1.15)
Variance (6?) 0.84 (0.56, 1.24)
Rater 12

Bias (¢12) -0.27 (—=0.40,-0.18)

Variability (y,) 0.40 (0.27,0.44)
Rater 13

Bias (¢y3) -0.07 (-0.19, 0.05)

Variability (y3) 0.43 (0.37, 0.49)
Rater 15

Bias (¢;5) -0.22 (=0.29,-0.14)

Variability (y,s) 0.43 (0.39, 0.46)
Rater 16

Bias (016) -0.25 (—=0.36,-0.14)

Variability () 0.72 (0.65, 0.79)
Rater 36

Bias (¢36) -0.01 (-0.45,0.44)

Variability (ys36) 0.05 (0.005, 0.26)
Rater 37

Bias (¢37) -0.36 (—=0.49,-0.17)

Variability (y37) 0.24 (0.07, 0.35)
Rater 38

Bias (¢sg) -0.02 (—0.46, 0.44)

Variability (ysg) 0.06 (0.005, 0.26)

Note. Based on 557 student responses to Items 9, 10, and 11 of the Florida Grade 5 Mathematics Assessment.

examinee proficiency distribution mean of [l = —1.31. The extreme difficulty of
Item 11 is already evident in the raw data (see Figure 3): only 43 out of 557 exam-
inees were given a nonzero score by at least one of the raters. More generally, we
note that the mean of {1 = —1.31 the examinee proficiency distribution is low in
comparison to all three item difficulty estimates, confirming the impression from
Figure 3 that all three items are difficult for these examinees.

Turning to the rater parameter estimates in Table 5, we see that all seven rater
bias parameters satisfy | 6, [<0.5. As discussed in Section 3.1, this means that they
are each more likely to score an item in the ideal rating category than any other cat-
egory. Because the ideal rating category is inferred by the HRM from the pooled
rating data, the ideal rating category is essentially a “consensus rating,” and so the
small rater bias parameters suggest that the raters agree on average about how each
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piece of examinee work should be rated. Substantial inter-rater agreement is of
course to be expected from raters selected and trained by an established state
assessment program. Despite this agreement on average, the seven raters are not
equally reliable: Raters 36 and 38 are quite reliable, with low rater variability esti-
mates of 36 = 0.05 and 5 = 0.06, respectively. The other raters have rater vari-
ability estimates ranging from 0.24 to 0.72.

The rater variability estimate s, = 0.72 for Rater 16 is a surprisingly large
value, suggesting that this rater is inconsistent in assigning the same score to work
of the same quality. The evidence presented in Section 5.1, as well as simulation
results not shown here (see Patz, Junker, & Johnson, 1999), suggests that this level
of unreliability within raters can lead to severe shrinkage in the item difficulty and
examinee proficiency estimates in an IRT Facets model, as well as poor 0 estimates
under either HRM or Facets.

The relative inconsistency of rater 16 can be seen more vividly in bar plots depict-
ing the rating probabilities pe. = P[rater r rates category k lideal rating & ]. Figure 4
compares bar plots of ps. for raters » =16, 13, and 38, obtained by substituting the
point estimates of the rater bias and variability parameters in Table 5 into Equation 5.
Each row shows the rating probabilities of each rater, rating items of similar caliber
(represented by the value of § for that row). Looking from one bar plot to the next
within each row, we see that Rater 16 is somewhat more severe, and substantially
more variable, than either Rater 13 or Rater 38; this holds for comparisons of
Rater 16 with other raters as well. Such information could be used to focus diagno-
sis and quality improvement efforts on increasing the internal consistency or relia-
bility of individual raters. Gathering this information through the rating model is
especially important when images of examinee work are sent to raters at remote loca-
tions (say, over a computer network), rather than assembling raters in a single loca-
tion where they can be directly monitored by table leaders, room leaders, and so forth.

Plots of the posterior distributions of the rater bias and variability parameters,
shown in Figures 5a and 5b, can help justify decisions about individual raters by
providing visual assessments of the statistical significance of differences between
raters. Scanning down the column labeled “Bias” in these figures, we see that the
posterior distributions of rater bias for all raters overlap to some extent, suggest-
ing that the evidence for differences in bias among the raters is not strong. There
is some evidence that Raters 12, 15, and 16 are more severe than Rater 13 (this can
also be seen by comparing credible intervals in Table 5) but no substantial differ-
ences can be seen with Raters 36, 37, and 38, whose posterior distributions for rater
bias are more spread out. On the other hand, scanning down the column labeled
“variability” in each figure, we see that the entire posterior distribution for Rater 16’s
variability parameter lies to the right of 0.6, whereas all of the other raters’ vari-
ability parameter posteriors lie to the left of 0.6. On the basis of this data, there-
fore, P[y,s > 0.6] = 1, but for all other raters, P[y, > 0.6] = 0. This is strong
evidence that Rater 16’s internal variability in rating is different from the other
raters, and might well justify a search for causes of this extra variability, including
fatigue, misunderstanding of the scoring rubric, etc.
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FIGURE 4. Bar plots of estimated category rating probabilities Py, = P[rater r rates
category k | ideal rating &) for a five-category item, for Raters 16, 13, and 38 based on
557 students responses to Items 9, 10, and 11 of the Florida Grade 5 Mathematics Assess-
ment. Height of each bar indicates estimated Py, for the ideal rating & indicated at left,
the rating category k indicated on the horizontal axis of each plot, and rater r indicated
at the bottom of each column. Rater bias and variability parameter estimates may be found
in Table 5.
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FIGURE 5a. Histograms of the posterior distributions of rater bias and variability parameters
based on 557 student responses to Items 9, 10 and 11 of the Florida Grade 5 Mathematics Assess-

ment. Each histogram is scaled to have unit area.
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FIGURE 5b. Histograms of the posterior distributions of rater bias and variability
parameters based on 557 student responses to Items 9, 10 and 11 of the Florida Grade 5
Mathematics Assessment. Each histogram is scaled to have unit area.

Finally we point out an issue in model development and estimation methodology
that is vividly revealed in Figures 5a and 5b. The most reliable raters, 36 and 38 in
Figure 5b, have the least-well estimated rater bias parameters; indeed, the poste-
rior distributions for ¢34 and ¢35 appear to be nearly uniform in the range —0.5 to
+0.5. On the other hand the raters with poorer consistency (higher rater variability
estimates) have tighter, clearly unimodal distributions for the bias parameters 0,
see Figure 5a. We believe this is an artifact of using a continuous rating bias param-
eter ¢, to model discrete, whole unit shifts in the observed rating &;, away from the
ideal rating category &;. Since Raters 36 and 38 essentially always score items in
the ideal rating category identified by the HRM, we know their bias parameters ¢,
must be between —0.5 and +0.5; but since they do so with such high consistency,
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there is essentially no information in the data to determine where in this range their
bias parameters ¢ lie.

5.2.2 All assessment items rated in Modality Two

We now turn to an analysis of all eleven items graded in Modality Two. One of
the additional items, Item 2, was scored in five response categories 0—4, and the
remaining 7 were scored in three categories 0-2. A total of 26 raters graded at least
one of the eleven items in Modality Two. The number of ratings per item was two,
and the number of items rated by individual raters ranged from one to three, with
the most common number of items per rater being one.

The item difficulty and examinee proficiency distribution mean and variance
estimates for the PCM underlying the ideal ratings appear in Table 6, and the rater
bias and variability estimates are contained in Table 7. The point estimates for the
item difficulties agree quite well with the difficulty estimates under the Facets
model as reported by Wilson and Hoskens (2001), after a linear transformation to
adjust for different latent proficiency means and variances in the two analyses. The
items and raters analyzed in the smaller, more balanced data set in Section 5.2.1
are indicated by asterisks in these tables. Comparing with Table 5 we see very little
difference in the estimated rater parameters, and small differences in the item dif-
ficulty parameters that seem mostly to be due to the different effects that the sum-
to-zero constraint has on them in the model for 3 items vs. 11 items.

Judging from the PCM estimates in Table 6 we find that Items 3, 6, and 11 are
the most difficult items; referring to the raw data for each item, respectively, 422,

TABLE 6

MCMC Estimated Posterior Median and 95% Equal-Tailed Credible Intervals (Cls) for
HRM Item Difficulties and Examinee Proficiency Mean and Variance Parameters, for
11 Items Rated in Modality Two

Parameter Median 95% CI
Item 1 —0.06 (=0.19, 0.07)
Item 2 -0.25 (—=0.49, 0.12)
Item 3 0.62 (0.43, 0.84)
Item 4 0.08 (=0.14, 0.30)
Item 5 —0.68 (—=0.81,-0.56)
Item 6 0.29 (0.15, 0.43)
Item 7 -0.39 (—0.50,-0.27)
Item 8 -0.27 (=0.41,-0.13)
Item 9% -0.31 (—=0.41,-0.21)
Item 10* -0.08 (—=0.21, 0.04)
Item 11* 1.03 (0.83, 1.25)
Mean -1.05 (-1.15,-0.96)
Variance 0.73 (0.61, 0.88)

Note. Based on two ratings per item response in Modality Two, for each of 557 student responses to 11 items on the
Florida Grade 5 Mathematics Assessment. Items analyzed in the smaller extract in Section 5.2.1 are indicated by aster-
isks (*).
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TABLE 7
MCMC Estimated Posterior Median and 95% Equal-Tailed Credible Intervals (Cls)
for HRM Rater Parameters, for 11 Items Rated in Modality Two

Rater Median 95% CI
Rater 9

Bias -0.03 (=0.15,0.14)

Variability 0.36 (0.28, 0.40)
Rater 11

Bias —0.06 (=0.46, 0.42)

Variability 0.09 (0.01, 0.35)
Rater 10

Bias -0.10 (=0.26,-0.01)

Variability 0.38 (0.27,0.41)
Rater 17

Bias -0.29 (=0.44,-0.15)

Variability 0.78 (0.69, 0.88)
Rater 18

Bias 0.22 (0.09, 0.36)

Variability 0.56 (0.46, 0.69)
Rater 19

Bias —0.60 (-=1.16,-0.26)

Variability 0.76 (0.39, 1.20)
Rater 20

Bias -0.22 (=0.32,-0.10)

Variability 0.40 (0.34, 0.46)
Rater 21

Bias —-0.44 (=0.50,-0.32)

Variability 0.24 (0.05,0.45)
Rater 22

Bias 0.14 (=0.02, 0.45)

Variability 0.31 (0.12,0.38)
Rater 23

Bias —0.06 (=0.13,0.01)

Variability 0.37 (0.34,0.39)
Rater 24

Bias -0.22 (-=0.29,-0.15)

Variability 0.41 (0.35,0.45)
Rater 25

Bias -0.07 (=0.16, 0.02)

Variability 0.38 (0.34,0.42)
Rater 27

Bias -0.20 (=0.46,-0.07)

Variability 0.36 (0.13,0.41)
Rater 28

Bias -0.09 (—0.48, 0.39)

Variability 0.19 (0.01, 0.36)
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TABLE 7 (Continued)

Rater Median 95% CI
Rater 29

Bias —0.10 (=0.18,-0.02)

Variability 0.37 (0.34,0.42)
Rater 30

Bias 0.23 (0.01, 0.47)

Variability 0.27 (0.09, 0.37)
Rater 31

Bias -0.07 (=0.37,0.14)

Variability 0.33 (0.02, 0.38)
Rater 32

Bias 0.18 (0.01, 0.36)

Variability 0.34 (0.22,0.42)
Rater 33

Bias 0.04 (=0.07,0.17)

Variability 0.37 (0.32,0.41)
Rater 12*

Bias -0.26 (—=0.35,-0.18)

Variability 0.40 (0.33,0.44)
Rater 13*

Bias -0.09 (=0.19, 0.02)

Variability 0.42 (0.38,0.48)
Rater 15*

Bias -0.22 (—=0.29, -0.15)

Variability 0.43 (0.39, 0.46)
Rater 16*

Bias —-0.26 (=0.36,-0.15)

Variability 0.71 (0.66, 0.79)
Rater 36*

Bias -0.01 (—=0.45,0.43)

Variability 0.05 (0.003, 0.27)
Rater 37*

Bias —0.36 (=0.49,-0.17)

Variability 0.24 (0.06, 0.35)
Rater 38%*

Bias -0.05 (—=0.45,0.44)

Variability 0.06 (0.007, 0.25)

Note. Based on two ratings per item response in Modality Two for each of 557 student responses to 11 items on the
Florida Grade 5 Mathematics Assessment. Raters analyzed in our initial analysis of Items 9, 10, and 11 (Table 5) are
marked with asterisks(*).
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443, and 514 examinees out of 557 were assigned a score of 0 by both raters. Items 5,
7, 8, and 9 appear to be the least difficult of the Mathematics exam items. For Item 5,
the easiest of these items as determined by the PCM difficulty parameter estimates,
both raters assigned the highest possible score to 140 of the 557 examinees that they
both scored. As noted in the analysis of Items 9, 10 and 11 in Section 5.2.1, the
mean [ of the examinee proficiency distribution was quite low, relative to the dif-
ficulty of the items. We also note that, as expected, the confidence interval for L is
smaller when using all eleven items than when using only the last three items.

Finally, we examine the performance of the 26 raters in Modality Two. All
raters, with the exception of Rater 19, appear to be in agreement with one another,
in the sense that their rater bias parameters 0, all have point estimates between —0.5
and +0.5: they are all more likely to give the examinee a score equal to the ideal
rating category than any other score. The point estimate for Rater 19’s bias param-
eter ¢ is —0.60. At this value of the bias parameter Rater 19 becomes more likely
to score examinees’ responses one category lower than the ideal rating category.

Rater 11, Rater 36, and Rater 38 are very reliable, with rater variability param-
eter (Y,) estimates of 0.09, 0.05 and 0.06, respectively. These raters essentially
always score examinee work in the category k nearest to & + ¢. On the other hand,
Raters 16, 17, and Rater 19 have variability estimates that seem high in compari-
son to the others. This suggests that the individual reliability or consistency of these
raters is poor: such a rater would be less likely to give consistent ratings on sepa-
rate reads of equivalent examinee work.

5.2.3 The full Florida data set

Finally, we examine the full FCAT data set, in which all eleven items were rated
twice in each of three rating modalities, for a total of six ratings per item using a
pool of 38 raters. Table 8 contains the estimated HRM rater parameters.

The modalities of those raters who rated in one modality only are identified in bold
face type. In addition, the raters from our initial analysis of Items 9, 10, and 11 in
Modality Two only are indicated again by asterisks. Comparing the starred raters
in Table 8 with the parameter estimates in Table 5, and with the starred entries in
Table 7, we see that estimates of these raters’ parameters are all fairly stable across
the three fits, except for Rater 36. This rater’s bias parameter stays fairly stable, mov-
ing only from —0.01 to 4+0.05, but the rater’s original variability estimate of 0.05 is
now replaced by an estimate of 0.37. This suggests a fair amount of disagreement
between Rater 36, who only rates in Modality Two, and raters in other modalities,
but no strong trend in the direction of disagreement. Some corroboration of this inter-
pretation is suggested in Table 2 and Figure 3, where, for example, Rater 36 disagrees
relatively often on Item 10 with Raters 12 and 15, who also rated in Modality Three.

The item parameter estimates for the PCM layer of the HRM are listed in Table 9.
The item difficulty parameter estimates (s) are quite similar to those of the Modal-
ity Two based estimates of Table 6; the primary difference is that the item diffi-
culties are somewhat more spread out in Table 9, compared to Table 6. All of
the item difficulties are above the estimated mean of the examinee proficiency
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MCMC Estimated Posterior Median and 95% Equal-Tailed Credible Intervals (Cls)

for HRM Rater Parameters, for 11 Items Rated in all Modalities

Rater Median 95% CI
Rater 1, Modality 1

Bias -0.10 (-=0.21, 0.01)

Variability 0.42 (0.38, 0.47)
Rater 2, Modality 1

Bias 0.00 (—=0.03, 0.03)

Variability 0.48 (0.46, 0.50)
Rater 3, Modality 1

Bias -0.13 (—=0.16,-0.09)

Variability 0.43 041, 0.44)
Rater 4, Modality 1

Bias -0.07 (=0.10,-0.04)

Variability 0.51 (0.49, 0.53)
Rater 5, Modality 1

Bias -0.09 (—=0.12,-0.06)

Variability 0.44 (0.43, 0.45)
Rater 6, Modality 1

Bias —0.05 (-0.09, -0.02)

Variability 0.49 0.47,0.51)
Rater 7, Modality 1

Bias -0.09 (—=0.13,-0.04)

Variability 0.43 (0.41, 0.45)
Rater 8, Modality 3

Bias -0.27 (—0.43,-0.18)

Variability 0.42 (0.23, 0.48)
Rater 9

Bias -0.22 (-=0.27,-0.17)

Variability 0.46 (0.43, 0.48)
Rater 10

Bias -0.04 (—=0.09, 0.01)

Variability 0.43 (0.41, 0.45)
Rater 11

Bias -0.02 (—=0.09, 0.04)

Variability 0.37 (0.34, 0.39)
Rater 12*

Bias -0.22 (=0.26,—0.17)

Variability 0.47 (0.45, 0.50)
Rater 13*

Bias -0.08 (—=0.12,-0.05)

Variability 0.52 (0.50, 0.54)
Rater 14, Modality 3

Bias -0.12 (-0.17,-0.07)

Variability 0.53 (0.51, 0.57)
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Rater Median 95% CI
Rater 15*

Bias -0.29 (—0.33,-0.25)

Variability 0.47 (0.44, 0.49)
Rater 16*

Bias -0.22 (—=0.26,—0.18)

Variability 0.56 (0.53, 0.58)
Rater 17

Bias -0.30 (—0.34,-0.27)

Variability 0.52 0.49, 0.54)
Rater 18, Modality 2

Bias -0.01 (=0.10, 0.06)

Variability 0.70 (0.65, 0.76)
Rater 19, Modality 2

Bias -0.64 (—0.88, —0.46)

Variability 0.66 (0.53, 0.84)
Rater 20

Bias -0.05 (=0.09, 0.00)

Variability 0.37 (0.36, 0.39)
Rater 21

Bias -0.17 (=0.22,-0.13)

Variability 0.43 (0.41, 0.45)
Rater 22, Modality 2

Bias -0.03 (=0.10, 0.04)

Variability 0.35 (0.33, 0.38)
Rater 23

Bias -0.13 (=0.17,-0.09)

Variability 0.40 (0.39, 0.42)
Rater 24

Bias -0.29 (—=0.33,0.34)

Variability 0.48 (0.45,0.51)
Rater 25

Bias -0.15 (=0.19,-0.10)

Variability 0.48 (0.45, 0.50)
Rater 26, Modality 3

Bias -0.10 (—=0.16,—-0.04)

Variability 0.40 (0.37,0.43)
Rater 27, Modality 2

Bias -0.20 (—=0.28,-0.11)

Variability 0.39 (0.35,0.43)
Rater 28

Bias -0.28 (—=0.34,-0.22)

Variability 0.48 (0.45,0.51)
Rater 29, Modality 2

Bias -0.15 (-0.22,-0.07)

Variability 0.41 (0.38, 0.44)
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TABLE 8 (Continued)

Rater Median 95% CI
Rater 30, Modality 2

Bias -0.07 (—0.14, 0.00)

Variability 0.37 (0.35,0.43)
Rater 31, Modality 2

Bias —0.10 (=0.22,0.02)

Variability 0.35 (0.30, 0.40)
Rater 32, Modality 2

Bias 0.03 (—=0.04, 0.10)

Variability 0.39 (0.36, 0.42)
Rater 33

Bias —0.05 (=0.10, -0.00)

Variability 0.49 (0.46, 0.52)
Rater 34, Modality 3

Bias -0.31 (—=0.40,-0.22)

Variability 0.45 (0.40, 0.50)
Rater 35, Modality 3

Bias —0.30 (=0.38,-0.22)

Variability 0.53 (0.49, 0.58)
Rater 36*, Modality 2

Bias 0.05 (—=0.04, 0.16)

Variability 0.37 (0.33,0.41)
Rater 37*%, Modality 2

Bias —-0.34 (=0.49,-0.13)

Variability 0.24 (0.07,0.34)
Rater 38*, Modality 2

Bias -0.02 (—=0.44,0.43)

Variability 0.06 (0.01, 0.30)

Note. Based on six ratings per item response aggregated over all modalities, for each of 557 student responses to
11 items on the Florida Grade 5 Mathematics Assessment. The modality of raters who rated in only one modality is
indicated in bold; the other raters are rated in both Modalities Two and Three. Raters analyzed in our initial analysis
of Items 9, 10, and 11 (Table 5) are marked with asterisks(*).

distribution, suggesting that these items were relatively difficult for the examinees.
This finding was also suggested by our earlier analyses, and is consistent with
results reported by Sykes, Heidorn, and Lee (1999).

In addition, we have listed the estimated item-step parameters for the PCM layer;
item-step parameters not listed here may be obtained from these via the relevant
sum-to-zero constraint (recall from Section 3.1 that we only estimate K — 2 item-
step parameters for each k-category item). Item 2, for example, has estimated
item-step parameters Y,; = —1.26, Y5, = —0.72, ¥, = 0.54, and ¥,, = 1.26 + 0.72 —
0.64 = 1.34. These item-step parameters are well separated and increase with k, indi-
cating a well-behaved item: ideal rating category 0 is most likely for examinees
whose proficiency 0 is below —1.86 (= 3, + ¥, from Table 9), ideal rating category 1
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TABLE 9

MCMC Estimated Posterior Median and 95% Equal-Tailed Credible Intervals (CI) for
HRM Item Difficulty, Item-step, and Examinee Proficiency Mean and Variance

Parameters
Item Median 95% CI
Item 1

Difficulty B, —-0.02 (=0.16,0.11)

Step 1 v, 0.05 (=0.16, 0.26)
Item 2

Difficulty B, —0.66 (=0.54,-0.77)

Step 1 v —1.26 (—1.53,-0.99)

Step 2 V», -0.72 (=0.99, -0.47)

Step 3 Va3 0.54 (0.25,0.84)
Item 3

Difficulty B; 0.84 (0.65,1.04)

Step 1 73 -0.09 (=0.21, 0.38)
Item 4

Difficulty B, —0.00 (—=0.18, 0.20)

Step 1 vu -1.79 (-2.01,-1.57)
Item 5

Difficulty Bs —-0.67 (=0.79,-0.55)

Step 1 vs; —0.06 (=0.25,0.13)
Item 6

Difficulty B¢ 0.29 (0.15,0.43)

Step 1 Yo 1.43 (1.07, 1.85)
Item 7

Difficulty B, -0.36 (=0.47,-0.25)

Step 1 v 2.43 (1.96, 2.97)
Item 8

Difficulty Bg -0.28 (=0.41,-0.15)

Step 1 ¥g; -0.41 (-=0.60, —0.22)
Item 9

Difficulty B, —-0.28 (=0.38,-0.19)

Step 1 Yo, 0.24 (=0.02,0.51)

Step 2 Yoo —0.54 (-0.86,-0.22)

Step 3 Yos 0.64 (0.20, 1.09)
Item 10

Difficulty B,o 0.05 (—0.08, 0.18)

Step 1 Y20, 0.96 (0.67, 1.26)
Item 11

Difficulty B, 1.09 (0.89, 1.32)

Step 1 Y114 1.44 (0.97, 1.96)
Proficiency

Mean | -1.01 (-1.10,-0.92)

Variance 6> 0.73 (0.60, 0.88)

Note. Based on six ratings per item response aggregated over all modalities, for each of 557 student responses to
11 items on the Florida Grade 5 Mathematics Assessment.
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is most likely for examinees whose proficiency is between —1.86 and —1.38 (= ﬁz
+ Y2, from Table 9), etc.

Several items are not so well behaved: For example, Item 10 has estimated item
step parameters o, = 0.96 and ¥, , = —0.96. For this item, ideal rating category 1 is
never more likely than categories 0 and 2. This is consistent with the observed ratings
shown in Figure 3, where for example, we note that the number of cases in which the
raters shown there agreed on a category 1 rating is about half as large as the number
of cases in which they agreed on a category 2 rating (they agreed on category 0 about
ten times more often; since with estimated difficulty 3, =0.05 this item was relatively
difficult for the examinees, whose estimated mean proficiency was [L=—1.01 with
SD 6= 0.85). Indeed, middle categories appear to be severely under-used in all of
these items, except for 2, 4, and possibly 8; this may suggest revisiting the item con-
tent, scoring rubrics, and/or rater training procedures and materials, for these items.

5.2.4 Modality effects

The FCAT study was designed to explore effects of rating modality (how items are
assigned to each rater) on rating behavior. It is difficult to see what these effects
are by scanning down Table 8, especially since some raters rated in more than one
modality. We can consider aggregate effects of modality on rater bias and rater
variability by replacing the original rater bias (¢,) and rater variability (y,) param-
eters with parameters ¢,,, and y,,,, defined as:

log y,,, = log v, + log T, (8)

This allows both rater-specific bias (¢! ) and variability (y?) and modality-specific
bias (1,,) and variability (t,,) effects (see Mariano, 2002, for elaboration and expan-
sion of this idea). The assignment of raters to modalities in the FCAT study (see
Table 2) creates two distinct groups of raters, those who rated exclusively in Modal-
ity One and those who rated in Modalities Two and Three. Raters who rated only
in Modality One are represented in the design matrix for each additive-effects
model in Equation 8 as a single row, for example

rater modality
—N
(00010000000000000000000000000000000000 100).

while those who rated in both Modalities Two and Three are represented with a
pair of rows, for example

(00000000000100000000000000000000000000 010) and
(00000000000100000000000000000000000000 001).
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It is readily verified that the complete design matrix, which is the same for both
models in Equation 8, has 53 rows and 41 columns, and is of rank 39. Two lin-
ear constraints are therefore required to identify the models. Since we are inter-
ested in contrasting modality effects, we leave these free and constrain the rater
effects to sum to zero within the group of raters who rated in Modality One
(raters 1-7) and within the group of raters who rated in Modalities Two and
Three (Raters 8—38). For the rater bias model in Equation 8, the constraints are

ZZ: . ¢ =0, and Zii ¢ ®? = 0, and for the rater variability model in Equation 8,

ZZZI Iny! = 0and Xiig Iny! = 0.

Refitting this expansion of the model, using independent N(0, 10) prior distri-
butions on each (I)?, N, lOog IV(,J and log T1,,, we obtained the estimates for modality
components of rater bias and variability shown in Table 10. These estimates sug-
gest an aggregate effect of modality on rating bias. Ratings in Modalities Two and
Three (individual items and blocks of items) tended to be lower (1, =—0.189 and
N3 =—0.148) than ratings of entire 11-item booklets (Modality One, n; =—-0.076),
with no overlap in the 95% CIs. Also, individual item ratings (Modality Two)
appear to be somewhat lower than block item rating (Modality Three), albeit with
substantial overlap in the 95% ClIs. The evidence for corresponding differences in
rater variability also distinguishes Modality One from Modalities Two and Three:
ratings in Modalities Two and Three tend to be less variable (1, =0.401, T; =0.398)
than ratings in Modality One (t, = 0.456), with no overlap in the 95% CIs from
either Modality Two or Three with the 95% CI from Modality One.

5.2.5 The information for scoring examinees in multiple ratings

To illustrate the effects of increasing the number of items and the number of rat-
ings per item on estimates of examinee proficiencies, we examined the 0 estimates
of five examinees taken from the full data set in Section 5.2.3. In Table 11, we have
compared these examinees’ posterior median and equal-tailed 95% CI estimates
for 6, under all three models estimated in Sections 5.2.1, 5.2.2 and 5.2.3. The 95%
CIs using only Items 9, 10, and 11 in Modality Two are widest; these correspond
to J =3 items per examinee and R = 2 ratings per item. The CI widths reduce by a
factor of about two thirds as we move to the complete Modality Two data, for
which J =11 and R = 2. Finally, there is little improvement, or even some degra-
dation, in the CIs as we move to the full dataset using all three modalities, for which
J=1land R=6.

These effects on CI width as we move from 3 to 11 items, and from 2 to 6 raters,
are quite similar to what we would see if we computed CIs for 0 from the normal-
theory model in Equation 1. More surprisingly, the CI widths can actually increase,
as with Subject 175, when we move from the Modality Two data to the full data
set, despite tripling the number of raters. This may in part be due to the multiple-
modality design: although the aggregate differences in Table 10 are not large, there
is some suggestion of less reliability, and perhaps more severity, in ratings in
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TABLE 10
MCMC-Estimated Posterior Median and 95% Credible Intervals (Cls) for Modality
Components of Rater Bias and Rater Variability

Modality (m)
Parameter 1: Booklet 2: One Item 3: 1/3 Booklet
Bias (11,,) -0.076 -0.189 —0.148
95% CI (=0.097, —0.055) (=0.208, —0.164) (—-0.168, —0.120)
Variability (t,,) 0.456 0.401 0.398
95% CI (0.447, 0.465) (0.371,0.431) (0.369, 0.431)

Note. Using the reparameterization in Equation 8, for the group of 38 raters displayed in Table 8.

Modality One vs. the other modalities; this may stem from substantial disagree-
ments about particular subject responses.

Clearly, adding more raters yields a benefit (more raters reduces uncertainty in esti-
mating examinee proficiencies) and a cost (disagreement across modalities in how to
score examinee work increases uncertainty in estimating examinee proficiencies), and
the cost may outweigh the benefit among raters assigned to score Subject 175’s work.
In situations where we are adding raters who share stronger consensus on examinees’

TABLE 11
Comparison of O (proficiency) Estimates for Five Examinees, Under each of the
Three HRM Models Estimated in Section 5

Subject Median 95% CI CI width
Subject 115

Modality 2 (9, 10, 11) -1.83 (-3.23,-0.69) 2.54

Modality 2 -1.98 (-3.21,-1.18) 2.03

Full data -1.85 (-2.89,-0.97) 1.92
Subject 71

Modality 2 (9, 10, 11) -1.29 (-2.77,-0.01) 2.76

Modality 2 —-1.60 (-2.71,-0.67) 2.04

Full data -1.62 (-2.60, -0.81) 1.79
Subject 492

Modality 2 (9, 10, 11) -1.15 (-2.33,-0.12) 221

Modality 2 -1.41 (-2.26,-0.53) 1.73

Full data -1.42 (-2.35,-0.62) 1.73
Subject 313

Modality 2 (9, 10, 11) -1.82 (-3.33,-0.67) 2.66

Modality 2 —-0.90 (-1.76,-0.27) 1.49

Full data -0.93 (-1.75,-0.24) 1.51
Subject 175

Modality 2 (9, 10, 11) -0.56 (-1.63,0.57) 2.20

Modality 2 -0.85 (-1.62,-0.36) 1.26

Full data -0.93 (-1.71,-0.21) 1.50
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work, we might expect to see a more consistent decrease in the standard errors for
examinee proficiencies. Mariano (2002) explores these issues in more detail.

5.3 Model Comparisons

In Table 12 we compare the fits of the IRT Facets model with additive rater
effects to the fit of the HRM model, on the simulated data from Section 5.1 and the
full Florida rater study data from Section 5.2.3. Because the models are not nested
in the usual sense (the IRT Facets model is not obtained by constraining the HRM
parameters in a locally linear way; see discussion at the end of Section 3.2), like-
lihood ratio chi-squared tests cannot be used. Instead, we use a measure of fit
known as the Schwarz (1978) Criterion, also known as the Bayes Information Cri-
terion (BIC) (e.g., Kass & Raftery, 1995). The difference between BIC values for
two models approximates the logarithm of the Bayes Factor, which is often used
for comparing models in Bayesian statistics; the Bayes Factor can be difficult to
compute directly, especially for large models estimated with MCMC methods (see,
for example, DiCiccio, Kass, Raftery, & Wasserman, 1997). For any IRT-like
model with p parameters and sample size N, we calculate the BIC as:

BIC = -2 - log(maximum marginal likelihood) + p * log(N).

We apply this to the marginal HRM after integrating out & and 6.

The BIC can be interpreted as the usual log-likelihood statistic, penalized for
the number of parameters in the model. Any reduction in BIC is considered good,
since the penalty p * log(N) compensates for capitalization on chance; however, a
commonly used rule of thumb (Kass & Raftery, 1995) for Bayes Factors is that a
decrease of 2—6 in this BIC statistic is considered moderately good evidence, and
a change of 10 or more is considered strong evidence, in favor of the model with
the lower BIC.

It is no surprise that in Table 12 the HRM fits better than the Facets model in the
simulated data, since this data was simulated from the HRM itself. The large

TABLE 12
Model Fit Comparisons for the HRM-Simulated Data (Section 5.1) and for the Full Rater
Study Data Set from the Florida Grade 5 Mathematics Assessment (Section 5.2.3)

Parameters Examinees

Model —2log (marginal likelihood) (p) (N) BIC
HRM Simulated Data
IRT Facets 14,505 23 500 14,648
HRM 10,405 27 500 10,573
Florida Data
IRT Facets 55,256 65 557 55,667
HRM (w/o modality) 34,546 103 557 35,198
HRM (with modality) 34,536 105 557 35,200
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change in BIC, a decrease of 4,000 for an increase of only three additional param-
eters (essentially, the three rater variability parameters), is very strong evidence
that the dependence modeled by the HRM cannot somehow be accommodated by
the Facets model. Much more impressive is the decrease of over 20,000 for an in-
crease of 38 parameters (again, essentially the rater variability parameters), in favor
of the HRM in fitting the Florida mathematics assessment rating study data set.
Thus, in the real data too, the HRM is providing a dramatically better fit for the
dependence structure of the data.

Finally, the BIC comparison of the HRM accounting for rating modalities as in
Equation 8 with the HRM without modalities mildly favors the no-modality model.
This seems inconsistent with our earlier results (Table 10) showing clear bias and
variability differences between Modality One and Modalities Two and Three. To
reconcile these results, we note that, because of the nesting of raters within Modal-
ity One and Modalities Two and Three, the no-modality model can already accom-
modate additive effects distinguishing Modality One from the other two modalities.
For example, averaging the bias of the seven Modality One raters provides the bias
attributable to Modality One. For this data, the modality model in Equation 8 adds
flexibility only in distinguishing Modality Two from Modality Three. Therefore,
the BIC’s lack of preference for the modality model is precisely a lack of preference
for modeling distinctions between Modalities Two and Three, which is entirely con-
sistent with the overlapping CIs in Table 10. Further comparisons employing
explicit calculation of Bayes Factors (Mariano, 2002) yield similar conclusions.

6. Discussion

In this article we have implemented Patz’s (1996) hierarchical rater model
(HRM) for polytomously scored item response data, so that it can be employed
with data sets approaching the sizes of those encountered in large-scale educational
assessments, or at least in rater studies supporting those assessments. We have
shown how the HRM “fits in” to the generalizability theory framework that has
been the traditional analysis tool for rated item response data. Indeed, the HRM is
a standard generalizability theory model for rating data, with IRT distributions
replacing the normal theory true score distributions that are usually implicit in infer-
ential applications of the model. Observed ratings are related to ideal ratings of each
piece of student work through a simple signal detection model that can be further
parameterized to be sensitive to individual rater severity and reliability effects, and
ideal ratings are related to latent examinee proficiency via a conventional IRT model
such as the Partial Credit Model.

The HRM is one of several current approaches to correcting this underestimation
of standard errors for estimating examinee proficiency, as reported by Patz (1996),
Junker and Patz (1998), Donoghue and Hombo (2000a; 2000b), and others. Bock,
Brennan, and Muraki (1999) construct a generalizability theory based “design
effects” correction for the conventional IRT Facets model, and Wilson and Hoskens
(2001) replace the conditional independence assumptions of the conventional IRT
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Facets model with a rater bundle model analogous to Rosenbaum’s (1988) item
bundles. Verhelst and Verstralen’s (2001) IRT model for multiple raters is also
closely related to the HRM.

Using polytomous response data simulated from the HRM, we showed that the
HRM is effective at item and rater parameter recovery, and displayed some biases
in IRT Facets model (Linacre, 1989) item parameter estimates that we believe occur
when some raters are relatively unreliable or inconsistent in their ratings. In addi-
tion, both models produce interval estimates for examinee proficiencies that capture
the true O values, but the IRT Facets model substantially underestimates interval
widths relative to the HRM.

We also examined successively larger data extracts from a study of three differ-
ent rating modalities intended to support a Grade 5 mathematics assessment given in
the State of Florida (Sykes, Heidorn, & Lee 1999), and showed how the current
implementation of the HRM can be used to scale items and examinees, and learn
about rater quality. Using Schwarz’s (1987; see also Kass and Raftery, 1995) Infor-
mation Criterion we showed that the HRM fits data from this study far better than the
IRT Facets model, suggesting that the dependence between multiple ratings of the
same student work that the Facets model fails to capture is an important component
of multiple-rating assessment data.

The parameterization of the HRM used in this article emphasizes raters’ indi-
vidual severity and reliability. One natural set of extensions of our parameterization
of the HRM would allow us to assess effects and interactions among rater back-
ground variables, examinee background variables, item features, and time of rating.
Such analyses within the HRM only require that the relevant covariates be collected,
and then incorporated as in Equation 8 into the model. Our exploration of rating
modality in the Florida rating study is an example of this type of analysis. Rater drift
over time, rating table effects in a centralized rating system, and halo effects, might
all be analyzed in this way.

Other questions may be handled by a more radical reparameterization of the
probabilities in Table 1. To explore over-use of inner categories of a rating scale,
for example, one might allow the rater bias parameter to depend on the ideal rat-
ing category as well as the rater. The new bias parameter ¢,: would be expected to
be positive for ideal categories below the middle one, and negative for ideal cate-
gories above it. Differential reliability across categories, for example due to dis-
agreement only about what constitutes a poor performance, might be handled with
a similar modification of the rater variability parameter. Either phenomenon might
be modeled to operate only for particular items. In addition, the unimodal shape
suggested by Equation 5 might be replaced with some other shape.

We expect that as digital imaging technology improves, decentralized online
scoring may replace centralized scoring sessions where all raters are in one room,
supervised closely at separate tables by table leaders. In a decentralized scoring
system, raters work on their own in front of a computer terminal at a location of
their choosing. A supervisor is online to provide assistance when needed, but much
of the valuable qualitative information that supervisors in centralized scoring ses-
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sions use to monitor and maintain rating quality—raters’ body language, raters flip-
ping back and forth from the rubrics to the student work, discussion with raters of
difficult-to-rate cases—is not available. Consequently, there is greater opportunity
for raters to get off track and less opportunity to quickly bring them back into the
fold when they stray, unless supervisors have adequate statistical tools to monitor
rater performance at a distance. Multiple ratings can provide the data needed for
adequate statistical monitoring on the basis of rating data alone, as well as provid-
ing some improvement in the precision of estimation of examinee proficiencies.
We hope that the HRM, and similar approaches such as that of Wilson and Hoskens
(2001) and Verhelst and Verstralen (2001) that appropriately account for depen-
dence between ratings, can provide the basis for statistical monitoring in distributed
rating systems.
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