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Preface

As T was writing my recent book on regression analysis (Berk, 2003), I was
struck by how few alternatives to conventional regression there were. In the
social sciences, for example, one either did causal modeling econometric style
or largely gave up quantitative work. The life sciences did not seem quite
so driven by causal modeling, but causal modeling was a popular tool. As I
argued at length in my book, causal modeling as commonly undertaken is a
loser.

There also seemed to be a more general problem. Across a range of scien-
tific disciplines there was too often little interest in statistical tools emphasiz-
ing induction and description. With the primary goal of getting the “right”
model and its associated p-values, the older and interesting tradition of ex-
ploratory data analysis had largely become an under-the-table activity; the
approach was in fact commonly used, but rarely discussed in polite company.
How could one be a real scientist, guided by “theory” and engaged in deduc-
tive model testing, while at the same time snooping around in the data to
determine which models to test? In the battle for prestige, model testing had
won.

Around the same time, I became aware of some new developments in ap-
plied mathematics, computer sciences, and statistics making data exploration
a virtue. And with the virtue came a variety of new ideas and concepts, cou-
pled with the very latest in statistical computing. These new approaches, var-
iously identified as “data mining,” “statistical learning,” “machine learning,”
and other names, were being tried in a number of the natural and biomedical
sciences, and the initial experience looked promising.

As T started to read more deeply, however, I was struck by how difficult
it was to work across writings from such disparate disciplines. Even when the
material was essentially the same, it was very difficult to tell if it was. Each
discipline brought it own goals, concepts, naming conventions, and (maybe
worst of all) notation to the table.

In the midst of trying to impose some of my own order on the material,
I came upon The Elements of Statistical Learning, by Trevor Hastie, Robert
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Tibshirani, and Jerome Friedman (Springer-Verlag, 2001). I saw in the book
a heroic effort to integrate a very wide variety of data analysis tools. I learned
from the book and was then able to approach more primary material within
a useful framework.

This book is my attempt to integrate some of the same material and some
new developments of the past six years. Its intended audience is practitioners
in the social, biomedical, and ecological sciences. Applications to real data
addressing real empirical questions are emphasized. Although considerable ef-
fort has gone into providing explanations of why the statistical procedures
work the way they do, the required mathematical background is modest. A
solid course or two in regression analysis and some familiarity with resampling
procedures should suffice. A good benchmark for regression is Freedman’s Sta-
tistical Models: Theory and Practice (2005). A good benchmark for resampling
is Manly’s Randomization, Bootstrap, and Monte Carlo Methods in Biology
1997. Matrix algebra and calculus are used only as languages of exposition,
and only as needed. There are no proofs to be followed.

The procedures discussed are limited to those that can be viewed as a form
of regression analysis. As explained more completely in the first chapter, this
means concentrating on statistical tools for which the conditional distribution
of a response variable is the defining interest and for which characterizing the
relationships between predictors and the response is undertaken in a serious
and accessible manner.

Regression analysis provides a unifying theme that will ease translations
across disciplines. It will also increase the comfort level for many scientists
and policy analysts for whom regression analysis is a key data analysis tool.
At the same time, a regression framework will highlight how the approaches
discussed can be seen as alternatives to conventional causal modeling.

Because the goal is to convey how these procedures can be (and are being)
used in practice, the material requires relatively in-depth illustrations and
rather detailed information on the context in which the data analysis is being
undertaken. The book draws heavily, therefore, on datasets with which I am
very familiar. The same point applies to the software used and described.

The regression framework comes at a price. A 2005 announcement for a
conference on data mining sponsored by the Society for Industrial and Ap-
plied Mathematics (STAM) listed the following topics: query/constraint-based
data mining, trend and periodicity analysis, mining data streams, data re-
duction/preprocessing, feature extraction and selection, postprocessing, col-
laborative filtering/personalization, cost-based decision making, visual data
mining, privacy-sensitive data mining, and lots more. Many of these topics
cannot be considered a form of regression analysis. For example, procedures
used for edge detection (e.g., determining the boundaries of different kinds of
land use from remote sensing data) are basically a filtering process to remove
noise from the signal.

Another class of problems makes no distinction between predictors and
responses. The relevant techniques can be closely related, at least in spirit, to
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procedures such as factor analysis and cluster analysis. One might explore, for
example, the interaction patterns among children at school: who plays with
whom. These too are not discussed.

Other topics can be considered regression analysis only as a formality. For
example, a common data mining application in marketing is to extract from
the purchasing behavior of individual shoppers patterns that can be used to
forecast future purchases. But there are no predictors in the usual regression
sense. The conditioning is on each individual shopper. The question is not
what features of shoppers predict what they will purchase, but what a given
shopper is likely to purchase.

Finally, there are a large number of procedures that focus on the condi-
tional distribution of the response, much as with any regression analysis, but
with little attention to how the predictors are related to the response (Horvath
and Yamamoto, 2006; Camacho et al., 2006). Such procedures neglect a key
feature of regression analysis, at least as discussed in this book, and are not
considered. That said, there is no principled reason in many cases why the
role of each predictor could not be better represented, and perhaps in the near
future that shortcoming will be remedied.

In short, although using a regression framework implies a big-tent ap-
proach to the topics included, it is not an exhaustive tent. Many interesting
and powerful tools are not discussed. Where appropriate, however, references
to that material are provided.

I'may have gone a bit overboard with the number of citations I provide. The
relevant literatures are changing and growing rapidly. Today’s breakthrough
can be tomorrow’s bust, and work that by current thinking is uninteresting
can be the spark for dramatic advances in the future. At any given moment,
it can be difficult to determine which is which. In response, I have attempted
to provide a rich mix of background material, even at the risk of not being
sufficiently selective. (And I have probably missed some useful papers never-
theless.)

In the material that follows, I have tried to use consistent notation. This
has proved to be very difficult because of important differences in the concep-
tual traditions represented and the complexity of statistical tools discussed.
For example, it is common to see the use of the expected value operator even
when the data cannot be characterized as a collection of random variables and
when the sole goal is description.

I draw where I can from the notation used in The Elements of Statisti-
cal Learning (Hastie et al., 2001). Thus, the symbol X is used for an input
variable, or predictor in statistical parlance. When X is a set of inputs to
be treated as a vector, each component is indexed by a subscript (e.g., X;).
Quantitative outputs, also called response variables, are represented by Y,
and categorical outputs, another kind of response variable, are represented by
G with K categories. Upper case letters are used to refer to variables in a
general way, with details to follow as needed. Sometimes these variables are
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treated as random variables, and sometimes not. I try to make that clear in
context.

Observed values are shown in lower case, usually with a subscript. Thus z;
is the ith observed value for the variable X. Sometimes these observed values
are nothing more than the data on hand. Sometimes they are realizations of
random variables. Again, I try to make this clear in context.

Matrices are represented in bold uppercase. For example, in matrix form
the usual set of p predictors, each with N observations, is an N X p matrix
X. The subscript i is generally used for observations and the subscript j for
variables. Bold lowercase letters are used for vectors with N elements, com-
monly columns of X. Other vectors are generally not represented in boldface
fonts, but again, I try to make this clear in context.

If one treats Y as a random variable, its observed values y are either a
random sample from a population or a realization of a stochastic process.
The conditional means of the random variable Y for various configurations of
X-values are commonly referred to as “expected values,” and are either the
conditional means of Y for different configurations of X-values in the popula-
tion or for the stochastic process by which the data were generated. A common
notation is E(Y|X). The E(Y|X) is also often called a “parameter.” The con-
ditional means computed from the data are often called “sample statistics,” or
in this case, “sample means.” In the regression context, the sample means are
commonly referred to as the fitted values, often written as §|X. Subscripting
can follow as already described.

Unfortunately, after that it gets messier. First, I often have to decipher
the intent in the notation used by others. No doubt I sometimes get it wrong.
For example, it is often unclear if a computer algorithm is formally meant to
be an estimator or a descriptor.

Second, there are some complications in representing nested realizations
of the same variable (as in the bootstrap), or model output that is subject
to several different chance processes. There is a practical limit to the number
and types of bars, asterisks, hats, and tildes one can effectively use. I try to
provide warnings (and apologies) when things get cluttered.

There are also some labeling issues. When I am referring to the general
linear model (i.e., linear regression, analysis of variance, and analysis of co-
variance), I use the terms classical linear regression, or conventional linear
regression. All regressions in which the functional forms are determined be-
fore the fitting process begins, I call parametric. All regressions in which the
functional forms are determined as part of the fitting process, I call nonpara-
metric. When there is some of both, I call the regressions semiparametric.
Sometimes the lines among parametric, nonparametric, and semiparametric
are fuzzy, but I try to make clear what I mean in context. Although these
naming conventions are roughly consistent with much common practice, they
are not universal.

All of the computing done for this book was undertaken in R. R is a
programming language designed for statistical computing and graphics. It has



Preface XI

become a major vehicle for developmental work in statistics and is increasingly
being used by practitioners. A key reason for relying on R for this book is that
most of the newest developments in statistical learning and related fields can
be found in R. Another reason is that it is free.

Readers familiar with S or S-plus will immediately feel at home; R is basi-
cally a “dialect” of S. For others, there are several excellent books providing a
good introduction to data analysis using R. Dalgaard (2002), Crawley (2007),
and Maindonald and Braun (2007) are all very accessible. Readers who are es-
pecially interested in graphics should consult Murrell (2006). The most useful
R website can be found at http://www.r-project.org/.

The use of R raises the question of how much R-code to include. The
R-code used to construct all of the applications in the book could be made
available. However, detailed code is largely not shown. Many of the procedures
used are somewhat in flux. Code that works one day may need some tweaking
the next. As an alternative, the procedures discussed are identified as needed
so that detailed information about how to proceed in R can be easily obtained
from R help commands or supporting documentation. In addition, there is
a web site where many examples, including the data, can be found (WEB
ADDRESS TO BE ADDED). When the data used in this book are proprietary
or otherwise not publicly available, similar data and appropriate R-code are
substituted.

There are exercises at the end of each chapter. They are meant to be hands-
on data analyses built around R. As such, they require some facility with R.
However, the goals of each problem are reasonably clear so that other software
and datasets can be used. Often the exercises can be usefully repeated with
different datasets.

The book has been written so that later chapters depend substantially
on earlier chapters. For example, because classification and regression trees
(CART) can be an important component of boosting, it may be difficult to
follow the discussion of boosting without having read the earlier chapter on
CART. However, readers who already have a solid background in material
covered earlier should have little trouble skipping ahead. The notation and
terms used are reasonably standard or can be easily figured out. In addition,
the final chapter can be read at almost any time. One reviewer suggested that
much of the material could be usefully brought forward to Chapter 1.

Finally, there is the matter of tone. The past several decades have seen
the development of a dizzying array of new statistical procedures, sometimes
introduced with the hype of a big-budget movie. Advertising from major sta-
tistical software providers has typically made things worse. Although there
have been genuine and useful advances, none of the techniques have ever lived
up to their most optimistic billing. Widespread misuse has further increased
the gap between promised performance and actual performance. In this book,
therefore, the tone will be cautious, some might even say dark. I hope this will
not discourage readers from engaging seriously with the material. The intent



XII Preface

is to provide a balanced discussion of the limitations as well as the strengths
of the statistical learning procedures.

While working on this book, I was able to rely on support from several
sources. Much of the work was funded by a grant from the National Science
Foundation: SES-0437169, “Ensemble Methods for Data Analysis in the Be-
havioral, Social and Economic Sciences.” The first draft was completed while
I was on sabbatical at the Department of Earth, Atmosphere, and Oceans, at
the Ecole Normale Supérieur in Paris. The second draft was completed after
I moved from UCLA to the University of Pennsylvania. All three locations
provided congenial working environments. Most important, I benefited enor-
mously from discussions about statistical learning with colleagues at UCLA,
Penn and elsewhere: Larry Brown, Andreas Buja, Jan de Leeuw, David Freed-
man, Mark Hansen, Andy Liaw, Greg Ridgeway, Bob Stine, Mikhail Traskin
and Adi Wyner. Each is knowledgeable, smart and constructive. I also learned
a great deal from several very helpful, anonymous reviews. Dick Koch was
enormously helpful and patient when I had problems making TeXShop per-
form properly. Finally, I have benefited over the past several years from in-
teracting with talented graduate students: Yan He, Weihua Huang, Brian
Kriegler, and Jie Shen. Brian Kriegler deserves a special thanks for working
through the exercises at the end of each chapter.

Certain datasets and analyses were funded as part of research projects un-
dertaken for the California Policy Research Center, The Inter-America Trop-
ical Tuna Commission, the National Institute of Justice, the County of Los
Angeles, the California Department of Correction and Rehabilitation, the Los
Angeles Sheriff’s Department, and the Philadelphia Department of Adult Pro-
bation and Parole. Support from all of these sources is gratefully acknowl-
edged.
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1

Statistical Learning as a Regression Problem

1.1 Getting Started

As a first approximation, one can think of statistical learning as the “muscle
car” version of Exploratory Data Analysis (EDA). Just as in EDA | the data
are approached with relatively little prior information and examined in a
highly inductive manner. Knowledge discovery can be a key goal. But thanks
to the enormous developments in computing power and computer algorithms
over the past two decades, it is possible to extract information that would
have previouslybeen inaccessible. In addition, because statistical learning has
evolved in a number of different disciplines, its goals and approaches are far
more varied than conventional EDA.

In this book, the focus is on statistical learning procedures that can be
understood within a regression framework. For a wide variety of applications,
this will not pose a significant constraint and will greatly facilitate the exposi-
tion. The researchers in statistics, applied mathematics and computer science
responsible for most statistical learning techniques often employ their own dis-
tinct jargon and have a penchant for attaching cute, but somewhat obscure,
labels to their products: bagging, boosting, bundling, random forests, the
lasso, and others. There is also widespread use of acronyms: CART, MARS,
MART, LARS, and many more. A regression framework provides a conve-
nient and instructive structure in which these procedures can be more easily
understood.

After a brief discussion of how statisticians think about regression analysis,
the chapter introduces a number of key concepts and raises broader issues that
reappear in later chapters. It may be a little difficult for some readers to follow
parts of the discussion, or its motivation, the first time around. However, later
chapters will flow far better with some this preliminary material on the table,
and readers are encouraged to return to this chapter as needed.

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_1, (© Springer Science+Business Media, LLC 2008
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1.2 Setting the Regression Context

We begin with a brief consideration of what regression analysis is. A knee-
jerk response in many academic disciplines and policy applications may be
to equate regression analysis with causal modeling. This is too narrow and
even misleading. Causal modeling is actually an interpretive framework that
is imposed on the results of a regression analysis. An alternative knee-jerk
response may be to equate regression analysis with the general linear model.
At most, the general linear model can be seen as a special case of regression
analysis.

Statisticians commonly define regression so that the goal is to understand
“as far as possible with the available data how the conditional distribution
of some response y varies across subpopulations determined by the possible
values of the predictor or predictors” (Cook and Weisberg, 1999: 27). That
is, interest centers on the distribution of the response variable Y conditioning
on one or more predictors X.

This definition includes a wide variety of elementary procedures easily
implemented in R. (See, for example, Maindonald and Braun, 2007: Chapter
2.) For example, consider Figures 1.1 and 1.2. The first shows the distribution
of SAT scores for recent applicants to a major university, who self-identify
as “Hispanic.” The second shows the distribution of SAT scores for recent
applicants to that same university, who self-identify as “Asian.”

SAT Scores for Hispanic Applicants
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Fig. 1.1. Distribution of SAT scores for Hispanic applicants.

It is clear that the two distributions differ substantially. The Asian dis-
tribution is shifted to the right, leading to a distribution with a higher mean
(1227 compared to 1072), a smaller standard deviation (170 compared to 180),
and greater skewing. A comparative description of the two histograms alone
constitutes a proper regression analysis. Using various summary statistics,

some key features of the two displays are compared and contrasted (Berk,
2003: Chapter 1).
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SAT Scores for Asian Applicants
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Fig. 1.2. Distribution of SAT scores for Asian applicants.

Should one be especially interested in a comparison of the means, one could
proceed descriptively with a conventional least squares regression analysis as
a special case. That is, for each observation i, one could let

Yi = Bo + P, (1.1)

where the response variable y; is each applicant’s SAT score, x; is an indicator
variable coded “1” if the applicant is Asian and “0” if the applicant is Hispanic,
Bo is the mean SAT score for Hispanic applicants, 81 is how much larger (or
smaller) the mean SAT score for Asian applicants happens to be, and i is an
index running from 1 to the number of Hispanic and Asian applicants, N.
Here, By = 1072 and 3; = (1227 — 1072) = 155.

One can reverse the roles of the two variables and undertake another le-
gitimate kind of regression analysis. Figure 1.3 shows a scatterplot with the
SAT score on the horizontal axis and on the vertical axis an indicator variable
coded “1”7 if the applicant self-identifies as Asian and “0” if the applicant
self-identifies as Hispanic. The points in the plot have been jittered vertically
to make the scatterplot easier to to read. Jittering adds a bit of noise to each
observation, in this case for the Asian indicator variable.

Because the higher points in Figure 1.3 (around 1.0) are to the right of
the lower points (around 0.0), the proportion of Asians increases moving from
left to right. That is, the conditional proportion increases with SAT score.
A least squares regression line overlaid on the scatterplot can quantify the
association. It is of the same form as Equation 1.1 with the roles of Y and X
exchanged. The slope, (31, indicates that for each additional 100 SAT points,
Asian representation, compared to Hispanics, increases about 8% on the av-
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Asian Applicant by SAT Score
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Fig. 1.3. Asian Applicants by SAT Score

erage. The intercept, g, is in this case a negative number, indicating that
using a straight line may not be the best way to describe the relationship. An
S-shaped function such as the logistic curve might do a better job. Moving to
logistic regression would have still been a regression analysis.

There is no requirement that either variable be measured on an equal
interval scale. Both variables can be categorical. Table 1.1 shows a cross-
tabulation, using those same college applicants, for whether the applicant self-
identifies as African-American and whether the applicant falls within a special
admissions category of “athlete.” The athlete designation usually places the
applicant in a special pool that only includes other athletes.

It is readily apparent from the marginal distributions that athlete appli-
cants and African-American applicants represent very small fractions of the
total number of applicants (about .6% and 4.6%, respectively). One can also
see from the within-row percentages that 2.1% of all African-American appli-
cants are designated as athletes whereas around .5% of all other applicants
are. This is a difference of 1.6%. Stated differently, African-American appli-
cants are over four times more likely to be placed in the athlete applicant
pool.

Table 1.1 is another example of a regression analysis. The proportion
placed in the athlete applicant pool is computed conditional on whether the
applicant self-identifies as African-American. And as before, one can arrive
at the very same results with a least squares regression analysis. In Equa-
tion 1.1, the response y; is an indicator variable coded “1” if the applica-
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Not an Athlete (%)|Athlete (%)|Row Percentage
Not Black 99.5 0.5 95.3
Black 97.9 2.1 4.6
Column Percentage 99.4 0.6 100=96,277

Table 1.1. Ethnicity by athlete designation.

tion is placed in the athlete pool and coded “0” otherwise. The explana-
tory variable x; is an indicator variable coded “1” if the applicant is self-
identifies as African-American and “0” if not. The value of [y is then .005,
and 3, = .021 — .005 = .016.

Figure 1.4 displays the most familiar kind of plot for regression analysis.
The SAT score is plotted against an applicant’s household income, with the
regression line overlaid. Both variables are on an equal interval scale. The
scatterplot was constructed for a random sample of 500 applicants to make
the graph more legible.

SAT Score by Household Income
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Fig. 1.4. SAT scores by family income.

As one moves from left to right, one can see how the conditional mean
of the SAT score (y;) changes with the household income (z;). The value
of By is about 1200, which is the mean SAT score for households with no
reported income. In this instance, it is not clear that the value of 3y makes
any substantive sense, but it is needed to locate the regression line. For each
$1000 of income, the mean SAT score increases about 1 point. But note that
families with more than $100,000 of income are treated as having no more
than $100,000 of income (because of the way the application forms are filled
out). Consequently, the slope would be perhaps a little steeper than had the
full range of income figures been available.
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High School GPA
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Fig. 1.5. Freshman GPA on SAT holding high school GPA constant.

Each of the four examples could easily have included more than one pre-
dictor. For example, Figure 1.5 shows a conditioning plot, sometimes called
a “coplot” (Cleveland, 1993: 182-190). There are scatterplots of the Grade
Point Average (GPA) of college freshmen, from that same university, against
their SAT scores, holding constant their high school GPA. The scatterplots
are read left to right starting with the bottom row. For the second row, one
starts with the first plot on the left side. The conditioning subsets, defined by
high school GPA, are shown in the top panel. The spans of the conditioning
variable and amount of overlap between the subsets have been tuned to allow
for a sufficient number of observations in each.

One can see that there is a positive association between SAT score and
freshman GPA, within ranges of high school GPA. Holding the high school
GPA approximately constant, the SAT score is related to performance in
the first year of college. One can also see that the plots shift upward as one
moves from the lower-left corner to the upper-right corner, indicating that the
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high school GPA is also positively related to performance in the first year of
college, holding the SAT score constant. Note, for instance, that the vertical
slice of points at an SAT score of 1200 rises toward the upper boundary of
the plots. Finally, there is apparently a ceiling effect of the 4.0 upper limit for
freshman GPA in the top three graphs, implying that the relationship between
SAT score and freshman GPA would probably be stronger if students who
performed especially well could receive grades higher than 4.0. More precise
statements of these sorts could be made by adding a second predictor to a
regression equation of the form shown in Equation 1.1.

There are several broad lessons in these initial illustrations. First, regres-
sion analysis seeks to characterize conditional distributions. The response vari-
able and the predictors can be categorical or quantitative variables. That’s the
long and the short of it.

Second, within that definition, one is free to choose whatever procedures
seem to be the most useful. Graphs, for instance, are not automatically better
or worse than numerical summaries, and a wide variety of each can be helpful,
at least in principle. The choice depends on the nature of the information to be
extracted from the data and the audience for the results. For example, graphs
can be more effective than numerical summaries when broad patterns in the
data are more important than a few precise values. If numerical summaries are
desirable, there are no necessary restrictions on the functional forms used or
on how the numbers are computed. Classical linear regression is just a special
case. Regression analysis is a “big-tent” procedure.

Third, although analyses such as these may reflect cause-and-effect rela-
tionships or motivate a search for causal explanations, there is nothing in
a regression analysis that requires inferences about cause and effect. And
there is certainly no requirement that the regression analysis be formulated
as a “causal model” in which the causal mechanisms by which the data were
produced are explicitly represented (Berk, 2003: Chapter 1). The fact that
regression equations are often advertised as causal models does not mean the
two are the same.

Fourth, there is also nothing in regression analysis that requires statistical
inference: formal tests of null hypotheses or confidence intervals. These can
sometimes be very useful but go beyond the definition of a regression analysis
(Berk, 2003: Chapter 1). Theyare an add-on. Moreover, even if the data are
generated in a manner that can justify statistical inference, there are real
questions about how to interpret the p-values that result after an extensive
exploratory analysis. In general, the p-values will be too small, sometimes
dramatically so. A bit more is said about this shortly in the context of “data
snooping.” In later chapters, a more detailed discussion is undertaken under
the rubric of overfitting.

Finally, a regression analysis can serve a variety of purposes. Most directly,
a regression analysis can be used to describe the relationships between vari-
ables. For example, Figure 1.5 addresses the nature of the association between
freshman GPA and SAT score, holding high school GPA constant. Insofar as
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a relationship can be found, it may also serve as the basis for useful fore-
casting. For instance, if SAT is an effective predictor of later performance in
college, beyond what one might learn from a student’s GPA in high school, an
SAT score might be an important piece of information to use in an admission
decision. And, although a regression analysis by itself is silent on cause and
effect, it can under some circumstances be applied to characterize relation-
ships taken to be causal because of additional information about how the data
were generated. In perhaps the best situation, a regression analysis is applied
to data from a randomized experiment in which one or more interventions
are consciously manipulated, and the goal is to estimate a “contrast” with
respect to the outcome for different treatment groups. For example, although
a person’s race cannot be manipulated, the race recorded in a home mortgage
application can be. Then one can estimate the causal effect of a racial label on
the interest rate offered, other things being equal. (Studies like this have been
done.) It cannot be overemphasized that causal inference comes from knowl-
edge about the experiment, not from the regression analysis. The regression
analysis merely describes relationships that are already demonstrably causal.

1.3 The Transition to Statistical Learning

Statistical learning within a regression framework retains the focus on the
conditional distribution of a response variable with respect to one or more
predictors. Various features of that conditional distribution can be relevant,
but the conditional mean will play a central role. How does the conditional
mean of the response vary depending on the values of its predictors?

Where statistical learning can differ from conventional linear regression
is in how that conditional relationship comes to be characterized. In conven-
tional linear regression, functional forms linking the predictors to the response
are determined before the fitting process begins. The same is true of the gen-
eralized linear model (e.g., logistic regression and Poisson regression) and
conventional nonlinear regression. In that sense, all of these procedures can
be called parametric.

In statistical learning, there is far less reliance on prior information when
functional forms are determined to link predictors to the response. Although
there will sometimes be constraints on the kinds of functions permitted, the
functional forms are, by and large, arrived at inductively from the data. In
that sense, statistical learning procedures can be called nonparametric.

Statistical learning is likely to shine when the functional forms are un-
known and substantially nonlinear. Readers familiar with stepwise regression
already have some appreciation for the look and feel of several statistical
learning features. Readers familiar with smoothers can probably anticipate
that smoothing a scatterplot can be a form of statistical learning. The use
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of the word “learning” is a metaphor for the exploratory manner in which
relationships between variables are determined.

1.3.1 Some Goals of Statistical Learning

As with all statistical procedures, statistical learning necessarily raises a num-
ber of “meta-issues.” We need to consider these over the next several pages so
that the key features of the context and underpinnings of statistical learning
are familiar. Parts may seem a little abstract but they lay the foundation
for the more nuts-and-bolts material that follow. Some of the material may
benefit from rereading after later chapters have been read.

As with any statistical procedure, the goals of statistical learning depend
fundamentally on how the data were generated. It is often useful to think
about the data on hand as the product of a specific data-generation process,
also sometimes called a data-generation mechanism . The data-generation
process is a product of natural forces and the activities of researchers.

An example of data generated primarily by natural forces might be a time
series of air quality measures in a particular metropolitan area. An example
of data generated primarily by researchers might be a clinical trial for a new
cancer treatment. An example of data generated by a rich mix of the two
might be a probability sample of registered voters in which voting preferences
are reported. The degree to which researchers intervene in a natural process
determines how much of the data-generation process will be characterized by
research protocols such as random assignment or probability sampling.

A conceptual distinction is often made between two kinds of data-generation
processes. One kind conceives of a stochastic process with the observations on
hand a realization of that real process. For example, suppose that there are
i=1,2,..., N observations in a dataset. Nature generates each observed value
of y; using, say, of y; = 5+ 3x; +1.5z; +¢;, where x; and z; are predictors, and
the value g; behaves as if drawn from a single distribution with a mean of 0.0,
independently of any other €;, and independently of z; and z;. The systematic
part of the data-generation process is 5 + 3x; + 1.5z;. This is usually treated
as fixed. The stochastic part is ;. Chance is built in solely through &; so that
y; is a random variable. Sometimes the distribution from which ¢; is drawn
is said to be of a particular form such as the normal. In more formal terms:
gi ~ NIID(0,0?).

Another kind of data-generation process assumes that there exists a pop-
ulation of potential observations. Suppose that in this population there are,
again, three variables. There is a response variable y; and two predictors x;
and z;. All three variables in the population are fixed; there is no stochastic
component. If one were able to observe all of the variables for all elements in
the population over and over, their values would not change. For each possible
configuration of values for xz; and z;, there is a mean value for the response.
Nature computes these means using, for instance, 5 + 3x; + 1.5z;, where for
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each mean, the index i is limited to those observations with the same values
for z; and z;.

Commonly, there will be variation in the values of y; around each con-
ditional mean. The values of y; around each conditional mean are unrelated
to the values of the predictors, and are sometimes said to have a particu-
lar distribution, often the normal. A probability sample of size N is taken
from the population. The three variables are now random variables. If a sec-
ond probability sample were drawn, many (or even all) of the values for each
of the variables would be different. In the sample, one can write, as before,
y; = 5+ 3x; + 1.52; + &;, where g; ~ NIID(0,0?). But now, ¢; results from
the probability sampling, not from nature. It is common to treat the predic-
tors as fixed, once they materialize in a given sample. In short, both kinds of
data-generation processes can lead to the same formal expression of how y;
came to be.

Whether the data are a realization or a probability sample, an important
goal can be to estimate from the data on hand how the two predictors are
related to the response. For the stochastic process, that would imply trying
to accurately represent the systematic component of y;. For the probability
sample, that would imply trying to accurately represent how the conditional
means in the population are constructed from the predictors. Thus, both such
enterprises are really the same. Indeed, effectively the same statistical tools
can be used whether the data are treated as a realization of a stochastic pro-
cess or a probability sample drawn from a population. Nevertheless, the two
accounts can have different implications for the credibility of any subsequent
analysis. Assumptions built into the data analysis need to be justified by
a credible explanation of how the data were actually generated. In practice,
therefore, that account will either be about a stochastic process or about what
is going on in the population from which the data were sampled at random.
It can also be important to verify what the sampling design was and whether
it was implemented properly.

It is common to represent the data-generation process with a statistical
model. A broad and popular class of data-generation processes can be written
as Y = f(X) + ¢, where Y is the response variable, X is a set of predictors,
¢ is a disturbance term, and f(X) is some function mapping the predictors
to the systematic part of Y. For a conventional linear model, f(X) is a lin-
ear combination of the p predictors: 8y + 81 X1 + - -- + 5, X,. An alternative
might be to exponentiate the linear combination of predictors, as is common
in Poisson regression. In statistical learning, f(X) is far more open-ended.
However, for a set of N observations ¢ = 1,2,..., N, each g; is often assumed
to have the same convenient properties as it does for classical linear regression:
gi ~ NIID(0,0?).

A credible parametric regression model depends on specifying a number of
details justified with reference to subject matter knowledge and past research.
For example, what is it about how the data were generated that permits one to
assume that the predictors enter the model in a particular manner? Although
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statistical learning is often less assumption bound, it is never assumption free.
There can be, for instance, the need to explain why the disturbances repre-
sented by ¢; have an expectation of zero, are independent of the predictors
(or at least uncorrelated with them), and are independent of one another.
These are very strong statements about how the data were generated. They
require careful thought and justification, often beginning with a decision about
whether to treat the data as a random realization, a random sample, or “just”
a dataset.

Such questions are often difficult when f(X) is known to take a particular
parametric form. When f(X) is to be largely determined by the data, the
questions can be daunting. For example, how does one argue that ¢; is at least
uncorrelated with the predictors when the transformations to be applied to
these predictors are not yet known? And if any of the assumptions made about
€; are substantially wrong, the results of the data analysis can be substantially
wrong as well.

Much the same formulation can apply to categorical outcomes, so that
one might write G = f(X) + . It is more common to write the expression
for the conditional expectation of G and then to characterize the uncertainty
separately. In the case of a binary response, for example, one could write
G = f(X) + e, with G coded as “1” or “0”. Usually, however, one replaces
G with the mean-value parameter (McCullagh and Nelder, 1989: 30), in this
instance a probability, alters the f(X) accordingly, and then indicates that
the probability is a parameter in the binomial distribution by which the bi-
nary outcomes are generated. The binomial distribution is responsible for the
uncertainty. But just as for quantitative outcomes, a strong subject matter
case needs to be made that a particular formulation applies. Thus, what is
the rationale for assuming that all observations with the same set of predictor
values are subject to the exact same conditional probability? Why is there
no heterogeneity in that conditional probability? Or, what reason is there to
believe that, conditional on the predictor values, the binary events are inde-
pendent of one another.

Taking the data-generation process into account is not usually by itself
sufficient. It can also be important to consider what use will be made of the
data analysis. One key dimension is what information from a data analysis
will figure in the conclusions to be drawn. Sometimes interest centers primar-
ily on the fitted values for the f(X). There is no concern with representing
how the predictors are related to the response. Building on an earlier example,
the goal may be to make admissions decisions to a university based on infor-
mation about the performance in their freshman year of previous successful
applicants. Why some students do better than others does not matter because
the admissions office is in no position to do anything about that.

Alternatively, the primary concern may be in learning how inputs are
related to outputs. Organizations on campus that provide support services,
such as tutoring for matriculating students, will want some guidance on where
to intervene. Are students for whom English is not a primary language, for



12 1 Regression Framework

instance, at greater risk for poor academic performance? In short, whether
attention is directed toward the fitted values, the relationships between inputs
and outputs, or both, will affect how the data analysis is done and assessments
of its worth.

There is another use that should be briefly mentioned, but does not fall
within a regression perspective. One might want to compute summary statis-
tics for the response, conditional upon certain values of the predictors. For
example, one might want an estimate of number of students for whom English
is a second language, and who will not graduate. No comparisons will be made
to other students, and whether any graduation problems stem from language
difficulties or from other factors is not of immediate interest. There is no con-
cern with how the response changes depending on the values of predictors.
Such applications are not considered here.

Another important factor shaping a data analysis can be what kind of
story is likely to be told. Just as in parametric regression, there can be four
kinds of stories.

1. A Causal Story—A data-generation process is assumed and given a causal
interpretation (Freedman, 2004). For any study unit ¢ subject to this pro-
cess, the values of any X;; can be set (manipulated) independently of the
values of any other predictor. A researcher or nature determines these
values. Then some natural process maps X; onto f(X;) and attaches a
value of ;. The value of ¢; behaves as if drawn at random from some
distribution, independently of the values of X;. Once again, the absence
of a linear correlation can often be sufficient. Other units are subjected
to the same process with each value of ¢; drawn independently of one
another. In addition, the values of X; set for any given unit do not alter
the response of any other unit. All this can be framed as the stochastic
process responsible for the data on hand, or for the population from which
a random sample is drawn.

In this setting, the job of statistical learning is to recover the f(X) na-
ture uses. The residuals, defined as the arithmetic difference between the
observed response values and the estimated f(X), are used to character-
ize the distribution of the ;. These goals are the same as for all causal
modeling. What statistical learning offers is powerful tools to help learn
inductively what f(X) may be. One can think of this as function estima-
tion. For example, one might be interested in the function that turns a
person’s human capital into earnings, or volatile hydrocarbons into ozone.

2. A Conditional Distribution Story—The basic formulation is the same;
there is an assumed model with many of its features to be informed by
the data. However, no causal interpretation is given. The f(X) is descrip-
tive only. One is satisfied saying something such as Y ~ N(f(X),o?),
where f(X) now represents the conditional mean or perhaps the condi-
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tional expected value. To take a simple illustration, for bivariate linear
regression one might write y; ~ N (8o + B174,02), with f(X) = B + B1x;
as the expected value of y;.

Interest centers on the conditional distribution Y|X, but no claims are
made that manipulating the value of X alters Y. So, there is no need to
assume that one or more of the predictors can be individually manipu-
lated, or that setting a predictor at a particular value for the ith case
does not affect the response of the jth case. The key assumptions center
on distribution of the ;. For example, one must persuasively argue that
g; 1s at least uncorrelated with, and ideally independent of, the predictors.
As in the causal story, this is a demanding task when the functions to be
applied to X are not yet known.

Just as for the causal modeling story, statistical learning is used to char-
acterize the f(X), taken to be real and “out there.” This too may be seen
as function estimation. Thus, one might be interested in the function that
associates a score on the mathematics Scholastic Aptitude Test with a
score on the verbal Scholastic Aptitude Test, or the function that asso-
ciates the number of predators with the number of prey.

. A Data Summary Story—Although there can be a data-generation pro-
cess in principle, it plays no direct role in the data analysis. Thus, there is
no assumed model by which the data were generated. There are only the
data. Statistical learning is then used as a data reduction tool. The aim
is to provide through some data-derived f(X) an accurate and accessible
summary of how, in the data on hand, y; is systematically related to a
set of predictors z;;,% = 1,2,...,N;j = 1,2,...,p. In the same spirit,
there can be residuals just as in the two earlier stories, but these have
no necessary correspondence to some ¢;; residuals are computed from the
data whereas the ¢; is a feature of a hypothetical model.

One may only be interested in the conditional distribution of the data be-
ing analyzed or one may also wish to generalize beyond the data to other
similar settings. In some cases, interest ultimately may be in the f(X),
but its recovery is at least premature. For example, one might still be in-
terested in the function that turns a person’s human capital into earnings
but have only proxy measures for human capital (e.g., years of education).

. A Forecasting Story—Using the data on hand, one constructs a function
with which to make forecasts. If there is some real f(X) “out there” that
can be exploited for forecasting, all the better. But there is no interest
in causal effects, no interest in the conditional distribution Y|X, and no
interest in data reduction unless they can improve forecasting skill. Sta-
tistical learning is a tool for developing a useful forecasting apparatus.
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For example, one might be interested in forecasting water quality at local
beaches from the previous week’s precipitation.

The difference between the causal story and the data reduction story is
sometimes a matter of degree. Consider a simple example. Suppose there is
a single predictor, and the f(X) is actually a parabola: f(X) = By + /51 X +
B2 X2, For the causal story, the goal is to determine from the data that f(X)
takes this exact form, including accurate estimates of the values for its three
parameters. For the data summary story, a data analyst might be satisfied
learning that the f(X) is smooth and convex, and the approximate value of
X at which f(X) is minimized.

Why would the researcher settle for less than the full causal story if f(X)
is causal? Perhaps the statistical learning procedure applied does not work
well for these kinds of functions. Or perhaps the predictor is measured poorly,
or is at best a proxy for the predictor needed. Indeed, the predictor used may
be the wrong one altogether. Or perhaps the response is measured with so
much noise that the f(X) is effectively obscured.

A consideration of the four possible stories raises a topic to which we return
many times: the appropriate loss function to be employed. Almost inevitably,
the empirical correspondence between Y or G and the f (X)) will be imperfect.
The fitting enterprise, therefore, depends on how the disparities between the
observed response variable values and the fitted response variable values are
treated. Usual practice is to minimize a loss function with these disparities as
inputs. In conventional least squares regression, for example, the loss function
is quadratic.

In the pages ahead, a variety of loss functions are considered. Some include
a penalty for fitted values that are unnecessarily complex. Some allow for
asymmetric losses so that for classification exercises, false positives can be
weighted differently from false negatives. For example, the costs of mistakenly
concluding that a patient has cancer are likely to be very different from the
costs of mistakenly concluding that a patient is cancer free. We show that
the loss function one chooses can dramatically affect the fitted values, with
important implications for the story to be told and how that story will be
used.

1.3.2 Statistical Inference

In principle, statistical tests and confidence intervals can be important for
each of the four stories. If there is a data-generation process to be character-
ized, it is common to proceed as if the data have been produced in a manner
that introduces some randomness. As already mentioned, sometimes that ran-
domness is a product of probability sampling undertaken by the researcher.
Sometimes that randomness is taken to be an inherent part of how nature gen-
erated the data (sometimes called “model-based sampling”). In either case,
if the data were generated again, they are almost certain to be different, at
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least a bit, because of “chance.” So, the role of chance needs to be addressed
as part of the data analysis.

For example, the expression Y = f(X) + ¢, ¢ is often seen as the source
of the randomness, whether it be a product of actions undertaken by the re-
searcher or by nature. Should parametric regression be applied to characterize
the f(X), statistical tests and confidence intervals can naturally follow. The
same can hold for statistical learning.

Statistical inference has no role when description of the data on hand is
the only goal or when the links to a population or stochastic process cannot
be credibly articulated in a manner the p-values require. For example, testing
hypotheses about how average earnings vary with seniority for a quota sample
of clerical workers intercepted in a local shopping mall will likely produce
uninterpretable p-values, even if it were possible to figure out the population
to which inferences were being made. Absent random sampling, what would
be required is a credible account of a natural data-generation process meeting
the requisite assumptions. As already noted, such accounts are often very
difficult to construct.

Statistical inference can be important for forecasting. But, the forecasts
must be into a probability sample from the same population as the data on
hand, or into a realization of the same stochastic process. Otherwise, the com-
puted probabilities are likely to have no useful meaning. If, for example, the
forecasts are made into a random sample from a different population, or into
a convenience sample, the forecasts can differ from what actually transpires
because the response is not related to the predictors in the same fashion it
was in the data from which the forecasts were constructed. More than ran-
dom error is involved. A 95% confidence interval, for example, will not cover
the population value 95% of the time because each interval is offset by some
amount of bias.

Some readers may wonder why there has been no discussion of random
assignment as a way in which a chance process can affect data. Random as-
signment to a treatment group or to a control group within a randomized
clinical trial, for instance, can be formulated within a probability sampling
framework. But the inferential issues are somewhat different from random
sampling in observational studies. Under random assignment, the uncertainty
involves chance variation in estimated treatment effects because of the way
in which a fixed group of study units is assigned to treatments and control
conditions. There is usually no larger population to which inferences are for-
mally being drawn. There is also commonly the need to construct a theoretical
model of causal effects. In short, although many randomized experiments in
principle can be analyzed using statistical learning procedures (e.g., within a
dose-response framework), they are rarely needed and even more rarely used.
Randomized experiments are not considered further in this book.

To summarize, statistical inference can in principle play a useful role across
a wide range of statistical learning applications. In practice, however, we show
that statistical inference is not particularly salient in statistical learning. Even
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if the data are known to have been generated in a manner that might justify
statistical inference, and even if all of the necessary prerequisites for statistical
inference are present (e.g., all of the needed predictors), the way statistical
learning is undertaken can make statistical inference inappropriate.

1.3.3 Some Initial Cautions

Expositions of statistical learning commonly assume that the goal is to tell a
causal story or a conditional distribution story. There is some truth external
to the data that statistical learning will help to reveal. One wants to know
the f(X) and if the f(X) can be represented as parametric, the values of its
parameters as well.

It is important to be clear from the start that no credible statistician would
ever claim that even when all of the necessary predictors are present and
perfectly measured, there are one or more statistical learning procedures that
will exactly capture the f(X). The data with which one works will necessarily
be an imperfect reflection of the f(X) because of the impact of ; the values
from the f(X) and e are thoroughly commingled as Y is generated. Because
¢ is unobservable, it cannot be removed from Y in order to obtain the f(X).
This is a fundamental problem inherent in all estimation.

Matters are further complicated by the need to learn from the data both
the underlying functional forms and the values of key parameters. We show
later that the need to learn about the functional forms can place very heavy
demands on a dataset. Large samples are often necessary with the observa-
tions more densely packed where the nonlinear functions are changing more
rapidly. We also show that the performance of all statistical learning proce-
dures is significantly determined by tuning parameters for which only very
broad guidelines are likely to exist. Craft lore rather than proved theorems
can dominate practice.

Just as in parametric regression, researchers have to be satisfied with one
of two possible fallback positions. The first entails desirable finite sample prop-
erties such as unbiasedness and efficiency. For reasons that become clear later,
it is difficult for statistical learning procedures to satisfy these requirements.
The second fallback position entails desirable asymptotic properties such as
consistency. Of late there have been some successes for a number of statistical
learning procedures (Breiman, 2004; Jiang, 2004; Lugosi and Vayatis, 2004;
Efron et al., 2004; Zhang and Yu, 2005; Bickel et al., 2006; Bithlmann, 2006;
Traskin, 2008), but as considered in subsequent chapters, these formal results
often do not answer the questions that applied researchers would make a top
priority. And there remains, as always, the matter of how best to make use of
asymptotic results for the sample on hand.

In practice, moreover, real world studies rarely cooperate with what the
theoretical statistical work requires. Perhaps most obviously, if the goal is
to recover the f(X), X must be known; each and every predictor must be
identified. Then, all of the predictors must be in the dataset to be analyzed
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and measured without error (even random measurement error). It is difficult to
find examples in which this is even approximately true, and most applications
are not even close.

If the goal is to recover the f(X), often the best that one can do is to
proceed with the understanding that one’s results will be biased and inconsis-
tent, sometimes substantially. Because both the direction and the magnitude
of these difficulties are usually unknown—if they were known, they would not
be difficulties—it can be difficult to determine what to make of the fitted
values.

By default, therefore, real applications are usually about data reduction,
and occasionally about forecasting. One important implication is that for these
stories, a substantial portion of the theoretical justification for many statis-
tical learning procedures provides indirect guidance at best. Consequently,
rationales for particular statistical learning applications tend to rely on in-
sample features of the fit, forecasting skill, and subject matter knowledge.
This is a point to which we return many times in the pages ahead.

Finally, there is nothing in any of the four stories that requires statistical
learning. One can apply parametric regression to the very same ends. Sta-
tistical learning earns its keep when, for causal and estimation stories, the
f(X) is not well understood but is likely to be substantially nonlinear and
hence, complex. In the same spirit, statistical learning earns its keep for data
reduction and forecasting when the systematic information in the data is best
captured with a complex fit.

“Complexity” can be conceptualized in different ways, many of which are
not easily represented within a statistical framework (Zellner et al., 2001). For
example, is “simple” the opposite of “complex” or is “parsimonious” a better
choice? And if parsimonious, how might one translate that into statistical
concepts? As a practical matter, complexity is commonly represented by the
degrees of freedom “used up” in the fitting process. A statistical learning
procedure produces a more complex fit when more degrees of freedom are
used up. In parametric regression, for instance, a larger number of regression
coefficients implies that a larger number of degrees of freedom will be spent,
and that a more complex rendering of the f(X) will result. We show that this
is a special case of how complexity is often measured in statistical learning.
Indeed, relying solely on the degrees of freedom used up can be unsatisfying.
Which is more complex: ¢; = Bz or Ui = Bmf(? Or, are they equally complex?
We show that with some of the most recent and advanced statistical learning
applications, complexity is even more difficult to conceptualize and measure.

1.3.4 A Cartoon Illustration

One can get a more grounded sense of the issues by comparing a hypothetical
fit using linear regression to a hypothetical fit that might result from statistical
learning. Suppose one is concerned about the number of misconduct incidents
committed by prison inmates. The response variable is the number of such
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incidents reported for each inmate during a one year period. The predictor is
the nominal sentence length of the prison term each prisoner received.

Conventional Linear Fit
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Fig. 1.6. Imposing a least squares line on the data.

Figure 1.6 is a hypothetical scatterplot with a least squares regression line
overlaid. The regression line shows that in general, the relationship is positive.
The number of misconduct incidents increases with sentence length. To the
eye, the fit is quite good, and a positive relationship is hardly surprising.
Longer prison sentences are generally associated with more serious crimes and
the criminal histories of “habitual offenders.” Both are thought to characterize
inmates who would not “program” well. So, a researcher might well be satisfied
with the results.

However, Figure 1.7 shows that if the data are allowed to play a larger role
in determining the functional form, a somewhat different story emerges. The
number of misconduct incidents decreases with sentences up to 20 months,
increases rapidly with sentences from 20 to 40 months, and is almost flat
thereafter. There is probably no simple explanation for this pattern.

The sentence lengths for which the relationship is nearly flat may represent
older inmates subject to sentence length enhancements because of earlier con-
victions. It is well known that older inmates are much less likely to get into
trouble in prison. The sentence lengths associated with the rapid increase
in misconduct incidents may reflect the behavior of younger inmates, often
gang members, convicted of serious crimes, but not yet subject to sentencing
enhancements (i.e., “gang-bangers” ). The sentence lengths associated with de-
clines in misconduct could represent inmates with short sentences who wish to
stay out of any trouble that would jeopardize their release. The relationship
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is negative, perhaps because the risks of becoming involved in a misconduct
incident increase with time behind bars. So, those inmates who are thinking
ahead to their parole dates may be especially careful if their period of risk is
longer.

Inductive Fit
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Fig. 1.7. Letting the data determine the functional form.

It is also possible that the inductive fit in Figure 1.7 is dominated by hap-
penstance. Note that the nonlinear fit is substantially driven by three inmates
with sentences between 11 and 20 months. If for those three observations,
the number of misconduct incidents were a bit greater, or if those three ob-
servations were missing altogether, the original linear fit would be far more
satisfactory.

A comparison between Figure 1.6 and Figure 1.7 raises an important issue
to which we return many times. When the linear fit was imposed in Figure 1.6,
the support for that line came from the full range of the available data. With
the inductive fit, the support was highly local. For these data, the linear fit
may not capture as well the relationship between sentence length and miscon-
duct. But the linear fit is likely to be more stable under random variation in
the data. The inductive fit may capture better the relationship between sen-
tence length and misconduct. But the inductive fit may be relatively unstable
under random variation in the data. In other words, the inductive fit may be
too much a product of overfitting. Random variation is being interpreted as
systematic variation. These and related points are more formally addressed
in the pages ahead.

To complete the story, Figure 1.8 shows an inductive fit for a binary out-
come, coded “1” for misconduct and “0” for no misconduct. Each “X” in
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Figure 1.8 represents many data points that cannot be seen because of over-
printing. The same issues arise. One can impose a functional form, such as the
logistic or, as in Figure 1.8, allow the functional form to respond substantially
to the data.

Inductive Fit for a Binary Response
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Fig. 1.8. Letting the data determine the functional form for a binary response.

1.3.5 A Taste of Things to Come

Figures 1.6 through 1.8 begin to raise a number of difficult questions that
are addressed throughout the course of the book. Sometimes there some are
good answers, but often the best answers are highly provisional. And often the
answers come in the form of statistical procedures that at first seem somewhat
curious. Consider the following sequences of operations.

1.
2.

3.

Fit the data with some conventional procedure.

Compute the residuals as the difference between the fitted values and the
actual values.

Compute a measure of fit from the residuals, such as the error sum of
squares (also known as the residual sum of squares).

Apply the fitting procedure again, but weight the observations so that
the cases for which the absolute value of the residuals is larger receive
more weight, and the cases for which the absolute value of the residuals
is smaller receive less weight.

Repeat the first four steps 1000 times.

Compute the final set of fitted values as a weighted average of the fitted
values over the 1000 passes through the data, with the weights a function
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of the error sum of squares computed in Step 3. Fitted values with a better
overall fit are given more weight in the averaging. That is, each ¢; is a
weighted average of 1000 fitted values for each observation i, weighted so
that the fitted values that perform better for a given pass are given more
weight than those that perform worse.

7. Output the averaged fitted values, the predictor values, and some measure
of fit between the fitted values of the response and the actual values of
the response.

In this procedure, the averaged fitted values and the predictor values char-
acterize the response function. The response function is a way to represent
how the predictors are associated with the response. The overall measure of
fit conveys how well the response function corresponds to the data. But a
good fit has no necessary implications for whether the response function is
“correct.” It is not even clear what “correct” means for this procedure. No
data-generation process has been proposed, let alone a causal model. There
is also no apparent role for statistical inference. We begin and end with the
data on hand.

The procedure just outlined has a lot in common with “boosting” (Schapire,
1999), a statistical learning procedure that is considered later. An interesting
feature is that with each iteration, observations that are more difficult to fit
are given more weight. We show, however, that boosting has more in common
with conventional statistical procedures than might first appear. There is a
loss function being minimized, just as in conventional parametric regression.
What can be novel is the particular loss function being used and the manner
in which a very flexible fitting function is constructed.

In many situations, boosting fits the data well, and often substantially
better than procedures that make only one pass through the data. This can
mean that it will forecast more accurately too. By these criteria, boosting is
likely to outperform conventional linear regression even if the linear regression
is implemented in a stepwise manner. The superior performance can become
more apparent as the sought-after response function becomes more nonlinear.

Figure 1.9 provides an example of some boosting output. The response
variable is the number of homeless individuals in a census tract in log units.
The single predictor is the percentage of the land in a census tract used for
residential purposes. Plotted are the fitted values.

One might well have expected a negative relationship overall, but had a
linear regression model been imposed, the conclusions would have been quite
misleading. There is a precipitous drop in the number of homeless as the
percentage of residential land use in a tract varies from about 5% to about
15%. On either side, the relationship is essentially flat. The pattern looks
like a neighborhood tipping effect, which might not have been anticipated. It
is very unlikely that the precise location of the transition would have been
anticipated. This is just the kind of relationship with which statistical learning
procedures can excel, and conventional regression can stumble.
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Homelessness as a Function of Residental Land Use
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Fig. 1.9. Log of the number of homeless as a function of the percentage of land
devoted to residential use.

Figure 1.9 was constructed from 100 passes through the data. A number
of the other statistical learning procedures to be considered also make many
passes through the data, but with very interesting twists and turns. For ex-
ample, one can let each pass through the data be based on a random sample
with replacement of the data on hand. One averages as before, but without
any weighting. This is a first approximation of a procedure called “bagging”
(Breiman, 1996).

The quick introduction to boosting and bagging no doubt looks very differ-
ent from parametric regression. One puts one’s faith in a computer algorithm
and pushes the run key. No data-generation process need be specified and so
there seems to be no need for a statistical model. For these reasons, Breiman
(2001b) has called such methods “algorithmic.” However, the break with con-
ventional regression need not be that dramatic. Statistical learning, as the
basis for the causal story or the conditional distribution story, relies on a
specified data-generation process and a statistical model. It is the data sum-
mary story and the forecasting story that can be seen as “algorithmic” in the
sense Breiman meant.

1.4 Some Initial Concepts and Definitions
Given the regression analysis framework, a wide variety of statistical learning

procedures and approaches are examined. But, before going much farther
down that road, a few definitions and concepts are necessary. They play a key
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role in the chapters ahead and, at this point, benefit from a brief introduction.
We return to this content many times, so nothing like mastery is required now.
And that’s a good thing because some readers will find the content challenging,
at least at a first reading.

1.4.1 Overall Goals

The procedures we examine have been described in many different ways (Sut-
ton and Barto, 1999; Christianini and Shawe-Taylor, 2000; Witten and Frank,
2000; Hand et al., 2001; Hastie et al., 2001; Breiman 2001b; Dasu and Johnson,
2003), and associated with them are a variety of names: statistical learning,
machine learning, reinforcement learning, algorithmic modeling, and others.
“Statistical learning” as used in the pages that follow, is based on the following
notions.

There may or may not be some data-generation process “out there” whose
features we wish to learn about from the data. Such a construct is outside of
the data and can help set the goals of a data analysis: what kind of conclusions
are to be drawn from the results of the data analysis? A proposed data-
generation process can also help provide a rationale for one statistical learning
procedure rather than another. But much of the hands-on job of applying
statistical learning to data proceeds in the same manner whether or not a
data-generation mechanism has been proposed.

The earlier definition of regression analysis applies. Thus, for a quantitative
response variable the goal is to examine Y|X for a response Y and a set of
predictors X. If the response variable is categorical, the goal is to examine G| X
for a response G and a set of predictors X. X may be categorical, quantitative,
or a mix of the two. Consistent with common regression practice, the observed
values of X are usually treated as fixed.

Many different features of Y'| X can be examined, but the conditional mean,
Y| X, is usually a key concern. This is the feature of Y'|X that has to date
received the most attention. Y|X is sometimes interpreted as an expected
value. For G|X, the conditional proportion is usually of interest for each of
its K categories. G|X is sometimes interpreted as a conditional probability.
In either case, G|X is typically linked to response categories, often called
“classes.” The goal is to assign cases to classes. Then, the task can be called
“classification,” and the procedure employed can be called a “classifier.”

1.4.2 Loss Functions and Related Concepts

In real applications, any efforts to fit the values of the response variable with
one or more functions of the predictors will almost always be less than perfect.
Indeed, if the fit is perfect, it is likely that some serious mistake has been made.
Nevertheless, it often makes good sense to try to fit the response values as
well as possible. This implies that a fitting criterion needs to be defined in
order to characterize how good the fit is.
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Fitting criteria are commonly called loss functions, cost functions, or ob-
jective functions. We use those terms interchangeably. The most common loss
function for quantitative response variables is squared error loss, also called
quadratic loss: [Y — f(X)]2. Recall that the mean is the central tendency
measure that minimizes the sum of the squared deviations around itself. The
fitted values that minimize squared error loss are the conditional means for
each configuration of x-values. That is, compute g|X = x for each X = z.

If one wants to treat the data as a random sample for a well-defined pop-
ulation or as a random realization from a well-defined stochastic process, it
follows that these conditional means are unbiased estimates and have other
desirable formal properties. By a “well-defined” population, one means that
it is possible to determine which units are in the population and which are
not. For example, “all living adults in the United States” is not well defined
until “adult” and “in the United States” are defined. A stochastic process is
“well-defined” when it is thoroughly and precisely described. This will usu-
ally require one or more mathematical expressions. Thus, “a set of coin flips”
by itself is not a sufficient definition. One would need to specify a particular
binomial process (if that is the intent).

If concern is with bias, one can think of the conditional means as the “gold
standard” under squared error loss. In practice, however, the gold standard
can have some undesirable side effects. In particular, there may be for any par-
ticular X = x no values of the response variable, or so few that the computed
mean has a very large amount of sampling error.

There are a number of potential fixes. One is to compute the response
variable conditional means not for X = z, but rather for X close by x. For
example, if the predictors are age and education, rather than computing the
conditional mean of income for, say, 28-year olds with four years of work expe-
rience, one might compute the conditional mean of income for all individuals
between 25 and 27 who have between three and five years of work experience.
For unbiasedness to be maintained, the true mean for the first set of indi-
viduals must be the same as the true mean for the second (and larger) set
of individuals. “True” denotes the conditional mean in the population or the
mean associated with the stochastic process responsible for the data. The goal
is still to estimate the true mean income for individuals who are 28 and have
four years of work experience, but information from nearby ages and years of
work experience is being used.

In practice, one will rarely know if such assumptions are correct, but there
may be evidence that they are close enough; the conditional means for the
two groups are not likely to differ by enough to matter. For example, from
past studies one many know that incomes usually change slowly as age and
seniority change. Consequently, the bias that would be produced is negligible.

Nearest neighbor methods, discussed later, build on this approach.

Computing different conditional means for different ranges of predictor
values is the same as assuming the f(X) is a step function. Alternatively, one
might assume that the f(X) is linear or some other smooth function of X. In
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effect, the data are pooled once again, but in a different manner so that more
information is brought to bear on each conditional mean. Each conditional
mean now can be computed using least squares regression, for example, with
information from all of the observations in the dataset. For unbiasedness to
be maintained, the true conditional means must fall on the assumed smooth
function of the predictors. In this sense, the model for the conditional means
is “right.”

Squared error loss imposes a particular way of weighting the disparities
between the response and the fitted values that needs to be considered care-
fully in the context of the data’s properties and how the results of the data
analysis will be used. Squaring makes large disparities especially influential
in the fitting process, which can make the fitted values vulnerable to outliers
(i.e., values that lie some distance from the mass of the data). In addition,
the weights are symmetric; fitted values above the response are treated the
same as fitted values below the response. Yet, symmetric weights are often
inappropriate.

The tradition of resistant/robust estimation grew in part as a reaction to
the problems caused by outliers under squared error loss. One option that we
consider in a later chapter is linear loss: |Y — f(X)|. Recall that the median is
the central tendency measure that minimizes the sum of the absolute values
of the deviations around itself. Thus, linear loss leads to computing the con-
ditional median rather than the conditional mean. Then, the statistical issues
that follow are much like those associated with the conditional mean.

The consequences of symmetric weighting are a very important issue to
which we return later. We show that taking asymmetric costs into account can
significantly change the fitted values. Decisions made from these fitted values
can significantly change as well. Consider again, for example, the number of
homeless in a census tract as the response variable, and predictors that are
features of census tracts. Overestimating the number of homeless individuals
in a census tract can have very different implications from underestimating
the number of homeless individuals in a census tract. Yet, a symmetric loss
function would assume that in the metric of costs their consequences are
exactly the same.

Consider now a categorical response variable and a set of predictors. Just
as for a quantitative response variable, one can proceed with a symmetric
loss function. Suppose there are K distinct and mutually exclusive classes.
Any misclassification—the fitted class is the wrong class—is given the same
weight of 1.0. For example, the error of asserting that a high school student is
a dropout when that student is not is given the same weight as asserting that
a high school student is not a dropout when that student is. In both cases,
the errors are given a value of 1.0. Correct classifications are given a value of
0.0. To minimize the sum of these errors over classes, it is clear that one can
simply classify by the most common class. Because of the 0/1 coding of losses,
using the sum of the squared errors gives the same result. In other terms that
are used a lot later, the fitted class is determined by a “vote” in which the
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class with the plurality wins. When there are two classes, classification is by
majority vote. Such procedures can be placed in a Bayesian decision theory
framework (e.g., Bishop, 2006: 38—46) and are often called “Bayes classifiers.”
The proportion misclassified by this approach is often called the “Bayes error
rate.”

For example, given X = z and a response of dropout or no dropout, if
65% of the students are not dropouts, all of the students for which X = x are
assumed to have not dropped out. Then, 35% of the students for which X = z
are misclassified. Suppose now that there are three response categories: drop
out, no dropout, and moved to another school. Also suppose that 45% of the
students fall in the no dropout category and that this is the largest percentage
of the three for X = x. Then, all students for whom X = x are assumed to
have not dropped out and 55% are misclassified. In both illustrations, not
dropping out is the fitted class. A similar rationale can be applied to each
subset of observations defined by each unique configuration of z-values. Then
it is possible to sum misclassifications over these unique values to obtain an
overall proportion of cases misclassified.

Just as for quantitative response variables, one may use this reasoning
to obtain useful estimators for parameters of a population or of a stochas-
tic process. For example, if the data are a random sample from a well-defined
population, each conditional proportion computed from the sample is an unbi-
ased estimate of its population conditional proportion. That is, the proportion
computed for each class is an estimate of the population proportion within
that class. The term “Bayes risk” is sometimes applied to the expected value
of the classification error when, in just such circumstances, the response vari-
able is a random variable. A useful and accessible discussion from a more
purely Bayesian perspective can be found in Ripley (1996: Section 2.1). A
complementary discussion from a computer science perspective can be found
in Bishop (2006: Section 1.5).

Finally, treating all classification errors as generating the same costs is
often inappropriate, especially when real decisions will be made based on
the classifications. As before, symmetric loss functions can be misleading. For
example, the costs to the student and the school of failing to identify a student
as a potential dropout may be very different from the costs to the student and
the school of incorrectly identifying a student as a potential dropout. If these
costs can be usefully approximated, it only makes sense to take them into
account before actions are taken. We show later that building in the costs of
classification errors can dramatically alter the classifications themselves.

1.4.3 Linear Estimators

Within the context of a regression analysis, consider a dataset with N observa-
tions. There is a single predictor X and a single value of X, xy. Generalizations
to more than one predictor are provided in a later chapter. The fitted value
for go at xg can be written as
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:l)o = Z S()jyj. (12)
j=1

S is an N by N matrix of fixed weights and is sometimes called a “smoother
matrix.” The subscript 0 denotes the row corresponding to the case whose
fitted value of y is to be constructed. The subscript j denotes the column in
which the weight is found. In other words, the fitted value 7y at xg is a linear
combination of all N values of y;, with the weights determined by Sy ;. In many
applications, the weights decline with the distance from xy. Sometimes the
declines are abrupt, as in a step function. In practice, therefore, a substantial
number of the values in Sg; can be zero.

If formal estimation of a conditional mean of the population is the goal,
one has a linear estimator g|z. It is a linear estimator because with S fixed,
each value of y; is multiplied by a constant before the y; are added together;
Yo is a linear combination of the y;. Linear estimators play a central role
in all of the chapters ahead. Linearity can make it easier to determine the
formal properties of an estimator, and linear estimators and are often easier
to understand. But one must be clear that even if an estimator is linear, the
relationship between ¢ and = can still be highly nonlinear, as we soon show.

So; has much in common with the hat matrix from conventional linear
regression analysis. Recall that

y=XB8=XX"X)"'X"y = Hy. (1.3)

The hat matrix H transforms the y; in a linear fashion into ¢;. Sg; performs
the same function, but can be constructed using more general procedures.

Consider the following cartoon illustration in matrix format. There are
five observations constituting a time series. The goal is to compute a moving
average of three observations going from the first observation to the last. In
this case, the middle value is given twice the weight of values on either side.
Endpoints are often a complication in such circumstances and here, the first
and last observations are simply taken as is.

.00 0 0 0 3.0 3.00
25.50.25 0 0 5.0 475
0 .25.50 .25 0 60 | =] 650 |. (1.4)
0 0.25.50.25 | [ 9.0 8.50
00 0 010/ \100 10.00

The leftmost matrix is S. It is post multiplied by the vector y to yield
the fitted values y. But from where do the values in Sp; come? If there are
predictors, it only makes sense to try to use them. Consequently, Sy, is usually
constructed from X.
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1.4.4 Degrees of Freedom

Recall that, loosely speaking, the degrees of freedom associated with an es-
timate is the number of observations that are free to vary, given how the
estimate is computed. Consider a variable with N observations. In the case
of the mean, if one knows the values of N — 1 of those observations, and one
knows the value of the mean, the value of the remaining observation can be
easily obtained. Given the mean, N — 1 observations are free to vary. The re-
maining observation is not. So, there are N — 1 degrees of freedom associated
with the estimator of the mean.

This sort of reasoning carries over to many common statistics including
those associated with parametric regression analysis. The number of degrees
of freedom “used up” when the fitted values are computed is the number
of regression parameters whose values need to be obtained (i.e., the intercept
plus the regression coefficients). The degrees of freedom remaining, often called
the “residual degrees of freedom,” is the number of observations minus the
number of these parameters. One of the interesting properties of the hat
matrix is that the sum of its main diagonal elements (i.e., the trace) equals
the number of regression parameters estimated. This is of little practical use
with parametric regression because one can arrive at the same number by
simply counting all of the regression coefficients and the intercept. However,
the similarities between the H and S (Hastie et al., 2001: 129-130) mean that
the trace of S can be interpreted as the degrees of freedom used up. Its value
is sometimes called the “effective degrees of freedom” and can roughly be
interpreted as the “equivalent number of parameters” (Ruppert et al., 2003:
Section 3.13). That is, the trace of S can be thought of as capturing how
much less the data are free to vary given the calculations represented in S.
The residual degrees of freedom can then be computed by subtraction (see
also Green and Silverman, 1994: Section 3.3.4).

There are other definitions of the degrees of freedom associated with a
smoother matrix. In particular, Ruppert and his colleagues (2003: Section
3.14) favor

dfs = 2tr(S) — tr(SST). (1.5)

In practice, the two definitions of the smoother degrees of freedom will not
often vary by a great deal, but whether the two definitions lead to different
conclusions depends in part on how they are used. If used to compute an
estimate of the residual variance, their difference can sometimes matter. If
used to characterize the complexity of the fitting function, their differences are
usually less important because one smoother is compared to another applying
the same yardstick. The latter application is far more salient in subsequent
discussions.

Beyond its relative simplicity, there seem to be interpretive reasons for
favoring the first definition (Hastie et al., 2001: 130-133). Consequently, we
use the trace of S as the smoother degrees of freedom. We show that the larger
the value of the effective degrees of freedom, the more flexible is the fitting
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function and the more complex the fit. We also show that the effective degrees
of freedom does not have to be an integer.

1.4.5 Model Evaluation

Just as in any fitting exercise, there needs to be a way to evaluate the quality
of the fit. This evaluation is best done combining quantitative information
obtained during the data analysis with subject matter expertise and policy
concerns. A model that fails in subject matter or policy terms is of little use no
matter how well it scores on statistical criteria. This might mean, for example,
choosing a smoother fit than might be favored by a some statistical measure if
the substantive implications are more easily understood and more consistent
with existing subject matter knowledge.

But what kind of quantitative measure should be used? For the conven-
tional linear regression, it is common to work with the mean squared error,
% Zf\il (y; —1:)?, or some standardized version such the R2. The R? is usually
interpreted as the proportion of the variance of the response that is accounted
for by the predictors. So, larger values of R? can be considered better than
smaller values of R?, and it follows that fitted values with a larger R? can be
considered better than fitted values with a smaller.

The mean squared error and the R? are “resubstitution” fit statistics be-
cause the data used to evaluate the model is exactly the same as the data used
to build the model. Such measures can convey unjustified optimism about the
quality of the fit. In an effort to minimize the error sum of squares, the fitted
values will respond as best they can to the data on hand, some features of
which may be idiosyncratic. Then, the results will not generalize well to new
samples from the same population. The unjustified optimism is exacerbated
when the number of regression coefficients being estimated is large relative
to the sample size because the fitting function gains flexibility relative to the
amount of data. “Overfitting” is sometimes the term used to describe how
unjustified optimism can be produced.

In response, a measure of fit can be used that attempts to adjust for the
overfitting. A simple alternative to R? is R? adjusted for degrees of freedom:

AdjR? =1 — {(1 —R?) (NA—T;L)] , (1.6)

where NN is the of number observations, and p is the number of parameters
whose values are determined by the data. For a given number of observations,
increasing the number of unknown parameters reduces the measure of fit. By
“unknown,” one means parameters whose values are to be determined by the
data. Just as with its unadjusted cousin, bigger is better.

Taking the degrees of freedom into account leads to a conceptual improve-
ment over the unadjusted R? because an effort is made to discount fit quality
resulting solely from the complexity of the fitting function. However, the ad-
justed R? lacks much formal justification and is not easily generalized beyond
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a least squares context. The common use of terms such as “pseudo R?” in
such settings is telling.

The Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) are alternatives to the adjusted R?. They are based on far
more rigorous statistical theory, which can be an important consideration. The
AIC represents the relative amount of information lost (using the Kullbeck—
Leibler information) when a given model, whose parameters are estimated
from the data, is compared to the unknown but true processes that generated
the data (Akaike 1973). Thus, the baseline is found in a conceptual entity
beyond the data themselves. The smaller the AIC the better the approxima-
tion to the truth. The BIC is based on the Bayesian posterior probability of a
given model (Schwartz, 1978; Raftery, 1995: Sections 4.1-4.2) compared to the
“null model” with no predictors. There is again the construct of a true model
serving as a target. A larger posterior probability implies that the model is
more credible and that one has a better approximation of the truth. The BIC
is smaller when the posterior probability is larger.

The AIC and the BIC can be properly applied to a much larger set of fitting
procedures than the various kinds of R?s. But as with the adjusted R?, the
AIC and BIC can be seen as altering the model’s measure of fit by imposing
a penalty for complexity. The penalty for the AIC and BIC increases with the
number of unknown parameters in the model and decreases with the sample
size. In other words, the penalty is larger when the number of parameters
increases relative to the number of observations.

The AIC can be written in a number of ways, but one common expression
is

N
AIC =log li] ZZ;(y2 —9:)%| + 2Np (1.7)
Likewise, the BIC can be written in a number of ways. A common expression
is
LS, 2] o log(W)lp
BIC = log lN;@i —4) ] + = (1.8)

The BIC imposes a heavier penalty for the number of regression parameters.
But neither is easy to interpret without some baseline or other means of
comparison. We return to this issue shortly.

The AIC and BIC can be generalized so that in principle they are useful
fit statistics for statistical learning procedures. In particular, it is common
to replace p with tr(S). However, both measures can prove to be inadequate
when it is not apparent how to quantify the effective degrees of freedom.

For example, statistical learning procedures are often applied several times
to the data with one or more tuning parameters varied. The AIC may be
computed for each. But each AIC is ignorant about the information obtained
from prior fitting attempts and how many degrees of freedom were expended
in the process. Matters are even more complicated if some of the variables
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are transformed or recoded after examining descriptive statistics before the
fitting begins. Often, the effective degrees of freedom used in the AIC and
BIC will be too few. Some unjustified optimism remains.

As an alternative, it can be useful to think about the various measures of
fit as efforts to characterize how well the fitting function forecasts. Then, one
popular definition of fit is the expected prediction error (also called “expected
forecasting error,” or “expected generalization error”)

PRE = E[(Y — f(X))?]. (1.9)

PRE is the mean squared error in the population from which the data were
sampled or over limitless independent realizations of the stochastic process
that generated the data. An alternative definition is the expectation of the
sum of the absolute values of (Y — f(X)). How does one go about estimating
such quantities?

An excellent option is to work with two (or more) random samples from
the same population. One sample is treated as the “training sample” and the
other sample is treated as the “test sample.” A fitting function built from
the training sample is applied to the test sample, and a measure of prediction
error computed. That is, data from the test sample are used with the fitting
function from the training sample to produce fitted values. These are paired
with the observed values in the test sample when, for example, the mean
squared error is calculated.

A lot also can be learned by unpacking the overall measure of test sample
prediction error. It can be instructive to learn which observations are being
underestimated and which are being overestimated, and by how much. For
example, if the response variable is the number of homeless individuals in
a census tract, it would be important to know if the fitted values tend to
substantially underestimate homeless counts in census tracts where a large
number of homeless individuals are likely to be found. Or the problems could
be spatial; predictions for census tracts in one part of a metropolitan area
may in general be less accurate. Such information can provide a more sensitive
evaluation of the fitted values and sometimes suggest ways the fitting function
might be improved.

Often there is no test sample. Under these circumstances, there are inter-
esting alternatives that nevertheless draw directly on the idea of a training
sample and a test sample. “Drop-one” cross-validation is a popular exam-
ple. Drop-one cross-validation is also called “leave-one-out” cross-validation,
“jackknife” cross-validaton, and “N-fold” cross-validation.

Imagine a statistical learning procedure that is applied N times to the
data. Each observation in turn is dropped from the dataset and its fitted value
computed. That is, each fitting is based on N — 1 observations, from which the
fitted value of the dropped observation can be computed. The mean squared
error computed from the dropped values and their corresponding fitted values
is a cross-validation measure of fit and an estimate of prediction error.

More formally,
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N
CV = Z[y — f7N(X0))%, (1.10)

where the superscript —i signifies that observation 7 has been dropped. One
nice feature of cross-validation is that the effective degrees of freedom does
not enter explicitly into the calculations. Another nice feature is that it has a
PRE interpretation.

The Generalized Cross-Validation statistic (GCV) can be a handy cross-
validation approximation. It can be applied to the existing data as a whole
and is easily computed as

1o |y — fi(X)) ’
GOV = N; ll N | (1.11)
The GCV requires the user to decide which definition of the effective degrees
of freedom is to be used. As shown, the trace of the smoother matrix is the
usual choice.

Another approach in the same spirit exploits a bootstrap procedure (Efron,
1983; Efron and Tibshirani, 1993: Section 17.7). In its simplest form, one takes
B samples of size N, with replacement, from the data. Each random sample
serves as a training sample so that for each, a fitting function is constructed.
The original (unsampled) data serve as a test sample. One can then compute a
mean square error B times using the fitting function from each of the training
samples and the data from the test sample. Averaging over the B samples
provides an estimate of prediction error.

The simple bootstrap estimate of prediction error is not entirely satisfac-
tory. Each bootstrap sample is drawn from the original sample; the original
sample is not really a pure test sample. The overlap leads to estimates of
prediction error that are too small.

A better approach is to borrow some ideas from cross-validation. For any
given bootstrap of size N, about a third of the observations will by chance
not be selected. These observations can serve as a test sample when estimates
of prediction error are computed. With a sufficient number of bootstrap sam-
ples, any given observation will likely fall in a test sample several times. The
average mean squared error for each observation in its test samples provides
an observation-specific estimate of prediction error. Averaging these over the
N observations leads to an overall estimate of prediction error based on the
“drop-one” bootstrap.

However, because each bootstrap sample will on the average contain only
about two-thirds of the unique observations of the original sample, the data
used to construct the fitting function will be more sparse than the full dataset.
If f(X) is complex, some of its features will be missed. Bias results. Conse-
quently, the estimate of prediction error will be inflated. A correction can be
introduced that leads to the following expression for the estimated prediction
erTor.
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PRE = .368(MSER) + .632(MSEp), (1.12)

where MSER is the resubstitution mean squared error from the original sam-
ple, and MSEpg is the mean squared error from the drop-one bootstrap. Fur-
ther improvements are possible (Hastie et al., 2001: 219-220).

Finally it is also possible, with small modifications, to treat the AIC and
BIC as estimates of prediction error. Thus,

1 N 2po?
AIC = — i — )%+ =—. 1.13
N ;(y 9 + T (1.13)
In this form, the AIC is known as the C), statistic and can provide an unbiased
estimate of the prediction error (Efron and Tibshirani, 1993: 242). The BIC

is now computed as

N 2
BIC = Jb;(yz —i)° + 7[1%(]]\\?]0 L (1.14)

and can provide a consistent estimate of the prediction error (Efron and Tib-
shirani, 1993: 242).

In both equations, p may be replaced by tr(S), and an estimate of o2 is
required. Estimates of o2 are usually constructed from the observed values of
the response and the f (X). One proceeds as if the f (X) has negligible bias
and the disturbances behave as the model Y = F(X) + e requires. Moreover,
the model is specified independently of the data being analyzed; there can
be no data snooping (Luo et al., 2006: 165-167). If these requirements are
substantially violated, 62 can be substantially biased so that the estimates of
prediction error will be substantially biased as well.

These implications of data snooping can generalize. All of the methods to
properly represent prediction error can provide overly optimistic results if the
impact of data snooping is not taken into account. For example, if drop-one
methods are employed with data already altered using information from ear-
lier models, there is no way for the procedures used to estimate prediction
error to know about the earlier snooping. Falsely small estimates can result.
Or as we show later, the summary statistics just described can be used to tune
a model. This can be a useful way to undertake the inductive development of
a model. But, it is very easy to slip into “overtuning.” For example, neither
the AIC or BIC can know about models previously considered and rejected.
Likewise, cross-validation depends on random splits of the data into training
and test samples whose independence, such as it is, can be rapidly compro-
mised when the data are used repeatedly in the same modeling enterprise.
Falsely optimistic measures of model performance can result.

In summary, there are many choices available for obtaining more hon-
est measures of fit. The resampling methods yield estimates having an intu-
itive appeal, but can be computationally taxing, especially in many statistical
learning applications. The adjustments to the resubstitution mean squared
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error are far easier to compute, but require a credible value for the effective
degrees of freedom and for some, a credible estimate of 0. There also can be
important differences in performance for given samples. Finally, there remain
a number of unresolved issues even for the linear estimators emphasized here;
nonlinear estimators are more demanding still (Efron, 2004). Therefore, there
seems to be no definitive guidance on which measures to use and in practice,
those that can be computed easily seem to dominate. The best course, when
feasible, is to have a training sample and a true test sample. A key asset is
that one can use as test data the dataset as it was before any data snooping
was undertaken. A more honest assessment of overfitting can result, especially
if the fit measures are not overused.

1.4.6 Model Selection

It is a relatively small step from model evaluation to model selection. A model
that performs better is chosen over a model that performs worse. In paramet-
ric regression, model selection usually means deciding by some quantitative
yardstick which predictors, and transformation thereof, belong in the model.
One way to think about this process is that among all of the available re-
gressors and /or their transformations that could be included, some have their
regression coefficients set to zero. Regressors with such regression coefficients
are, by definition, excluded from the model.

With parametric regression, the model selection process can be undertaken
in at least three ways. First, hypothesis tests may be used when the candidate
models are nested within a single, all-encompassing model (Cook and Weis-
berg, 1999: 266-272). The usual null hypothesis is defined by one or more
constraints on the regression coefficients. The most common constraints re-
quire that a subset of the regression coeflicients in the all-encompassing model
be equal to zero. The smaller model is assumed to be the correct model unless
the null hypothesis is rejected. Likelihood ratio and f-tests are popular.

Second, one may apply various regression diagnostics from which model
flaws can sometimes be identified. After that, remedies can be sought. For
example, plots of a model’s residuals against its fitted values can reveal non-
linearities in the data that have been overlooked. Likewise, added variable
plots (Cook and Weisberg, 1999: Section 10.5) can point to possible omitted
variables and/or needed transformations.

Third, one may compare various candidate models by some goodness-of-
fit measure, and choose the one that fits the data best. As just discussed,
this is best done discounting fit quality for the number of unknown regression
parameters. The AIC and BIC are common choices.

The AIC is one of a class of “asymptotically efficient” model selection
tools (Hurvich and Tsai, 1989) that tries to find the model that loses the least
information relative to how the data were actually generated. No claims are
necessarily made, however, that the model selected is “correct” or even that
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a correct model is in the set of models examined. The hope is that the model
selected is a useful approximation of the “truth.”

The BIC is one of a class of consistent model selection tools that in prin-
ciple will find the correct predictors, if they are included within the set of
models examined, by determining the proper dimension of the regressor ma-
trix. It is this dimension that is consistently estimated. Suppose there is a
set of predictors in the data set placed in any arbitrary order. Some of the
predictors are unrelated to the response. Starting at the top of the regressor
ordering, the BIC estimates how many of these predictors should be included.
If there are, say, 15 ordered predictors, but none of the predictors after the
first 9 are related to the response, the selected models should contain the first
9 regressors. Some of these may not be related to the response. But in prin-
ciple, all of the predictors that belong in the true model are selected and the
false positives make little difference because they are not associated with the
response.

If the data analyst believes that the true model is within the set to be
examined, some argue that the BIC can be a better model selection tool. If
the data analyst does not believe that the true model is within the set to
be examined, some argue that the AIC can be a better model selection tool.
However, there are other versions of the AIC which are arguably superior to
the BIC when the correct model is among those that could be constructed
from the dataset (Simonoff and Tsai, 1999). At this point, there seems to
be no clear consensus on which selection criterion is best. For the kinds of
procedures considered in this book, the idea that there is a correct model
to be found in the data seems somewhat anachronistic. Other approaches to
model selection are considered in later chapters.

For all three approaches to model selection, model parsimony is also impor-
tant. Simpler models are preferred, other things equal, and sometimes when
they are not equal. Simpler models can be more stable to modest changes
in the model, otherwise inconsequential differences in how the variables are
measured, and random perturbations of the data, such as occur under ran-
dom sampling. Simpler models may also be more easily interpreted. This can
mean, for example, that a model selected using the AIC may not be simple
enough despite adjustments for the effective number of parameters.

Sometimes model selection procedures are usefully automated. The canon-
ical illustration is conventional stepwise regression. In the forward selection
case, among all the candidate variables, the one with the largest correlation
with the response is included in the model first. The slope and intercept are
estimated. Among all of the remaining candidate regressors, the one with the
largest partial correlation (conditioning on the regressor already in the model)
is included. The values of the two slopes and intercept are then computed.
This process is continued until no new candidate regressor improves the model
fit sufficiently. Other criteria can be used to decide which variables to include,
such as hypothesis tests or a measure of fit as with the ones just discussed. A
key point is that after each predictor is introduced into the model, the values
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of all of the model’s parameters are recomputed. This is different from stage-
wise regression, discussed in later chapters, in which the values of regression
coeflicients computed in one step are not recomputed when a new predictor
is added to the model.

Additional examples of automated model selection include backward selec-
tion stepwise regression in which less important predictors are eliminated one
by one from the all-encompassing model, and all-subsets regression in which
all possible submodels are compared. Among the risks of automation are that
subject matter information is neglected so that the resulting models are not
informative.

Both stepwise regression and stagewise regression are examples of “greedy
algorithms,” which figure significantly in later chapters. They are greedy be-
cause at each step or stage the single best predictor is selected but then not
reconsidered later. As a result, overall optimization can be sacrificed to the
local optimization undertaken at each step or stage; the long term can be
jeopardized by short-term thinking. Yet, greedy algorithms are often practi-
cal and effective. The alternative of searching over all possible models can
become computationally taxing, or even intractable, if there are a large num-
ber of predictors.

Whether automated or not, all model selection procedures can risk serious
overfitting. For example, t-tests applied to later models do not take into ac-
count the t-tests applied to earlier models. One result can be spuriously small
p-values. Then, predictors may be retained when they should be removed; a
null hypothesis is falsely rejected. An unnecessarily complicated model can
result, which may not generalize well. The same concerns apply to the various
measures of fit just discussed, especially when they are used repeatedly. At
a deeper level, all statistical inference can be seriously jeopardized when the
same data are used to inductively build a model and then to estimate the
model’s final set of parameters. More is said about this in the next chapter.

Despite the many unresolved problems with model selection for paramet-
ric regression, we soon show that, broadly speaking, the same three model
selection strategies are commonly applied in statistical learning. There are
also many opportunities for automation. At the same time, however, model
selection needs to be placed in a broader context.

With statistical learning, models may be characterized not just by con-
straints placed directly on individual regression coefficients one by one, but
by constraints placed on the objective function being minimized. For example,
penalties for model complexity, in much the same spirit as those used in the
AIC and BIC, can be imposed when a least squares fitting criterion is applied.
One goal can be to reduce the risks of overfitting in the model itself, not just
alter the measure of fit. This is a theme that surfaces a number of times in
later chapters. The resulting model can have regression coefficients that are
generally smaller in absolute value (but not necessarily zero) than they would
have been had the complexity penalty not been imposed.
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If an important goal of a statistical learning procedure is to arrive at a
model in which subject matter conclusions depend on the particular regres-
sors included, the model-building process should be able to force unnecessary
regression coefficients to be zero. Then, model selection becomes regressor
selection. If instead, interest centers more on the fitted values, there is no
requirement that in the model building any regression coefficients should be
zero. For example, a useful balance between bias and variance may require
altering each of the regression coefficients a bit without trying to force any of
them to zero. There is no intent to weed out any regressors. In short, what
makes one model better than another depends in part on which model outputs
are more important.

1.4.7 Basis Functions

Basis functions play a key role in all of the statistical learning procedures
discussed. Basis functions are transformations of predictors that can allow
for a more flexible fitting function by increasing the dimensionality of the
regressor matrix. A set of p predictors becomes a set of predictors greater
than p. This can allow the fitted values to be more responsive to the data.

Consider first the case when there is but a single predictor. X contains two
columns, one column with the values of that single predictor and one column
solely of 1s for the intercept. The N x 2 matrix is sometimes called the “basis”
of a bivariate regression model. This basis can be expanded if one allows
transformations of X. A very powerful and flexible set of transformations can
be written as

M

FX) =" Buhm(X). (1.15)

m=1
There are M transformations of X, which can include the untransformed
predictor and a column of 1s (allowing for a y-intercept). G, is the weight
given to the mth transformation, and h,, (X) is the mth transformation of X.
Consequently, f(X) is a linear combination of transformed values of X. The

right-hand side is sometimes called a “linear basis expansion” of X.

One common transformation employs polynomial terms such as 1, =, 22,

23. Then, Equation 1.15 takes the form

F(X) = Bo+ Biz + Boz® + B32°. (1.16)

When least squares is applied, a conventional hat matrix follows from which
fitted values may be constructed.

Another popular option is to construct a set of indicator variables. For
example, one might have predictor z, transformed in the following manner.

f(Z)=Bo+ B1(I[z > 5]) + B2(I[z > 8|z > 5]) + B3(I[z < 2]). (1.17)
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As before, fitting by least squares leads to a conventional hat matrix from
which the fitted values may be constructed.
Equation 1.15 can be generalized so that p > 1 predictors may be included:

p M

f(X) = Z BjmPjm (X)- (1.18)

j=1m=1

Each predictor has its own set of transformations. Then, all of the transfor-
mations for all predictors, each with its own weight 3;,,, are combined in a
linear fashion. For example, one could combine Equations 1.16 and 1.17 with
both X and Z as predictors.

Why use the additive formulation when there is more than one predictor?
With each additional predictor, the number of observations needed can in-
crease enormously; the volume to be filled with data goes up as a function
of the power of the number of predictor dimensions. This is what lies behind
the “curse of dimensionality.” One important result can be data that are too
sparse for the intended analysis. In addition, there can be very taxing compu-
tational demands. So, it is often necessary to restrict the class of functions of
X examined. One hopes that the response variable will be fitted sufficiently
well by a model that is less flexible than what one ideally might like. We show
one manner in which this plays out when smoothers are discussed in the next
chapter.

Equation 1.18 has the additional benefit of retaining some of the same look
and feel as conventional linear regression. This can lead to simplifications in
the underlying mathematics, more effective computer algorithms, and more
transparent interpretations. We show soon that Equation 1.18 leads to surpris-
ingly flexible and effective fitting procedures in part because many complex
functions can be well approximated by low-order polynomials and other rela-
tively simple transformations.

But if Equation 1.18 is essentially multiple regression, where is the statis-
tical learning? The answer will at this point probably seem a bit perplexing.
The parametric structure of each basis function by itself can lead to a non-
parametric fitting function when all of the pieces are used at once. And how
these pieces are used can be substantially determined in an inductive manner
by the data. It is a bit like constructing a highly nonlinear function from a
large number of very small line segments connected end to end.

An Illustration

Consider, for example, how Equation 1.16 might be used within the following
algorithm for a single response variable and a single predictor.

1. Select a target value of y, yo, with its associated zg.
2. Find the 20% of the observations whose values on = place them nearest
to xg.



1.4 Some Initial Concepts and Definitions 39

3. Estimate for that subset of observations a cubic regression equation,
weighting each of these observations so their weights decline linearly with
distance from xg.

4. From the results, construct the predicted value of yq, 7o.

5. Repeat Steps 1-4 for each unique value of x.

The result is a set of fitted values that can be called a “smoothed” version
of y. The procedure goes under various names such as “locally weighted re-
gression” (Cleveland, 1979). As we show later, there are often better ways to
do locally weighted regression, but locally weighted regression can be written
within a basis function framework.

Homicide Rate by Executions
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Fig. 1.10. The homicide rate per 1,000 as a function of the number of executions

Figure 1.10 provides an illustration. The data include the set of all 50
states each year from 1978 to 1998, for a total of 1000 observations. Each
year, the homicide rate and the number of executions for capital crimes are
recorded. Data such as these have been central in a recent debate about the
deterrent value of the death penalty (Berk, 2005a).

In Figure 1.10, executions lagged by one year is on the horizontal axis,
and the homicide rate per 1000 people is on the vertical axis. There are 1000
observations: 50 states times 20 years. Consequently, an observation is a state-
year. To make the scatterplot more comprehensible, the number of executions
has been jittered. But in most years, most states execute no one. Over 80% of
the observations have zero executions. A very few states in a very few years
execute more than five individuals. Years in which more than five individuals
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in a state are executed represent about 1% of the data (i.e., 11 observations
out of 1000).

The fitted values for a locally weighted regression are overlaid, constructed
from the original (unjittered) data. One can see that for five executions or less,
the relationship between the number of executions and the homicide rate one
year later is positive. More executions are followed one year later by more
homicides. Thus, there is a positive relationship for 99% of the data. When a
given state in a given year executes six or more individuals, the relationship
turns negative. With more executions, there are fewer homicides one year later.
But one can see that there are almost no data supporting this relationship and
in fact, a proper confidence interval around that portion of the curve would
show that the true curve could easily be flat and even positive. In short, for
99% of the data the relationship is positive and for the atypical 1%, one really
cannot tell. (For more details, see Berk, 2005a.)

Figure 1.10 represents a descriptive exercise. No data-generation mech-
anism was proposed, let alone a causal model. The goal was to provide an
instructive visual summary of how the homicide rate is related to the number
of executions one year earlier. A key point is that no functional form was
imposed on the response function despite the application of parametric cubic
regression in many local regions of the data. Had a single, parametric, lin-
ear relationship been imposed on the data, a misleading negative slope would
have materialized. The few observations on the far right side of the plot are
highly influential.

As an alternative fitting approach, consider a step function. For Equa-
tion 1.17, the choices of where to segment z can also be determined empir-
ically. We consider in some detail later how this is done, but the basic idea
is to choose each break point so that the fit is improved the greatest amount
possible. For example, an initial break point at z = 5 might be found by trying
all possible break points and choosing the one that reduced the error sum of
squares the most. Then, within the two subsets of observations (z > 5 and
z < 5), the next two break points would be independently chosen with the
same goal in mind: to reduce the error sum of squares the largest amount pos-
sible. Classification and Regression Trees (Breiman et al., 1984) is based on
this general idea and figure significantly in material presented in later chap-
ters. Classification and regression trees can also be written as a set of basis
functions that produce a nonparametric fit.

What would be the result if the indicator variable approach were applied
to the data in Figure 1.107 The result is a single break point at z = 1. In
effect, a split is made between no executions and one or more executions.
The conditional mean when there are no executions is .066. The conditional
mean when there is one execution or more is .094. When there is one or
more executions, the homicide rate per 1000 people is about 50% greater the
following year. An overlay of these fitted values on Figure 1.10 would reveal
a step function. There would be a horizontal line between 0 and 1 at a value
of .066, and another horizontal line between 1 and the 18 (the largest value
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for the number of executions) at a value of .094. A vertical line at 1 would
connect the two.

One important implication of the step function is that the fit is not im-
proved a meaningful amount by segmenting the data any further. It is not
useful to distinguish between, say, six executions and ten executions. This un-
derscores the earlier point that data beyond five executions are far too sparse
to be of much use.

1.5 Some Common Themes

Although the variety of procedures that are discussed later can differ greatly in
look and feel, and although they often come from rather disparate intellectual
traditions, there are several themes running through the material. These are
usefully flagged before getting into lots of details.

e (Goals—The goals of the procedures discussed are usually some mix of de-
scription, classification, and forecasting. Sometimes, the intent is to charac-
terize a data-generation mechanism. But the techniques used in statistical
learning are not usually considered causal models, and causal inference
is rarely a goal. Likewise, statistical inference is not usually considered a
key activity, sometimes because the data do not justify it, sometimes be-
cause a data generation mechanism has not been clearly articulated, and
sometimes because credible procedures for statistical inference have not
be developed.

e [orecasting Skill—In much of the statistical learning literature on which
we rely, the true test of a procedure is not how well it fits the data on
hand, but how well it forecasts. Forecasting skill is the gold standard.
We show that although forecasting skill is widely accepted as the key
performance criterion, how forecasting skill is defined and operationalized
can vary substantially.

e The Bias—Variance Tradeoff —The bias-variance tradeoff is very visible
for all of the procedures discussed. The basic point is that more flexible
fitting functions will usually fit the data better but will typically generate
less stable results. A better fit can imply less bias but more variance.
Insofar as a true mean function exists, the fitted values have less systematic
error. However, the fitted values for a new random sample from the same
population will differ more from the original set of fitted values. Conversely,
less flexible fitting functions will usually have more systematic error, but
typically generate more stable results. A worse fit can imply more bias
but less variance. Insofar as a true mean function exists, the fitted values
have more systematic error. However, the fitted values for a new random
sample from the same population will differ less from the original set of
fitted values. A key goal in statistical learning can be to strike a useful
balance between the bias and the variance or better still, find a way around
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it. We also show that different statistical learning procedures can address
the bias-variance tradeoff in different ways.

Loss Functions—All of the statistical learning procedures discussed try to
fit the data taking the disparities between the fitted values and the actual
values into account. These disparities are “losses” that need to be weighted,
aggregated, and minimized in some sensible fashion as the fitted values are
computed. There are very important differences in how the disparities are
handled from one statistical learning procedure to another.
Owverfitting—A major difficulty in statistical learning is overfitting. Very
flexible fitting procedures will tend to respond to idiosyncratic features
of the data, producing results that do not generalize well to new data.
The results tend to be dataset-specific. The results can elicit very creative
subject matter interpretations that, unfortunately, are stories about the
noise not the signal.

Tuning—For all of the statistical learning procedures examined, there are
choices to be made about “tuning parameters.” These are not population
parameters of subject matter or statistical interest. They are parameters,
much like dials on a machine, that determine how a procedure functions.
There is often little statistical theory to guide the selection of tuning pa-
rameter values. Consequently, data analysts will proceed by craft lore or
trial and error. There is nothing inherently wrong with such practices, but
there will commonly be a strong temptation to try a large number of dif-
ferent tuning parameter settings. This can lead to “overtuning” and hence,
overfitting. Sometimes the tuning is done using one or more measures of
model performance, such as goodness-of-fit. Here, too, overuse can lead to
overfitting even when the fit statistic has been designed to counter certain
causes of overfitting.

Interpretability—Within a regression framework, results that are difficult
to interpret in subject matter terms, no matter how good the fit, are often
of little use. This will sometimes lead to another kind of tradeoff. Fitting
functions that perform very well by various technical criteria may stumble
when the time comes to understand what the results mean. Important
features of the data may be lost. It will sometimes be useful, therefore, to
relax the technical performance criteria a bit in order to get results that
make sense.

Differences That Make No Difference—In almost every issue of journals
that publish work on statistical learning and related procedures, there will
be articles offering some new wrinkle on existing techniques, or even new
procedures, often with strong claims about superior performance compared
to some number of other approaches. Such claims are often data-specific
but even if broadly true, rarely translate into important implications for
practice. Often the claims of improved performance are small by any stan-
dard. Some claims of improved performance are unimportant for the sub-
ject matter problem being tackled. But even when the improvements seem
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to be legitimately substantial, they often address secondary concerns. In
short, the newest is not necessarily the best.

e Rapid Development—The concepts, understandings, and tools that fall
under the rubric of statistical learning are evolving rapidly. It is very
difficult to keep up with the field, and today’s breakthrough can be to-
morrow’s bust. Moreover, the pace of technical development has to date
vastly outstripped the pace at which hands-on experience with real data
has accumulated. As a result, it is very difficult to provide grounded ad-
vice to data analysts working on real scientific and policy problems. There
is so far relatively little data analysis lore for many of the newer tools.
In addition, most popular software packages are several years behind the
curve. Researchers who want to use the most recent advances either have
to work in the software environment where the tools are being developed
(e.g., R or Matlab), or in special-purpose proprietary packages such as the
one available from Salford Systems (http://www.salford-systems.com/).

e Data Quality Really Matters—Just as in any form of regression analysis,
good data are a necessary prerequisite. If there are no useful predictors, if
the data are sparse, if key variables are highly skewed or unbalanced, or if
the key variables are poorly measured, it is very unlikely that the choice of
one among several statistical learning procedures will be very important.
The problems are bigger than that. It is rare indeed when even the most
sophisticated and powerful statistical learning procedures can overcome
the liabilities of bad data.

1.6 Summary and Conclusions

The statistical learning emphasized in this book is treated as a form of re-
gression analysis, broadly defined, with no necessary commitment a priori to
any particular functional relationship between predictors and the response.
The relationships between the predictors and the response are substantially
determined from the data. The stance taken is within the spirit of procedures
such as stepwise regression, but beyond allowing the data to determine which
predictors are useful, the data are allowed to help determine what predictor
functions are most appropriate. In practice, this means subcontracting a large
part of the data analysis to one or more computer algorithms.

What role can subject matter “theory” have? Subject matter theory can
be very important in

1. Framing the empirical questions to be addressed

2. Defining a data-generation mechanism

3. Designing and implementing the data collection

4. Determining which variables in the dataset are to be inputs and which
are to be outputs

5. Settling on the values of tuning parameters
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6. Deciding which results make sense

But none of these activities is necessarily formal or deductive, and they leave
lots of room for interpretation. If the truth be told, subject matter theory
plays much the same role in statistical learning as it does in most conventional
analyses. But in statistical learning, there is often far less posturing.

At least as important as subject matter theory is information on how the
statistical learning results are to be used. Central in these discussions is the
concept of a loss function, which determines the costs of inaccurate fitted
values. There is really no way to avoid a consideration of loss functions for
any statistical learning approach (and for most other statistical procedures
as well). A loss function typically is assumed, even if it is not explicitly ac-
knowledged by the data analyst. And the loss function employed can have
an enormous impact on the results. Subject matter expertise is necessarily
brought to bear when loss functions are selected, and the practical applied
decisions to be made also can play a key role.

Finally, the nature of exploratory data analysis needs to be briefly re-
visited to put both “data snooping” and statistical learning in their proper
places. Data snooping is under-the-table exploratory data analysis. The data
are studied at great length, various transformations are undertaken, a large
number of statistical procedures are applied and then, only the best results
are reported. This is a common ruse in most sciences that creates technical
problems (e.g., invalidating statistical tests) and misleading results. An ex-
ploratory data analysis is presented as if it were a confirmatory data analysis.

A form of data snooping can also be undertaken with more apparent legit-
imacy when systematic model selection procedures are employed. If data used
for model selection are also used to construct and evaluate the chosen model,
data snooping is again at work. The procedures used may be forthrightly
described, but as a formal matter, statistical inference can be undermined.
The usual regression statistical inference is undertaken conditional upon a
model known before the data are examined. There is a small but instruc-
tive literature showing that the unconditional distribution of the post model-
selection estimator cannot be arrived at with sufficiently useful accuracy, even
asymptotically (Freedman et al., 1988; Danilov and Magnus, 2004; Leeb and
Pétscher, 2006). So, the usual conditional tests do not address the question
that data analysts typically want to answer, and the unconditional tests can
be very problematic. We return to this later. For now, the point is that model
selection procedures share a lot with conventional exploratory data analysis.

Statistical learning is usually exploratory as well. But at least in principle,
the exploration is undertaken by a set of very explicit rules represented in the
algorithms employed. No one is hiding the ball. Equally important, we show
later that great pains are taken to avoid the seductions of overfitting. There is
often a training dataset to which the procedures are applied and a test dataset
to determine whether the results are too good to be true. When there are no
test data, there can be clever resampling techniques or helpful adjustments
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to measures of fit that can sometimes achieve much the same result. Rather
than reporting only the best results, a conscious effort is made to report only
the honest results.

Despite these good intentions, statistical learning practice can be subverted
by data snooping. In particular, a procedure that by itself does not overfit
can be applied to the data many times. After each pass through the data, the
results are examined, and the statistical learning algorithm is tuned in the
hope of producing better results. This sequence of fitting attempts can lead
to overfitting despite protections against overfitting built into the algorithm
when it is applied just once. The difficulties are compounded when the tuning
process goes unreported. Sensitivity to overfitting is an important strength of
statistical learning. But that sensitivity does not confer immunity.

Exercises

The purpose of these exercises is to provide a bit of practice doing regression
analyses by examining conditional distributions without the aid of conven-
tional linear regression. You will see that regression analysis does not require
a parametric model.

Problem Set 1

Load the R dataset “airquality” using data(airquality). Learn about the
data set using help(airquality). Attach the dataset “airquality” using at-
tach(airquality). If you do not have access to R, or choose to work with other
software, exercises in the same spirit can be easily undertaken. Likewise, ex-
ercises in the same spirit can be easily undertaken with other data sets.

1. Using pairs(), construct of a scatterplot matrix for all of the variables
except for “Month” and “Day.” Describe the relationships between each
pair of variables.

3. boxplot Using boxplot(), construct side-by-side boxplots for ozone con-
centrations against month and ozone concentrations against day. Does
the ozone distribution vary by month of the year and day of the month?
In what ways?

4. What would one have to assume to use month or day of the month in
scatterplots?

5. Construct a three-dimensional scatterplot with ozone concentrations as
the response and temperature and wind speed as predictors. (Maybe use
cloud() from the lattice package.) What patterns can you make out? It
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is difficult to see much. Other kinds of plots for three variables are often
more useful.

Construct a conditioning plot using coplot() with ozone concentrations as
the response, temperature as a predictor, and wind speed as a condition-
ing variable. How does the conditioning plot attempt to hold wind speed
constant?

Consider all the conditioning scatterplots. What common patterns do you
see? What does this tell you about how ozone concentrations are related
to temperature with wind speed held constant?

How do the patterns differ across the conditioning scatter plots? What
does that tell you about how wind is related to ozone concentration hold-
ing temperature constant? What does that tell you about how the re-
lationship between ozone concentrations and temperature can differ for
different wind speeds?

Construct an indicator variable for missing data. Using table() or xtab(),
cross-tabulate the indicator against month. What do you learn about the
pattern of missing data? How might your earlier analyses using the con-
ditioning plot be affected?

Write out the parametric regression model that seems to be most consis-
tent with what you have learned from the conditioning plot. Try to justify
all of the assumptions you are imposing.

Implement your regression model in R using Im() and examine the re-
sults. How do your conclusions about the correlates of ozone concentra-
tions learned from the regression model compare to the conclusions about
the correlates of ozone concentrations learned from the conditioning plot?

Problem Set 2

The purpose of this exercise is to give you some understanding about how the
complexity of a fitting function affects the results of a regression analysis and
whether popular measures of fit compensate sensibly.

1.

Construct the data as follows. For your predictor: x = rep(1:20, times =
10). This will give you 200 observations with values 1 through 20. For your
response: y = rnorm(200). This will give you 200 random draws from the
standard normal distribution.
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2. Plot the response against the predictor and describe what you see.

3. Apply a bivariate regression using lm() and then glm(). Describe what
overall conclusions you draw from the two sets of output. (The fit should
be the same but the output from the two procedures are a bit different.)

4. Repeat the two bivariate regressions with the predictor as a factor. Use
the same R code as before but use as.factor(x) instead of x.

5. How do the two sets of output differ from the previous sets? Focus on
the overall measures of fit. Do the adjustments for the degrees of freedom
used up seem to be effective in this case?

Problem Set 3

This purpose of this exercise is to explore how degrees of freedom used up
across models can affect results and whether popular measures of fit compen-
sate sensibly.

Construct a dataset as follows. Using R, construct 50 variables as indepen-
dent random draws from a standardized normal distribution. Each predictor
should have 100 observations. One easy way to do this is drawing 50 times
100 values using rnorm() and then formatting the result into a 50 by 100
matrix with matrix(). It will turn out to be helpful if that matrix is made
into a data frame using data.frame(). Then, attach the data frame using the
attach() command.

Now run a linear regression using that data frame. Apply Im() and assign
the output to some name so that you can retrieve it later. To keep things
simple, the only argument should be the data frame name. The first column
will automatically be chosen as the response variable. Do not look at the
output (yet).

Now apply a stepwise regression to the data. There are several stepwise
regression procedures in R, but stepAIC() in the MASS library is one good
one. Just feed the saved output object from lm() into stepAIC(). Again, save
the output by assigning it to some name. For this exercise, accept the default
settings. Do not look at the output (yet).

1. What do you expect the output from the first regression analysis (not the
stepwise regresson) to look like: the regression coefficients, the ¢-tests, the
R2, the adjusted R?, and the F-test?

2. Now look at the output from the first regression. How does the actual
output compare with your expectations?
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What do you conclude about how well linear regression produces results
consistent with how you know the data were generated?

Now examine the output from the stepwise regression: the regression co-
efficients, the t-tests, the R2, the adjusted R?, and the F-test. How do
these compare to the output from your initial regression analysis?

From that comparison, what are the possible implications for model se-
lection and overfitting?

How would these implications change if the ratio of the number of obser-
vations to the number of predictors were much larger (e.g., 10 predictors
with 100 observations) or much smaller (e.g., 90 predictors with 100 ob-
servations)? Try it. What happens? How do the comparisons between the
conventional regression results and the stepwise regression results change
depending on the ratio of the number of observations to the number of
predictors?

What are some lessons for model selection and overfitting?
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Regression Splines and Regression Smoothers

2.1 Introduction

This chapter launches a more detailed examination of statistical learning
within a regression framework. Once again, the focus is on conditional dis-
tributions. But now, the mean function for a response variable is central. How
does the mean vary with different predictor values? The intent is to begin
with procedures that have much the same look and feel as conventional linear
regression and gradually move toward procedures that do not.

2.2 Regression Splines

A “spline” is a thin strip of wood that can be easily bent to follow a curved
line (Green and Silverman, 1994: 4). Historically, it was used in drafting for
drawing smooth curves. Regression splines, a statistical translation of this
idea, are a way to represent non-linear, but unknown, mean functions.

Regression splines are not used a great deal in empirical work. As we show,
there are usually better ways to proceed. Nevertheless, it is important to
consider them, at least briefly. They provide an instructive transition between
conventional parametric regression and the kinds of smoothers commonly seen
in statistical learning.

2.2.1 Applying a Piecewise Linear Basis

For a piecewise linear basis, the goal is to fit the data with a broken line
(or hyperplane) such that at each break point the left-hand edge meets the
right-hand edge. When there is a single predictor, for instance, the fit is a set
of straight line segments, connected end to end, sometimes called “piecewise
linear.” Figure 2.1 is a simple illustration using three straight lines joined
end to end. There is a response variable represented by y and a predictor
represented by x. For now, only the fitted values are shown.

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_2, (© Springer Science+Business Media, LLC 2008
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Fig. 2.1. An illustration of piecewise linear function with two knots.

Constructing such a function for the conditional means is straightforward
in principle. First, one decides where the break points on x will be. If there is a
single predictor, as in this illustration, the break points might be chosen after
examining a scatter plot of ¥ on x. When possible, subject matter expertise
should also be used to help determine the break points. For example, = might
be years, and then the break points might be determined by specific historical
events. Thus, y might be a measure of a river’s biodiversity, and = might
be time in months, with one breakpoint representing the removal of a major
dam and another breakpoint representing a toxic chemical spill. Let the break
points here be defined at = a and = b (with b > a). In Figure 2.1, a = 20
and b = 60. Such break points are often called “knots.”

The second step is to define two indicator variables to represent the break
points. Here, the first (I,) is equal to 1 if = is greater 20 and equal to 0
otherwise. The second (1) is equal to 1 if x is greater than 60 and equal to 0
otherwise. We let x, be the value of x at the first break point, and z; be the
value of z at the second break point.

The third step is to define the mean function. Because at this point de-
scription is the primary goal, the conditional mean of y is represented by y|x
rather than by E(y|x). The latter implies that Y is a random variable. For
now, it does not matter whether Y is a random variable. Then,

Ylz = Bo + Pre + B2(x — xa)la + B3z — ) L. (2.1)
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Looking back at Equation 1.15, it is apparent that there are four transforma-
tions of X, h,,(X)s, in which the first function of x is a constant.
The mean function for x less than a is

ylz = Bo + B (2.2)

In Figure 2.1, By is zero, and (3 is positive.
For values of x greater than a but smaller than b, the mean function
becomes

gl = (Bo — Baza) + (B1 + Po). (2.3)

For a positive 81 and (s, the line beyond = = a is steeper because the slope
is (81 + B2). The intercept is lower because of the second term in (By — Box4).
This too is consistent with Figure 2.1. If (5 is negative, the reverse would
apply.

For values of x greater than b, the mean function becomes,

gl = (Bo — Baa — P3xp) + (B1 + B2 + B3). (2.4)

For these values of z, the slope is altered by adding (3 to the slope of the
previous line segment. The intercept is altered by subtracting G3x,. The sign
and magnitude of #3 determine if the slope of the new line segment is posi-
tive or negative and how steep it is. The intercept will shift accordingly. In
Figure 2.1, (3 is negative and large enough to make the slope negative. The
intercept is increased substantially.

Residential Water Use by Year

in 1000 Cubic Feet
660000 680000 700000 720000

Residential Water Use

640000

620000

1975 1980 1985 1990 1995 2000

Fig. 2.2. A piecewise linear basis applied to water use by year.

Figure 2.2 shows a three-piece linear regression spline applied to water use
data from Tokyo over a period of 27 years. Residential water use in 1000s of
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cubic feet is on the vertical axis. Year is on the horizontal axis. The locations
of the break points were chosen after inspecting the scatterplot, with some
reliance on subject matter expertise about residential water use in Japan.

It is clear that water use was flat until about 1980, then increased lin-
early until about 1996, and then flattened out again. The first break point
may correspond to a transition toward much faster economic and population
growth. The second break point may correspond to the introduction of more
water-efficient technology. But why the transitions are so sharp is mysterious.
One possibility is that the break points correspond in part to changes in how
the water use data were collected or reported.

It is perhaps most common to see regression splines fit to data in which
time is used as the sole predictor. The end-to-end connections between line
segments lead naturally to processes that unfold over time. The line segment
on the right side of a knot begins where the line segment on the left side of
the knot ends. But there is nothing about linear regression splines requiring
that time be a predictor. For example, the response could be crop production
per acre and the sole predictor could be the amount of phosphorus fertilizer
applied to the soil. Crop production might increase in approximately a linear
fashion until an excess of phosphorus caused other kinds of nutritional diffi-
culties. At that point, crop yields might decline in roughly a linear manner.

Fitting line segments to data provides an example of “smoothing” a scat-
terplot, or applying a “smoother.” The line segments are used in place of the
data to characterize how = and y are related. The intent is to highlight key
features of any association while removing unimportant details. This can often
be accomplished by constructing fitted values in a manner that makes them
more homogeneous than the set of conditional means of y computed for each
unique value of z.

Imagine a scatterplot in which the number of observations was large
enough so that for each value of x there were at least several values of y. One
could compute the mean of y for each z-value. If one then drew a straight
line between each of the adjacent conditional means, the resulting smoother
would be an interpolation of the conditional means and as rough as possible.
At the other extreme, imposing a single linear fit on all of the means at once
would produce the smoothest smoother possible. Figure 2.2 falls somewhere
in between. How to think about the degree of smoothness more formally is
addressed later.

For a piecewise linear basis, one can simply compute functions such as
Equation 2.1 with ordinary least squares. With the regression coefficients in
hand, fitted values are easily constructed. Indeed, many software packages
compute and store fitted values on a routine basis. Also widely available are
procedures to construct the matrix of regressors, although it is not hard to do
so one term at a time using common transformation capabilities. For exam-
ple, the library spline has a procedure bs() that constructs a B-spline basis
(discussed later) that can be easily used to represent the predictor matrix for
piecewise linear regression.
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In contrast to most applications of conventional linear regression, there
would typically be little interest in the regression coefficients themselves; they
are but a means to an end. The point of the exercise is to superimpose the
fitted values on a scatterplot so that the relationship between y and x can be
more effectively visualized. As we show later, and as was briefly anticipated in
the last chapter, model selection will not necessarily be the same as regressor
selection.

2.2.2 Polynomial Regression Splines

Smoothing a scatterplot using a piecewise linear basis has the great advantage
of simplicity in concept and implementation. And by increasing the number of
break points, very complicated relationships can be approximated. However,
in most applications there are good reasons to believe that the underlying
relationship is much smoother than can be easily represented with a set of
straight line segments.

Greater continuity can be achieved by using polynomials in x for each
segment. Cubic functions of x are a popular choice because they strike a nice
balance between flexibility and complexity. When used to construct regression
splines, the fit is sometimes called “piecewise cubic.” The cubic polynomial
serves as a “truncated power series basis” in x.

Unfortunately, simply joining polynomial segments end to end is unlikely
to result in a visually appealing fit where the polynomial segments meet. The
slopes of the two lines will often appear to change abruptly even when that is
inconsistent with the data. Far better visual continuity usually can be achieved
by constraining the first and second derivatives on either side of each break
point to be the same.

Putting this all together, one can generalize the piecewise linear approach
and impose the continuity requirements. Suppose there are K interior break
points, usually called “interior knots.” These are located at & < -+ < &k
with two boundary knots added at £ and £x 1. Then, one can use piecewise
cubic polynomials in the following regression formulation,

K
glo = Bo + Bz + Bor® + B32® + > 0;(x — x;)3, (2.5)

j=1

where the “4” indicates the positive values from the expression inside the
parentheses, and there are K + 4 parameters whose values need to be com-
puted. This leads to a conventional regression formulation with a matrix of
predictor terms having K + 4 columns and N rows. Each row would have the
corresponding values of the piecewise cubic polynomial function evaluated at
the single value of x for that case. There is still only a single predictor, but
now there are K + 4 basis functions.

The output for the far-right term in Equation 2.5 may not be apparent
at first. Suppose the values of the predictor are arranged in order from low
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to high. For example, z = [1,2,4,5,7,8]. Suppose also that z; is located at
an z-value of 4. Then, (z — 2;)3 = [0,0,0,1,27,64]. The knot-value of 4 is
subtracted from each value of x, the negative numbers set to 0, and the others
cubed. All that changes from knot to knot is the value of z; that is subtracted.
There are K such knots and K such terms in the regression model.

Figure 2.3 shows the water use data again, but with a piecewise cubic
polynomial overlaid that imposes the two continuity constraints. The fit looks
quite good to the eye and captures about 95% of the variance in water use.
But, in all fairness, the scatterplot did not present a great challenge. The point
is to compare Figure 2.2 to Figure 2.3 and note the visual difference. The linear
piecewise fit also accounted for about 95% of the variance. Which plot would
be more instructive in practice would depend on the use to be made of the
fitted values and on prior information about what a sensible f(X) might be.
The regression coeflicients ranged widely and, as to be expected, did not by
themselves add any useful information. The story was primarily in the fitted
values.

Residential Water Use by Year Using Cubic Splines
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Fig. 2.3. A piecewise cubic polynomial applied to water use by year.

2.2.3 Natural Cubic Splines

Fitted values for piecewise cubic polynomials near the boundaries of x can
be unstable because they fall at the ends of polynomial line segments where
there are no continuity constraints, and where there may be little data. By
“unstable” one means that a very few observations, which could vary over
random samples from the same population, produce substantially different
fitted values near the boundaries of x. As a result, the plot of the fitted values
near the boundaries could look rather different from sample to sample.
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Sometimes, constraints for behavior at the boundaries are added to in-
crease stability. One common constraint imposes linearity on the fitted values
beyond the boundaries of x. This introduces a bit of bias because it is very
unlikely that if data beyond the current boundaries were available, their re-
lationship with the response would be linear. However, the added stability
is often worth it. When these constraints are added, the result is a “natural
cubic spline.”

Residential Water Use by Year Using Natural Cubic Spiines
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Fig. 2.4. Natural cubic regression splines applied to water use by year.

Figure 2.4 shows again a plot of the water use data on year, but now
with a smoother constructed from natural cubic splines. One can see that the
fitted values near the boundaries of = are somewhat different from the fitted
values near the boundaries of x in Figure 2.3. The fitted values in Figure 2.4
are smoother, which is the desired result. There is one less bend near both
boundaries. More generally, how one can formulate the boundary constraints
is discussed in Hastie et al. (2001: Section 5.2.1).

The option of including extra constraints to help stabilize the fit provides
an example of the bias—variance tradeoff. This is a topic to which we return
many times in the pages ahead. For now, an informal overview for natural
cubic splines may be useful.

The bias—variance tradeoff addresses some important properties of fitted
values when the data are a random sample from a population or a realization
of a stochastic process. Bias and variance refer to what can happen over a lim-
itless number of hypothetical, independent, random samples or realizations;
the context is the usual frequentist thought experiment. Therefore, the bias—
variance tradeoff is only directly relevant when statistical inference is on the
table and does not formally provide much insight when summary statistics
are being used solely for description.
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When constraints are imposed on a fitting process to make the fitted values
less variable, bias in the fitted values can be introduced. The means of the
fitted values over many samples or realizations will often be farther from
the true conditional means of the response variable, which are the values
one wants to estimate. However, in repeated independent random samples, or
independent realizations of the data, the fitted values will vary less. When the
fit is smoother, each fitted value is constructed, in effect, from a larger number
of y-values. This increases stability in the same way that larger samples in
general provide estimates with a smaller variance. Conversely, but using the
same reasoning, a rougher fit can imply less bias but more variance over
repeated samples or realizations. A tradeoff naturally follows.

Ideally, just the right amount of bias can be combined with just the right
amount of variance so that over repeated random samples or realizations, the
fitted values would be on the average as close to true response variable values
as possible. “Close” can be operationalized in several ways, but it is often
desirable to work with a test sample and then try to minimize the mean of
the squared deviations between the fitted values and the observed values of
the response variable (i.e., the mean squared error in a test sample).

For piecewise cubic polynomials and natural cubic splines, the degree of
smoothness is primarily a function of the number of interior knots. In practice,
the smaller the number of knots, the smoother are the fitted values. A smaller
number of knots means that there are more constraints on the pattern of
fitted values because there are fewer end-to-end, cubic line segments used in
the fitting process. Consequently, less provision is made for potential twists
and turns.

But placement matters too. Ideally, knots should be located where it is
thought that the f(X) is changing most rapidly. In some cases, inspection of
the data, coupled with subject matter knowledge, can be used to determine
the number and placement of knots. The water use data just considered were
analyzed in this manner.

Alternatively, the number and placement of knots can be approached as a
model selection problem. Any of the fit statistics discussed in the last chapter,
such as the GCV, can be used to determine the number of knots, given a set
of candidate locations. The number of knots translates into a penalty for the
number of regression parameters whose values are being estimated from the
data. The penalty increases with the number of knots, just as the penalty
would normally increase with the number of regression parameters whose
values were not known a priori. Then, the goal is to choose the knot number
that minimizes the fit statistic. Knot selection is essentially regressor selection.
In other words, a set of potential knots is specified, and fit statistics are used
to determine which knots are really needed.

The fit statistics are largely silent on where to place the knots. Two models
with the same number of knots can produce very different fitted values if
the placement of the knots substantially differs. Two models with a very
different number of knots may fit the data about the same, depending on
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where the knots are placed. Moreover, absent subject matter information, knot
placement has been long known to be a difficult technical problem, especially
when there is more than one predictor (de Boors, 2001). The fitted values
are related to where the knots are placed in a very complicated manner.
Fortunately, methods discussed later sidestep the knot location problem.

Even if a good case for candidate knot locations can be made, one must
be careful about taking any of the fit measures too literally. First, there will
often be several models with rather similar values, whatever the kind of fit
statistic used. Then, selecting a single model as “best” using the fit measure
alone may amplify a small numerical superiority into a large difference in the
results, especially if the goal is to interpret how the predictors are related to
the response. Some jokingly call this “specious specificity.” Second, the same
issues can arise when comparing the models selected by the different kinds of
fit statistics. The impact of very small differences in fit can lead to very large
difference in the results. Third, one must be a very careful to not let small
differences in the fit statistics automatically trump subject matter knowledge.
The risk is arriving at a model that may be difficult to interpret, or effectively
worthless.

In summary, for regression splines of the sort just discussed, there is no
straightforward way to arrive at the best tradeoff between the bias and the
variance because there is no straightforward way to determine knot location.
A key implication is that it is very difficult to arrive at a model that is demon-
strably the best. Fortunately, there are other approaches to smoothing that
are more promising.

2.2.4 B-Splines

In practice, data analyses using piecewise cubic polynominals and natural cu-
bic splines are rarely constructed directly from polynomials of x. They are
commonly constructed using a B-spline basis, largely because of computa-
tional convenience. A serious discussion of B-splines would take us far afield
and accessible summaries can be found in Gifi (1990) and Hastie et al. (2001).
Nevertheless several observations are worth making.

The goal is to construct transformations of x that allow for a cubic piece-
wise fit but that have nice numerical properties and are easy to manipulate.
B-splines do well by all three criteria. They are computed in a recursive man-
ner from very simple functions to more complex ones, and consistent with the
approach to basis functions taken here, can be represented as a linear basis
expansion.

For a series of knots, which usually include several beyond the upper and
lower boundaries of z, indicator variables are defined for each region marked
off by the knots. If a value of z falls within a given region, the indicator
variable for that region is coded 1, and coded O otherwise. For example, if
there is a knot at an z-value of 2 and the next knot at an x-value of 3, the
z-values between them form a region with its own indicator variable coded 1
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B-Splines for a Step Function Fit

B-Spline Value
0.6
1

Fig. 2.5. Degree zero B-splines.

if the value of x falls in that region (e.g., x = 2.3), and coded 0 otherwise.
The result is a set of indicator variables, with values of 1 or 0, for each region.
These indicator variables define a set of degree zero B-splines.

Figure 2.5 is an illustration with interior knots at -2, -1, 0, 1, and 2. Using
the indicator variables as regressors will produce a step function when y is
regressed on x; they are the basis for a step function fit. The steps will be
located at the knots.

Next a transformation can be applied to the degree zero B-splines. (See
Hastie et al., 2001: 160-163). The result is a set of degree one B-splines.
Figure 2.6 shows the set of degree one B-splines derived from the indicator
variables shown in Figure 2.5. The triangular shape is characteristic of degree
one B-splines, and implies that the values for each spline are no longer just 0
or 1, but proportions in between as well.

Degree one B-splines are the basis for linear piecewise fits. Here, the re-
gressor matrix includes eight columns whose values appear in Figure 2.6. The
content of each column is the B-spline values for each value of x. Regressing
a response on that matrix will produce a linear piecewise fit with knots at -2,
-1, 0, 1, and 2.

A transformation of the same form can now be applied to the degree one
B-splines. This leads to a set of degree two B-splines that are the basis for a
quadratic piecewise fit. For this illustration, there is now a matrix with nine
columns that can serve as a regressor matrix. The set of such B-splines is
shown in Figure 2.7 and as before, the shapes are characteristic.
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B-Splines for a Linear Fit

Fig. 2.6. Degree one B-splines.

B-Splines for a Quadratic Fit

Fig. 2.7. Degree two B-splines.
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B-Splines for a Cubic Fit
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Fig. 2.8. Degree three B-splines.

The same kind of transformation can then be applied to the degree two
B-splines. The result is a set of degree three B-splines that are the basis
for a cubic piecewise fit. Figure 2.8 shows the set of degree three splines,
whose shapes are, once again, characteristic. They can be used to construct a
regressor matrix with nine columns.

All splines are a linear combinations of B-splines; B-splines are a basis
for the space of all splines. They are also a well-conditioned basis because
they are fairly close to orthogonal, and they can be computed in a stable and
efficient manner. For our purposes, the main point is that B-splines are a
computational device used to construct cubic piecewise fitted values. When
such smoothers are employed, B-splines are doing the work behind the scenes.

2.3 Penalized Smoothing

The placement of knots, the number of knots, and the degree of the polyno-
mial are subject to manipulation by a data analyst. All three can be used
to construct a highly flexible fitting function that will track the data well.
Because a good fit is typically considered desirable, there is sufficient reason
in practice to worry about overfitting. The pull toward constructing a good
fit can be very strong.

The fit statistics considered earlier can provide some protection against
overfitting. They can help compensate for the amount of flexibility built into
a given fitting function. However, they function indirectly. They are applied
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after a model has been constructed to obtain a more honest measure of fit
quality that can sometimes inform future fitting attempts.

A wuseful alternative is to alter the fitting process itself so that potential
overfitting of a given model comes at a price. In particular, a penalty can
be introduced into the loss function to be optimized that imposes increasing
losses with increasing flexibility, regardless of how well the model is otherwise
doing. In part because this approach has wide applicability, it is worth our
attention now. Penalized fitting procedures figure significantly in this and
later chapters.

2.3.1 Shrinkage

All of the procedures discussed in this chapter can be formulated as a con-
ventional regression analysis. The procedures vary in the regressor matrix
employed and how that matrix is determined. Whatever the regressor matrix
used, there will be a set of regression coefficients. The larger the absolute value
of these coefficients, other things being equal, the more the fitted values can
vary.

To get some feel for this, consider a conventional regression analysis with
an indicator variable as the sole regressor. If its regression coefficient equals
zero, the fitted values will be a straight line, parallel to the z-axis, located at
the unconditional mean of the response. As the regression coefficient increases
in absolute value, the resulting step function will have a step of increasing size.
The fit becomes more rough. More generally, the potential for rougher fit is
greater with larger regression coefficients. Insofar as the roughness results from
fitting idiosyncratic features of the data, there is overfitting. There are situa-
tions, therefore, in which it can be useful to control how large the regression
coefficients are allowed to become.

A number of proposals have been offered for how to control the magnitude
of regression coeflicients. (See Ruppert et al., 2003: Section 3.5 for a very
accessible discussion. Two popular suggestions are

1. Constrain the sum of the absolute values of the regression coefficients to
be less than some constant C' (sometimes called an L;—penalty).

2. Constrain the sum of the squared regression coefficients to be less than
some constant C' (sometimes called an Lo—penalty).

The smaller the value of C' is, the smaller the sum. The smaller the sum,
the smaller is the typical magnitude of the regression coefficients. In part
because the units in which the regressors are measured will affect how much
each regressor contributes to the sum, it can make good sense to work with
standardized regressors. The intercept does not figure in either constraint and
is usually addressed separately.

Both constraints lead to “shrinkage methods.” The regression coefficients
can be “shrunk” toward zero, making the fitted values more homogeneous.



62 2 Splines and Smoothers

The goal is to introduce a small amount of bias into the computed regression
coefficients in trade for a substantial reduction in their variance. There may
also be subject matter reasons for preferring a smoother set of fitted values.
Subject matter theory and/or past research may suggest that the response is
a relatively smooth function of the predictors.

Shrinkage methods can be applied with the usual regressor matrix or with
regressor matrices of the sorts we have considered in this chapter. With our
focus on statistical learning, the latter is emphasized shortly. We start, how-
ever, within a conventional multiple regression framework and p predictors.
We show that there can be two somewhat different goals: to construct more
stable fitted values and to determine which regressors can be included as pre-
dictors. Shrinkage methods can be viewed as a form of “regularization,” which
figures significantly in later chapters.

One also can recast some measures of fit discussed in the last chapter
within a shrinkage framework. The total number of regression coefficients to
be estimated can serve as a constraint and is sometimes called an Lo—penalty.
Maximizing the adjusted R2, for example, can be seen as maximizing the
usual error sum of squares subject to a penalty for the number of regression
coefficients in the model (Fan and Li, 2006).

Ridge Regression

Suppose one adopts the constraint that the sum of the p squared regression
coefficients is less than C'. The Ly constraint leads directly to ridge regression.
The task is to obtain values for the regression coefficients so that

n

P p
B = mﬁin Z(yi - Bo — injﬁj)Q + )\Zﬂf : (2.6)
P =1

i=1

In Equation 2.6, the usual expression for the error sum of squares has a new
component. That component is the sum of the squared regression coefficients
multiplied by a constant \. When Equation 2.6 is minimized in order to obtain
B, the sizes of the squared regression coefficients are taken into account.

For a given value of A, the larger the 25:1 5]2 is, the larger the increment
to the error sum of squares. The 57:1 ﬁjz can be thought of as the penalty
function. For a given value of Z?:l ﬁ?, the larger the value of A is, the larger
the increment to the error sum of squares; A determines how much weight is
given to the penalty. In short, 22:1 ﬁjz is what is being constrained, and A
imposes the constraint. C' is inversely related to A\. The smaller the value of
C, the larger is the value of .

It follows that the ridge regression estimator is

B=X"X+ )Xy, (2.7)

where I is a p x p identity matrix. The column of 1s for the intercept is dropped
from X.
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In Equation 2.7, A plays same role as in Equation 2.6, but can now be seen
as a tuning parameter. It is not an estimate of some feature of a population or
a stochastic process. Its role is to help provide an appropriate fit to the data
and can be altered directly by the data analyst. As such, it has a different
status from the regression coefficients, whose values are determined through
the minimization process itself, conditional upon the value of .

The value of X is added to the main diagonal of the cross-product matrix
XTX, which determines how much the estimated regression coefficients are
“shrunk” toward zero (and hence, each other). A A of zero produces the usual
least squares result. As )\ increases in size, the least squares regression coef-
ficients approach zero, and the fitted values are smoother. In effect, the vari-
ances of the predictors are being increased with no change in the covariances
between predictors or with the response variable. This is easy to appreciate in
the case of a single predictor. For a single predictor, the regression coefficient
is the covariance of the predictor with the response divided by the variance of
the predictor. So, if the covariance is unchanged and the variance is increased,
the absolute value of the regression coefficient is smaller.

The results are not invariant to the scales used for the predictors; the re-
gression coefficients obtained will differ in a complicated manner depending
on the units in which the predictors are measured. It is common, therefore,
to standardize the predictors before the estimation begins. However, stan-
dardization is just a convention and does not solve the problem of the results
being scale-dependent. Knowing how much the average response changes in
standard deviation units for a one standard deviation change in a predictor
conveys little unless one also knows the size of the two standard deviations.
And those standard deviations are scale-dependent.

A key issue is how the value of A is chosen. One option is trial and error.
Different values of A\ are tried until the desirable amount of smoothness is
achieved. Alternatively, the value of A is selected by some measure of predic-
tion error such as the cross-validation statistic. The value of A is chosen to
maximize prediction accuracy. Both methods can lead to overfitting insofar
as many different models are applied to the training data.

What one makes of output from a ridge regression depends substantially
on the usual issues. If estimation is an important goal, one must be able to
credibly argue that for each configuration of xz-values, one can treat the data
on hand as a random sample or realization, as discussed earlier. Then, one
must meet the usual regression assumptions. If, for example, there are omitted
predictors, whether the resulting biases are likely to be large enough to matter
in practice would need to be addressed on a case-by-case basis.

However, ridge regression introduces some additional complications. The
estimates of the regression coefficients and hence, the fitted values, are biased
by design. If hypothesis tests are undertaken and conventional regression out-
put used, the reported p-values are no longer accurate. And if conventional
confidence intervals are constructed, they do not have their usual coverage.
The regression estimates are necessarily offset by a systematic but unknown
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amount. We return to this matter a little later after other shrinkage procedures
are discussed.

Ridge regression was first developed to address the instability of estimated
regression coefficients when regressors are highly correlated. It is now appreci-
ated that the applications are broader. Here, we are interested at least as much
in description as in estimation, and ridge regression provides one means to al-
ter the smoothness of the fitted values. Also, shrinkage methods can be given
a Bayesian interpretation in which the regression coefficients are shrunk to-
ward a prior joint distribution of the regression coefficients. Some researchers
find this instructive.

The Lasso

Suppose that one now adopts the constraint that the sum of the absolute val-
ues of the regression coefficients is less than some constant. The Lq constraint
leads to a regression procedure known as the lasso (Tibshirani, 1996) whose
estimated regression coeflicients are defined by

n P P
f =min D wi—Bo— > @B  +AD 18] - (2.8)
i=1 j=1 j=1

Unlike the ridge penalty, the lasso penalty leads to a nonlinear estimator,
and a quadratic programming solution is needed. As before, the value of A
is a tuning parameter, determined empirically, usually through some measure
of prediction error. Just as with ridge regression, a A of zero yields the usual
least squares results. As the value of \ increases, the regression coefficients
are shrunk toward zero.

Hastie and his colleagues (2001: Section 3.4.5) place ridge regression and
the lasso in a larger context in order to compare them to each other and
to other procedures. A major interest is the patterns of shrinkage as the A
changes. Ridge regression tends to shrink the coefficients so that they all reach
zero together as \ gets large. The lasso shrinks the coeflicients so that some
reach zero well before others as A\ gets large. Thus, the lasso performs in a
manner that has some important commonalities with model selection proce-
dures used to choose a subset of regressors. Rosset and Zhu (2007) consider
the path that the regression coefficients take as the value of A changes, place
the lasso in a class of regularization processes in which the solution path is
piecewise linear, and then develop a robust version of the lasso. Wang et al.
(2007) combine quantile regression with the lasso to derive another robust
variable selection approach. We show later that the lasso has some interesting
connections to boosting. In short, the lasso is more than a regularization pro-
cedure. It can help to provide useful insights about a wide variety of statistical
tools.

Of late, there has been a lot of interest in the theoretical properties of the
lasso and related procedures (Fan and Li, 2006; Meinshausen and Biithlmann,
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2006). In particular, assuming that one has a set of predictors that includes
all of those that belong in the model, as well as some number of irrelevant
predictors, a key question is whether the lasso selects the correct predictors,
at least as the sample size increases without limit. At this point, the answer
seems to be sometimes it does and sometimes it does not. In particular, cer-
tain patterns of moderate to high correlations between predictors can lead to
inappropriate predictors being selected along with the correct ones. Moreover,
it can be very difficult to know with a real dataset whether or the problem-
atic relationships between the predictors exist. In part as a response, Zou
(2006) has proposed the adaptive lasso, which in theory is an improvement.
The wrinkle is to employ “cleverly chosen” weights for the regression coef-
ficients in the L; penalty function (Zou, 2006: section 3.1). The weights, in
turn, are determined by another tuning parameter (in addition to A). Finally,
concerns have been raised about how well the lasso performs when there are
heavy-tailed disturbance distributions or outliers. One response is to combine
the lasso with quantile regression so that larger residuals are given relatively
less weight in the fitting process (Wang et al., 2007).

In practice, the overriding problem with the lasso is the usual one: the
underlying regression formulation has to be effectively correct. The data were
in fact generated by a process represented with sufficient accuracy by a par-
ticular linear regression model. It is just that one has a dataset that includes
not only the correct regressors but some incorrect ones, and the data analyst
does not know which is which. The proper kind of shrinkage will reveal which
regressors belong in the model. Alternatively, one has precisely the correct
predictors in the dataset, but better performing estimates might be obtained
through regularization. In either case, however, statistical inference for the
lasso suffers from the same complications as ridge regression. Conventional
expressions for confidence intervals and hypothesis tests do not apply.

The Elastic Net

If an important goal of a regression data analysis is to reduce the complexity
of the model, the lasso has some advantages over ridge regression. But the
lasso can also run into problems (Zou and Hastie, 2005). For example, when
the number of predictors is larger than the number of observations (which
is common with microarray data), the number of predictors selected cannot
exceed the number of observations. In addition, there are the problems already
noted with the selection of some inappropriate predictors.

In response to these difficulties, Zou and Hastie (2005) combine the penal-
ties from ridge regression and the lasso. The result, called the elastic net,
is

i=1

B:mﬁin Z(yi — Bo —injﬁj)2+)\12|ﬂj|+>\2 Zﬁ? . (2.9)
j=1 J=1 Jj=1
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Minimization of Equation 2.9 produces what Zou and Hastie (2005) call
“naive” coefficients that need to be adjusted further. The adjustment is simple,
and some initial applications and simulations suggest that the elastic net
can improve on the lasso. Of course, the regression model still needs to be
credible, and even if it is, conventional expressions for confidence intervals
and hypothesis tests are inappropriate.

The Dantzig Selector

The Dantzig Selector is another shrinkage estimator that can be used for
variable selection (Candes and Tao, 2007). It seems to perform especially well
when the number of predictors is large relative to the number of observations
and even allows for the number of predictors to be larger than the number of
observations. One must assume that the true set of regression coefficients is
“sufficiently sparse” so that a substantial number of predictors actually have
regression coefficients of zero. In effect, this guarantees identifiability. If in
practice the linear regression model specified satisfies all of the usual assump-
tions, save for including a relatively large number of unnecessary predictors,
the Dantzig Selector can find the predictors with regression coefficients equal
to zero.
The Dantzig Selector has the following formulation.

p n
g = mﬁinz |3;] subject to Z ERTARP) (2.10)
Jj=1 =1
for j =1,2,...,p, where the predictors have been standardized to z-scores, r;

is the usual regression residual, A is a tuning parameter, and p is the number
of predictors.

The Dantzig Selector, like the lasso, uses the sum of the absolute values
of the regression coefficients as an argument. Minimizing the sum of the ab-
solute values of the regression coefficients can produce regression coefficients
that are exactly zero, and therefore, the associated predictors are removed
from the analysis. But the key idea is that Y ., |x;;7;| captures any associa-
tion between the residuals and each predictor in turn. When for each predictor
>y |zijril = 0, one has the usual least squares solution in which by construc-
tion, the predictors are unrelated to the residuals. With 0 | |z;;r;| > 0, bias
is introduced because one or more predictors is associated with the residuals.
By setting the value of A, one can introduce varying degrees of association
between each predictor and the residuals, and varying degrees of bias in the
estimated regression parameters.

Work by Gareth and Radchenko (2007) extends applications of the Dantzig
Selector to the entire generalized linear model. It may also be a useful tool
when applied to functional linear regression (Gareth and Zhu, 2007). An im-
portant insight is that the Dantzig Selector can be formulated within a maxi-
mum likelihood framework such that the tuning parameter allows the partial
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derivatives of the likelihood function with respect to the regression coefficients
to be nonzero. Consequently, the solution is moved away from the maximum
likelihood result. As before, some bias is introduced that can shrink the ap-
propriate regression coefficients to zero.

To date, hands-on experience with the Dantzig Selector is very limited
and it is not clear how the Dantzig Selector performs compared to obvious
competitors such as the lasso (Efron et al., 2007; Meinshausen, 2007) In ad-
dition, potential insights into statistical learning have yet to be well explored
(Cai and Lv, 2007). However, the ideas built into the Dantzig Selector are
provocative, and it may have a bright future.

Regularization and Derivative Expectation Operator: Rodeo

Rodeo is perhaps the most recent entry into the shrinkage sweepstakes (Laf-
ferty and Wasserman, 2008). It is related to adaptive smoothing, which is
discussed later in this chapter, as a result, and to the lasso. The goal is to
apply shrinkage to nonparametric regression, also discussed shortly, so that
irrelevant predictors can be identified and removed. Rodeo assumes, as before,
that one has in the data all of the correct regressors and some additional ones.
The irrelevant predictors make the full set of predictors “sparse.”

It is difficult to be very specific before nonparametric regression is more
fully discussed, but the basic approach can be easily described. Suppose there
is a single predictor. The degree of smoothness for the computed f(X) is varied
starting with a very smooth f(X) and gradually making it more rough. If on
the average the fitted values are much the same regardless of the degree of
smoothing, that predictor is not meaningfully related to the response. Smooth,
rough or in between, the f(X) does not change significantly. Conversely, if on
the average the fitted values vary substantially as the degree of smoothness
changes, the predictor is meaningfully related to the response. The degree of
smoothness matters for the f(X).

Now imagine having p predictors. If changing the degree of smoothing has
little impact on the average fitted value for a given predictor, one can conclude
that that predictor is not relevant. If changing the degree of smoothing has a
large impact on the average fitted value for a given predictor, one can conclude
that that predictor is relevant.

As a practical matter, rodeo begins with a very smooth version of the
f(X). Gradually, the f(X) is made less smooth for each predictor. For any
predictor and given amount of smoothness, there is an aggregate derivative
over observations representing how much the f(X) changes with infinitesimal
changes in the amount of smoothing. When for any predictor the derivative is
smaller than some threshold for that predictor, the predictor is deleted from
the model. Ideally, the irrelevant predictors are deleted first leaving behind
the relevant predictors.

It is far too early to know how effective rodeo will be in practice. More
important for now is its conceptual structure. All of the shrinkage proce-
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dures considered thus far place constraints on regression coefficients, which
as derivatives represent how the average response changes as a function of
an infinitesimal change in predictor values. Rodeo places constraints on how
much the average response changes with infinitesimal changes in the amount
of smoothing. More generally, rodeo addresses shrinkage for nonparametric
regression. This provides a useful transition to smoothing splines, which are
addressed shortly.

2.3.2 Shrinkage and Statistical Inference

If the data used in a shrinkage procedure have been generated by random
sampling or by a known stochastic process, statistical inference may be called
for. As mentioned earlier, however, shrinkage estimates present special prob-
lems. Even if the regression model meets the requisite assumptions, shrinkage
introduces bias by design. If the regression estimates are biased, conventional
confidence intervals will not have their advertised coverage. For example, the
95% confidence interval for a particular regressioncoefficient will not contain
the true value for that regression coefficient 95% of the time. The estimate is
offset by some unknown amount so that the actual coverage will be less than
95%. Similar problems exist for hypothesis tests. The disparity between the
null hypothesis and the sample statistic will be either too large or too small
because of the offset caused by the bias. As a result, the computed p-values
will be too large or too small as well.

Recall that the traditional goal of shrinkage is to construct sample es-
timates as close as possible to their population counterparts by the mean
squared error criterion. The uncertainty estimates, therefore, risk confounding
the variance with the bias. This can mean that a sensible confidence interval
needs to take both into account if the usual coverage is to be represented.
Likewise, sensible tests need to produce p-values that respond to both.

Because the nature of the bias is unknown, there is no easy fix. All one
can know for sure is that the conventional procedures by which one constructs
confidence intervals or performs hypothesis tests will be incorrect and that
statistical inference reported by the regression software is likely to be incorrect
as well.

In some settings, it can be prudent to reduce aspirations. One can focus
on the variance alone. If the question solely is how much instability there is
in the estimates of the regression coefficients or the fitted values, the bias is
not longer formally relevant (Buja and Rolke, 2007). It follows that bootstrap
samples of the observations (i.e., of Y and of X') can be used, much as with the
simple percentile method, to construct useful intervals, which are in theory
covering properly the values of the population parameters shifted up or down
by the shrinkage. The target is no longer the “truth.”

There also seems to be the prospect of useful alternative procedures based
on Stein estimators and empirical Bayes methods (Carlin and Louis, 1996).
The basic idea is that if one computes the conditional mean for a small region
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defined by predictor values, that estimate will likely be reasonably unbiased
with respect to the true conditional mean in that region. The difference be-
tween that value and the average of the shrunken fitted values in the region
can provide a useful approximation of the direction and size of the bias. That
approximation can then be combined with an estimate of the variance to con-
struct improved confidence intervals and tests (Brown et al., 2005). To date,
this approach has only been developed for single predictors, but extensions to
multiple predictors seem possible.

In summary, statistical inference for shrinkage estimates is largely an un-
solved problem. At the very least, there seems to be no consensus on how best
to undertake statistical inference on shrinkage estimates when there is a need
to consider the impact of the bias. Similar issues can arise for a number of the
procedures considered in later chapters.

2.3.3 Shrinkage: So What?

When shrinkage is applied to conventional regression estimates there can be,
as noted earlier, two goals. First, one might be interested in model selection.
The lasso and the elastic net can provide useful alternatives to conventional
model selection procedures, such as nested statistical tests, if their assump-
tions are approximately met. Shrinkage is used to select the regressors and
then a conventional regression equation is estimated. However, problems dis-
cussed earlier about postmodel selection statistical inference remain, and there
is never any guarantee, regardless of the method, that the model selected will
make scientific or policy sense. There is no necessary correspondence between
the statistical criteria and good science or good policy. The models that result
should be seen as highly provisional.

Second, one might be interested in striking a good balance between the
bias and the variance; the problem is not model selection in the usual sense.
Then, whether ridge regression, the lasso, or the elastic net (or some other
penalty formulation) should be strongly preferred is less clear. A lot depends
on the properties of the data on hand (Zou and Hastie, 2005).

In short, shrinkage procedures at this point look to be primarily niche
players in routine data analysis. They have some promise for model selection
and for addressing the bias—variance tradeoff in conventional regression. The
major reason why shrinkage has been discussed here is that imposing penal-
ties on the fitting process to smooth the fitted values is more generally useful.
In addition, the issues that shrinkage raises, and the concepts shrinkage intro-
duces, play an important role in more advanced smoothers, and in procedures
considered in later chapters. There are also some interesting applications that
are beyond the scope of this book. For example, Zou, Hastie, and Tibshirani
(2006) apply the elastic net to principal components analysis.
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2.4 Smoothing Splines

For the spline-based procedures considered thus far, the number and location
of knots had to be determined a priori or in the case of the number of knots,
by some measure of fit. We now consider an alternative that does not require
a priori knots. A key feature of this approach is to effectively saturate the
predictor space with knots and then protect against overfitting by constraining
the impact the knots can have on the fitted values. The influence that knots
can have can be diluted; the initial number of knots does not have to change
but the impact of some can be shrunk to zero. The key is a somewhat different
kind of penalty for undue complexity.

We begin by requiring that for our single predictor and response variable,
there is a function f(X) with two derivatives over its entire surface. This is a
common assumption in the statistical learning literature and in practice does
not seem to be particularly restrictive. The goal is to minimize a “penalized”
error sum of squares of the form

N

RSS(f,\) = Z[yi — flz)? +A/[f”(t)]2dt, (2.11)

i=1

where A is, as before, a tuning parameter. The first term on the righ-hand
side captures how close the fitted values are to the actual values of y. It is just
the usual error sum of squares. The second imposes a cost for the complexity
of the fit. The integral quantifies the roughness penalty, and A determines
the weight given to that penalty in the fitting process. At one extreme, as
A increases without limit, the fitted values approach the least squares line.
Because no second derivatives are allowed, the fitted values are as smooth
as they can be. At the other extreme, as A\ decreases toward zero, the fitted
values approach an interpolation of the values of the response variable.

Equation 2.11 addresses the bias—variance tradeoff head-on. When \ is
larger, the fitted values are smoother, with the likely consequence of more
bias and less variance. When \ is smaller, the fitted values are rougher with
the likely consequence of less bias and more variance. Thus, the value of A can
be used in place of the number of knots to tune the bias—variance tradeoff.

For a given value of A, Equation 2.11 can be minimized. Hastie et al. (2001:
Section 5.4) explain that a unique solution results, based on a set of natural
cubic splines with N knots. This assumes that there are N distinct values of
x. There will be fewer knots if there are less than N distinct values of x.

It follows that

fl@) =Y Nj(x)6;, (2.12)

where 6; is a set of weights, N;(z) is an N-dimensional set of basis functions
for the natural cubic splines being used, and j stands for the number of knots,
of which there can be a maximum of N.
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Consider the following toy example, in which = takes on values 0 to 1 in
steps of .20. In this case, j = 6, and Equation 2.12, written as f(x) = N6,
takes the form of

—.267 0 0 —.214 .652 —.429 0,

.b91 167 0 —.061 .182 —.121 0y

flz) = 158 .667 .167 —.006 .019 —.012 0o
0 .1670.667 .155 .036 —.024 04

0 0 .167 .596 .214 .024 05

0 0 0 —.143 429 .714 s

(2.13)

Equation 2.11 can be rewritten using a natural cubic spline basis and then
the solution becomes

0= (NT"N+ x2y)"'NTy, (2.14)

with [£2n]i; = [ Nj(t) N}/ (t)dt, where the second derivatives are for the func-
tion that transforms z into its natural cubic spline basis. [£2x] has larger
values where the predictor is rougher, and given the linear estimator, this is
where the fitted values are rougher as well. The penalty is the same as in
Equation 2.11.

Equation 2.14 can be seen as a generalized form of ridge regression. With
ridge regression, for instance, [f2y] is an identity matrix. In practice, N is
replaced by a basis of B-splines that is used to compute the natural cubic
splines.

The requirement of N knots may seem odd because it appears to imply
that N degrees of freedom are used up. However, for values of A greater than
zero, the resulting smoother is shrunk toward a linear fit. In other words,
whenever the penalty for complexity comes into play, it makes the fitted values
more smooth, and in so doing, reduces the number of degrees of freedom
actually used up. Larger values of A mean that fewer degrees of freedom are
lost.

As with the number of knots, the value of A can be determined a priori
or through model selection procedures. One common approach is based on
N-fold (drop-one) cross-validation, briefly discussed in the last chapter. The
value of X is chosen so that

N
CV(f) =D [y — £ () (2.15)

i=1

is as small as possible. Recall that fi(_l)(:z:i) is the fitted value with case i
removed. Using the CV to select A is one automated way to find a promising
balance between the bias and the variance in the fitted values. However, all
of the earlier caveats apply.
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2.4.1 An Illustration

To help fix all these ideas, we turn to an application of smoothing splines.
Figure 2.9 shows a smoothed scatterplot based on equations 2.11 and 2.15.
The data come from seven Japanese cities from 1973 through 1999. The re-
sponse variable is residential water use in 1000s of cubic feet. The predictor
is population size. The standard thinking about water consumption is that it
increases linearly with population.

Residential Water Use as a Function of Population
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Fig. 2.9. An application of penalized regression splines.

In Figure 2.9, population is on the horizontal axis, and the fitted values
are on the vertical axis. The smoother is represented by the solid line, and
a point-by-point 95% confidence interval by the broken line, assuming that
estimation is at least in principle justified. If S is the smoother matrix, the
covariance of f(z) = SST¢2. With 02 estimated by the error sum of squares
divided by N — ¢r(S), the main diagonal of cov[f(z)] contains point-by-point
estimates of the error variance. Then, with Gaussian errors and negligible
bias, plus or minus twice the square root of the variances can be viewed as a
point-by-point 95% confidence interval. (Hastie and Tibshirani, 1990: Section
3.8). We consider statistical inference for smoothers in more depth shortly.

The rug plot at the bottom of the plot shows where the population data
tend to be located. One implication is that there are no data over the range
where the curve starts to bend downward. As one would expect, the confidence
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interval widens substantially around the large bend in the fitted values because
there are very little data providing support. Although this makes good sense,
we consider below why it would be risky to treat the band plotted in Figure 2.9
as a 95% confidence interval.

Figure 2.9 shows a positive relationship for the smaller population centers
that is approximately linear, and a negative relationship for larger popula-
tion centers that is also approximately linear. The latter results from factors
in the biggest cities, such as affluence and the use of water-efficient technol-
ogy, that are not considered when population is the sole predictor (Berk and
Rothenberg, 2004).

Figure 2.9 was constructed with the gam() procedure in the mgcv library.
The symbol “s” in the label on the vertical axis means that a smoother
has been applied. In this case, the smoother is based on penalized regres-
sion splines of the sort just discussed with the value of A determined by the
GCV statistic. The “8.8” in the label is the effective degrees of freedom (or
the equivalent number of parameters) used up by the smoother. Clearly, 8.8
is a lot smaller than the number of observations, but some distance from 1.0.
The result is a rather smooth function that is substantially nonlinear. One
degree of freedom would have been used up had a linear smooth materialized.
With a greater effective degrees of freedom, the fitted values are less smooth.

2.5 Locally Weighted Regression as a Smoother

2.5.1 Nearest Neighbor Methods

Thus far, the discussion of smoothing has been built upon a foundation of
conventional linear regression. Another approach to smoothing is from the
perspective of nearest neighbor methods. Consider Figure 2.10 in which the
shaded ellipse represents a scatter of points for values for z and y.

There is a target value of x, labeled x(, for which a conditional mean g is
to be computed. There may be only one such value of x or a relatively small
number of such values. As a result, a conditional mean computed from those
values alone risks being very unstable. One possible solution is to compute
7o from observations with values of = close to xg. The rectangle overlaid on
the scatterplot illustrates a region of “nearest neighbors” that might be used.
Insofar as the conditional means for x are not changing systematically within
that region, a useful value for gy can be obtained. If that conditional mean
is to be used as an estimate, it will be unbiased and likely be more stable
than the conditional mean estimated only for the observations with x = x.
In practice, however, some bias is often introduced. As before, the hope is that
the increase in the bias is small compared to the decrease in the variance.

A key issue is how the nearest neighbors are defined. One option is to
take the k closest observations using the metric of x. For example, if z is age,
x is 24 years old, and k is 10, the ten closest z-values may range from 23
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A Nearest Neighbor Conditional Mean

X

Fig. 2.10. A conditional mean for a target value of X.

to 27 years of age. Another option is take the some fixed fraction f of the
observations that are closest to xg. For example, if the closest 25% of the
observations were taken, k£ might turn out to be 31, and the age-values might
range between 21 and 29. Yet another option is to vary either k or f depending
on the variability in y within a neighborhood. If there is more heterogeneity
that is likely to be noise, larger values of k£ or f can be desirable to improve
stability. Note that for any of these approaches, the neighborhoods will likely
overlap. For another target value near zy, some near neighbors will likely be
in both neighborhoods. There also is no requirement that the neighborhood
be symmetric around x.

Suppose now that for each unique value of x a nearest neighbor condi-
tional mean for y is computed using one of the approaches just summarized.
Figure 2.11 shows a set of such means connected by straight lines. The pat-
tern provides a visualization of how the means of y vary with x. As such, the
nearest neighbor methods can been seen as a smoother.

Figure 2.11 will change depending on the size of the neighborhood. Larger
neighborhoods will tend to make the smoothed values less variable. If the
smoothed values are to be treated as estimates, they will likely be more biased
and more stable. Smaller neighborhoods will tend to make the smoothed values
more variable. If the smoothed values are to be treated as estimates, they will
likely be less biased and less stable.

Nearest neighbor methods can be very effective in practice and have been
elaborated in many ways. There can be more than one predictor, for example,
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A Nearest Neighbor Interpolation

Fig. 2.11. Interpolated conditional means.

which raises some difficult issues about how to best define the neighborhood
(e.g., Hastie and Tibshirani, 1996). This is a matter to which we return.

For our purposes, perhaps the major weakness of nearest neighbor methods
is they are not derived as a way to represent how Y is related to X; they are
not explicitly linked to some f(X). One consequence is that when there are
more than two predictors, there is little guidance on how to represent the
manner in which the predictors are related to the response.

Nevertheless, nearest neighbor methods introduce some very important is-
sues and procedures that figure significantly in this and later chapters. Indeed,
the line between nearest neighbor methods and a number of other techniques
can be pretty fuzzy. Readers interested in learning more about nearest neigh-
bor methods should consult Ripley (1996) and Shakhnarovich (2006).

What if within each neighborhood the conditional means of y vary sys-
tematically? At the very least, there is information being ignored that could
improve the estimate of . Just as in conventional linear regression, if y is re-
lated to z in a systematic fashion, there can be less variation in the regression
residuals than around the neighborhood mean of y. More stable estimates can
follow. The idea of applying linear regression within each neighborhood leads
directly to a smoothing procedure known as locally weighted regression.

2.5.2 Locally Weighted Regression

Although spline smoothers are widely used, lowess (Cleveland, 1979) is a useful
alternative that was developed before penalized regression smoothers. It is
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comparatively easy to understand and remains a very handy tool. Lowess also
has a more “algorithmic” feel than penalized regression smoothers and is,
therefore, a useful didactic device for the material that follows. Lowess stands
for “Locally Weighted Scatterplot Smoothing,” although there seem to be a
number of translations of “lowess.”

We stick with the one predictor case a bit longer. For any given value of the
predictor zy, a polynomial regression is constructed only from observations
with z-values that are nearest neighbors of xy. Among these, observations
with x-values closer to zg are weighted more heavily. Then, o is computed
from the fitted regression and used as the smoothed value of the response y at
xg. The process is repeated for all other values of x. Although the polynomial
is often of degree one (linear), quadratic and cubic polynomials are also used.
It is not clear that much is gained in practice using the quadratic or cubic
form. In some implementations, one can also employ a degree zero polynomial,
in which case no regression is computed, and the conditional mean of y in the
neighborhood is used as gy. This is the nearest neighbor approach discussed
above except for the use of distance weighting.

The precise weight given to each observation depends on the weighting
function employed. The normal distribution is one option. That is, the weights
form a bell-shaped curve centered on x( that declines with distance from x.
The tricube is another option. Differences between xo and each value of x in
the window are divided by the length of the window along x. This standardizes
the differences. Then the differences are transformed as (1 — |2|®)3, where z is
the standardized difference. Values of = outside the window are given weights
of 0.0. As an empirical matter, most of the common weighting functions give
about the same results.

As discussed for nearest neighbor methods, the amount of smoothing de-
pends on the proportion of the total number of observations used when each
local regression line is constructed. Proportions between .25 and .75 are com-
mon. The proportion has been given various names in the smoothing lit-
erature; “window” or “span” or “bandwidth” are all used. The larger the
proportion of observations included, the smoother are the fitted values. The
bandwidth plays the same role as the number of knots in regression splines
or A in smoothing splines. Some software also permits the bandwidth to be
chosen in the units of the regressor. For example, if the predictor is population
size, the span might be defined as 10,000 people wide.

More formally, each local regression at each xq is constructed by minimiz-
ing the weighted sum of squares with respect to the intercept and slope for
the M < N observations included in the window. Thus,

RSS*(8) = (y" — X"B)T W'(y" - X"B). (2.16)

The asterisk indicates that only the observations in the window are included.
The regressor matrix X* can contain polynomial terms for the predictor
should that be desired. W* is a diagonal matrix conforming to X*, with
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diagonal elements w;, which are a function of distance from z¢. This is where
the weighting-by-distance gets done. The algorithm then operates as follows.

1. Choose the smoothing parameter such as bandwidth, f, which is a pro-
portion between 0 and 1.

2. Choose a point zy and from that the (f x N = M) nearest points on x.

3. For these M nearest neighbor points, compute a weighted least squares
regression line for y on .

4. Construct the fitted value gy for that single xy.

5. Repeat Steps 2 through 4 for each value of x. Near the boundary values of
x, constraints are sometimes imposed much like those imposed on cubic
splines and for the same reasons.

6. Connect these ys with a line.

There is also a robust version of lowess. After the entire fitting process is
completed, residuals are computed in the usual way. Weights are constructed
from these residuals. Larger residuals are given smaller weights and smaller
residuals larger weights. Using these weights, the fitting process is repeated.
This, in turn, can be iterated until the fitted values do not change much
(Cleveland, 1979) or until some predetermined number of iterations is reached
(e.g., three). The basic idea is to make observations with very large residuals
less important in the fitting.

Whether the “robustification” of lowess is useful will be application-specific
and depend heavily on the window size chosen. Larger windows will tend
to smooth the impact of outlier residuals. Equally important, because the
scatterplot being smoothed is easily plotted and examined, it is usually easy
to spot the possible impact of outlier residuals and if necessary, take them
into account when the results are reported. In short, there is no automatic
need for the robust version of lowess when there seem to be a few values of
the response that perhaps distort the fit.

An Illustration

Figure 2.12 shows for a set of Japanese cities over 21 years a (nonrobust)
lowess smooth of residential water consumption on the average price of water.
Economic theory says the slope should be negative, other things being equal.
It is difficult to make much of Figure 2.12. The window is set at .10 (10% of
the data) so the fitted values are highly variable.

In Figure 2.13, the span is increased to .50 (50% of the data). Clearly,
the result is a much smoother fit. In Figure 2.14, the span is still .50, but
the fitting is based on an M-estimator (to “robustify” the fitted values), not
conventional least squares. The change of the fitting function makes little
difference in this example, and that seems to be a common outcome.

Figure 2.15 uses a span of .90 (90% of the data) and returns to the Gaussian
weighting function. Clearly, this produces by far the smoothest fit. But which
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LOWESS Gaussian Smooth with Span of .10
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Fig. 2.12. Lowess Gaussian smooth of water consumption on average price: span
= .10.
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Fig. 2.13. Lowess Gaussian smooth of water consumption on average price: span
= .50.

fit is best? The answer depends heavily on subject matter knowledge. In this
case, one would anticipate a rather smooth, monotonically declining curve.
All of the fitted values but the final set seem unduly variable and inconsistent
with the way consumers should respond to price. Figure 2.15 is, therefore,
probably the most informative.

However, the smoothed values are quite flat, with a slight upward trend
followed by a slight downward trend. When water is relatively cheap, higher
prices lead to more water consumption. When water is relatively expensive,
higher prices lead to less water consumption. It is difficult to think of an
explanation consistent with economic theory and more likely the positive seg-
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Fig. 2.14. Lowess M-estimator smooth of water consumption on average price: span
= .50.
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Fig. 2.15. Lowess Gaussian smooth of water consumption on average price: span
=.90.

ment (at least) of the curve is an artifact caused by omitted predictors such
as income. (For further discussion see Berk and Rothman, 2004.)

It may be important to underscore that even though the smoothed values
in Figures 2.12 through 2.15 do not represent causal models, any interpre-
tations resting on cause-and-effect claims need to consider many of the same
issues that arise in conventional causal modeling. Omitted variables are surely
one key concern. If the goal is description alone, then it is not even clear what
an “omitted variable” is. The statistical definition requires that for a potential
predictor to be an “omitted variable,” it must be correlated with the response
variable and any predictors already included in the analysis. But it is diffi-
cult to attach much import to the word “omitted” except in a causal context.
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Perhaps the strongest statement that could be made is that the description is
not complete.

In any case, the main message here is not meant to be substantive. The
main message is that the bandwidth specified for lowess can make a big dif-
ference. The choice of bandwidth really matters. Because of this, there have
been, in much the same spirit as the choice of A in penalized regression, many
attempts to automate and rationalize the selection of bandwidth size. For
example, the generalized cross-validation statistic can be used to select the
bandwidth (Loader, 2004: Section 4).

Such procedures can work well as a place to start. But once again, au-
tomation takes no notice of subject matter knowledge, and more useful visu-
alizations are often produced when the choice of bandwidth is informed, at
least in part, by information brought to the analysis from outside the data.
It is doubtful that an automated procedure would have selected Figure 2.15.
More likely, something close to Figure 2.13 would have been chosen. There is
also the risk of overfitting, especially if a large number of bandwidths is tried.

2.6 Smoothers for Multiple Predictors

The last set of figures is only the most recent example in which the limitations
of a single predictor were apparent. Many more things could be related to
water consumption than price alone. The time has come to consider smoothers
when there is more than one predictor.

In principle, it is a simple matter to include many predictors and then
smooth a multidimensional space. However, there are three significant com-
plications in practice. The first problem is the “curse of dimensionality.” As
the number of predictors increases, the space the data need to populate in-
creases as a power function. Consequently, the demand for data increases very
rapidly, and one risks data that are far too sparse to produce a meaningful fit.
There are too few observations, or those observations are not spread around
sufficiently to provide the support needed. One must, in effect, extrapolate
into regions where there is little or no information. To be sensible, such ex-
trapolations would depend on knowing the f(X) quite well. But it is precisely
because the f(X) is unknown that smoothing is undertaken to begin with.

The second problem is that there are often conceptual complications asso-
ciated with multiple predictors. In the case of lowess, for example, how is the
neighborhood near zg to be defined (Fan and Gijbels, 1996: 299-300)7 One
option is to use Euclidian distance. But then the neighborhood will depend on
the units in which predictors happen to be measured. The common practice
of transforming the variables into standard deviation units does not really
seem to solve the problem, especially when coupled with the need to weight
observations by proximity to xg.
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Consider the case of two predictors. Suppose the standard deviation for
one predictor is five years of age, and the standard deviation for the other
predictor is two years of education. Now suppose one observation falls at xg’s
value of education, but is five years of age higher than xg. Suppose another
observation falls at xg’s value for age, but is two years higher in eduction than
. Both are one standard deviation unit away from x( in Euclidian distance.
But do we really want to say they are equally close?

Another approach to neighborhood definition is to use the same span for
both predictors, but apply it separately in each direction. Why this is a better
definition of a neighborhood is not clear. And one must still define a distance
metric by which the observation in the neighborhood will be weighted.

Yet another alternative is to define a neighborhood by the importance of
each dimension of the predictor space or a transformed predictor space. Where
in that space the response is changing more rapidly, the neighborhood should
be smaller. That way, significant variation in the fitted values is not smoothed
away. We show later in this chapter that locally adaptive smoothers take a
related approach. We learn that significant computation problems can follow.

The third problem is that gaining meaningful access to the results is no
longer straightforward. When there are more than two predictors, one can no
longer graph the fitted surface in the usual way. How does one make sense of
a surface in more than three dimensions?

2.6.1 Smoothing in Two Dimensions

With only two predictors, there are some fairly straightforward extensions of
conventional smoothers that can be instructive, even in the face of the three
problems just discussed. For example, with smoothing splines, the penalized
sum of squares in Equation 2.11 can be generalized. The solution is a set of
“thin plate splines,” and the results can be plotted. Thin plate splines are a
two-dimensional generalization of the one-dimension cubic splines considered
earlier. More specifically, Equation 2.11 can be generalized as

mmZ{yz ) Y2+ N[f], (2.17)

where J is an appropriate penalty functional of f. For the two-dimensional

case,
2 2 2
0% f(=) 0*f(=)
2 dridrs. (2.18
//;RQ ( 0x? ) + ( Ox1x2 + x3 Tidzy. (2.18)
Equation 2.18 captures the roughness of the fitted values in a two-dimensional
predictor space. The fitted values are rougher when the two second derivatives

are larger. As before, the weight of this penalty is determined by the value of
A
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Fig. 2.16. Perspective plot of smoothed values of homelessness constructed from
smoothing splines.

An Illustration

Figure 2.16 shows for a particular urban area a two predictor smooth of the
homeless counts for census tracts by longitude and latitude. The value of
A was determined by the generalized cross-validation statistic. One can see
that homelessness varies substantially by census tract. For example, the peak
toward the middle of the plot is the downtown skid row area. The immediately
surrounding areas have relatively low numbers of homeless individuals.

Figure 2.17 repeats the analysis with a two-predictor lowess smoother. The
extension of lowess from one predictor to two proceeds as one would expect.
A neighborhood and the within-neighborhood weighting are defined by Eu-
clidian distance. Each neighborhood is now a solid rather than a plane so the
local regression has two predictors rather than one. In this application, both
predictors are in the same units, which makes the use of Euclidian distance
far less controversial.

There is again a concentration of homeless in the skid row area, but now
the spike is far more pronounced. It is difficult to determine precisely why
the two plots differ. One possible explanation involves the manner in which
the degree of smoothing is determined. For Figure 2.16, the value of \ was
computed as part of the fitting algorithm. For Figure 2.17, the size of the span
was determined in part by subject matter knowledge that made some results
more credible than others. It is hard to know if the amount of smoothing in
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Fig. 2.17. Perspective plot of smoothed values of homelessness constructed from
lowess.

the two figures is the same, but plots with somewhat different span values
never eliminated the clear difference in the skid row effect.

The two smoothing procedures also differ substantially in their internal
machinery. Smoothing splines, as do natural cubic splines, place a premium
on fitted values that possess great continuity. Lowess does not build in such
continuity so that sharp changes in direction can appear, especially when the
span is small. Therefore, it would not be surprising to find that Figure 2.17
has a more jagged appearance. In short, a likely reason for the lower peak in
homelessness for skid row in Figure 2.16 is that the sharp spike is rounded off.

Is there a way to choose between Figure 2.16 and Figure 2.177 The spatial
patterns of homelessness show sharp differences over a distance of just a few
blocks. Skid row, for example, is only two blocks from a cluster of modern,
high rise office buildings where the number of homeless on the streets is very
low. As a result, it is misleading to round off most of the transitions between
areas with many homeless individuals and areas with few. Reality is closer to
a two-dimensional step function. On these grounds, Figure 2.17 is probably a
more accurate (if less elegant) visualization.

With more than two predictors, one generally needs another strategy. The
data are often too sparse, and visualization is a major obstacle. The gen-
eralized additive model is one popular approach that meshes well with an
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emphasis on regression and the use of a linear combination of basis functions.

2.6.2 The Generalized Additive Model

The Generalized Additive Model (GAM) is superficially an easy extension
of the Generalized Linear Model (GLM). GAM tries to defeat the curse of
dimensionality by assuming that the conditional mean of the response is a
linear combination of functions of each predictor. Thus, the mean function for
the generalized additive model with p predictors can be written as

Y|X:a+zp:fj(Xj), (219)

j=1

where « is a conventional intercept term.

In the same manner as the generalized linear model, the generalized ad-
ditive model permits several different “link functions” and disturbance distri-
butions. For example, with a binary response, the link function can be the
log of the odds (the “logit”) of the response, and the disturbance distribution
can be logistic. This is analogous to logistic regression within the generalized
linear model. But, there are no regression coefficients associated with the pre-
dictors. Regression coefficients would just scale up or scale down the functions
of predictors, and so they are unnecessary. Whatever impact they would have
is absorbed in the function itself. The role of the regression coefficients can-
not be distinguished from the role of the transformation and therefore, the
regression coefficients are not identified.

Each predictor can have its own functional relationship to the response.
These functions can be estimated using single-predictor smoothers of the sort
addressed above. Hence, the term nonparametric is usually applied despite
the a priori commitment to an additive formulation. Alternatively, all of the
functions may be specified in advance with the usual linear model as a special
case. All of the common regression options are available, including the wide
range of transformations one sees in practice: logs, polynomials, roots, product
variables (for interaction effects), and indicator variables. As a result, GAM
can be parametric as well and in this form is really no different from the
generalized linear model. The parametric and nonparametric forms can be
mixed so that some of the functions are derived empirically from the data, and
some are specified in advance. Then the model is often called semiparametric.

With the additive form, one can use for GAM the same conception of
“holding constant” that applies to conventional linear regression. The rela-
tionship between a given predictor and the response is constructed with (1)
the linear dependence between the response and all other predictors removed,
and (2) with the linear dependence between the given predictor and all other
predictors removed. It is important to recall that the linear dependence re-
moved is between the variables in whatever their transformed states happen to
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be. Thus, there is no requirement of linear relationships between the variables
in their original units.
More formally, consider for now the case of predictors x and z. Let

(Flz,2) = a+ fi(z) + f2(2). (2.20)

For now, assume that the fi(x) and f2(z) have been determined. For nota-
tional convenience fi(x) is denoted by z*, and f3(z) is denoted by z*. We
focus first on f;(x).

Suppose that we estimate the regression parameters (i.e., intercepts and
slopes) of the following two equations,

(92") = Bo + a12”, (2.21)

(Z*2") = v + 2" (2.22)

For each, we compute the residuals ey.« and eg-|.-. Finally, we estimate k)
and f3<€x*|z*) in
(Ey)a=lear)ar) = 0 + fa(egnjsn). (2.23)

The function f3(eg«|.~) should be identical to the function fi(z). A similar
logic applies to f2(z). In other words, with the two functions determined, the
usual covariance adjustments apply. “Holding constant” means to residualize
precisely as Equations 2.20 through 2.23 specify. This is exactly the same logic
that lies beneath added variable plots, sometimes called “partial plots” (Cook
and Weisberg, 1999: Section 10.5).

But what if the transformations of all of the predictors are not known in
advance? What if at least one of the functions (and usually several) is to be
constructed empirically from the data? How does one estimate the function
when the function needs to take the covariance adjustments into account?
And one cannot apply the covariance adjustments unless the functions are
known. To solve this problem, we turn to a computational algorithm called
“backfitting.”

A GAM Fitting Algorithm

The backfitting algorithm is a common way to estimate the functions and
coefficients in Equation 2.19 (Hastie and Tibshirani, 1990: Section 4.4). The
basic idea is to cycle through one function at a time in the following manner.

1. Initialize with o = g, f; = fj(ﬂj = 1,...,p. Each predictor is given an
initial functional relationship to the response such as a linear one. The
intercept is given an initial value of the mean of y.

2. Repeat for j=1,...,p,1,...,p,...,

fe=Si(y —a =Y fi(wr)- (2.24)
J#k
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A single predictor j is selected. Fitted values are constructed using all of
the other predictors. These fitted values are subtracted from the response.
A smoother S; is applied to the resulting “residuals,” taken to be a func-
tion of the single excluded predictor. The smoother updates the function
for that predictor. Each of the other predictors is, in turn, subjected to
the same process.

3. Continue Step 2 until the individual functions do not change.

Within any backfitting algorithm, a wide variety of smoothers can be ap-
plied and in the past have been. For example, both lowess and penalized
regression splines have been available in R. Some procedures also permit the
use of functions of two predictors at a time, so that the smoothed values rep-
resent a surface rather than a line, just as in Figures 2.16 and 2.17. That is,
one can work with a linear combination of bivariate smoothed values.

In recent work (Wood, 2000, 2003, 2004), a somewhat different algorithm
has been developed. The basic idea is to represent each of the functions to be
determined empirically by a set of B-splines so that there is a single matrix of
regressors for all of the unknown functions. This can then be combined with a
regressor matrix for any terms whose functions are taken to be known a pri-
ori. The result is a multivariate generalization of penalized regression splines
considered earlier when Equation 2.11 was discussed. Claims have been made
that this approach has several advantages including more stable estimates,
direct links to penalized fitting, and more straightforward extensions to con-
ventional statistical inference. Whether any of these advantages would make
much difference in practice is still to be determined.

The procedure gam() in R from the mgco library is now implemented using
this new algorithm. There are two GAM procedures in R, both called gam().
GAM using the traditional backfitting algorithm can be found in the R library
gam.

An Illustration

We return now to the data used earlier on the possible deterrence impact of
the death penalty. Recall that the data are a pooled cross-section time series
of 50 states over 20 years. As before, the homicide rate is the response and
the number of executions lagged by one year is a predictor. To control for
the average differences between states, the homicide rate in each state, just
before the beginning of each time series (1977), is used as a control variable.
The multivariate penalized regression smoother just described is employed
with the size of the penalty for each (\) determined by the generalized cross-
validation statistic.

The fit is excellent. About 90% of the variance is accounted for. Nearly
all of this can be attributed to the values of the homicide rate when used as
a control. Figure 2.18 shows the fitted values as a function of each predictor.
If one ignores the very few values for the homicide rate that represent a very
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GAM Analysis of Homicide Rate on Executions and Lagged Values of Homicide Rate
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Fig. 2.18. GAM homicide results for executions controlling for the homicide rate
in 1977.

few states over a very few years, the homicide rate over time is strongly and
positively related to the homicide rate just before the beginning of the time
series (i.e., Homicides77). Whatever the social processes in states that caused
variation in the homicide rate in 1977, those same processes appear to persist
over the next 20 years. The negative slope at the far left of the curve is much
more difficult to understand and would need to be examined further. The
likely explanation is the role of one or more predictors not included in the
analysis.

The relationship between the number of executions lagged by one year
(i.e., ExecutesL1) and the homicide rate is not strong overall. When there
are five or fewer executions, which reflects 99% of the data, the relationship
starts out being slightly negative and then turns more strongly positive. Net,
the relationship is positive: more executions, more homicides a year later. The
relationship when there are more than five executions, which reflects 1% of
the data, is moderately negative. However, in part because there are so few
observations, the nominal 95% point-by-point confidence interval (more on
that shortly) is very wide and encloses a region that would easily allow for
a flat or even positive slope. In short, there is no evidence whatsoever for
deterrence for most of the states in most of the years, and evidence in favor
of deterrence for the few outliers is not much stronger. (For more details see
Berk, 2005a.)
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One might wonder why there was no discussion of any regression coeffi-
cients. Recall that there are none. The fitted values for each predictor capture
the average change in the response variable Y for small changes in a predic-
tor. Because the fitted values have a nonlinear relationship with the response,
there is not a single slope. In a sense, the graphs are the “slope.” Or more
formally, the derivative at any value of a predictor is the slope at that point.

Finally, both graphs in Figure 2.18 plot the fitted values centered on zero.
This follows from the residualizing process described earlier. Recall that when
there is an intercept, residuals have a mean of zero. Note also that the vertical
axes have the same scales. This facilitates making comparisons between the
response functions for different predictors.

2.7 Smoothers with Categorical Variables

As discussed in Chapter 1, smoothers can be used with categorical variables.
When a predictor is categorical, however, there is really nothing to smooth.
A binary predictor can take on only two values. The smoother is then just
a straight line connecting the two conditional means of the response. For a
predictor with more than two categories, there is no way to order the categories
along the predictor axis. Any imposed order would imply assigning numbers
to the categories. How the numbers were assigned could make an enormous
difference in the resulting fitting values, and these assigned numbers would
necessarily be arbitrary.

When the response is categorical and binary, smoothing can be a very
useful procedure. All of the earlier benefits apply. In addition, because it
is very difficult to see much in a scatterplot with a categorical response, a
smoother may be the only way to gain some visual leverage on what may be
going on.

2.7.1 An Illustration

We return now to the admissions data from a large public university. We apply
GAM with admitted or not as the response. The predictors for each applicant
are (1) mathematics SAT score, (2) verbal SAT score, (3) grade point average
in high school, and (4) self-identified ethnic background. Figures 2.19 through
2.21 show the plots for the first three predictors. The residualized data are
also shown. In each case, the vertical axis is in logits, just as it would be with
logistic regression.

Figure 2.19 shows that beginning with SAT math scores of about 600 or
higher, SAT math scores are positively, but modestly, related to the log-odds
of admission. For lower math scores, there seems to be no relationship with
the log-odds of admission.

Figure 2.20 shows that beginning with SAT verbal scores of about 450, SAT
verbal scores are positively, but modestly, related to the log-odds of admission.



2.7 Smoothers with Categorical Variables 89

GAM Analysis of College Admission
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Fig. 2.19. Admission as a function of SAT math score.

GAM Analysis of College Admission
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Fig. 2.20. Admisson as a function of SAT verbal score.
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GAM Analysis of College Admission
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Fig. 2.21. Admission as a function of high school GPA.

The relationship seems to flatten out around a score of about 700 and even
turn slightly negative. The negative relationship for SAT verbal scores below
450 is difficult to understand, but the data in that region are very sparse.

Figure 2.21 shows that over its full range, high school GPA is positively
and strongly related to the log-odds of admission. It seems that the admissions
process is weighting high school GPA far more heavily than SAT scores.

There are no plots for the categorical variable ethnicity. But for GAM,
conventional regression coefficients are provided for all predictors whose func-
tional forms are determined a priori. And that includes categorical variables.
In this case, the regression coefficients reveal that holding constant SAT scores
and high school GPA, the odds that an Anglo or Asian student will be admit-
ted are substantially lower than for Hispanic and African-American students.

In short, there is certainly no lockstep relationship between earlier aca-
demic performance, as measured by SAT scores and high school GPA, and
admission. Other factors are taken into account. This means that the appar-
ent impact of ethnicity needs to be unpacked. Are there other predictors that
would eliminate ethnicity as a useful explanatory variable? And if not, one
cannot know without further study how an applicant’s ethnicity comes into
play. Is it directly used in the admission decision and/or is the impact really
explained by characteristics of the applicant that are associated with ethnicity
but not part of the official record?

As noted earlier, if the point is to explain why response functions come
out as they do, causal thinking is often unavoidable. But there is nothing in
any of the results that conveys what would happen if, for example, a given
applicant’s reported SAT scores were altered. To learn that, one would have to
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actually alter the scores used in the admissions process. Such an experiment
could perhaps be done if humansubject concerns could be overcome. What the
analysis indicates thus far is that SAT scores, high school GPA, and ethnicity
would probably need to be among the factors manipulated. And there would
surely be others. The analysis also implies that if the purpose was to forecast
admissions, SAT scores, high school GPA, and ethnicity might well provide
considerable forecasting skill.

The statistical message is much the same as before. Allowing the data to
determine how predictors are related to the response can be very instructive,
even when (or perhaps especially when) the response variable is categorical.
A natural question, however, is how restrictive the GAM’s additive form is in
practice. Experience to date suggests that the additive restriction is often not a
serious obstacle. For instance, if there is an interest in interaction effects, these
can be represented by a two-dimensional smoother (for two-way interactions)
or by including product variables. This comes up often with spatial data,
for example, where location is measured by variables such as longitude and
latitude. If the response surface is substantially torqued, the additive terms
are insufficient. One needs either a two-dimensional smoother or a product of
the two spatial dimensions as another term in the model.

2.8 Locally Adaptive Smoothers

Under some circumstances, regression splines and regression smoothers can
stumble when relationships with the response have sharp inflection points or
steps. If all of the sharp inflection points or steps are about the same size,
smoothing parameters can be set to either remove them all or to show them
all. But when they are substantially different sizes, the risk is that some will
be removed and some will not, even if all are equally informative.

One potential solution is to allow the smoothing parameters to vary locally
so that they can adapt to sharp changes in the response function. For exam-
ple, the bandwidth can be made smaller where the mean function seems to be
changing most rapidly. This is very hard to do by hand without an imprac-
tical amount of trial and error. But there are a number of “locally adaptive”
procedures that can automate the process. (Fan and Gijbels, 2006; Loader,
1999).

Figure 2.22 shows an example based on simulated data taken from Loader’s
instructive book (Loader, 1999). The simulated data have several telling fea-
tures. First, the signal-to-noise ratio is very high. Second, the apparent pattern
is far more variable in some regions than others. Third, the number of obser-
vations is relatively large. Finally, the mean function is extremely nonlinear.
Taken together, these four features make it relatively easy to see what the
mean function looks like without the aid of any smoother whatsoever.

The adaptive smoother that is overlaid clearly performs very well. A
smoother with a single smoothing parameter would likely wash out the cycles
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Simulation of &n Acapfive Smoother

Fig. 2.22. Loader’s illustration of a locally adaptive smoother.

at the far left while retaining those in the middle and far right. Important in-
formation would be lost. But how often will real data have the four properties
that characterize these data? Many disciplines such as engineering have data
in which such features may be common. But in the social and life sciences,
these kinds of data are rare.

Tuna

Latitude

Fig. 2.23. Adaptive smoothed values of tuna caught in the southeastern Pacific.

Figure 2.23 presents some real data. The response is the number of tuna
netted at various locations in the south eastern Pacific Ocean. The predictors
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are longitude and latitude. Because of the flow of ocean currents and the clus-
tering of smaller fish that tuna eat, the good fishing grounds have relatively
sharp, nonlinear boundaries. Moreover the data are quite good. Because of
international concern about the risks to dolphin when nets are used to catch
tuna, there are official observers on tuna boats to record the size and loca-
tions of all catches. In short, the data themsleves are probably not seriously
distorted by measurement error.

Once again the adaptive smoother does a good job. The productive fishing
grounds are dramatically shown with some being far better than others. The
smoothing process does not seem to be sacrificing the smaller spikes.

When the data are of just the sort required, adaptive smoothers can be
very effective. Using them when they are not needed may not cause any sci-
entific harm because adaptive procedures will, in effect, revert to a single
smoothing parameter approach. But there can be significant computational
costs. Existing software can seriously challenge the capacity of desktop com-
puters, will usually require that several tuning parameters be specified, and
are typically limited to no more than two predictors.

2.9 The Role of Statistical Inference

Many of the smoothers we have considered in this chapter rest upon a set
of regression equations constructed for partitions of the data. The partitions
are defined as functions of predictor values. Then, for any given partition, the
fitted value is determined by a conventional parametric regression equation
(sometimes with weights). Alternatively, the smoother results from a regres-
sion equation with a penalty attached for complexity. In either case, it might
seem that conventional expressions for the standard error of fitted values
would follow as usual. So, let’s pursue that for a bit.

2.9.1 Some Apparent Prerequisites

A key issue that must be addressed before statistical inference with smoothers
is undertaken is whether estimation itself is a reasonable activity. There are
three scenarios.

1. There is an assumed f(X), and the data are a random sample from a well-
defined population or a random realization from a well-defined stochastic
process. Estimation is at least on the table accompanied by assessments
of uncertainty.

2. No f(X) is assumed, but a goal is to arrive at a best guess of the values of
a set of conditional means or proportions in a population or as features of a
stochastic process. Estimation is again on the table along with assessment
of uncertainty.
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3. The sole goal is description of the data on hand. Estimation is taken off
the table and with it, assessments of uncertainty.

We begin with the first scenario. We show that superficially all looks well.
We also show, as the saying goes, that looks can be deceiving.

2.9.2 Confidence Intervals

As before we let

Y = f(X) +e, (2.25)

but where & ~ NIID(0,02). One estimates f(X) with f(X), which for the
smoothers we have considered is Sy. Then

cov(f(X)) = S cov(y)ST = 88752, (2.26)

The square root of the diagonal elements of SS”¢? are the standard errors
for each fitted value. To make it operational, one needs 62.

The error sum of squares can be computed as the sum of the squared
differences between the fitted values and the observed values. The denominator
is where there can be complications: what is one to use as the degrees of
freedom lost to the fitting function? One popular definition, noted earlier, is
the trace of the smoother matrix S, which is related to the number of basis
functions and to the number of parameters in the model (Hastie et al., 2001:
130). This definition is intuitively pleasing, broadly applicable to a variety of
smoothers, and works well with hypothesis tests (considered shortly).

The larger the trace, the less smooth are the fitted values. This is because
more relative weight is given to the values of the response variable actually
being fitted and less relative weight is given to other (usually nearby) values
of the response. Consider again the toy example from Chapter 1. Because the
rows sum to 1.0, making the elements in the main diagonal larger makes the
weights off the main diagonal smaller. The result is that the weighted average
more heavily counts the value of the response being smoothed. The fitted
values are relatively less smooth.

1.00 0 0 O 3.0 3.00
25.50.25 0 0 5.0 4.75
0 .25.50.25 0 6.0 | = 650 |. (2.27)
0 0 .25.50.25 9.0 8.50
0 0 0 010 10.0 10.00

With the effective degrees of freedom defined, 52 is computed by dividing
the error sum of squares by N —trace(S). The denominator, in the same spirit
as the usual regression estimate of 62, represents the degrees of freedom “left
over” by the model. Then 62 is used in place of o2, making Equation 2.26
operational. Adding +1.96 times the square root of the diagonal to the fitted
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value results leads to what looks like a 95% confidence interval at that point.
All other points are treated in a similar fashion.

Because o is assumed to be constant, and because N — trace(S) is a con-
stant for any given dataset and model, the size of the standard error depends
substantially upon the diagonal elements of SST. These, in turn, depend on
the diagonal elements in S. So, larger estimated standard errors for a given
dataset are found in regions where the fitted values are less smooth. And it
is here that the fitted values may be a less effective stand-in for the values of
the response variable. Taken at face value, this would seem to make sense.

However, there are several problems. First, the value of A (or the analogous
tuning parameter) is assumed to be known. When it needs to be determined
from the data, there is an additional source of uncertainty that is not taken
into account. Second, trying different possible values for A is a form of data
snooping and will often lead to estimates of uncertainty that are too opti-
mistic. Third, unless the data were generated by probability sampling, the
usual confidence intervals depend on model-based sampling, here, centered on
how the values of e are supposed to be generated (Thompson, 2002; Berk,
2003). Constructing a plausible story is usually very difficult, especially when
the fitting function is to be inductively determined. Finally, the smoother
tuned by A is assumed to provide unbiased estimates of the true conditional
means. In practice, this is very unlikely to be true. In particular, it will often
be desirable to introduce bias to reduce the variance. And if there is bias, a
95% confidence interval will not cover the true value 95% of the time. The
interval will be shifted higher or lower by the unknown value of the bias.

Recalling our earlier discussion of statistical inference for shrinkage esti-
mators, one response can be to settle for estimates of the instability of the
fitted values; the impact of the bias is ignored. Then to address instability,
a bootstrap resampling of cases can lead to helpful results (Buja and Rolke,
2007) for such instability. But any intervals constructed in this manner are
unlikely to be defensible as true confidence intervals.

If potential bias is to be addressed as well, there are some recent advances
that have promise (Goldenshluger and Tsybakov, 2001; Zhang, 2005; Brown et
al., 2005). Just as in the shrinkage case briefly addressed earlier, one can often
obtain reasonably unbiased estimates of the true conditional means using the
estimated conditional means for small regions of the predictor space. The dis-
parity between those estimated conditional means and the conditional means
produced by the smoother can provide important information on the direction
and size of the bias in each region. When this information is combined with
estimates of the variance, approximately correct confidence intervals can fol-
low. There is not yet much formal mathematics behind these approaches and
it is not clear at this point how well the procedures will perform in practice.
There is also the current limitation to a single predictor.

The prospects might seem somewhat brighter under the second scenario:
there is no f(X), but there are population or stochastic process parameters,
and the data were generated in a manner allowing for statistical inference, such
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as random sampling. With no f(X) to steer the analysis, interest centers only
on a set of conditional means. If one treats the predictor values as fixed, this
may seem like business as usual. However, the smoothing will likely introduce
bias in the fitted values and the same problems surface. Confidence intervals
risk being seriously misleading. In short, we are back to the previous scenario.
In practice, the third scenario is likely to be the operational one. There
may be no credible f(X), no population or stochastic process, or the data may
be of insufficient quality (e.g., key predictors are missing). Then, the goal is
likely to be description, and estimation is inappropriate. Whether any of these
obstacles are recognized is often for subjectmatter experts to determine.

2.9.3 Statistical Tests

The statistical tests associated with conventional parametric regression have
a structure that can be ported to the smoothers we have been considering.
Consider the usual F-test used with the conventional linear regression model.
Recall that the F-ratio is constructed in part from the error sum of squares
under the null hypothesis and the error sum of squares from the alternative
hypothesis, with their difference adjusted for the difference degrees of freedom.
The ratio is meant to capture how much worse the fit becomes under the
null hypothesis. The same kind of formulation can be applied with regression
splines and regression smoothers.

Assume that Equation 2.25 holds. Then, drawing on Loader’s discussion
(2004: 17-18) — see also Hastie and Tibshirani (1990: 65-67) — suppose be-
fore looking at the data one decides that the null hypothesis is a conventional
linear fit, and the alternative hypothesis is any smoother-based fit. Is the fit
produced by the smoother “statistically significant” compared to the linear
fit? This may not be a very interesting or instructive comparison, however, it
comports well with conventional regression practice.

Let H be the hat matrix for a linear regression fit of the data, and S be
the smoother matrix for some alternative fit. From this, one can construct the
usual sort of test statistic as follows,

o (Sy—Hy)*/df

= =/

o

where df = trace((S—H)T(S—H)), and 42 is usually estimated from the larger
model. Loader points out that the F-ratio in Equation 2.28 does not quite have
an I distribution, although there are ways to make the approximation better.
Such tests are approximate and insofar as the assumed normality is incorrect,
the test may not live up to its billing. Alternatively, the bootstrap can be

applied. The idea is to work with the residuals in much the same manner as
done for parametric regression (Efron and Tibshirani, 1993: 111-112).

, (2.28)

1. Apply a smoother to the data.
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2. Compute the residuals as the differences between the fitted values and
observed values of the response variable (i.e., y —y).

3. Draw with replacement a random sample of residuals the same size as the
number of observations in the data.

4. Construct new values for the response by adding to each fitted value from
Step 1, a sampled value from the residuals.

5. Compute the F-statistic of interest as in Equation 2.28. This will mean
applying the null model and the alternative model to the reconstituted
data.

6. Repeat Steps 2-5 a large number of times (e.g., 1000).

7. The histogram of the F-statistics provides an estimate of the true distri-
bution of the F ratio.

But in the end, all such tests must be treated with caution. All of the
concerns noted about confidence intervals apply. In particular, the smoothing
process will typically lead to bias. If there is bias in the fitted values, the p-
values computed will capture not just the variance but the bias. The distance
between the null hypothesis and the estimated fitted values will be too large
or too small, depending on the nature of the bias, and the p-values will be
either too large or too small as well.

2.9.4 Can Asymptotics Help?

The asymptotics for the smoothers we have considered require that the num-
ber of observations must increase without limit and the number of unique
values of the predictors (i.e., “design points”) must increase without limit.
That is, in order to obtain consistent estimates of the conditional means, both
these conditions must apply. The number of design points must increase with-
out limit so there are no “holes” in the fitted values. If there are holes, some
form of interpolation or averaging is necessary, which means that the true
conditional means in that hole will probably not be accurately represented.

In some very large datasets with relatively few predictors, these require-
ments may be approximately met. But for many datasets, the approximation
to the requisite thought experiment is poor so that it is very difficult to rely
on the asymptotic results. Equally important, if any smoothing is undertaken,
there is the risk of nonnegligible bias that remains even asymptotically. To
take an extreme case, if a linear fit is forced on a nonlinear f(X), increasing
the sample size does not overcome the bias introduced.

In short, even if estimation is a worthy goal, the associated statistical
inference can be highly problematic. If one cares only about the stability of the
fitted values, resampling procedures can be instructive. But if one cares about
taking the bias into account, it is currently not clear how best to proceed. The
good news is that statistical inference for smoothers is being addressed by
some very talented statisticians. There may be some useful procedures soon.
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2 Splines and Smoothers

2.10 Software Issues

All of the computing done is this chapter was implemented in R. Within R,
the following smoothing and regression procedures were used.

1.

Linear Regression: Im()—a very flexible and very powerful procedure for
implementing the general linear model.

. Generalized Linear Model: glm()—a very flexible and very powerful proce-

dure for implementing the generalized linear model. Its structure is much
like Im().

. Scatterplot Smoothing: scatter.smooth()—a very flexibile and rich imple-

mentation of a two-dimensional lowess smoother of a scatter plot. The
output is the scatter plot with the fitted values overlaid.

. Local Adaptive Smoothing: locfit()—a generalization of lowess to allow

for up to two predictors with local adaptation for bandwidth. The code
is powerful and sophisticated, but the documentation is spotty. It can be
found in the R library locfit.

. Generalized Additive Model: gam()—it comes in two implementations.

One can be found in the library (gam) and uses the backfitting algorithm.
A second implementation uses penalized regression and can be found in
the R library mgcv. They perform broadly the same, but differ a bit in
the options offered to users.

. Spline Basis Construction: bs(), ns()—two procedures that are used to

construct b-spline bases for smoothers, bs() for B-splines and ns() for
natural cubic splines. These are automatically called by some smoothing
procedures or can be used as an intermediate step for more hand-tailored
smoothing. They can be found in the R library splines.

. Two-Dimensional Plotting: plot()—this can be used as a standalone or

when paired with an R object produced by procedures such as lm(), loc-
fit(), or gam().

. Three-dimensional plotting: contour(), persp() for contour plotting and

perspective plotting, respectively—both are slick and powerful, but a bit
tricky to use. There is a need to construct the plotting grid before points
and any fitted values are overlaid. Alternatively one can work with the
graphing procedures in the library lattice. For example, wireframe() is a
very elegant improvement over contour().

Perhaps the major operational problem for smoothing is sparse data. In

the simplest case, there may be only a few distinct values for a predictor
so that there is really nothing to smooth. For example, if a predictor only
has observations at three of its values, there is not much that can be done.
The choice is between no smoothing at all (i.e., just connecting the three
conditional means of the response), or a single straight line. There is no clear
lower limit to the number of predictor values for which there must be data,
but smoothing when there are fewer than about ten values is not likely to be
instructive. There can be few unique values for a predictor either because the
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data are lumpy or because of how the predictor is defined and measured. For
example, the number of children in a household for a given sample may have
only five distinct integer values.

In addition, the curse of dimensionality can rapidly turn an adequate
dataset into an inadequate one. The data may become far too thin over-
all, so that the large variance associated with the fitted values will negate any
possibility of seeing what the mean function is likely to be. Or, important
partitions of the data may suffer from the same problem. Most frustrating of
all, some procedures will abort with sparse data, sometimes taking down the
statistical procedures being used and even the entire operating system.

Many of the smoothing procedures have tuning parameters that can be
used for taking relatively large bites of the data. For data that are potentially
sparse, it will often be helpful to begin an analysis with large bites so that
within each window there are a sufficient number of observations. If the fitted
values seem stable, smaller bites may be tried.

A good sense of how stable the fitted values are can sometimes be ob-
tained from a point-by-point confidence interval, as long as one does not take
the attached probability very seriously. As noted earlier, bias will offset the
intervals so that the coverage is unknown. But, if the point-by-point intervals
are so large that the fitted values could plausibly range very widely, the fitted
values do not provide a useful fix on the mean function. This is very important
to take into account when the fitted values are interpreted.

2.11 Summary and Conclusions

Regression splines and regression smoothers can be very useful tools for de-
scribing relationships between a response variable and one or more predictors.
As long as one is content to “merely” describe, these methods are consistent
with the goals of an exploratory data analysis.

Experience suggests that for most datasets, it does not make a great dif-
ference which brand of smoother one uses. The dominant factor is usually
bandwidth or other parameters that determine the bias-—variance tradeoff.
Likewise, all of the measures of fit that take model complexity into account
lead to largely the same substantive results, especially when data are noisy.

There are also several important caveats that need to be kept in mind.
First, as with any regression analysis, there is no necessary connection between
the computer output and how the data were generated. There is, therefore,
no necessary connection to causal inference. Although the output can be very
helpful when considering matters of cause and effect, regression splines and
regression smoothers are usually not meant to represent how manipulating
one or more predictors will change the response.

Second, statistical inference should be approached with great care. Smoothers
are often meant to be exploratory and as such can easily jeopardize formal
tests and confidence intervals. Moreover, they typically introduce bias into
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the fitted values with the goal of reducing their variance. It is also impor-
tant to look beneath the computer output and understand how the statistical
inference was undertaken.

Third, overfitting can be a serious problem. The results from the data
examined may not generalize well to other random samples from the same
population. We consider overfitting in depth in later chapters. For now, caveat
emptor.

Finally, for a wide range of problems, there are statistical learning tech-
niques that arguably perform better than the procedures discussed in this
chapter. They can fit the data better, are less subject to overfitting, and per-
mit a wider range of information to be brought to bear. One price, however,
is that the links to conventional regression analysis become far more tenuous.
In the next chapter, we start down this path.

Exercises

Problem Set 1: Smoothers with a Single Predictor

1. Load the dataset called airquality using the command data(airquality).
Attach the data with the command attach(airquality). Use gam() from the
gam library with Ozone as the response and Temp as the sole predictor.
Estimate the following three models assigning the output of each to its
own name (e.g., outputl for the first model).

gam(Ozone ~ Temp)
gam(Ozone ~ as.factor(Temp) )
gam(Ozone ~ s(Temp) )

The first model is the smoothest model possible. Why is that? The second
model is the roughest model possible. Why is that? The third model is a
compromise between the two in which the degree of smoothing is deter-
mined by the GCV statistic. (See the gam() documentation followed by
the smoothing spline documentation.)

For each model, examine the numerical output and plot the fitted values
against the predictor. For example, if the results of the first model are as-
signed to the name “outputl,” use plot.gam (outputl, residuals=TRUE).

Which model has the best fit judging by the residual deviance? Which
model has the best fit judging by the AIC? Why might the choice of the
best model differ depending on which measure of fit is used? Which model
seems to be most useful judging by the plots? Why is that?



2.11 Summary and Conclusions 101

2. Overlay a lowess smooth on a scatterplot with the variable Ozone on the
vertical axis and the variable Temp on the horizontal axis. Vary three
tuning parameters: span: .25, .50, .75; degree: 0, 1, 2; family as Gaussian
or symmetric. Describe what happens to the fitted values as each tuning
parameter is varied. Which tuning parameter seems to matter most?

3. The relationship between temperature and ozone concentrations should
be positive and monotonic. From the question above, select a single set
of tuning parameter values that produces a fit you like best. Explain why
you like that fit best. If there are several sets of fitted values you like about
equally, explain what it is about these fitted values that you like.

4. For the overlay of the fitted values you like best (or select a set from
among those you like best) describe how temperature is related to ozone
concentrations.

5. One can address the stability of the fitted values using the bootstrap per-
centile method. Load the library simpleboot. The procedure first requires
that you run lowess and then you apply the bootstrap. For example: assign
loess(Ozone ~ Temp) to a name such as “smooth.” Then assign loess.boot
(smooth) to a name such as“bo.” Finally use plot(bo). The point-by-point
interval is constructed by taking the standard deviations of the fitted val-
ues for each point over bootstrap samples, multiplying each by two, and
adding that product to the fitted values at each point and subtracting
that product from the fitted values at each point.

For what values of temperature does the instability appear to be about
the largest? For what values of temperature does the instability appear
to be the smallest? What in the data accounts for these differences?

Problem Set 2: Smoothers with Two Predictors

1. From the library assist load the dataset TXtemp. Load the library gam.
With mmtemp as the response and longitude and latitude as the predic-
tors, apply gam(). Construct the fitted values using the sum of a 1-D
lowess smooth of longitude and a 1-D smooth of latitude. Try several dif-
ferent values for the degrees of freedom of each. Try different values for
the degree of the polynomial. You can learn how to vary these tuning pa-
rameters with help(gam) and help(lo). Use the summary() command to
examine the output and the plot.gam() to plot the two partial response
functions. To get both plots on the same page use par(mfrow=c(1,1)).
How are longitude and latitude related to temperature?
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2. Repeat the analysis in 1, but now construct the fitted values using a sin-
gle 2-D smoother of longitude and latitude together. Again, try several
different values for the span and degree of the polynomial. Examine the
tabular output with summary() and the plot using plot.gam(). How do
these results compare to those using two 1-D predictor smooths?

Problem Set 3: Smoothers with More Than Two Predictors

1. Now build an additive model for mmtemp with the predictors longitude,
latitude, year, and month. Use a lowess smooth for each. Try different
spans and polynomial degrees. Again use the summary() and plot.gam()
command. To get all four graphs on the same page use par(mfrow=c(2,2)).
How is temperature related to each of the four predictors?

2. Repeat the analysis done for 1, but with penalized smoothing splines. The
operator in front of each predictor is now s and not lo. Read the help doc-
umentation for gam(), and s(). How is temperature related to each of the
four predictors? How do the conclusions from 1 compare with the conclu-
sions drawn here? Why?

Problem Set 4: Smoothers with a Binary Response Variable

1. From the car library, load the dataset Mroz. Using the glm(), regress labor
force participation on age, income, and the log of wages. From the library
gam, use gam() to repeat the analysis, smoothing each of the predictors.
Note that labor force participation is a binary variable. Compare and
contrast your conclusions from the two sets of results. Which procedure
seems more appropriate here? Why?
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Classification and Regression Trees (CART)

3.1 Introduction

Suppose one had a single quantitative response variable and several predic-
tors. There is interest in g|ax. The task is to find the single best predictor.
To do this, two kinds of searches are undertaken. First, for each predictor,
all possible splits of the predictor values are considered. For example, if the
predictor is age, and there are age-values of 21 through 24, all possible splits
maintaining order would be 21 versus 22-24, 21-22 versus 23-24, and 21-23
versus 24. If the predictor is marital status with categories never married,
married, and divorced, all possible splits would be never married versus mar-
ried and divorced, married versus never married and divorced, and divorced
versus never married and married. For categorical variables, there is no order
to maintain.

For each predictor, the best split is selected. The baseline is the sum of
squares of the response variable. For each split of a given predictor, a sum of
squares is computed within each of the two splits and added. Their sum will
be equal to or less than the original sum of squares for the response variable.
The “best” split for each predictor is defined as the split that reduces the sum
of squares the most.

Second, with the best split of each predictor determined, the best split
overall is determined. The same sum of squares criterion is used along with
the results from the previous step. By selecting the best split overall, the best
predictor by this sum of squares criterion is implicitly chosen.

With the two-step search completed, the winning split is used to subset the
data. In other words, the best split for the best predictor defines two subsets.
For example, if the best split were to be 21-22 versus 23-24 years of age, all
individuals 21-22 would form one subset and all individuals 23-24 would form
the other subset.

There are now two partitions of the original data, defined by best split
within and between the predictors. Next, the same two-step procedure is ap-
plied to each partition separately; the best split within and between predictors

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_3, (© Springer Science+Business Media, LLC 2008
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for each subset is found. This leads to four partitions of the data, and once
again, the two-step search procedure is undertaken separately for each. The
process can continue until there is no meaningful reduction in the error sum
of squares.

As we show shortly, the result is a recursive partitioning of the data that
can be represented within a basis function framework. The basis functions
are indicator variables defined by the best splits. With these determined, a
regression of the response on the basis functions yields regression coefficients
and fit statistics as usual. In practice, there is no need to translate the par-
titioning into a regression model; the partitioning results stand on their own
as a regression analysis. But if one wishes, the recursive partitioning can be
seen as a special form of stepwise regression.

The two-step search procedure is easily generalized so that the response
variable can be categorical, and in probably its most visible implementa-
tion, the recursive partitioning is called Classification and Regression Trees
(CART). CART has been in use for about 20 years (Breiman et al., 1984) and
remains a popular data analysis tool. In this chapter, CART is examined in
considerable depth, not just because it can be of practical value, but because
it raises a number of important, broader issues. It also can be a foundation
for statistical learning discussed in three subsequent chapters.

The focus is on CART as it has traditionally been implemented. Although
there are some recent refinements of CART (Chipman et al., 1998; Loh, 2002;
Su et al., 2004), they are peripheral to the aims of this chapter. There are also
CART-like procedures such as C5.0 (Quinlan, 1993) with roots in computer
science. A discussion of these procedures would take us some distance from the
statistical traditions emphasized here, although we later consider a paper by
Hothorn and his colleagues (2006) that is somewhat more than a refinement
of CART.

Chapter 2 was devoted almost entirely to quantitative response variables.
Equal time and more is now given to categorical, and especially binary, re-
sponse variables. As noted earlier, procedures that assign observations to
classes are sometimes called “classifiers.” When CART is used with categorical
response variables, it is an example of a classifier.

Categorical response variables introduce a number of significant complica-
tions that either do not apply to quantitative response variables, or apply only
at a much higher level of abstraction. We now need to get this material on the
table, in part because it is important for classifiers in addition to CART. We
also emphasize the differences among description, estimation, and forecasting.
In CART, these are not just differences in how the tools are used, but go to
the nuts and bolts of how the procedure performs.

This is a long and somewhat tedious chapter. An effort has been made
to include only the material that is really needed. But that’s a lot, and it is
probably necessary to slog through it all.
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3.2 An Overview of Recursive Partitioning with CART

As already noted, classification and regression trees works by a recursive parti-
tioning of the data. Recursive partitioning is a stagewise process that sequen-
tially breaks the data up into smaller and smaller pieces. It is “stagewise,”
not “stepwise,” because earlier stages are not revisited after the results from
later stages are known.

Recursive partitioning can be formulated within the basis function frame-
work discussed in Chapter 2. Recall that

M;

f(X) = Z BimMhjm (X). (3.1)

j=1m=1

Each of the p predictors has its own set of transformations, and all of the
transformations for all predictors, each with its own weight 8;,,, are com-
bined in a linear fashion. Recall also that indicator variables were included as
possible transformations. This is a key feature of CART.

To see the relevance of Equation 3.1 for CART, it is necessary to appreciate
how CART implements recursive partitioning. The goal of CART’s recursive
partitioning is to exploit information contained within a set of predictors to
create subsets of the data. Each subset is constructed so that the values of the
response variable in each are as similar as possible. The process proceeds one
partition at a time so that once a partition is constructed, it is not reconsidered
when later partitions are defined.

Figure 3.1 is a three-dimensional scatterplot. There is a binary outcome G
coded “A” or “B,” and predictors x and z. Figure 3.1 is meant to illustrate a
simple classification problem as it might be attacked by CART.

The single vertical line at, say, z = 3 produces the first partition. The
double horizontal line at * = 6 produces the second partition. The triple
horizontal line at * = —4 produces the third partition. CART constructs
partitions with a series of straight-line boundaries perpendicular to the axis
of the predictor being used.

In this simple illustration, the upper-left partition and the lower-right par-
tition are fully homogeneous. This is good. There remains considerable het-
erogeneity in the other two partitions and in principle, their partitioning could
continue. Figure 3.1 reveals that cases with z < 3 and x > 6 are always “A.”
Cases with z > 3 and = < —4 are always “B.” Thus, we are on our way
to describing distribution of the As and Bs conditional upon z and z. The
regression framework still applies.

3.2.1 Tree Diagrams

CART output is often shown as an inverted tree. Figure 3.2 is a simple il-
lustration. The full dataset is contained in the root node. The data are then
broken into two mutually exclusive pieces. Cases with = > ¢ go to the right,
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Recursive Partitioning of a Binary Outcome
(where G = A or B and predictors are Z and X)

Fig. 3.1. Recursive Partitioning Logic in CART

and cases with « < ¢ go to the left. The latter are then in terminal node
1, which is not subject to any more subsetting. The former are then in an
internal node that can be usefully subdivided further. The cases in the inter-
nal node are then partitioned again. Observations with z > ¢o go to the right
and into terminal node 3. Observations with z < ¢o go to the left and into
terminal node 2.

In this case, all splits beyond the initial split of the root node imply, in
regression language, interaction effects. The split imposed at the internal node,
for instance, only applies to observations with x-values that are greater than
c1. The impact of z depends on a value of x, which is an interaction effect.

When there is no natural order to a predictor’s values, the partitioning
criterion selected is usually represented by the name of the variable along with
the values that go to the right (or left, depending on the software) side. For
example, if ethnicity is a predictor and there are five ethnicities represented by
the letters a though e, the software might represent the partitioning criterion
for a given split as ethnicity=ade. All cases belonging to ethnic groups a.d,
and e are being placed in the right-hand partition.

Splits after the initial split do not have to represent interaction effects. If an
immediately subsequent partitioning of the data uses the same predictor (with
a different breakpoint), the result is an additional step in the step function
for that predictor. A more complicated nonlinear function results, but not an
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Fig. 3.2. CART tree structure.

107

interaction effect. In practice, however, most partitions of the data represent

interaction effects.

It is easy to show that results such as those shown in Figure 3.2 can
be written within the basis function framework of Equation 3.1. One just
represents all of the terminal nodes with indicator variables, each of which is

a function of one or more predictors (including the constant term). Thus,
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(X, 2) = Bo + Bu[(I(x < )]
+ Goll(z>c & z<c)|+ Bsll(x>c1 & 2>¢2)].  (3.2)

One can see again the importance of interaction effects whenever two or
more predictors are needed to construct the indicator variable. Interaction
effects need to be kept in mind when CART tree diagrams are interpreted.

3.2.2 Classification and Forecasting with CART

There is far more to the output from CART than a tree diagram. Within
each of the terminal nodes, the proportion of “successes” and proportion of
“failures” are calculated. These conditional proportions can be of significant
descriptive interest. For example, if the proportion of successes in terminal
node 3 is .70, one can say for cases with x > ¢; and z > ¢, that the proportion
of successes is .70. Analogous statements can be made about the other terminal
nodes. Ideally, these proportions will vary substantially, implying that the
partitioning is making important distinctions between different kinds of cases.
If you know for any given case the value of z and the value of z, it really
matters for the proportion of successes.

In addition, the proportions can be used to attach labels to observations.
If the majority of observations in a partition are As, all of the observations in
that partition might be assigned to class A. If the majority of observations in
a partition are Bs, all of the observations in that partition might be assigned
to class B. These labels convey what is most typical in a partition and if
the observations need to be organized into categories, provide a ready way
to determine which observations belong where. When CART is used in this
manner, it is being used explicitly as a classifier.

Often, the assigned classes can also be used for forecasting. Suppose one
knows that observations with certain values for predictors fall in a particular
partition, and that the majority of observations in that partition are, say, of
category A. Then, new observations that would fall in that partition, but for
which the response is unknown, might be predicted to be A as well.

3.2.3 Confusion Tables

At least as important as the tree diagram is a classification table that cross-
tabulates the observed classes and the classes that CART assigns. When the
observed classes and the assigned classes come from the data used to build the
tree, the table can be used to understand how skillful CART has been in fitting
the data. When the observed classes and the assigned classes come from data
not used to build the tree, the table can be used to understand how skillful
CART has been in forecasting. In either case, the cross-tabulation is often
called a “confusion table.” We consider confusion tables many times in the
pages ahead, but a few details are important to introduce now. The confusion
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Failure Predicted|Success Predicted Model Error
Failure a b b/(a+b)
Success c d c/(c+d)
Use Error ¢/(a+c) b/(b+d) Overall Error = %

Table 3.1. A confusion table.

tables are structured to contain a bit more information than is customarily
done.

Table 3.1 shows an idealized confusion table. There are two classes for the
response variable: success and failure. The letters in the cells of the table are
cell counts. For example, the letter “a” is the number of observations falling in
the upper-left cell. All of the observations in that cell are characterized by an
observed “failure” and a predicted “failure.” If the observations are from the
data used to build the tree, “predicted” means “assigned.” If the observations
are from data not used to build the tree, “predicted” means “forecasted.”
The difference between fitting and forecasting is critical in the next several
chapters.

There are generally four assessments that are made from confusion tables.

1. The overall proportion of cases incorrectly classified is an initial way to
assess the quality of the fit. The overall proportion of cases incorrectly
forecasted is an initial way to assess forecasting skill. Both are simply the
number of observations in the off-diagonal divided by the total number of
observations. If all of the observations fall on the main diagonal, CART
has, by this measure, performed perfectly; none of the observations are
either classified or forecasted incorrectly. When no cases fall in the main
diagonal, CART is a total failure. All of the observations are either clas-
sified or forecasted incorrectly.

Clearly, a low proportion for this “overall error” is desirable, but how good
is good depends on the baseline of classification or forecasting skill when
no predictors are used. The real issue is how much better one does once
the information in the predictors is exploited. A lot more to is said about
this shortly.

2. The overall error neglects that it will often be more important to be
accurate for one of the response variable classes than for another. For
example, it may be more important to correctly diagnose a fatal illness
than to correctly diagnose good health. This is where the row proportions
shown in the far right-hand column become critical. For each actual class,
the row proportion is the number of observations incorrectly classified or
forecasted divided by the total of observations of that class. Each row pro-
portion characterizes errors made by the statistical procedure or model.
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When the true class is known, how common is it for the procedure to fail
to identify it?

The two kinds of model failures are sometimes called “false positives”
and “false negatives.” Successes incorrectly called failures are false neg-
atives. Failures incorrectly called successes are false positives. The row
proportions that represent the relative frequency of model-generated false
negatives and false positives should, ideally, be small. Just as for overall
error, the goal is to do better using the information contained in the pre-
dictors than could be done ignoring that information. But, the exercise
now is done for each row separately. It is common for the model to per-
form better for one outcome than the other.

3. The column proportions address a somewhat different question. They are
the proportion of times when a particular class is assigned or forecasted
that the assignment or forecast will be wrong. Whereas the row propor-
tions help evaluate how well CART has performed, the column proportions
help evaluate how useful the CART results are likely to be if put to work.
The row proportions condition on the true class. The column proportions
condition on the class assigned or forecasted. The latter, therefore, convey
what would happen if a practitioner used the CART results to classify or
forecast. One conditions on either predicted success or on predicted failure
from which two different estimates of errors in use can be obtained. Just
as for model errors, it is common for the errors in use to differ depending
on the outcome. The goal is much the same as for model error: for each
column, to be wrong a smaller fraction than if the predictors were ignored.

4. The lower-left cell and the upper-right cell contain, respectively, false neg-
atives and false positives. The ratio of the number of false negatives to the
number of false positives shows how the results are trading one kind of
error for the other. For example, if b is 5 times larger than ¢, there are five
false positives for every false negative. This means that CART is in this
instance treating false negatives as five times more important than false
positives; one false negative is “worth” five false positives. Ratios such as
this play a key role in our discussion later of how to place costs on false
negatives and false positives.

In summary, confusion tables are a critical diagnostic tool. We rely on
them in this chapter and all subsequent ones. They also raise some important
issues that are salient in the pages ahead.

3.2.4 CART as an Adaptive Nearest Neighbor Method

It can be instructive to think about CART within an adaptive nearest neigh-
bor framework. The partitions shown in Figure 3.1 can be viewed as neighbor-
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hoods defined by nearest neighbors. But unlike conventional nearest neighbor
methods, CART arrives at those neighborhoods adaptively.

Consider, for example, terminal node 3 in Figure 3.2. Within that node are
all observations whose values of x are greater than ¢;, and whose values of z
are greater than co. For these observations, a conditional mean or proportion
can be computed. In other words, the nearest neighbors for either of these
summary statistics are defined as all cases for which x > ¢; and z > ¢y. Each
of the observations for which this condition holds can be used to arrive at a
single numerical summary for the response variable.

The neighborhood represented by the terminal nodes is adaptive in three
senses. First, information from the response variable is used to determine the
neighborhood. Some measure of fit is exploited. Recall that nearest neighbor
methods that are not adaptive define the nearest neighbors by their similarity
on predictor values alone. Second, because a large number of predictors and
break points are examined, a large number of potential neighborhoods are
evaluated before an actual neighborhood is defined. Third, the terminal node
neighborhoods that result can be defined by different sets of predictors and
different sets of cutpoints. Both are determined inductively by the CART
algorithm. For example, a given predictor can help define one terminal node,
but not another. Even when a given predictor is used to define more than one
terminal node, it may enter at a different stage of the partitioning and use a
different break point.

The terminal node neighborhoods are constructed sequentially by where
in the predictor space some step function for the response is changing most
rapidly. This follows from the desire to make the two resulting subsets as
homogeneous as possible. Then, because for each split the single best predictor
is chosen, each terminal node, and its implied neighborhood, can be defined
using a subset of predictors. That is, one need not define nearest neighbors
using the entire predictor space. This is in contrast to the multivariate lowess
smoother discussed in the last chapter.

But making the subsets as homogeneous as possible does not usually lead
to terminal nodes that are completely homogeneous. We show later that to
make the terminal nodes homogeneous, very large trees can result with very
few cases in each terminal node. Such trees can be very unstable. Thus in
the case of binary outcomes, for example, there will usually be a mix of 1s
and 0s. One clear consequence is classification error. Whatever the label that
is attached to each terminal node, it will be the incorrect label for some
observations.

A second consequence is more subtle. Suppose the goal is to estimate the
proportion of 1s for all observations with the same set of z-values; one is
interested in §|xg, where zy represents the given set of z-values (e.g., Asian,
female, high school students with family incomes of more than $100,000).
Unless the terminal node in which all such cases land contains only those
observations, there will be other observations with different sets of xz-values.
When a proportion of 1s is calculated, all of the observations in the node will
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be used. Unless all of the proportions of 1s for each of these different sets of
z-values are the same as for cases with z(, the estimated proportion for the
observations with x will be biased. For example, Asian and Anglo female high
school students with family incomes of more than $100,000 may be pooled in
a given terminal node. If the two groups have different proportions of 1s for
the response variable, a biased estimate of the proportion of 1s will follow.
More is said about this later.

In summary, although smoothers, adaptive nearest neighbor methods, and
CART come from very different traditions, they have important similarities.
We show additional and helpful connections to other statistical learning pro-
cedures in subsequent chapters.

3.2.5 What CART Needs to Do

With the overview of CART completed, we can begin a more detailed dis-
cussion. This discussion can be put into a useful context by considering the
technical problems CART must solve. There are six such problems.

1. A criterion for the subsetting is required. By what criteria will the parti-
tions be determined?

2. A criterion for the variable selection is required. At each stage, how will
the variable used to define the new partition be selected?

3. A way is needed to consider how “good” the tree is. Regressionlike fit
measures can be useful, but for classification problems, there will be clas-
sification errors with which to contend. Can a tree that makes lots of
mistakes in classifying or forecasting cases be “good?”

4. A way is needed to influence the size of the tree so that only useful terminal
nodes are constructed. We show that this is related to the bias—variance
tradeoff.

5. A way is needed to protect against overfitting. CART is another example
of high-powered exploratory data analysis. How can the generalizability
of the results be strengthened?

6. Ways are needed to interpret and communicate the results. Tree diagrams
are a start, but by themselves neglect some important features of CART
results.

The specific solutions to these problems depend in part on whether the
response is categorical or quantitative: whether a classification tree or a re-
gression tree, respectively, is desired. Here, we continue with the emphasis on
classification problems for categorical response variables and address each of
the six problems along the way.

Software can matter too. There are several popular implementations of
CART as originally formulated by Breiman and his colleagues (1984). These
differ largely in details, but sometimes more fundamental differences arise, es-
pecially as new approaches to recursive partitioning are developed. Consistent
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with the use of R for all computing in this book, CART implementations in R
are the focus. In addition, the focus is on the traditional CART approach be-
cause this is the structure on which more recent statistical learning procedures
most commonly build.

3.3 Splitting a Node

The first problem that CART needs to solve is how to split each node using
information contained in the set of predictors. For an equal interval predictor
with m distinct values, there are m — 1 splits that maintain the existing
ordering of values. So, m — 1 splits on that variable need to be evaluated. For
example, if there are 50 distinct high school GPA scores possible, there are
49 possible splits that maintain the existing order. However, there are often
algorithmic shortcuts that can capitalize, for instance, on ordering the splits
by the size of the conditional mean or proportion. The same logic holds for
ordinal predictors.

Order does not matter for categorical predictors. Consequently, a categor-
ical variable with k categories has (2¥~! — 1) possible splits. For example, if
there are five ethnic categories, there are 15 possible splits. Hence, although
there are sometimes shortcuts here too, the computational burdens are gen-
erally much heavier for categorical variables. There are no restrictions on how
a categorical predictor is split.

Starting at the root node, CART evaluates all possible splits of all predictor
variables and picks the “best” single split overall. The best split of the variable
selected is better than the best split of any other predictor. The data are then
partitioned according to that best split. The same process is applied to all
subsequent nodes until all cases have been placed in a terminal node. Because
the final partitions do not overlap, each case can only be in one terminal node.
But how is “best” to be defined? It is common to focus on the “impurity” of a
node. The goal is to have as little impurity overall as possible. Consequently,
the “best” split is the one that reduces impurity the most. To help simplify the
exposition that follows, assume a binary response variable coded 1 or 0. The
term “success” for now is used to refer to outcomes coded “1” and “failure”
to refer to outcomes coded “0.”

Many formal expositions of CART assume the data are a random sample
from a well-defined population. Then one can consider, for example, the pro-
portion of times in a limitless number of independent samples that a success
or failure would occur. Proportions computed from the sample data can be
used as an estimate of these probabilities. When the data are a population, the
thought experiment of a limitless number of independent samples no longer
applies, and, therefore, there are no probabilities to estimate. The proportions
stand on their own as descriptive statistics.

If the data are a nonprobability sample, there is the option of invoking
model-based sampling, common in conventional regression (Thompson, 2002:
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section 8.3). However, model-based sampling must be used very cautiously.
There is no a priori model to determine how uncertainty is introduced. If
there is any model at all, it is formulated inductively from the data. Con-
sequently, all of the issues surrounding statistical inference with smoothers
resurface. It can be better in practice to let the proportions computed from a
nonprobability sample stand on their own as summaries of the data, but not
as estimates of anything.

The exposition that follows makes an effort to consistently distinguish
between proportions and probabilities. If the goal is description, a focus on
proportions is sufficient. If the goal is estimation, then estimation of proba-
bilities necessarily enters.

Suppose for now that the data are a random sample from a well-defined
population, and the concept of a probability applies. Consider a given node,
designated as node A. The “impurity” of node A is taken to be a nonnegative
function of the probability that y = 1, written as p(y = 1|A). If A is a terminal
node, ideally it should be composed of cases that are all equal to 1 or all equal
to 0. Then p(y = 1]A4) would be estimated as 1.0 or 0.0. Intuitively, impurity
is the smallest it can be. In contrast, if half the cases are equal to 1 and half
the cases are equal to 0, the estimated probability is equal to .50. A is the
most impure it can be because a given case is as likely to be a 1 as it is a 0.

One can more formally build on these intuitions. Let the impurity of node
A be

I(A) = ¢[p(y = 1]4)], (3:3)

with ¢ > 0, ¢(p) = ¢(1—p), and ¢(0) = ¢(1) < ¢(p). In other words, impurity
is nonnegative, and symmetrical with a minimum when A contains all Os or
all 1s, and a maximum when A contains half of each. Note that the use of I in
Equation 3.3 for impurity should not be confused with the use of I to represent
an indicator variable. The different meanings should be clear in context.

There remains a need to define ¢. Three definitions have been used in the
past: Bayes error, the cross-entropy function, and the Gini index. In order
they are:

#(p) = min(p, 1 — p); (3.4)

¢(p) = —p log(p) — (1 — p) log(1 — p); (3.5)
and

d(p) =p (1 —p). (3.6)

All three functions for impurity are concave, having minimums at p = 0
and p = 1 and a maximum at p = .5. Entropy and the Gini index are the
most commonly used, and generally give very similar results except when
there are more than two response categories. Then, there is some reason to
favor the Gini index (Breiman et al. 1984: 111). The Gini index is more likely
to partition the data so that there is one relatively homogeneous node having
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relatively few cases. The other nodes are then relatively heterogeneous and
have relatively more cases. For most data analyses, this is a desirable result.
Entropy tends to partition the data so that all of the nodes for a given split are
about equal in size and homogeneity. This is generally less desirable. But the
choice between the two impurity functions can depend on the costs associated
with classification errors, which is a topics addressed shortly. indexGini index

One might legitimately wonder why CART does not directly minimize
classification error. Direct minimization of overall classification error is dis-
cussed in some detail by Breiman and his colleagues (1984: Section 4.1). One
serious problem is that there can be several splits for a given stage minimizing
classification error. A more subtle problem is that minimizing classification
error at each stage has a tendency, like entropy, to produce a tree structure
that is often more difficult to interpret. For now, we focus on node impurity
as just defined. However, direct minimization of classification error resurfaces
as a useful goal when boosting is considered in Chapter 6.

Building on Zhang and Singer (1999; Chapters 2 and 4), a simple example
may help to make the discussion of impurity more concrete. For any internal
node, we focus on a potential left “daughter” node Ay, and a right “daughter”
node Ar. We wish to evaluate the usefulness of a potential partitioning of the
data. Table 3.2 provides the information needed. We continue to work with
probabilities, although the same practical lessons follow using proportions
instead. And with no important loss of generality, the illustration uses entropy
as the way impurity is represented.

As before, we let y = 1 if there is a success and 0 otherwise. Because the
data are a random sample, estimation is a legitimate enterprise; we are not
limited to description alone. The estimate of p(y = 1|Ar) is given by nia/nq..
Similarly, the estimate p(y = 1|ARg) is given by naa/ns ..

Failure|Success|Total
Left Node: z < ¢ nii nis n.
Right Node: > ¢| no: n22 na.
n.i n.2 n..

Table 3.2. Information used to determine the usefulness of a potential split.

It follows that “entropy impurity” for the left daughter is

I(Ap) = —Migg(HL) — M2y 212y (3.7)

n. ng. ng, ng.
“Entropy impurity” for the right daughter is

no1 N2y 122 122
I(AR) = ——log(——) — —log(—=). 3.8
(Ar) = = Zlog([2) — | Zlog( %) (38)
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Imagine that for the left daughter there are 300 observations with 100
successes and 200 failures. It follows that the impurity is —.67(—.40) —
.33(—1.11) = .27 4+ .37 = .64. Imagine now that for the right daughter there
are 100 observations with 45 successes and 55 failures. It follows that this
impurity is —.55(—.60) — .45(—.80) = .33 4+ .36 = .69.

To put these numbers in context, it helps to consider the smallest and
largest possible values for the impurity. The greatest impurity one could ob-
tain would be for 50% successes and 50% for failures. The computed value
for that level of impurity would be .693. For proportions of 1.0 or 0.0, the
value of entropy impurity is necessarily 0. In short, the minimum value is
0, and the maximum is a little more than .69. The closer one gets to 50-50,
where the impurity is the greatest, the closer one gets to .693. The impurity
numbers computed are rather close to this upper bound and reflect, therefore,
substantial heterogeneity found in both daughter nodes. It is likely that this
split would not be considered to be a very good one.

Once all possible splits across all possible variables are evaluated in this
manner, a decision is made about which split to use. The impact of a split
is not just a function of the impurity of a node, however. The importance of
each node must also be taken into account. It stands to reason that a node
in which few cases are likely to fall should be less important than a node in
which many cases are likely to fall. In the big picture, the former probably
will not matter much, but the latter probably will.

We define the improvement resulting from a split as the impurity of the
parent node minus the weighted left and right daughter impurities. If this is
a large number, entropy impurity is reduced substantially.

More formally, the benefits of the split s for node A,

Al(s,A) = I(A) = p(AL)I(AL) — p(Ar)I(AR), (3.9)

where I(A) is the value of the parent impurity, p(Ag) is the probability of a
case falling in the right daughter node, p(Ay,) is the probability of a case falling
in the left daughter node, and the rest is defined as before. The two proba-
bilities can be estimated from the information such as provided in Table 3.2;
they are just the marginal proportions ny /n_ and ns /n._.

AlI(s, A) is essentially the reduction in the deviance and thus, there is a
clear link to the generalized linear model that can prove useful when different
fitting procedures are compared. CART finds the best AI(s, A) for each vari-
able. The variable and split with the largest value are then chosen to define
the new partition. The same approach is applied to all subsequent nodes.

It makes no difference to the CART algorithm whether the proportions
computed are taken at face value as summary statistics, or as estimates of
probabilities. The partitions that result are the same. What can differ is
whether a given dataset or a random sample is being analyzed. This is up
to the user.

The CART algorithm can keep partitioning until there is one case in each
node. There is then no impurity whatsoever. Such a tree is called “saturated.”
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However, well before a tree is saturated, there will usually be far too many
terminal nodes to interpret, and the number of cases in each will be quite
small. The very small node sizes lead to very unstable results. Small changes in
the data can produce trees with rather different structures and interpretations.
One option is to prohibit CART from constructing any terminal nodes with
sample sizes smaller than some specified value. A second option is considered
shortly. And we show in later chapters that there can be ways to work usefully
with saturated trees, as long as there is a very large number of them.

3.4 More on Classification

For some applications, the data analysis can stop once all of the cases are
assigned to a terminal node. The partitions and the proportions of successes
in each are all that matter. For example, very much within a regression frame-
work, it may be of interest to learn which characteristics of students are as-
sociated with the estimated probability of dropping out of school. How much
higher might the probability be for students whose parents did not graduate
from high school themselves, compared to the probability for students whose
parents did graduate (Thompson, 2002: Section 8.3)7

But often there is an important additional step. That step is classification.
Using the distribution of cases in a given node, the user wants to call all cases
in that node the same thing. For example, if the students in a particular
terminal node have an estimated probability greater than .50 of dropping out
of school, all students in that node might be labeled as high risk, and then be
offered special remedial services. The data partitions constructed by CART
are now fixed. Classification takes the partitions as given and applies a rule
by which all the observations within a given terminal node are assigned to a
single class.

Classification raises a number of new issues that revolve around the con-
sequences of classification errors. What happens to students who are really at
high risk for dropping out of school but who are not identified as such? What
happens to students who are not at high risk for dropping out of school, but
who are labeled as high risk? To consider such questions, we need to be a bit
more clear on what fitted values are in CART.

3.4.1 Fitted Values and Related Terms

We need to broaden the discussion just a bit to consider some ways in which
CART is related some other techniques and to clarify some terms that can be
used in more than one way. In particular, the term “fitted values” can have
several different meanings.

CART is a method to construct, using a set of predictors, a set of condi-
tional distributions. Interest commonly centers on some measure of location
for those conditional distributions. For classification problems, the conditional
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proportion is usually the measure. We show later that for regression problems,
the measure is usually the conditional mean. And we have already discussed
how, using basis functions, explicit links to parametric regression can be made.
It follows that most of the issues raised by parametric regression, and most
of concepts associated with parametric regression, carry over.

But there are also some ways in which CART’s links to parametric regres-
sion can be a bit confusing. To begin, one must be clear about the distinction
between the value of the response variable associated with each case, and
the value of the response variable that CART can assign. The former comes
directly from the data themselves and is unrelated to whatever statistical
procedures are applied. The latter is an output of CART. One can think of
the values assigned to observations by CART as fitted values, much as in
conventional regression analysis.

Quantitative Fitted Values

For classification problems, there are two kinds of fitted values. First, each
terminal node can be characterized by the proportion of cases for each of
the classes. The CART algorithm determines which observations go to which
terminal nodes and stops. Within each node, the proportion of observations
from each of the classes is then computed. Once these are computed, they can
be used to characterize all the observations in a given terminal node.

For example, if the response variable is binary, the proportion of “suc-
cesses” in a given terminal node can be assigned to each observation in that
terminal node. If that proportion is .25, for instance, one can say that for all
the cases in that node, the proportion of successes is .25. This is an illustration
of description.

Sometimes it may be possible to treat the data either as a random sample
from a well-defined population or as a realization of a well-defined stochas-
tic process. Then, the computed proportions for each terminal node can be
viewed as estimates of population values or as estimates of parameters asso-
ciated with the stochastic process. The proportions may then be interpreted
as probabilities. The proportion of successes of, say, .25 becomes an estimate
of some population value or of some parameter defining the stochastic pro-
cesses. When it is then assigned to each case in a given terminal node, it may
be interpreted as an estimate of the probability of a success for that case.

Qualitative Fitted Values

The second kind of fitted value requires CART to take an additional step: a
class must be assigned to each terminal node. As described above, one way
this may be accomplished is by a majority vote within each terminal node
(or plurality if there are more than two response categories). Then the class
assigned to a terminal node is assigned to each observation in that terminal
node. The assigned class can be represented by any set of distinct characters,
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but for binary response variables, values such as “0” and “1” are common and
handy. If, for instance, a given terminal node is assigned a class of “17, all
observations in the node are assigned a class of “1.”

Much as with the proportions assigned to observations, the classes assigned
to observations may be treated as descriptions of the data on hand and if
justified, as estimates as well. The class assigned is the estimated class. Even
when there is no forecasting involved, the estimated class is often called the
“predicted” class.

To summarize, there are in CART two kinds of fitted values used for
description: the classes assigned to each terminal node and the proportions of
observations that fall into each class. There are also two kinds of fitted values
used for estimation: the estimated class and the estimated probability of one
class versus another. These distinctions are easy enough to remember and are
needed when more advanced procedures are introduced in the next chapter.
There are several new ways to think about fitted values and several new kinds
as well.

3.4.2 An Example

A key issue for prison administrators is understanding which inmates are likely
to place themselves and others in harm’s way. Use of narcotics, assaults on
prison guards, and homicides are examples. Although such events are rela-
tively rare, they carry very serious consequences. It follows that it would be
very useful if such conduct could be anticipated. Then, for the high-risk in-
mates, preventive measures might be taken. For example, inmates from rival
street gangs might be housed in different prisons. A prerequisite, however, is
a way to find useful predictors of misconduct in prison.

Using data from the administrative records of a large state prison system,
Figure 3.3 shows a classification tree for which inmates engage in some form
of reportable misconduct while in prison. A minimum node sample size of
200 was imposed to stabilize the results and for this initial CART example,
to keep the diagram very simple. The two predictor variables in Figure 3.3,
selected by CART from a larger set of 12 predictors, are defined as follows.

1. term: Nominal sentence length in years. (The nominal sentence is the
sentence given by the trial judge. Inmates are often released before their
nominal sentence is fully served.)

2. agerec: Age at arrival at the prison reception center in years with a =
16-20, b = 21-26, ¢ = 27-35, and d = 36 or older.

Terminal nodes are labeled “0” if the majority do not engage in misconduct
and “1” if the majority do. The numbers below each terminal node show the
distribution of no misconduct to misconduct. Thus, for the root node, which
contains all of the data before any partitions are constructed, there are 3807
cases with no reported misconduct and 999 cases with reported misconduct.



120 3 CART

Inmate Classification Example

0
3807/999

0
2810/513

0
997/486

0 1
900/352 97/134

Fig. 3.3. Recursive partitioning of prison data.

Over the 18 months in which the data were collected, about 22% of the inmates
had at least one reported misconduct incident.

Figure 3.3 shows a useful level of skill even using just 2 of the 12 predictors.
For the far-right terminal node, there are 97 cases with no misconduct and
134 cases with misconduct. In this partition of the data, a little over 58% of
the inmates have at least one reported misconduct incident. As a descriptive
matter, misconduct for these inmates is about 2.5 times more common than
for all inmates on the average and much higher than for any of the other
terminal nodes.

All of the cases in the far-right terminal node are inmates who are serving
terms of more than 3.5 years, and who arrived at the prison reception center
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under the age of 21. They are very young offenders sentenced to long prison
terms. It is rather difficult to receive a long prison term at so young an age.
Note also that there is an interaction effect between term length and age at
reception. Age at reception only has its effect for inmates who are serving
terms of 3.5 years or longer.

Generally, crimes committed before the age of 18 do not count when at
sentencing an offender’s criminal record is considered. A long sentence usually
requires several felonies or one very serious felony. So, the inmates in the right
terminal node have either been very active or have engaged in very serious
crimes.

That such inmates are also difficult in prison would surely be no surprise
to criminologists, but Figure 3.3 contains useful information for prison ad-
ministrators. Very young inmates serving long prison terms may need to be
handled somewhat differently from other inmates. One might place them, for
instance, in prisons where the day-to-day supervision is more intrusive.

A conventional analysis using logistic regression would likely not have per-
formed as well by comparison. Consider what form a comparable logistic re-
gression would have to take. The far-right terminal node would be a dou-
ble interaction effect represented by a product variable constructed from two
terms. The node just to its left would as well. The far left terminal node is the
only main effect. It is unlikely that a researcher would have specified such a
model for a logistic regression a priori. When the more likely all-main-effects
model was applied to these data, the fit was dramatically worse and led to
somewhat different conclusions.

But what if prison administrators want to identify a subset of inmates who
are disproportionately likely to engage in misconduct? Then, the classification
step is required. For the moment, we apply a simple rule: if the majority of
inmates in a given node have reported incidents of prison misconduct, all
inmates in that node will be classified as high risk for such behavior. This
is consistent with the labels of “1” or “0” in Figure 3.3, and the resulting
classifications could lead prison administrators to treat differently the inmates
labeled as high risk.

Implicit in the desire to identify high-risk inmates using a set of predic-
tors is to treat the data on hand as a random realization from whatever the
stochastic process is that delivers convicted felons to prison. Then, a CART
analysis of the data on hand may be used to construct estimates of the likely
class for new inmates as they come in the front door and of the probability of
misconduct as well. Descriptors are being treated as estimates and estimates
can then be used as forecasts.

More details on how this might be done are considered later. But the
basic idea is to use the tree diagram. New observations for which the response
is unknown would be assigned to a terminal node based on their particular
predictor values (e.g., term greater than 3.5 years and age under 21). For
each observation, the class previously assigned to each terminal node would
be used as the forecasted class for that observation. And for each observation,
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the proportions previously used to describe each terminal node would be used
as the forecasted misconduct probability for that observation.

But for such forecasts to be fully useful, a way is needed to build in the
consequences of the forecasting process. And in fact, CART is making some
default decisions about those consequences, which a user of the forecasts may
not like. In this example, CART is treating the costs of failing to properly
identify high-risk inmates the same as the costs of falsely identifying high-risk
inmates. This equivalence may be undesirable, so the costs of misclassifications
need further discussion. We turn to that now.

3.5 Classification Errors and Costs

Up to this point, we have proceeded with CART classifying by majority vote.
For each terminal node, CART counts the number of cases in one class and
the number of cases in the other class, and classifies all cases as the class with
the majority of votes. When there are more than two categories, classification
is by the category with the greatest number of votes, which then can be just
a plurality.

Going back to Figure 3.3, and the terminal node in the lower right hand
corner as an illustration, there are 97 votes (i.e., cases) for no misconduct and
134 votes (i.e., cases) for misconduct, so all cases in that node are classified as
“misconduct.” That implies that 97 cases are misclassified. They are classified
as inmates who engaged in misconduct when they actually had not.

The other two terminal nodes in Figure 3.3 would be approached in the
same way. In each of these terminal nodes, a majority vote would produce a
no misconduct classification. Then, each of the cases for which there actually
was misconduct would be misclassified. So, there are 352 classification errors
for the terminal node in the middle and 513 classification errors for the far-left
terminal node.

Whether Figure 3.3 is satisfactory from a user’s point of view, however,
depends on more than the number of classification errors. It depends on how
the classifications will be used. Looking at the far-right terminal node again,
there are 97 “false positives.” If the cost of false positives is very high, the
results in that node may be unsatisfactory.

Suppose the CART analysis were used for forecasting and that for new
inmates classified as high risk, special housing arrangements were desirable.
But such housing, which typically requires closer levels of supervision, can be
very costly. Moreover, there may be a relatively small number of beds within
the prison system that would be appropriate. Yet, the far terminal node in
Figure 3.3 implies that for every ten inmates who really might need the special
housing, there would be about seven who probably do not. Perhaps it would
be better, therefore, if the threshold by which high risk inmates were classified
was higher. For instance, rather than a majority vote, a two-thirds vote might
be required.
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Consider now either one of the other two terminal nodes. All of the new
inmates falling in the middle node would not be candidates for special housing.
Yet, for every ten inmates appropriately classified as low risk, there would be
about four inmates who really were not. Should one of them attack a guard
or another inmate, the costs could be very high. Perhaps it would be better
if the threshold for high-risk inmates were lower. For instance, rather than a
majority vote, a one-third vote might be required.

Thus, there would seem to be conflicting voting rules and no apparent
way to reconcile them. Should the classification assigned to new inmates be
determined by one-third vote, a majority vote, a two-thirds vote, or something
else? And there would seem to be no solution to this problem unless costs are
somehow factored in.

One could also have forecasted the probability of misconduct. But that
would have implied a different kind of forecasting enterprise. At the level of
the individual inmate, the truth that the world could ultimately provide is
whether for that inmate there was or was not a reported incident of miscon-
duct. So, that is what needs to be forecasted. And that is the outcome for
which the costs are forecasting errors can properly be addressed. There is no
observed value of the response at the level of the individual inmate that would
make sense coded as a proportion. Consequently, there is no truth to which a
forecasted probability can be compared.

In contrast, if the goal were to forecast the proportion of inmates in a
particular group (e.g., a particular cell block) who would have a reported
incident of misconduct, then the world could in principle generate a true
proportion, which might be of interest to forecast. But at the level of the
group, determining the conditional proportion is no longer a classification
problem, but a regression problem. We consider regression trees later. Suffice
it for now to say that the way costs are taken into account in regression trees
is quite different.

3.5.1 Default Costs in CART

Without any apparent consideration of costs, CART can make classification
decisions about the misconduct of inmates. But in fact, costs are factored in.
Table 3.4 shows some results.

Predict No Misconduct|Predict Misconduct Model Error
No Misconduct 3710 97 .03
Misconduct 865 134 .88
Use Error .19 42 Overall Error = .20

Table 3.3. CART confusion table for forecasting inmate misconduct
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As noted earlier, tables of the form of Table 3.4 are sometimes called con-
fusion tables. They can summarize in a particular way, the classification skill
(or as we see later, forecasting skill) of a particular classifier. Here, that clas-
sifier has been constructed by CART. The table is a cross-tabulation of the
actual outcome against the outcome classified. There is a row for each of the
two actual outcomes. Each column is for the outcome classified. Correct clas-
sifications are in the main diagonal. Misclassifications are in the off-diagonal
elements. Thus, we learn that 962 out of 4806 cases (i.e., .20) were incorrectly
classified. But, how good this is depends on the baseline.

Had no predictors been used, classification could have been done from
the marginal distribution alone. On the one hand, all cases could have been
classified as having no reported misconduct. Then, about .22 (999/4806) of
the cases would have been incorrectly classified. All cases could have been
classified as having reported misconduct. Then, about .78 (3807/4806) of the
cases would have been classified incorrectly. Clearly, classifying all cases as if
no misconduct had occurred leads to a far lower error proportion and using
no predictors, is as good as one can do. Then, it seems that CART is not
reducing misclassification all that much (.22 to .20).

However, the overall fit ignores how well CART does when the two response
variable categories separated. In this case, the absence of misconduct can
be classified with near perfection. In contrast, instances of misconduct are
misclassified about 88% of the time. Is this a desirable balance?

The columns in Table 3.4 are also instructive. If the class of no misconduct
is assigned, it is wrong for about .19 of the observations. If the class of mis-
conduct is assigned, it is wrong for about .42 of the observations. So, mistakes
are relatively more common when misconduct is assigned. Is this desirable?

For both the row and column proportions, a lot depends on the off-diagonal
cells. In the process of minimizing the heterogeneity for each partition of the
data, CART arrives at a result with 97 instances in which a case is classified
as having reported misconduct when that is false. There are also 865 instances
in which a case is classified as having no reported misconduct when that is
false. Given the concern about inmate misconduct, we call the former false
positives and the later false negatives.

From Table 3.4, one can see that there are 8.9 false negatives for every false
positive (865/97). The default CART solution for these data trades nearly 9
false negatives for 1 false positive. So, for every inmate who might be in-
correctly placed in a high-security setting, for example, there are nearly 9
inmates who might be incorrectly placed in a low-security setting. This im-
plies that whatever the actual costs of false negatives and false positives, false
positives are being treated as if they were about 9 times more costly than
false negatives.

Several important lessons follow. First, CART (and every other classifi-
cation procedure for that matter) must introduce costs when a classification
decision is made. There is no way to circumvent this. Second, even if the data
analyst never considers costs, they are built in. To not consider costs is to
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leave the cost determination to the classification algorithm. Third, the way
cases are classified or forecasted will vary depending on the costs introduced.
As a result, the entire confusion table can change dramatically. The costs used
can make a very big difference. Finally, the costs that matter are the costs
of classification errors. And as the discussion of Table 3.4 illustrates, it is the
ratio of those costs that is critical.

If costs are so important, there is a need to understand how they are
incorporated in CART. And this will set the stage for the data analyst to
introduce costs explicitly into the analysis. A key step is to appreciate the role
of the “prior probabilities” associated with the categorical response variable.

3.5.2 Prior Probabilities and Costs

The marginal distribution of any categorical response variable will have a
proportion of the observations in each response category. In our prison ex-
ample, .22 of the inmates had a reported incident of misconduct, and .88 of
the inmates did not. However, before looking at the data, one might already
hold strong beliefs from past research or other information about what those
marginal proportions should be. For example, the design through which the
data were collected may have over sampled inmates reported for misconduct
in order to have a sufficient number of them in the study. But for many uses of
the results, it would make sense to weight the observations back to the actual
proportion of inmates who engage in misconduct. These actual proportions
can sometimes be conceptualized as the “prior probabilities” associated with
the response variable. The word “prior” comes from Bayesian statistical tra-
ditions in which the “prior” refers to the beliefs of the data analyst, before
the data are examined, about the probability density or distribution of some
parameter.

There has been some recent work within Bayesian traditions that allows
for a “pinball prior” for tree size and some features of tree shape (Wu et al.,
2007). That is, key features of the tree itself are given a prior probability
distribution. The ideas advanced are truly interesting, but in practice it is
not clear whether there would be information available to make the pinball
prior more than a convenient fiction, and there is almost no experience with
this approach to date. It will be some time before we learn whether there is
much payoff for real data analysis. Consequently, when the term “prior” is
used from here forward, reference is being made, unless otherwise stated, to
the prior distribution of the response variable only.

Before we get any farther, we need some additional notation. This nota-
tion and the surrounding discussion draws heavily on Therneau and Atkinson
(1997). Suppose there are N observations, C' classes for the response variable,
and K terminal nodes. We define m; for ¢« = 1,2,..., as the prior probability
of being in class i. For the binary cases, ¢ would equal 1 or 2. As just noted,
these marginal probabilities are sometimes called “prior probabilities.”
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L(i,7) is the loss matrix for incorrectly classifying a case that is really an
i as a j. It is this matrix that captures the costs of classification errors. For a
binary outcome, the matrix is 2 by 2, where the cost for correct classification
is, with no loss of generality, taken to be zero.

We let A be some node in the tree and 7(z) be the true class for an
observation x, where x represents the vector of predictor variable values for
that observation. We also let 7(A) be the class assigned to node A if node A
is a terminal node. Finally, N; and N4 are the number of observations in the
sample that are in class ¢ and in node A, respectively, with N;4 the number
of observations of class 7 in node A. The following relationships then hold.

1. P(A) is the probability of cases appearing in node A, which is equivalent
to 210:1 m;Plz € A|r(xz) = i]. It can be estimated by 210:1 mi(Nia/N;).
Note that the prior probabilities figure directly in these calculations and,
as a result, can affect the tree structure.

2. Then, p(i|A) is the probability of class i given that a case is in node A, or
P[r(x) =i|x € A]. Tt can be estimated by the number of cases of class 7 in
node A, divided by the total number of cases in that node. It is instructive
that this probability equals m; Pz € A|r(x) = i]/P[xz € A], which can also
be estimated by m;(N;a/N;)/ ZZCZI 7m;(N;a/N;). The priors can make a
real difference because the probability of a case with true class 7 landing
in A depends in part on the probability that a case is truly of class i to
begin with.

3. R(A) is the “risk” associated with node A, where 210:1 p(i|A)L(i, 7(A)),
and where 7(A) is chosen to minimize risk. In other words, the risk as-
sociated with node A is for the binary case the probability of a case of
type “1” falling in that node times costs that follow, plus the probability
of a case of type “2” falling in that node times costs that follow. Risk
is, therefore, a function of both the probabilities and the costs. Because
the probabilities depend on the prior probabilities, the prior probabilities
affect risks.

4. R(T) is the risk of the entire tree T, which equals Zjil P(A;)R(A)),
where A; are the terminal nodes of the tree. We are now just adding the
total risk associated with each node, weighting by the probability of cases
falling in that node. This can also be called the “expected cost” of the
entire tree.

And now the punch line. If L(4,j) = 1 for all ¢ # j, and the prior proba-
bilities m; are taken to be the observed class proportions in the sample, then
p(i|A) = Nja/Na, and R(T) is the proportion misclassified. The same applies
to the R(A), the risk associated with any particular terminal node. Replac-
ing L(i,j) = 1 with L(i,7) = m, where m is some constant, just scales up
or down the risk by some arbitrary amount and makes no difference to the
CART algorithm.

Therefore, if we just let the data determine everything, it is the same as
(a) making the costs of all classification errors represented in the loss function
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the same and (b) taking the empirical distribution as the appropriate prior
distribution. The partitions that follow depend on two conditions. Classifica-
tion by a majority vote of the cases in each terminal node also depends on
these conditions. If either of these conditions is different, it can easily lead to
different partitions and different classifications.

We are now ready to revisit the tree diagram in Figure 3.3 and the num-
bers in Table 3.2. These are the tree and classifications that result when the
researcher does not consciously introduce the relative costs of false negatives
and false positives. Figure 3.3 assumes equal costs for all classification errors
in the loss function and the empirical distribution of the response variable as
the prior distribution.

But what does one do if as in Table 3.2 the balance of false negatives to
false positives is unsatisfactory? It would seem that the easiest thing to do
would be to alter the costs in the loss matrix. That way, one might be able to
produce a more acceptable ratio of false negatives to false positives.

However, recall that the risk associated with a node is scaled by the prod-
uct of the prior probabilities and the entries in the loss matrix. To see the
consequences of this, suppose there exist a 7 and an L so that

Then the risk associated with that node are unchanged, and it does not matter
what the particular values of 7 and L happen to be as long as the equality
holds. This opens the door for lots of possibilities. If one just thinks of the
right-hand side as the weight given to the classification errors for class i in
a given node, and if more or less weight is desired, one can alter either the
priors or the costs or both. In practice, it is less work to alter one of them, and
the choice can depend on how the software is written. In the binary response
case, if one wanted to alter the weights by altering just the prior distribution
to 7}, one would use

o mil’? (3 11)

! ﬂ'iLf + 7 L;( ’ '

The index 7 would take on one value for the no misconduct class (e.g., 1) and
another value for the misconduct class (e.g., 2). The values of 7; would be the
probabilities associated with the empirical prior distribution. The values of
L7 would be the new costs. Note that because of the normalization, all that
matters in the loss matrix is relative costs. Thus, one just has to know, for
example, that the cost of one kind of classification error is three times the
cost of another kind of classification error, not their actual costs.

Let’s try an example so that the reasoning is clear. Suppose for the prison
data one were to let the data determine everything. Then, the empirical prior
distribution is about .8 for no misconduct and about .2 for misconduct. The
cost of a false negative or a false positive is 1.0.

Suppose we now wanted the cost of a false negative to be twice the cost
of a false positive: the 1 to 1 ratio would be 1 to 2. For no misconduct, we let
w1 X 1.0 = .80 x 1.0 = .80. For misconduct, we let 75 x 1.0 = .20 x 2.0 = .40.
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But then we need to normalize these values so that as probabilities they
sum to 1.0. Normalizing 7}, we compute (4/5)/(4/5+2/5) = .67. Normalizing
75, we compute (2/5)/(4/5 +2/5) = .33. So a 1 to 2 cost ratio for a false
positive to a false negative can be obtained using for the prior distribution
.67 and .33. There is no need to change the values in L(%, j), which in effect,
still have diagonal cost elements L(i # j) = 1. Finally, you can get the same
results by using Equation 3.11 with m L] = .80 x 1.0 and my L3 = .20 x 2.0.

It would also be handy if analogous procedures were available for categori-
cal response variables with more than two response categories. However, with
more than two response categories, there is likely to be more information in
the loss matrix than can be properly captured by a prior distribution. More
specifically, for any given observation, the cost of all misclassifications must
be the same for there to be a prior distribution that can properly represent
the costs of classification errors.

For example, suppose there were three inmate misconduct categories: no
misconduct, rule violations, and activities that would be crimes if committed
outside of prison. Then, if an inmate actually had no incidents of reported
misconduct, the costs of incorrectly placing him or her in either the rule vio-
lation category or the crime category would have to be the same. In practice,
it is rare that such constraints on the loss matrix would be appropriate. As
a result, relative costs would have to be introduced directly using the loss
matrix. This presents no problems when the software permits such input. But
it is common for there to be no allowance for a loss matrix, especially for the
more sophisticated forms of statistical learning to be considered in the next
two chapters. Fortunately, there are then other options, many of which are
rather clever. We consider these later.

To summarize, when the CART solution is determined solely by the data,
the prior distribution is empirically determined, and the costs in the loss ma-
trix of all classification errors are the same. Costs are being assigned even if
the data analyst makes no conscious decision about them. Should the bal-
ance of false negatives to false positives that results be unsatisfactory, that
balance can be changed. Either the costs in the loss matrix can be directly
altered, leaving the prior distribution to be empirically determined, or the
prior distribution can be altered leaving the default costs untouched. Much
of the software currently available makes it easier to change the prior in the
binary response case. When there are more than two response categories, it
will usually be easier in practice to change the costs in the loss matrix directly.

3.6 Pruning

With the discussion of costs behind us, we can now return to the problem of
overly complex trees and what can be done. Recall that setting a minimum
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sample size for each terminal node is one strategy. A second strategy to con-
strain the size of the tree is called “pruning.” The pruning process removes
undesirable branches by combining nodes that do not reduce heterogeneity
sufficiently for the extra complexity added. The process starts at the termi-
nal nodes and works back up the tree until all of the remaining nodes are
satisfactory.

Of late, pruning has not gotten a lot of attention. The problem that prun-
ing addresses is very real. But, as CART has become superceded, pruning
has become less salient. Consequently, the discussion of pruning is relatively
short. The main objective is to highlight some important issues raised in the
previous chapter that figure significantly in the pages ahead.

For a tree T, recall that the overall risk is

K
R(T) =Y P(A))R(4;). (3.12)

Jj=1

This is the sum over all terminal nodes of the risk associated with each node
times the probability of cases falling in that node. It might seem that a rea-
sonable pruning strategy would be to simply minimize Equation 3.12. What
could be better than that? Unfortunately, that would leave a saturated tree
untouched. CART would construct enough terminal nodes so that all were
homogeneous, even if that meant one node for each observation. With all ter-
minal nodes homogeneous, the risk associated with each would be zero. The
result would be unstable nodes, serious overfitting of the data, and far too
much detail to usefully interpret.

The solution is much like what was seen in the previous chapter. A penalty
is introduced for complexity, and we are back into the bias—variance tradeoff.
With larger trees, there will be fewer classification errors, implying less bias.
But larger trees will have terminal nodes with fewer cases in each, which
implies greater instability and hence, greater variance. The trick is to find a
sensible balance.

To take complexity into account in CART, a popular solution is to define
an objective function, called “cost complexity,” for pruning that includes an
explicit penalty for complexity. The penalty is not based on the number of pa-
rameters, as in conventional regression, or on the effective degrees of freedom
used, as in smoothing. For CART, the penalty is a function of the number of
terminal nodes. More precisely, we try to minimize

Ro(T) = R(T) + o|T). (3.13)

R, has two parts, the total costs of the classification errors for the tree as a
whole, and a penalty for complexity. For the latter, o > 0 is the complexity
parameter playing much the same role as A in regression smoothers. In place
of the effective degrees of freedom, |T is the number of terminal nodes in tree
T.
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The value of a quantifies the penalty for each additional terminal node.
The larger the value of «, the heavier is the penalty for complexity. When
a = 0, there is no penalty and a saturated tree results. So, a is the means by
which the size of the tree can be determined.

Breiman et al. (1984: Section 3.3) prove that for any value of the com-
plexity parameter «, there is a unique smallest subtree of T that minimizes
cost complexity. Thus, there cannot be two subtrees of the same size with the
same cost complexity. Given «, there is a unique solution.

In many CART implementations, there are ways the software can select a
reasonable value for « or for parameters that play the same role (Zhang and
Singer, 1999: Section 4.2.3). These defaults are often a good place to start,
but will commonly lead to results that are unsatisfactory. The tree selected
may make a tradeoff between the variance and the bias that is undesirable for
the particular analysis being undertaken. For example, there may be far too
much detail to be usefully interpreted. Moreover, overfitting or measurement
error can produce trees that make very little subject matter sense.

Alternatively, one can specify by trial and error a value of « that leads to
terminal nodes, each with a sufficient number of cases and that can be sensibly
interpreted. Interpretation will depend on both the number of terminal nodes
and the kinds of cases that fall in each, so a substantial number of different
tree models may need to be examined.

In practice, whether one determines tree complexity by using a (or some
other complexity parameter), or an explicit argument to the CART procedure
determining the minimum terminal node sample size, seems to make little
difference. The goal is to construct a useful classification tree. How exactly
that is accomplished is less important as long as the steps undertaken and the
various results evaluated are recorded so that the work can be replicated.

The major risk from examining a larger number of tree models leads to
overfitting. Overfitting is already a potential problem in CART and drawing
on information from many trees can only make matters worse. We turn to
overfitting and useful responses to it in the next chapter. Suffice it to say, it
is always good to have a training dataset and a test dataset.

3.6.1 Impurity Versus R, (T)

At this point, one might wonder why CART does not use Equation 3.13 from
the start when a tree is built, instead of some measure of node impurity. R, (7")
would seem to have built in all of the end-user needs very directly.

The rationale for not using a function of classification errors as a fitting
criterion is discussed in Breiman et al. (1984: Section 4.1). As a technical
matter, there can be at any given node, no single best split. But perhaps a
more important reason is that less satisfactory trees can result. Consider two
splits. For the first, there are two nodes that are about equally heterogeneous.
For the second, one node is far more heterogeneous than the other. Suppose
the two splits reduce impurity about the same. Yet, minimizing some function
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of classification errors could lead to the first split being chosen even though
the second split was preferable. For the second split, the less heterogeneous
node might serve as a terminal node, or might readily lead to one. The more
heterogeneous node would be more subject to further partitioning. For the
first split, both nodes would likely be partitioned substantially further. In
general, therefore, more complicated tree structures will follow.

There can be good subject matter reasons as well. Thinking back to the
prison example, finding a single node that was filled almost completely with
misconduct cases would be a very useful result, even if the other terminal
nodes were quite heterogeneous. In contrast, having all of the terminal nodes
with roughly the same proportions of misconduct and no misconduct cases,
would not be very useful. Using node impurity as a splitting criterion will
largely prevent this kind of problem.

3.7 Missing Data

Missing data are a problem for all statistical analyses, and CART is no excep-
tion. Unfortunately, missing data are all too common and they create, broadly
stated, the same kind of difficulties they create for conventional linear regres-
sion. There is the loss of statistical power with the reduction in sample size
and real likelihood of bias insofar as the observations lost are not effectively
a random sample of the total.

There is one and only one ironclad solution to missing data regardless of
the form of data analysis: don’t have any. The message is that it pays to invest
heavily in the data collection so that missing data do not materialize or are
very rare. There are alternatives to be sure, but all are risky.

A general discussion of missing data is beyond the scope of this book,
and excellent treatments are easily found (Little and Rubin, 2002). But it is
important to consider how missing data can affect CART and what some of
the more common responses are.

If the data are really missing “completely at random,” the only loss is
statistical power. By “missing completely at random” one means that the
mechanism by which the data are lost is equivalent to simple random sam-
pling. And if the number of cases lost is not large, the reduction in power is
not likely to matter much. It cannot be overemphasized, however, that the
burden is on the researcher to make a convincing argument that the data are
missing completely at random. Proceeding simply “as if” this were true is a
ruse. The results are then conditional upon the missing completely at ran-
dom assumption, and may be of little interest unless the credibility of that
assumption can be determined.

A fallback position is that the data are missing “conditionally at random.”
One can subset the data based on the values of observable variables so that
for each such subset, the data are missing completely at random. By “missing
conditionally at random,” one means that the mechanism by which the data
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are lost is equivalent to stratified random sampling. If this assumption is cor-
rect, at least to a reasonable approximation, the analysis can be conducted
separately for each of the subsets and the results pooled. But again, assump-
tions made about the manner in which the data are missing must be argued
convincingly.

If either of these assumptions can be justified, it will sometimes useful to
impute the values of the missing data. It is rarely sensible to impute missing
values for the response variable. One would usually exploit information in
the predictors and in so doing, the relationship between the response and
the predictors can be fundamentally altered; one builds in a new relationship
between Y and X. But sometimes it can be helpful to impute missing data
for predictors.

For example, suppose age is a predictor. Then, one might compute the
mean value of age over all of the data available and use that value of age when
age is missing. If age is related to other predictors, one can use conditional
means for the missing data (i.e. conditioning on the values of those predictors)
as the imputed values for the missing data. For example, if age is related to
education, one can impute the value of age based on whether a person has
a college degree. There would be one imputed value for age for those with
no college degree and another imputed value for age for those with a college
degree.

The key problem with such imputation procedures is when the data are
ultimately analyzed, using the real data and the imputed data, the statistical
procedures cannot tell which is which and necessarily treat all of the obser-
vations alike. At the very least, therefore, it is likely that estimates of the
uncertainty in the results will be wrong.

In particular, the imputed values come with sampling error, and this source
of uncertainty will be overlooked. Another difficulty is that the imputed val-
ues, which are just fitted values, will have less variability than the original
variable itself. Consequently, the data analyzed will be too homogeneous. To-
gether, these two features of imputed values can seriously undermine statisti-
cal inference.

There are a number of very interesting procedures that attempt to get the
statistical inference right when some of the data are imputed. They need not
trouble us here. We will focus on how missing data can be addressed within
CART.

3.7.1 Missing Data with CART

If data are missing for the response variable, the only viable strategy is “list-
wise deletion.” Observations with missing data on the response variable are
dropped totally from the analysis. If the data are missing completely at ran-
dom, the main loss is statistical power. If not, bias of unknown size and di-
rection can be introduced.



3.7 Missing Data 133

When the data are missing for one or more predictors, there are more
options. Listwise deletion remains a possible choice, especially if there are not
a lot of missing data (e.g., less than 5% of the total number of observations)
Listwise deletion is not fancy, but it is also easy to implement and understand.

A second option is to impute the data outside of CART itself. To take a
simple illustration, one might employ conventional regression in which for the
complete data a predictor with the missing data is regressed on other predic-
tors with which it is likely to be related. The resulting regression equation can
then be used to impute what the missing values might be.

For example, suppose that for employed individuals there are some miss-
ing data for income. But income is strongly related to education, age, and
occupation. For the observations with no missing data, income is regressed on
education, age, and occupation. Then, for the observations that have missing
income data, the values for the three predictors are inserted into the estimated
regression equation. Predicted values are computed, which are used to fill in
the holes in the income data.

However, even if reasonably unbiased estimates can be constructed, this
strategy ignores the reduced variability of the predicted values and treats the
imputed values as fixed. One response is to impute several values for each
observation drawing at random, in effect, from the conditional distributions
implied by the regression equation. It is then possible to get a better handle on
the uncertainty associated with the imputed values. Little and Rubin (2002)
is the canonical reference. An application to CART can be found in a PhD
dissertation by He (2006).

A third option is to address the missing data problems for predictors within
CART itself. There are a number of ways this might be done. We consider
here one of the better approaches, and the one available with rpart() in R.

The first place where missing data will matter is when a split is chosen.
Recall that

Al(s,A) =I(A) = p(AL)I(AL) — p(AR)I(AR), (3.14)

where I(A) is the value of the parent impurity, p(Ar) is the probability of
a case falling in the right daughter node, p(Ar) is the probability of a case
falling in the left daughter node, I(Ag) is the impurity of the right daughter
node, and I(Ay) is the impurity of the left daughter node. CART tries to find
the predictor and the split for which AI(s, A) is as large as possible.
Consider the leading term on the right-hand side. One can calculate its
value without any predictors and so, there are no missing values to worry
about. However, to construct the two daughter nodes, predictors are required.
Each predictor is evaluated as usual, but using only the predictor values that
are not missing. That is, I(Agr) and I(A;) are computed for each optimal
split for each predictor using only the data available. The associated proba-
bilities p(Ag) and p(Ar) are re-estimated for each predictor based on the data
actually present. This approach is undertaken with the equivalent of pairwise
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deletion; calculations are undertaken with the complete data available for that
operation alone.

But determining the split is only half the story. Now, observations have
to be assigned to one of the two daughter nodes. How can this be done if the
predictor values needed are missing? CART employs a sort of “CART-lite” to
impute those missing values by exploiting “surrogate variables.”

Suppose there are ten other predictors xy — z19 that are to be included
in the CART analysis, and suppose there are missing observations for z
only, which happens to be the predictor chosen to define the split. The split
necessarily defines two categories for 7.

The predictor x; now becomes a binary response variable with the two
classes determined by the split. CART is applied with x; as the response
and x5 — x19 as potential splitting variables. Only one partitioning is allowed;
a full tree is not constructed. The nine predictors are then ranked by the
proportion of cases in xy that are misclassified. Predictors that do not do
substantially better than the marginal distribution of x; are dropped from
further consideration.

The variable with the lowest classification error for x; is used in place of
x1 to assign cases to one of the two daughter nodes when the observations
on z1 are missing. That is, the predicted classes for x; are used when the
actual classes for x; are missing. If there are missing data for the highest
ranked predictor of =1, the second highest predictor is used instead. If there
are missing data for the second highest ranked predictor of x;, the third
highest ranked predictor is used instead, and so on. If each of the variables
T9 — x19 have missing data, the marginal distribution of the x; split is used.
For example, if the split is defined so that z; < ¢ sends observations to the
left and x1 > ¢ sends cases to the right, cases with data missing on x;, which
have no surrogate to use instead, are placed along with the majority of cases.

This is a reasonable, but ad hoc, response to missing data. One can think
of alternatives that might perform better. But the greatest risk is that if there
are lots of missing data and the surrogate variables are used, the correspon-
dence between the results and the data, had they been complete, can become
very tenuous. In practice, the data will rarely be missing “completely at ran-
dom” or even “conditionally at random.” Then, if too many observations are
manufactured, rather than collected, a new kind of generalization error will
be introduced. The irony is that imputation can fail just when it is needed
the most.

Perhaps the best advice is to avoid the use of surrogate variables. The
temptations for misuse are great, and there is no clear missing data threshold
beyond which imputation is likely to produce misleading results. Imputation
of the missing values for the predictors will usually be a software option, not
a requirement. (But check what the default is.)

Alternatively, one should at least look carefully at the results with and
without using surrogates. Results that are substantially different need to be
reported to whomever is going to use the findings. There may then be a way to
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choose on subject matter grounds which results are more sensible. Sometimes
neither set will be sensible, which takes us back to where we began. Great
efforts should be made to avoid missing data.

There is one situation, however, in which using surrogate variables is prob-
ably necessary. As becomes more clear in the pages ahead, a number of statis-
tical difficulties can follow when the response variable is highly skewed. The
danger with missing data is that the skewing can be made worse. One may
then have little choice but to impute the missing data.

3.8 Statistical Inference with CART

An initial question for statistical inference is what features of a CART model
might be of interest. To date, attention has centered on an overall assessment
of the CART model, and by implication, some measure of fit quality. The
enterprise is model selection.

But just as with smoothers, a key issue that must be addressed before
statistical inference with CART is considered is whether estimation is a rea-
sonable activity to begin with. As before, there are three scenarios.

1. There is assumed to be a f(X), and the data are a random sample from
a well-defined population or a random realization from a well-defined
stochastic process. Estimation is worth a good hard look and so are ways
to represent uncertainty.

2. There is no f(X) assumed, but the intent is to construct a best guess of
the values of a set of conditional proportions in a population or as features
of a stochastic process. Estimation is again in play, at least in principle.
Ways to represent uncertainty are as well.

3. The sole goal is description of the data on hand. Estimation is not relevant
even in principle.

We begin with the first case: there is a f(X) and the data were generated
in a manner required for statistical inference. For this first case, statistical
inference can be problematic in CART. Perhaps the most obvious reason is
the need to assume negligible bias in the results. Mentioned earlier in this
chapter was the likely bias in the estimated proportions about which more is
said later. More important in practice is the absence of some key predictors
and/or substantial measurement error in those that are available.

There are more subtle difficulties as well. For binary response variables,
it might seem natural to use the deviance (or a good approximation) as a
measure of fit quality and then compare two CART models using a likelihood
ratio test. Recall, two models are required, the smaller one nested within the
larger one. The smaller model is the model under the null hypothesis. For
both, the deviance is computed. Then, the difference in the two deviances
has a x? distribution with degrees of freedom equal to the degrees of freedom
for the smaller model subtracted from the degrees of freedom for the larger
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model. When quantitative response variables for CART are discussed below,
an F-test is the natural procedure. Although one can compute the deviance
for both models, it would be rare to find one CART model nested within
another. Therefore the very logic of the comparison is undermined, and it
would also be possible to have two models with different deviances that used
the same degrees of freedom.

But what are the degrees of freedom for a CART model? For a parametric
regression with p regression coefficients, p + 1 is the number of degrees of
freedom used up. The degrees of freedom remaining is N — (p+1). For CART,
sometimes the number of terminal nodes plus one is assumed to play the same
role as p + 1 for a parametric regression. This is because the CART results
can be re-expressed as a regression model with an indicator variable for each
terminal node. However, using the number of terminal nodes to arrive at the
degrees of freedom lost fails to take into account all of the searching done
as the tree is grown. Many more degrees of freedom are actually used up.
Moreover, it is not clear how to make appropriate adjustments, although some
simulation results suggest the true degrees of freedom used up is between 5
and 10 degrees of freedom per split of the data (Hastie et al., 2001: 297). An
additional complication is that often many trees are examined as the output
is “tuned” to the particular needs of the analyst. Whatever the number of
degrees of freedom lost when the tree is grown, they will not include the
degrees of freedom lost growing prior trees.

Confidence intervals suffer from similar difficulties. The negligible-bias as-
sumption remains an important hurdle, and one needs a value for the degrees
of freedom in order to estimate of any standard errors. Thus, even obtain-
ing an appropriate estimate of the point-by-point standard error of the fitted
values is tricky.

The degrees of freedom problems spill over into the fit statistics that can
be used instead of tests for model evaluation and selection. Among the most
common goodness-of-fit measures used with CART are the AIC and the BIC.
For a binary response variable,

AIC = D + 2p; (3.15)

and
BIC = D + log(n) p, (3.16)

where D is the deviance, n is the sample size, and p is the degrees of freedom
used up in the calculations. Unfortunately, we are once again stuck with the
problem of finding a credible value for p. The prospects are really no better
under the second scenario when no f(X) is assumed but there is interest in
one or more several conditional proportions of corresponding terminal nodes.
The nodes are just subsets of the data defined by the fixed values of predictors.
But, there remains the problem of how one defines the degrees of freedom and
the likely bias in the estimated proportion noted earlier.
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Recently, Hothorn and his colleagues (2006) have suggested another ap-
proach to tree construction that builds on and then provides some hypothesis
tests. A number of statisticians have observed that other things being equal,
predictors with more possible breaks have a greater chance of being selected
as a partitioning variable. As a result, there is bias built into the tree structure
and implicitly, the results summarized in the terminal nodes. Hothorn and his
colleagues suggest a tree-building procedure that has much the same look and
feel of conventional stepwise regression.

1. With a null hypothesis that each predictor is unrelated to the response,
conduct a global hypothesis test.
. If the test is not rejected, stop.
3. If the test is rejected, select as the splitting variable the predictor having
the strongest relationship with the response.
4. Choose the best split using the selected predictor.
5. Repeat Steps 1-4 until no further splits are indicated.

[\

All of the tests are based on permutation distributions in which the re-
sponse is shuffled. Each predictor is subjected to a permutation test under the
null hypothesis of no association. An overall p-value is also computed adjusting
for multiple tests (e.g., a Bonferroni correction). If the global null hypothesis
is rejected, the predictor with the smallest p-value is chosen. Then, the split
can be determined as usual. The same process is applied for each subsequent
partitioning of the data.

There is excellent software in R implementing these procedures. Because
recursive partitioning can be an intermediate step in other statistical learning
procedures, there are also interesting extensions built into the software. The
procedure can be found in the library party.

Hothorn and his colleagues argue that selecting predictors in this fashion
leads to an unbiased recursive partitioning of the data. However, some caution
is warranted. First, this approach assumes, as before, that there is a true f(X)
one is trying to estimate with f(X), that all of the predictors in X are in the
dataset, and that all are well measured.

Second, the tests also take the predictors as fixed. Sampling variation
comes only from the response variable. The motivating thought experiment
envisions all possible assignments of the response variable values to existing
cases within a given marginal distribution of the response variable. There is,
therefore, an issue of how well the permutation thought experiment corre-
sponds to the manner in which the data were actually generated and whether
one’s inferences are really to be limited only to the x-values that were realized.

Third, the results depend on the sample size; other things being equal,
larger samples will lead to larger trees. Larger trees will usually perform quite
differently from smaller trees, as we have seen. And one does not normally
seek to determine the correct model conditional on the sample size. That is,
it is at least unconventional to proceed as if there were many correct models,
one for each sample size.
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Fourth, there will still be bias in the estimates coming from terminal nodes
insofar as there is remaining heterogeneity in predictor values associated with
the response variable. This too was addressed earlier.

But more generally, for a very large number of applications, these sorts of
concerns are moot. The third motivating scenario is likely to be the operational
one in practice. There is no f(X), or no population or stochastic process, or
no appropriate data-generation mechanism, or the data may be of insufficient
quality (e.g., key predictors are missing). Then, the goal is far more likely to be
description than estimation. There are only, then, descriptions that are more
or less useful. Furthermore, there is no requirement that a single description be
chosen. Different descriptions may highlight different, but instructive, features
of the data. Then, it can be appropriate to report more than one set of results.

3.9 Classification Versus Forecasting

In most of the discussion of CART so far, and all of the examples, the emphasis
has been on fitting the data on hand. With categorical response variables, this
has been a classification exercise. A key objective of the analysis is to minimize
some aggregate measure of fit that depends substantially on classification
errors and their costs. References to forecasting have typically been indirect
and/or brief.

As a technical matter, however, the step to true forecasting is relatively
easy. One applies the results from the data analyzed to new data not used
in the fitting process. A key difference is that for the data used to build the
tree, both the predictor values and response values are known. For the data
to be used in the forecasting exercise, only the predictor values are known.
The key assumption is that the relationships between the predictors and the
response for the data analyzed would be the same for the new data, within
chance error, were the values of the response variable known.

Sometimes forecasts into the future are desired. Sometimes forecasts into
the past as desired (often called “backcasting”). And for some forecasts, time
plays no role. A CART analysis undertaken on inmates in one prison, for ex-
ample, may be used to forecast the misconduct of inmates in another prison.
And to confuse things a bit more, we saw in the last section that when miss-
ing data are imputed, the enterprise looks like forecasting. In each of these
applications, the key idea is that some or all of the values of a variable are
unknown, and there is a need for some “best-guess” values. However, although
there are some important parallels with forecasting, imputation does not in-
volve a second dataset.

In CART, the classes assigned to terminal nodes are used as the best-
guess values. In CART-speak, one “drops” new cases “down” the classification
tree. Each case will “land” in one (and only one) terminal node. The earlier
classification of each terminal node determines the prediction for all of the
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new cases when they arrive. Thus, if a given terminal node is classified as
class “1,” all of the observations that come to rest in that terminal node are
classified as a “1,” and the class represented by that “1” is the forecasted class
(e.g., misconduct).

But how is the quality of those forecasts determined if the response is not
yet known? There are four steps.

1. Build a classification tree as usual using a training dataset taking the costs
of classification errors into account.

2. Forecast using a test dataset in which the outcomes are known.

3. Determine forecasting skill from an analysis of the forecasting errors, per-
haps using the percentage of cases incorrectly forecast conditioning on the
truth. Usually, this is presented in the form of a confusion table.

4. Assume that the forecasting skill demonstrated with the test data applies
to new data for which forecasts are desired. This assumption can be sup-
ported if the new data are a random sample from the same population as
the training and test data.

Forecasting is an important application for CART and all of the proce-
dures discussed in the pages ahead. Moreover, the difference between classifi-
cation and forecasting, often confused when the term “prediction” is used for
both, figures significantly in the next chapter. We show that forecasting er-
rors, rather than classification errors, are better tools for refining algorithmic
models.

3.10 Varying the Prior, Costs, and the Complexity
Penalty

Figure 3.4 shows again the tree diagram for the CART analysis of inmate
misconduct. The tree diagram has been simplified a bit anticipating the need
to show more complicated structures shortly. Recall that the empirical dis-
tribution of the response variable was used as the prior distribution, and the
costs were assumed to be the same for false negatives and false positives. For
the earlier figure, the number of terminal nodes was constrained by explicitly
setting the minimum terminal node sample size. Now, for reasons that are
apparent shortly, we get to the very same place by setting the value of the
penalty for complexity instead.

Recall also that a confusion table was presented as part of the earlier
analysis. It is now reproduced as Table 3.4. One questionable feature of the
table was that there were about eight false negatives for each false positive,
implying that false positives were far more costly than false negatives. At that
time, there was no justification given for these or any other ratio of relative
costs.

Conversations with prison officials indicated that from their point of view,
false negatives were much worse than false positives. Failing to anticipate
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Inmate Classification Example Using Empirical Priors

Term< 3.5
3807/999

2810/513 997/486

900/352 97/134

Fig. 3.4. Inmate misconduct example with empirical priors.

Predict No Misconduct|Predict Misconduct Model Error
No Misconduct 3710 97 .03
Misconduct 865 134 .88
Use Error .19 42 Overall Error = .20

Table 3.4. CART confusion table for forecasting inmate misconduct.
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inmate misconduct, which could involve fatal violence, was of far greater con-
cern than incorrectly labeling an inmate as high risk. When pushed, a prison
official said that the cost of a false negative was at least five times greater
than the cost of a false positive. Hence, the earlier analysis got things upside
down.

Inmate Classification Example Using 1 to 5 Cost Ratio

Term< 3.5
3807/999

AgeArr=cde

2810/513

664/420

303/52 30/14

Term£ 1.5
1928/237
693/46 264/132

526/51

201/31 417113

372/57
201/35 136/48

Fig. 3.5. Inmate misconduct example with one to five cost ratio.

Figure 3.5 shows the tree diagram that results when the same value for
the complexity penalty is used, but the empirical prior is replaced by a new
prior representing the one to five cost ratio for false positives to false neg-
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atives elicited from prison officials. The new prior was calculated using the
procedures described earlier.

Clearly, the results have changed substantially. Increasing dramatically the
costs of false negatives relative to false positives (and it is only the relative
costs that matter) leads to a very different result. There are many more termi-
nal nodes reflecting the impact of several more variables. These now include:

1. Gang activity (Gang) with a = gang activity and b = no gang activity.

2. Age at first arrest (AgeArr) with a = 0-17, b = 18-21, ¢ = 22-29, d =
30-35, and e = older than 35.

3. Age at arrival at the reception center (AgeRec) with a = 16-20, b = 21-26,
¢ = 27-35, and d = 36 older than 35.

4. Mental illness (Psych) with a = ill and b = not ill.

5. Previously served time under the state’s Department of Corrections
(CDC) with a = served time and b = did not serve time.

6. Sentence length (Term) in years.

A larger number of predictors were included in the analysis. Figure 3.5
shows the predictors that CART selected.

We do not interpret Figure 3.5. It is quite complicated and would take us
far afield. We consider a more simple CART analysis shortly. For now, the
main point is that from Figure 3.5 one can see that the labeling of a terminal
node with a “1” or a “0” is not the result of a majority vote of the cases
in each node. The vote now takes costs into account captured by the altered
prior distribution of the response. This leads directly to Table 3.5.

First, examine the off-diagonal cells. The balance of false negatives to false
positives has been reversed. The ratio of false negatives to false positives now
reflects approximately the one to five cost ratio of false negatives to false
positives. The ratio is not exact because the cost ratio is but one input into
the CART algorithm. CART is trying to respond to several features of the
data and the analysis requested.

Second, the more desirable balance of false negatives to false positives
seems to come with a price. Overall, there is an increase in the number of
classification errors. The sum of the off-diagonal cells divided by the total
number of cases is about .20 for Table 3.4 and about .37 for Table 3.5. The
number of cases incorrectly classified has increased by 17%. So, by that yard-
stick we are doing substantially worse. This is a general result. Introducing
any cost ratios other than one to one will increase the overall proportion of
cases misclassified.

But the yardstick of correct classifications can be misleading. Once one
abandons the assumption that the costs of false negatives and false positives
are the same, the proportion of cases misclassified is not by itself responsive to
the way the analysis has been undertaken. Classification errors are now being
weighted to take differences in costs into account, but these weights are ignored
when the proportion of cases misclassified is computed. All classification errors
are being treated the same, even though they are not.
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Third, a far more instructive way to consider how well CART has fit the
data is to look at the classification errors conditional upon the actual outcome.
This means focusing on the rows in Tables 3.4 and 3.5. Within a row, there
is only one kind of classification error (false positives or false negatives), so
the weighting problem disappears. One can then see that the proportion of
misconduct cases misclassified has dropped from .88 to .27. At the same time,
the proportion of no misconduct cases has increased from .03 to .40. A tradeoff
between false negatives and false positives is generally to be expected and is
plainly seen here.

A analogous tradeoff can be seen in the column proportions. When a case
is assigned the no misconduct label, that label is now wrong for .11 of the
observations. With equal costs, that proportion is .19. When a case is assigned
the misconduct label, the proportion of cases labeled in error increases from
.42 to .67.

To get some practical sense of what these changes mean, suppose 100
inmates are classified either as misconduct cases or no misconduct cases. For
inmates given a no misconduct label, the number of inmates labeled in error
drops from 19 to 11 when the equal costs assumption is replaced by the one
to five costs assumption. Clearly, this would be a desirable result for prison
administrators.

For inmates given a misconduct label, the number of inmates labeled in
error increases from 42 to 67 when the equal costs assumption is replaced by
the one to five costs assumption. For both of the assumptions about costs,
far more errors are made when inmates are assigned to the misconduct class.
And the one to five cost ratio makes things worse.

But, the increase in false positives is precisely the result mandated by the
one to five cost ratio provided by prison administrators. The first analysis had
too many false negatives relative to false positives. The second analysis was
motivated by a need to correct this perceived imbalance. When the one to
five cost ratio was determined, prison administrators were making a conscious
decision to live with a greater number of false positives.

Predict No Misconduct|Predict Misconduct Model Error
No Misconduct 2296 1511 .40
Misconduct 272 727 .27
Use Error 11 .67 Overall Error = .37

Table 3.5. CART confusion table for forecasting inmate misconduct using a one to
five cost ratio.

The key point is this: although it is always desirable to have a small number
of false negatives and false positives, a decision-maker may be better off with
increases in either if relative costs of false negatives to false positives are more
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accurately represented. More errors can actually lead to better decisions when
costs are taken into account.

Figure 3.6 represents a third analysis of the same data. The one to five cost
ratio is maintained, but a larger penalty is given for complexity. The intent is
to simplify the tree so that only the most important and meaningful terminal
nodes are included. At the same time, there is certainly nothing definitive
about Figure 3.6. Another data analyst might quite properly construct a tree
that was either more or less complicated.

Inmate Classification Example Using 1 to 5 Cost Ratio and Larger Penalty

997/486

2810/513

Psygh<a
333/66

664/420

303/52

1928/237 882/276

264/132

201/31 417113

Fig. 3.6. Inmate misconduct example with one to five cost ratio and larger penalty.
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Despite the use of weighted votes, the branches in the tree are interpreted
exactly as before. We learn for instance, that individuals with sentences equal
to 3.5 years or longer and under the age at 18 when first arrested are classified
as prone to misconduct. And these inmates pose the highest risk. We also
learn that individuals with sentences less than 3.5 years who are 27 years
or older when they arrive at the prison reception center are not classified
as prone to misconduct and pose the lowest risk. If one is interested in the
proportion of inmates in each terminal node who were actually reported to
have engaged in misconduct, that is available in the CART output, at least
in the R implementation rpart().

The other combinations fall in between. Thus, (working down the tree)
individuals who have been sentenced to less than 3.5 years, who are younger
than 27 years, who have a history of gang activity, and who are actually
serving very short sentences of less than 18 months, are not classified as prone
to misconduct. Having a very short sentence seems to trump youth and gang
activity, which are normally useful predictors of misconduct in prison. Note
that if all of these factors are the same except that the sentence is between
18 months and 3.5 years, the inmate is classified as prone to misconduct.

The confusion table is not presented. Overall, there is an increase in the
errors, as one would expect from a less complex classification tree. However,
the smaller tree may be more stable, a topic to which we return later. Because
the one to five cost ratio is maintained, the various tradeoffs associated with
false negatives and false positives are essentially unchanged.

3.11 An Example with Three Response Categories

There is no formal problem in extending CART to three or more response
variable categories. We return to the prison data once again and use the same
predictors as before. But this time, there are three categories to the response:
no misconduct, minor misconduct, and serious misconduct. These are coded
as “0,” “1,” and “2,” respectively. About 78% of the cases have no reported
misconduct, about 20% have minor reported misconduct, and about 2% have
serious reported misconduct. As required, these are mutually exclusive and
exhaustive categories. The 2% represents very rare cases, which creates some
special difficulties we address in more depth later. For now we ignore the
problem.

The three response classes can be viewed as qualitatively different. In
particular, most minor infractions are violations of prison rules and would,
by and large, not be considered crimes if committed outside of prison. Most
of the serious misconduct represents acts that would be felonies anywhere:
drug trafficking, sexual assault, robbery, homicide, and the like. On the other
hand, if one thinks of prison misconduct as arrayed on some scale of serious-
ness, the three classes are perhaps ordered. However, just as in conventional
multinomial regression, CART take no account of such ordering. Whatever
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information is contained in the ranks is ignored. In short, the three classes of
misconduct are treated by CART as unordered categories whatever the truth
may be.

The first job in the data analysis is to specify a loss matrix. Recall that
when there are more than two response categories, costs cannot usually be
captured in a prior distribution. So, the empirical distribution is taken as the
prior distribution and costs are introduced directly with the loss matrix.

Table 3.6 shows a loss matrix containing costs roughly consistent with
information provided by corrections officials. They were especially concerned
about inmates who were a serious safety threat but not classified as such. In
particular, if an inmate actually had an incident of reported serious miscon-
duct (e.g., assault on a guard) and was classified as having no misconduct at
all, the cost assigned is 20. If an inmate actually had an incident of reported
minor misconduct (e.g., failure to report to a job assignment) and was classi-
fied as having no misconduct at all, the assigned cost is 10. The former error
has twice the cost of the latter error, which in turn is substantially higher
than any of the other costs. The costs of incorrectly classifying an inmate as
misconduct free are relatively small.

None Predicted|Minor Predicted|Serious Predicted
No Misconduct 0 2 5
Minor Misconduct 10 0 3
Serious Misconduct 20 10 0

Table 3.6. Costs of classification errors for three misconduct categories.

Figure 3.7 shows the resulting classification tree. It can be read just as
when there were two response categories, but now the numbers associated with
each node are the counts (left to right) for no misconduct, minor misconduct,
and serious misconduct. When the unequal costs are used, the classification
assigned to each terminal node is not by a plurality of votes. Some votes, in
effect, have more weight than others.

In this instance, the very high relative costs for misclassifying serious inci-
dents of inmate misconduct dominate the results. Of the six terminal nodes,
four are classified as a “2,” the coded value for serious misconduct. The two
other terminal nodes are all classified as a “0,” the coded value for no mis-
conduct. And none of the terminal nodes are classified as a “1,” the value for
minor misconduct. The loss matrix led to only two kinds of classification: no
misconduct and serious misconduct.

It is important to stress that these results are neither “right” nor “wrong.”
Their usefulness would depend in part on whether in retrospect, prison offi-
cials liked the values in the loss matrix that in this instance produced just
two classifications: good inmates and bad inmates. Had the costs of failing
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Inmate Classification Example With Three Outcome Categories

Term|< 3.5
AgeRgc=cd AgeAjr=cde
333/62/4 664/350/70
Gang=a
1928/205/32 Psyoh=a
Termk 2.5 264/111/21
241113

448/82/2 146/40/6

Fig. 3.7. Inmate misconduct with three response categories.

to properly classify the serious misconduct inmates been reduced relative to
the other costs of misclassification, a very different set of results would have
materialized, including the appearance of all three classification categories for
the terminal nodes.

The roles that the predictors play are also shown, but sometimes imply
complicated and even counter intuitive interpretations. One reason may be
that distinctions are now being made among three kinds of inmate behavior,
not two. Moreover, what some may think is an ordered set of classes is be-
ing treated as categorical only. Different patterns of association can result.
Another possibility is that some of the breaks represent unstable distinctions
that should not be taken seriously, a point discussed in more depth shortly.
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If corrections officials were directly involved in discussions of how such
results might be used, it is likely that several different patterns of costs and
several different values for the complexity penalty would be applied. Trees re-
quiring complicated and counter-intuitive interpretations might then be elim-
inated. For example, even if the costs in Table 3.6 were maintained, a tree
pruned back to the first two breaks might well be preferable.

Predict None|Predict Minor|Predict Serious Model Error
No Misconduct 2709 0 1098 .29
Minor Misconduct 349 0 512 1.0
Serious Misconduct 38 0 100 .28
Use Error 12 Undefined .94 Overall Error = .42

Table 3.7. CART confusion table for forecasting three categories of inmate mis-
conduct.

Another factor that would have to be taken into account is the confusion
table. Table 3.7 shows the confusion table from Figure 3.7. The error percent-
ages are computed combining the two sources of error in each row or column.
Then row and column proportions are computed as before. Thus, Table 3.7 is
interpreted in virtually the same manner as the binary outcome case.

Corrections officials would have to examine each row and column in Ta-
ble 3.7 and decide if the numbers for the different kinds of false negatives and
false positives were reasonable for their purposes. To take the most extreme
example, no inmates are assigned to the minor misconduct class. It follows
that all inmates who had engaged in minor misconduct are misclassified as
being misconduct free or having engaged in serious misconduct. This would
likely be unacceptable because in fact, minor misconduct is relatively com-
mon, can be quite disruptive, and can be a precursor to more serious incidents.
In response, prison officials might favor altering the relative costs of classifi-
cation errors for minor misconduct. For example, the cost of classifying cases
of minor misconduct as if there were no misconduct might be increased.

There are perhaps two main messages from the analysis just summarized.
First, there are in principle no logical or computational obstacles moving from
two response categories to three or more response categories. But there can
be problems from sparse data that will undermine a wide variety of statistical
procedures, including CART. For example, some of the row proportions may
be computed from very few observations. Important instabilities can result.

Second, moving from two response variable categories to three response
variable categories complicates matters significantly. The CART algorithm is
being implemented exactly as before. But, the loss matrix has more elements,
the confusion table has more entries, and the tree diagram can be difficult to
interpret. Compared to the binary case, these changes can be dramatic. For
example, going from two to three response categories doubles the number of
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elements in the loss matrix that need to be specified and doubles the kinds of
classification error that need to be evaluated. Trial-and-error tuning that is
likely to follow will usually require juggling many different parts of the output,
which will be a challenge to data analysts and practitioners alike.

3.12 CART with Highly Skewed Response Distributions

Response variables that are highly skewed (often called “unbalanced”) can
create serious problems for any form of regression analysis. One problem can
be sparse data, which can lead to unstable results or even an inability of the
software to provide any results at all. Another problem is that the rare obser-
vations may have a disproportionate impact on the findings. Generalizations
to the mass of the data can then be problematic. Yet another problem is that
with highly skewed response variables, it can be very difficult to find predictors
that are able to improve the overall fit. Thus, if the response is binary, and
the marginal distribution is 95% 0s and 5% 1s, very accurate classifications
can be determined from this information alone. If the 0 category is always
assigned, the classifications will be correct 95% of the time without using any
predictors whatsoever. It is difficult to do better than this.

There are hints in the material presented earlier of how these sorts of
problems may sometimes be addressed. For example, if a prior distribution
places heavy weight on the misclassification of rare cases, it is a bit like saying
there are many more rare cases to be considered than the data indicate. And
in fact, CART will behave as if this were so. We explore this matter in depth in
the chapters to come and find that there are several other promising options.
In the meantime, the message is that when the response variable is highly
skewed, one must examine all CART output very carefully.

3.13 Some Cautions in Interpreting CART Results

Just as for any data analysis procedure, the output from CART always de-
mands scrutiny before substantive conclusions are reached. There are com-
monly three kinds of potential problems: inappropriate response functions,
unstable tree structures, and unstable classifications. All can produce results,
which if taken at face value, risk serious interpretive errors.

3.13.1 Model Bias

If the goal of a CART analysis is to determine the f(z), whether the function
is part of a causal model or a feature of a conditional distribution, there is no
guarantee that in a given sample CART will even come close. As noted more
broadly in Chapter 1, there are no formal mathematical results indicating
that CART will find the correct function from a given sample, even if all of
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the requisite predictors are provided and even if these predictors are very well
measured.

Indeed, there is good evidence, as noted earlier, that CART will tend to
select predictors in a manner that introduces bias (Hothorn et al., 2006).
Other things being equal, predictors with a larger number of distinct z-values
are favored over predictors with a smaller number of distinct z-values when
all possible splits are evaluated. In addition, the use of surrogate variables in
response to missing data will further bias the selection of predictors.

Of at least equal concern is the matter of functional form. If f(X) is
smooth, each CART basis function, necessarily relying on indicator variables,
will be incorrect. The hope is that the indicator variables will provide a useful
f(X) approximation. Typically, it is difficult to determine if the approxima-
tion is good, but as a formal matter, some bias is likely.

If the goal is to obtain estimates of the response conditional probabilities
and classifications, there are related difficulties. If the functional form esti-
mated is substantially in error, it likely the terminal node proportions and
the classifications that follow will be substantially biased. And as discussed
earlier, unless the terminal nodes are homogeneous, probability and classifi-
cation estimates for individual cases will likely be biased.

In summary, even under the best of circumstances, unless the f(X) is
a step function, there will be biases in any CART estimates. The practical
question is how serious the biases are likely to be. This is one important
reason why CART has been largely superseded by procedures considered in
later chapters.

3.13.2 Model Variance

CART partitions the data into more and more homogeneous subsets and then
assigns a class label to each terminal node. The class that CART assigns to
each case depends on the terminal node where that case comes to rest and
the class label assigned to that node. There are several ways in which these
steps can lead to unstable results.

The most obvious cause of instability is a small number of observations
in any node. Then, a very few observations can send CART down one kind
of branching structure rather than another. There can be a tipping effect in
which a split relatively high up in the tree structure that depends on a few
data points has cascading impacts on later splits. If those few observations
are removed from the data, or if they are replaced with different observations,
a different tree structure with different terminal nodes can follow.

Why might the new observations be different? They are likely to be dif-
ferent if there is a second random sample from the same population; random
sampling error can make them different. They are also likely to be different
if the predictor with which the split was constructed was measured with ran-
dom error. This implies that a new realization of the data created by a new
round of measurements can easily produce very different results. For example,
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if SAT score is a predictor, the scores from the test taken in the junior year of
high school will likely differ, at least a bit, from the scores taken in the senior
year of high school at least because of noise alone.

Fortunately, small samples in particular nodes are easily spotted, and there
are several good remedies within the usual CART software. One can, for
example, increase the minimum number of observations in all nodes or increase
the value of the complexity penalty. Larger node sizes will result, and the
stability of the output will tend to increase.

A less apparent source of instability derives from terminal nodes that re-
main relatively heterogeneous. If the split in a given terminal node is near the
50-50 threshold, the movement of just a few cases across terminal nodes can
change the classes assigned to each terminal node and dramatically alter the
classes assigned to observations within them. Note that this is not a problem
caused by a small number of observations in terminal nodes, although if there
are few observations in terminal nodes, the instability caused by near-even
proportions is made worse.

Instability resulting from heterogeneous terminal nodes is relatively easy
to spot when the empirical distribution is used for the prior distribution and
when the costs of false negatives and false positives are taken to be the same.
For each terminal node, the numbers of observations in each response class
can be easily inspected and compared. But when the classifications assigned
to terminal nodes depend on more than the within-node counts, it is necessary
to dig deeply in CART output to determine what is going on.

Even if one is able to conclude that heterogeneous terminal nodes are
problematic, there is often little to be done. The cause lies in weak predictors
that are unable to partition the data so that relatively homogeneous subsets
result. And under such conditions, it may not be wise to take the tree structure
or fitted values very seriously.

A related problem affects how a splitting variable is chosen. That vari-
able may be the predictor from the preceding split, or another predictor. If
the same variable, one has a step function representing nonlinear features of
the relationship between that predictor and the response variable. If a new
variable, one has an interaction effect representing a different kind of step
nonlinearity. One predictor’s relationship with the response variable depends
on the value of the other predictor. The subject matter interpretations can
also be very different. Yet, the choice between the two may be precarious,
especially when predictors are highly correlated with each other.

Figure 3.8 shows possible partitions of the data when predictors = and z
are highly correlated. In this illustration, CART constructs an initial partition
with the solid vertical line. To the left of that line, B-values dominate. To
the right of the line, A-values dominate. Both partitions are, therefore, more
homogeneous than the dataset as a whole. The partitioning is a success.

But what should the next partition be? Consider a partition on the right
side of Figure 3.8. There is clearly a cluster of all A-values in the upper right-
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Recursive Partitioning of a Binary Outcome with High Colinearity
(where G = A or B and predictors are Z and X)

Fig. 3.8. High instability in CART.

hand corner. But because the two predictors are highly correlated, there are
two ways to isolate them, which lead to very similar reductions in impurity.

The horizontal dashed line constructs a partition based on x. That parti-
tion isolates three of the four target values and implies an interaction effect.
Given the previous split on z, the next split should be on x. An interaction
effect results.

The other partitioning is accomplished using the vertical dotted line. This
one uses z, and may be slightly preferred because now all four of the target
values are isolated. As a result, a second step is introduced in the step function
through which z is related to the response.

Both splits address nonlinearities in how the response is related to predic-
tors. But one solution is a more complicated step function, and the other is
an interaction effect. The choice between the two in this illustration depends
on a single observation. With CART, there is always the possibility of insta-
bilities of this sort. But just as in linear regression, potential instabilities are
more likely to materialize if the predictors are highly correlated. Two or more
predictors can more readily compete for the same partition of the data.

Figure 3.9 illustrates how a lower correlation between the two predictors
can help. With a less clustered scatterplot, it is more difficult to find a small
number of observations that both x and z can isolate. Notice that either of the
competing partitions in Figure 3.8 now include many observations that fall
into one partition but not the other. The two predictors are not competing
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(where G = A or B and predictors are Z and X)

Fig. 3.9. Low instability in CART.

any longer for nearly the same set of observations. The choice between the
two is now less likely to be made on a stray observation or two.

An unstable tree structure does not automatically mean that the assigned
classes are unstable as well. In the case of two highly correlated predictors,
for example, one can obtain rather different tree structures depending on
which variable is chosen. And the different tree structure can certainly lead
to different interpretations of how the response is related to the predictor.
However, the classes assigned to observations, once they come to rest in a
terminal node, may be much the same. A very different tree structure does
not necessarily imply very different classifications. There may be two or more
ways to get essentially the same classification results.

More generally, if the goal is accurate classification with little concern
about describing how inputs are related to outputs, an unstable tree structure
may not matter. What matters is whether under an alternative tree structure,
observations tend to land in terminal nodes that classify those observations in
the same way. It is not important whether there are more terminal nodes or
fewer. The path taken to those nodes is not important either. And from that
perspective, which highly correlated predictors are actually used to define the
splits is formally irrelevant. The goal is stable classification.

In summary, just as in parametric regression, tree instability can result
from small samples, weak predictors, or highly correlated predictors. Tree
structure and/or the classes assigned to observations can be adversely affected.
However, because of CART’s stagewise structure, the particular tree that



154 3 CART

results can be far more fragile than the output from a parametric regression.
A single tweak near the top of the tree can fundamentally alter all that follows.

Two recommendations follow. First, there is (once again) no substitute
for careful examination of the classification tree to make sure the tree makes
sense. Splits that violate common sense, well-accepted theory, or past research
may need to be discounted and may even call the entire tree into question.

Second, it can be very useful to get some empirical sense of how stable
the results really are. As shown in the next chapter, a good strategy is to
construct several bootstrap samples of the data and apply CART to each. If
the tree structures are substantially different, interpreting the results from any
one tree is risky. It is also important to compare the classifications from each
of the trees. Substantial differences imply that the classifications assigned to
observations cannot be relied upon.

A good place to start an examination of the classes assigned is with con-
fusion tables. One question is whether the confusion tables for the different
trees are alike. Another question is whether the same classes were assigned to
the same cases over bootstrap samples; how consistently were the observations
classified. One can compare the assigned classes for cases selected in two or
more of the bootstrap samples. This idea is closely related to the “margin”
an observation has and is discussed at some length in later chapters.

A related approach is to use the proportion of cases of a particular class in
each terminal node. Sometimes these proportions can be considered estimates
of the probability that an observation in a given terminal node is a member
of the assigned class for that node. Then, for cases that appear in any pair
of bootstrap samples, a scatterplot can be constructed using the terminal
node proportions from two different trees. Substantial departures from the
45-degree line indicate meaningfully different assigned probabilities.

A more compelling approach is to determine if the different CART models
classify test data in the same manner. When no test sample is available, there
are creative approaches that depend on resampling, in much the same spirit
as cross-validation. How such data may be obtained and exploited is a very
important topic that is addressed in later chapters.

If one concludes that CART results are unstable, it can sometimes be
helpful to apply CART to the original data again after setting the tuning
parameters to produce more stable results. Once again, increasing minimum
sample sizes for all nodes or increasing the value of the complexity penalty
can be helpful. In the next chapter we consider other alternatives.

3.14 Regression Trees

The emphasis in this chapter has been on categorical response variables. Clas-
sification was the goal. The reasons were both pedagogical and practical. By
concentrating on categorical response variables, the full range of fundamental
issues surrounding CART are raised.
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But CART is certainly not limited to categorical response variables. Quan-
titative response variables are also fair game. And with the discussion of cat-
egorical response variables largely behind us, a transition to quantitative re-
sponse variables is relatively straightforward. It is possible to be brief.

A key difference with regression trees is the splitting criterion employed.
For the conventional regression case, the impurity of a node is represented by
the within-node sum of squares for the response:

i(r) =Y (i — () (3.17)

where the summation is over all cases in node 7, and g(7) is the mean of those
cases. Then, much as before, the split s is chosen to maximize

A(s,T) =i(1) —i(rr) — i(TR). (3.18)

No cost weights can be used because there is no reasonable way to consider
false positives and false negatives without a categorical response variable.
Then, to get the impurity for the entire tree, one sums over all terminal
nodes to arrive at R(T'). Regression trees can be pruned, but usually with
a penalty based on the AIC or some other statistic that takes the number
of estimated parameters into account. Overall fit quality is then based on a
summary statistic, such the root mean squared error or a measure that adjusts
the degrees of freedom, much as in conventional parametric regression.

There is no classification as such. Each observation is placed in a terminal
node and is then assigned the mean of that node. The assigned mean indicates
how a case is “classified.” The collection of means for all of the terminal nodes
are, therefore, fitted values analogous to the fitted values from conventional
parametric regression. They represent how the numerical response is related
to the predictors.

Just as in parametric regression, it is fitted values that are typically used
in forecasting. With these conditional means in hand, each new observation
for which the outcome is unknown is placed in a terminal node, depending on
its predictor values. The conditional mean of that node is generally taken as
the “best guess” of what the value of the response variable should be.

All of the earlier concerns about CART still apply, save for those linked to
the classes assigned. Potential bias and instability remain serious problems.
And possible remedies are also effectively the same.

3.14.1 An Illustration

Key output of a regression tree is usually presented as a tree diagram, much
as in the categorical response variable case. And as before, interaction effects
can dominate. There are often easy extensions to the generalized linear model
so that a response measured in counts, for example, can be used.
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Correlates of High School GPA
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Fig. 3.10. Predictors of grade point average in high school.

Figure 3.10 shows a regression tree for correlates of high school grade point
average for applicants to the large public university discussed earlier. Predic-
tors include verbal SAT scores, mathematics SAT scores, and ethnicity. Grade
point average can be as high as 5.0 because the scoring gives performance in
advanced placement classes extra weight. The mean GPA in each node is
shown along with the number of cases. The mean GPA for each terminal node
is the fitted value assigned to all observations in that node.

The CART tree indicates that high school GPA is a nonlinear function of
performance on the SATs. Ethnicity also seems to matter a bit. Only about
30% of the variance in high school GPA is accounted for with the available
predictors. Clearly, GPA is measuring a lot in addition to whatever the SATs
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measure, at least among applicants to this university. This is important be-
cause it implies that the high school GPA by itself contains potentially im-
portant information that cannot be obtained from the SATs.

The means in the terminal nodes range from a high of 4.202 to a low of
3.021. Interpretation follows directly from the tree. At each break point, the
cases that meet the split criterion go to the left daughter node. For illustrative
purposes, an indicator variable is constructed for each ethnic group. Because
these are coded so that the value “1” means the presence of a given ethnicity
and “0” the absence, splits are characterized by the halfway point of .5.

Just as in the classification case, many of the break points after the first
can represent interaction effects For example, applicants in the node with an
average GPA of 3.607 score below 515 on the verbal SAT and between 585
and 495 on the mathematics SAT. Applicants in the node with the highest
average GPA score above 685 on the verbal SAT and 655 on the mathematics
SAT. The race effect found for applications with middling verbal and math
SATs is small and makes little intuitive sense. It may be a chance artifact.

3.14.2 Some Extensions

Save for some details, regression trees can be interpreted much as are classifi-
cation trees. CART output can be represented in part by a tree diagram that
shows how the predictors are related to the response. There are clear links to
conventional linear regression as well, with conditional means as fitted values,
variation around the fitted values as a product of within-node residuals, and
familiar measures of fit.

For regression trees, costs are addressed with the fitting function itself,
which in this case is the error sum of squares. Just as with conventional
regression, therefore, the fitting assumes a quadratic loss function. Overes-
timates of the conditional mean are treated the same as underestimates of
the conditional mean, and large residuals are given especially heavy weight
(thanks to squaring).

We have already seen that when CART is used for classification, symmet-
ric costs are often inappropriate. Yet they are required when the response
variable is quantitative. For example, if an admissions officer is trying to fore-
cast how well a student will do in college, a prediction that pegs the student’s
freshman GPA one full point too high has the same costs as a prediction that
pegs the student’s freshman GPA one full point too low. One consequence
of the first error may be that the student actually struggles in college and
then flunks out. Another consequence is that a student who might have done
much better was not admitted instead. One consequence of the second error
is not admitting a student who might have done very well in college. Another
consequence is that a weaker student may have been admitted instead. None
of these considerations can be easily introduced in the fitting process when
the response variable is quantitative.
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The heavy weight given to the largest residuals means that the fitting pro-
cess can be greatly affected by influential observations, just as in conventional
regression. A residual equal to 2.0 is only one point farther away from the
conditional mean than a residual of 1.0, but the squaring weights the two
observations four to one when the fitting is undertaken. One implication is
that a few very atypical observations that are away from the mass of the data
may dominate the results, which may then not characterize the bulk of the
data appropriately. So, the results may not be an accurate description of the
data on hand. A second implication is that the results can be very unstable
with respect to random samples of the data. The story can change depend-
ing on whether the random sample analyzed happens to include the outliers.
Generalization may be seriously compromised.

There are in principle all of the usual ways to “robustify” the CART
fitting process. In particular, one can use a linear loss function instead of a
quadratic, which implies fitting conditional medians rather than conditional
means. Medians will not be affected by outliers and the linear loss function
weights larger residuals less heavily than the quadratic loss function. An easier
but less elegant fix is to fit a trimmed response so that, for instance, the largest
5% and the smallest 5% of the values for the response variable are dropped
before the analysis begins. Some implementations of CART allow for these and
other options. When they are available, their usefulness should be carefully
assessed in the context of the data to be analyzed and the empirical questions
being asked. At the moment, rpart() in R does not allow for linear loss.

Even if concerns about a few influential observations are not significant, it
may be appropriate to abandon quadratic loss on other grounds. If there is in-
terest in the conditional medians, linear loss follows naturally. If the response
is a count, a Poisson formulation may be appropriate. Then the Poisson de-
viance is used as the splitting criterion. In R, rpart() currently allows for the
Poisson. A rather different set of problems is generated because of CART’s
well-known proclivity to overfit and favor predictors with many possible splits.
The former can lead to generalization error and the latter can lead to bias in
the tree structure. As noted earlier, Hothorn et al. (2006) have proposed some
novel means to address both problems. There are some important questions
about how well their approach will work in practice, but the requisite software
is available in R (in the library party) and is certainly worth trying.

3.14.3 Multivariate Adaptive Regression Splines (ML ARS)

Multivariate Adaptive Regression Splines (MARS) can be viewed as another
kind of smoother, in the traditions of the last chapter, or as a twist on classi-
fication and regression trees. For ease of exposition, this discussion builds on
CART, and it is brief. An excellent and more extensive examination of MARS
can be found in Hastie et al. (2001: Section 9.4).

A key difference between CART and MARS is in the nature of the basis
functions used. The MARS formulation is the broadly familiar
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F(X)=Bo+ Y Bnhm(X), (3.19)
m=1

where as before, there are M weighted basis functions h,,(X). Likewise, the
basis functions are still determined for each split by searching over all predic-
tors and thresholds on those predictors before the best partition is selected.
But in CART, the result is a step function. In MARS, the result is a V-shaped
function composed of two linear splines, with its point at the threshold value.
The two spline functions are mirror images of each other; hence the V-shape.
Hastie et al. (2001: 283) call the two splines a “reflected pair.”

Another important difference is that nodes may be split more than once.
To take a simple example, the root node is initially split in two as usual. But
at a later step, the root node may be revisited and split again through a new
product variable. This capacity exists for all internal nodes as well.

In short, a MARS model takes the form of Equation 3.19, where the basis
functions can be reflected pairs or the product of reflected pairs. Thus, MARS
can fit increasingly higher-order interaction terms, just as CART does, but
these are the product of linear splines not the product of indicator variables.

Estimation is done by least squares. There are often various tuning param-
eters that can help determine, for instance, how complex a model is permit-
ted. The output of MARS can include the equation actually estimated, and
an ANOVA-type partitioning of the explained variance to represent predictor
“importance.” A lot more is said about variable “importance” in the next
several chapters.

MARS can be extended to classification tasks, where logistic regression
replaces linear regression as the primary engine. For both regression problems
or classification problems, MARS will sometimes perform better than CART.
Its main comparative advantage is the ability to better capture additive mod-
els. At the same time, MARS suffers from many of the same weaknesses as
CART.

One must be very clear that when MARS is used to describe how predictors
are linked to a response, MARS is an exploratory tool. There is no pretense
of producing a causal model despite the fact that Equation 3.19 can have
much the look and feel of a conventional regression equation. The weights
represented by the [3,, are regression coefficients to be sure, but they have no
necessary causal interpretation. MARS is in the same tradition as all of the
procedures we have been considering.

MARS has its advocates, but it does not seem to have the same popularity
as CART. One reason may be that MARS is not available in the more pop-
ular, large software packages such as STATA or SPSS, nor in free computing
environments such as R. A license for MARS must be obtained from Salford
Systems. And like CART, MARS seems to have been superseded by newer
procedures (Friedman, 1991) that are discussed in the pages ahead.
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3.15 Software Issues

All of the computing done is this book was implemented in R. Within R, the
best CART implementation arguably is in the procedure rpart() in the R li-
brary rpart. It is a very powerful and flexible implementation, especially given
all of the other capabilities available in R. CART is also available in a number
of conventional statistical packages (e.g., SPSS), although the algorithms em-
ployed, the options provided, and user interfaces can vary dramatically. For
those readers who have not tried to use CART, it may be helpful to briefly
consider what the required inputs are likely to be.

1. The response variable needs to be specified, usually with information
about whether it is to be treated as quantitative or categorical. CART
software can sometimes get confused if the response is binary and repre-
sented by an indicator variable or some other numeric values. The safest
way to proceed in rpart(), for example, is to explicitly label binary out-
comes as a categorical variable (i.e., a factor).

2. The predictor variables, which can be quantitative, categorical, or both,
need to be specified. If categorical, it may be important to indicate that
explicitly. Otherwise, numerical values, really meant to be just category la-
bels, may be treated as an equal interval scale. Among the issues that usu-
ally need to be thought through is whether any product variable for inter-
action effects should be constructed and entered as predictors or whether
it is preferable to let CART construct interaction terms as needed.

3. The method, which usually means either a regression tree or a classifi-
cation tree, needs to be determined. There are sometimes other options
available for count data or survival data. Although some programs can
determine the proper method from the nature of the response variable
specified, it is usually a good idea to specify the method explicitly in a
separate argument. That way, the user knows for certain what method is
being used. Moreover, sometimes a CART algorithm will make the wrong
choice.

4. The fitting function to be minimized needs to be specified. Sometimes this
is determined when the method of analysis is selected and sometimes not.
In rpart() with a categorical response variable, one has to specify whether
the Gini index or the entropy is to be used.

5. The costs of false negatives and false positives need to be determined,
sometimes with an appropriate prior distribution, a loss matrix, or some
other means. It is also very important to understand what the defaults on
these costs are.

6. A penalty for complexity is often required. It may be the value of « or
some transformation of it. In rpart(), for example, the relevant parameter
is ¢p, a standardization of a. In the regression case, the value of ¢p is «
divided by the error sum of squares in the root node. In the classifica-
tion case, « is divided by the cost complexity R(Tp) of the root node.



10.

11.

3.16 Summary and Conclusions 161

The standardization makes the cp-value a fraction and allows for better
comparisons across the results from different response variables.

Other tuning parameters are often available, such as the maximum num-
ber of splits and the minimum sample size for terminal nodes. It is very
important to learn what the default values of the tuning parameters are.
Although they are usually set to reasonable values, one should not assume
that they are.

Often one can request predicted values either for the training data or
for test data, and specify what form they should take. For classification
trees, one usually has a choice between the predicted class or the predicted
probability of membership in a class.

There are usually a number of output options for different kinds of graph-
ics and summary tables. Which mix of outputs is appropriate depends on
the data analysis task. For example, a richer mix of tabular outputs will
often be needed the first time a training dataset is analyzed or if there
are suspicions about the quality of the data. Output issues also arise for
graphical output. For example, getting tree diagrams into a form that is
aesthetically pleasing and easy to read can take some doing.

It is also likely that any CART software will have its fair share of quirks.
With rpart(), for example, priors are entered as a list of the form ¢(.30,.70).
But which element of the list is for which category? Perhaps the arguments
should be entered as ¢(.70,.30). In rpart(), the proper sequence is deter-
mined by numerical or alphabetical order. For example, if the response is
coded “1” or “2”, ¢(.30,.70) assumes a prior distribution in which 30% of
the cases are 1s and 70% of the cases are 2s. If the response is coded “yes”
or “no,” ¢(.30,.70) assumes a prior distribution in which 30% of the cases
are no and 70% of the cases are for yes.

Programs will differ in how well they check for errors and how clearly they
communicate with the user when problems are discovered. Continuing
with the example of specifying priors, rpart() checks to see if they add
to 1.0 and if not, tells the user very clearly. It is far less apparent from
CART rpart() output if the loss matrix is constructed incorrectly.

3.16 Summary and Conclusions

CART can sometimes be an effective statistical learning tool. It is relatively
easy to use, builds directly on familiar regression procedures, does not demand
great computing power, and generates output that can be presented in an
accessible manner. CART also provides a useful way to introduce the costs of
classification errors. However, CART also has some important limitations.

First, if there is a true f(X) outside of the data on hand, there is no rea-

son to believe that CART’s f (X) will provide an unbiased estimate. Despite
the flexible ways in which CART can respond to data, substantial bias is a
real possibility. As noted many times already, if one is interested in the f(X),
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one needs X. And X must be well measured. But even if these demanding
prerequisites are met, the CART algorithm introduces some important con-
straints. The step functions used can badly misrepresent smooth functions of
X, and the conditional proportions or means in terminal nodes will usually
be determined in part by nearest neighbors that do not necessarily have the
same population value for the response variable. One’s best hope is that the
flexibility CART provides will produce a f (X) that is less biased than an
alternative derived from a parametric procedure.

Second, the splitting decisions can be very unstable. A few observations
can in some situations dramatically affect which variables are selected and the
precise values used for partitioning the data. Then, all subsequent partitions
can be affected. This instability is closely related to overfitting, which can
substantially limit the generalizability of the results. The findings from the
data examined may not generalize well to other random samples from the
same population (let alone to data from other populations). The problem of
overfitting is addressed head-on in the next chapter.

Third, even moderately elaborate tree diagrams will seriously tax substan-
tive understanding. The problem is not just complexity. CART is trying in a
single-minded manner to use associations in the data to maximize the homo-
geneity of its data partitions. How those associations come to be represented
may have nothing remotely to do with subject matter understandings or how
subject matter experts think about those associations.

For example, well-accepted theory and past empirical research may argue
strongly for a relatively smooth nonlinear relationship between a predictor
and a response. CART may represent the relationship as a complicated step
function. Even more confusing, the nonlinearities may be picked up in interac-
tion effects with other predictors, thanks to associations in the data among all
of the predictors and between the predictors and the response variable. The
splitting process imposes no subject matter constraints on how the nonlinear-
ities are captured. The subsetting can unfold within a single predictor (i.e.,
a step function) or within two more more predictors (i.e., interaction effects)
without regard for what can be sensibly interpreted.

More troubling, if there is no well-accepted theory or strong empirical
research to guide interpretation, the data analyst can be at the mercy of
the CART algorithm. Thus, interaction effects empirically revealed may force
interpretations that are essentially artifacts of how the subsetting was done.
In this case, researchers will not just be confused, but risk being led astray.

Fourth, the exploratory nature of CART and the substantial likelihood of
bias mitigates against the sensible use of statistical inference. Thus, the role
of random sampling error can be very difficult to integrate into any subject
matter conclusions. Assessments of the stability of the results can be very
helpful, but these are somewhat different from the familiar confidence intervals
and hypothesis test p-values.

In summary, it is important to distinguish between conditional means or
proportions and the tree structure. Using the tree structure to interpret how
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inputs are related to outputs is often a bad idea. Or put more constructively,
there needs to be strong subject matter information to protect against mis-
leading interpretations. If interest centers on the conditional means or pro-
portions alone, however, one can sometimes be more hopeful. Trees that differ
because of instability will often produce similar sets of fitted values. Thus if
CART is used solely as a classifier, the results may be helpful. But if there is
a need to explain why cases are classified as they are, the instability may be
debilitating.

Fortunately, there is more in the bag of statistical learning tricks than
CART. As we soon show, there is really no need to risk CART’s significant
limitations. One can do better and in the next chapter, we begin to consider
how.

Exercises

Problem Set 1

The purpose of this exercise is to provide an initial sense of how CART com-
pares to conventional linear regression.

1. To begin, construct a regression dataset with known properties:

x1=rnorm(300)
x2=rnrom(300)
error=2xrnorm(300)
y1=1+(2%x1)+(3*x2) +error

Apply conventional linear regression using Im(). Then apply rpart(), and
print the tree using text(). Compare the regression output to the way
in which the data were actually generated. Compare the tree diagram to
the way in which the data were actually generated. Compare how well
linear regression and CART fit the data. (This may take a little doing
depending on what summary measures of fit rpart() provides. One easy
option is to construct the fitted values with predict() and then regress
the fitted values on the observed values to get fit measure comparable to
those from the linear regression analysis.) What do you conclude about the
relative merits of linear regression and CART when the f(X) is actually
linear and additive?

2. Now, redefine the two predictors as binary factors and reconstruct the
response variable.

x11=(x1 > 0)
x22=(x2 > 0)
y=1+(2*x11) +(3*x22) +error
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Proceed as before comparing linear regression to CART. How do they com-
pare? What do you conclude about the relative merits of linear regression
and CART when the f(X) is actually a step function and additive?

3. Under what circumstances is CART likely to perform better than linear
regression? Consider separately the matter of how well the fitted values
correspond to the observed values and the interpretation of how the pre-
dictors are related to the response.

Problem Set 2

The goal of the following exercises is to give you some hands-on experience
with CART in comparison to some of the procedures covered in earlier chap-
ters. An initial hurdle is getting R to do what you want. Make generous use
of help(). Also, T have provided a number of hints along the way. However, I
have tried to guide you to results in the least complicated way possible and as
a consequence, some of the more subtle features of CART are not explored.
Feel free to play with these in addition. You can’t break anything.

Load the data set called “frogs” from the DAAG library. The data are
from a study of ecological factors that may affect the presence of certain frog
populations. The binary response variable is pres.abs. Use the help command
to learn about the data. For ease of interpretation, limit yourself to the fol-
lowing predictors: altitude, distance, NoOfPools, NoOfSites, avrain, meanmin
and meanmax.

1. Use logistic regression from glm() to consider how the predictors are re-
lated to whether frogs are present. Which predictors seem to matter? Do
their signs make sense?

2. Using the procedure stepAIC() from the MASS library with the default
for stepwise direction, find the model that minimizes the AIC. Which
predictors remain? Do their signs make sense?

3. Using table() or xtabs(), construct a confusion table for the model ar-
rived at by the stepwise procedure. The observed class is pres.abs. You
will need to assign class labels to cases to get the “predicted” class. The
procedure glm() stores under the name “fitted.values” the estimated con-
ditional probabilities of the presence of frogs. If the probability is greater
than .5, assign a “1” to that case. If the probability is equal to or less
than .5, assign a “0” to that case. Now cross-tabulate the true class by
the assigned class. What fraction of the cases is classified incorrectly? Is
classification more accurate for the true presence of frogs or the true ab-
sence of frogs? What is a rationale for using .5 as the threshold for class
assignment?

4. Using your best model from the stepwise procedure, apply the general-
ized additive model. Use smoothers for all of the predictors. Look at the
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numerical output and the smoothed plots. How do the results compare to
those from logistic regression?

. Construct a confusion table for the model arrived at through GAM. Once
again, the observed class is pres.abs. Use the same logic as applied pre-
viously to determine the assigned class. What fraction of the cases is
classified incorrectly? Is classification more accurate for the true presence
of frogs or the true absence of frogs? How do these results compare to the
GLM results?

. Going back to using all of the predictors you began with, apply CART
to the frog data via the procedure rpart() in the library rpart. For now,
accept all of the default settings. But it is usually a good idea to specify
the method (here, method= “class”) rather than let rpart() try to figure
it out from your response variable. Use the print() command to see some
key numerical output. Try to figure out what each piece of information
means. Use the plot() and text() commands to construct a tree diagram.
What predictors does CART select as important? How do they compare
with your results from GLM and GAM? How do the interpretations of
the results compare?

. Use predict() to assign class labels to cases. You will need to use the help
command for predict.rpart() to figure out how to do this. Then construct a
confusion table for the assigned class and the observed class. What fraction
of the cases is classified incorrectly? Is classification more accurate for the
true presence of frogs or the true absence of frogs? How do these results
compare to the GLM and GAM results? If the three differ substantially,
explain why you think this has happened. Alternatively, if the three are
much the same explain why you think this has happened.

. Run the CART analysis again with different priors. Take a close look at the
information available for rpart() using the help command. For example, for
a perfectly balanced prior in rpart() you would include parms=list(prior=
¢(.50.50)). Try a prior of .5 for presence and then a prior of .30 for presence.
(For this rpart() parameter, the prior probability of 0 comes first and the
prior probability of 1 comes second.) What happens to the amount of
classification error overall compared to the default? What happens to the
ratio of false negatives to false positives? (To understand better what is
going on look again at Section 3.5.2.)

. Using Equation 3.11 set the prior so that false negatives are ten times
more costly than false positives (with pres.abs = 1 called a “positive” and
pres.abs = 0 called a “negative”). Apply CART. Study the output from
print(), the tree diagram using plot() and text(), and the confusion table.
What has changed enough to affect your interpretations of the results?
What has not changed enough to affect your interpretations of the results?



166

10.
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Construct two random samples with replacement of the same size as the
dataset. Use the sample() command to select at random the rows of data
you need and use those values to define a new sample with R’s indexing
capability, x[r,c]. For the two new samples, apply CART with the default
parameters. Construct a tree diagram for each. How do the two trees
compare to each other and to your earlier results with default settings?
What does this tell you about how stable your CART results are and
about potential problems with overfitting.

Repeat what you have just done, but now set the minimim terminal
node size to 50. You will need the argument control=rpart.control (min-
bucket=50)) in your call to rpart(). How do the three trees compare now?
What are the implications for overfitting in CART?

Problem Set 3

Here is another opportunity to become familiar with CART, but this time
with a quantitative response variable. From the library car, load the data

set

“Freedman.” The dataset contains for 100 American cities the crime rate,

population size, population density, and percent nonwhite of the population.
The goal is to see what is associated with the crime rate.

1.

Using the generalized additive model (GAM) from the library gam, regress
the crime rate on the smoothed values of the three predictors. Examine
the numerical output and the plots. Describe how the crime rate is related
to the three predictors.

Repeat the analysis using rpart() and the default settings. Describe how
the crime rate is related to the three predictors. How do the conclusions
differ from those using the generalized additive model?

Plot the fitted values from the GAM analysis against the fitted values from
the CART analysis. The fitted values for gam() are stored automatically.
You will need to construct the fitted values for CART using predict().
What would the plot look like if the two sets of fitted values corresponded
perfectly? What do you see instead? What does the scatterplot tell you
about how the two sets of fitted values are related?

Overlay on the scatterplot the least squares line for the two sets of fitted
values using abline(). If that regression line had a slope of 1.0 and an inter-
cept of 0.0, what would that indicate about the relationship between the
two sets of fitted values? What does that overlaid regression line indicate
about how the two sets of fitted values are related?

Using scatter.smooth(), apply a lowess smoother to the scatterplot of the
two sets of fitted values. Try several different spans. What do you conclude
about the functional form of the relationship between the two sets of fitted
values?
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6. For the GAM results and the CART results, use cor() to compute sepa-
rately the correlations between the fitted values and the observed values
for the crime rate. What procedure has fitted values that are more highly
correlated with the crime rate? Can you use this to determine which mod-
eling approach fits the data better? If yes, explain why. If no, explain why.



Bagging

4.1 Introduction

In this chapter, we make a major transition. We have thus far focused on
statistical learning procedures that produce a single set of results: regression
coefficients, measures of fit, residuals, classifications, and others. Thus, there is
but one regression equation, one set of smoothed values, or one classsification
tree. Most statistical procedures operate in a similar fashion.

The discussion now shifts to statistical learning building on many sets
of outputs that are aggregated to produce results. Such algorithms make a
number of passes over the data. On each pass, inputs are linked to outputs
just as before. But the ultimate results of interest are the collection of all the
results from all passes over the data.

Bayesian model averaging may be a familiar illustration from another sta-
tistical tradition (Madigan et al., 1996; Hoeting et al., 1999). In Bayesian
model averaging, there is an assumed f(X); there is a “true model.” A number
of potentially true models, differing in the predictors selected, are evaluated.
The model output is then averaged with weights determined by model un-
certainty. Output from models with greater uncertainty are given less weight.
From a statistical learning perspective, Bayesian model averaging has a num-
ber of problems, including the dependence that is necessarily built in across
model results (Xu and Golay, 2006). We address shortly how statistical learn-
ing procedures relying on multiple results proceed rather differently.

Aggregate results can have several important benefits. Averaging over a
collection of fitted values can help compensate for overfitting. That is, the
averaging tends to cancel out results shaped by idiosyncratic features of the
data. One can then obtain more stable fitted values and more honest assess-
ments of how good the fit really is. Second, a large number of fitting attempts
can produce very flexible fitting functions able to respond to systematic, but
highly localized, features of the data. In effect, there can be a very large num-
ber of basis functions and the prospect of reducing bias in the fitted values.
Third, putting the averaging and the flexible fitting functions together has the

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_4, (© Springer Science+Business Media, LLC 2008
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potential to break the bias—variance tradeoff. Sometimes you can have your
cake and eat it too.

In this chapter, we focus on bagging, which capitalizes on the averaging
process. Averaging can reduce the variance. There are also some implications
for bias. Later chapters consider statistical learning procedures that in differ-
ent ways address more directly bias in the fitted values as well as the variance.

We emphasize categorical response variables. We are again concentrating
on classifiers. The rationale is largely the same: the exposition is more effective
and the step to quantitative predictors is easy to make. We begin with a return
to the problem of overfitting. Although overfitting has been discussed several
times in earlier chapters, it needs to be linked more directly to CART to help
set the stage for our exposition of bagging.

4.2 Overfitting and Cross-Validation

A long-standing problem in the philosophy of science is whether the credibility
of scientific conclusions is greater if the conclusions are evaluated through
their forecasting skill or their consistency with the data on hand. That is,
what weight should be given to an accurate forecast compared to a good
fit? The answer is not straightforward, but in the end, accurate forecasts are
likely to be more convincing. And one of the reasons is that forecasts are not
vulnerable to overfitting, whether from intentional “fudging” or overzealous
data exploration (Lipton, 2005).

Any attempt to summarize patterns in a dataset risks overfitting. All fit-
ting procedures adapt to the data on hand so that even if the results are
applied to a new sample from the same population, fit quality will likely de-
cline. Hence, generalization can be somewhat risky. And to the degree that
a fitting procedure is highly flexible, overfitting can be exacerbated. There
is a greater opportunity to fit idiosyncratic features of the data. For exam-
ple, Hastie et al. (2001: 200-203) show in a slightly different context that the
unjustified “optimism increases linearly with the number of inputs or basis
functions ..., but decreases as the training sample size increases.” In other
words, it can be highly desirable to have few parameters to be estimated and
many observations with which to construct the estimates.

Consider CART as a key illustration. The basis function formulation can
be instructively introduced at three points in the fitting process. First, for any
given predictor being examined for its best split, overfitting will increase with
the number of splits possible. In effect, a greater number of basis functions
are being screened (where a given split leads to a basis function). Second, for
each split, CART evaluates all possible predictors. An optimal spilt is chosen
over all possible splits of all possible predictors. This defines the optimal
basis function for that stage. Hence within each stage, overfitting increases
as the number of candidate predictors increases. Third, for each new stage,
a new optimal basis function is chosen and applied. Consequently, overfitting
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increases with the number of stages, which for CART means the number of
optimal basis functions, typically represented by the number of nodes in the
tree.

The overfitting in CART can be misleading in a number of ways. Measures
meant to reflect how well the model fits the data are likely to be too optimistic.
Thus, for example, the number of classification errors may be too small. In
addition, the model itself may have a structure that will not generalize well.
For example, one or more predictors may be included in a tree that really do
not belong. Finally, should statistical inference be introduced, standard errors
can be too small. Overly narrow confidence intervals and falsely powerful tests
follow.

Ideally, one would have two random samples from the same population: a
training dataset and a test dataset. A tree would be built from the training
data, and some measure of fit would be obtained. A simple measure might be
the fraction of cases classified correctly. A more complicated measure might
take the costs of false negatives and false positives into account. Then with
the tree structure in place, cases from the test data would be “dropped down”
the tree, and the fit computed again. It is almost certain that the fit would
degrade, with how much being a measure of overfitting. The fit measure from
the test data would be a better indicator of how accurate the classification
process really is.

Often there is only a single dataset. Enter cross-validation. The data are
split up into several randomly chosen, nonoverlapping, partitions of about
the same size. That is, one samples without replacement. Ten such subsets
are common. CART is applied to the data from nine of the partitions, and
the results are evaluated with the remaining partition. So, if there are 1000
observations, one would build the tree on 900 randomly selected observations
and evaluate the tree using the other 100 observations.

With ten partitions, the building and testing sequence could be undertaken
ten times, each time with nine partitions as the training data and one parti-
tion as the test data. Each of the ten partitions would be part of the training
data for nine of the ten analyses, and would serve as the test data for one of
the ten analyses. From each of the ten test partitions, a measure of fit would
be computed. An instructive measure of fit would be the average fit value over
the ten splits. Relying on the test partitions reduces overfitting. Taken one
at a time, the small test partitions can be vulnerable to sampling error. The
averaging process tends to cancel out some chance variation. There is nothing
magic about using ten random partitions of the data. When there are very
few partitions, each training dataset will have far fewer observations than the
entire sample. Insofar as the CART results are sample size dependent, sub-
stantial bias can be introduced. For example, with a smaller training sample,
a less complex tree might result. However, when there are a great many parti-
tions, largely the same data are used over and over to construct the tree, and
the test datasets have very few observations. Then, the fit measure computed
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from the test data can have high variance (Hastie et al., 2001: Section 7.10).
Using five to ten splits seems to be a good compromise in practice.

Cross-validation is available in many implementations of CART and is
discussed in the seminal book by Breiman and his colleagues (1984: Section
11.5). Often the number of splits of the data can be specified. When the
number of splits is the same as the number of observations in the original
sample, the process is sometimes called “leave-one-out” cross-validation. We
discussed this in Chapter 1 when model evaluation was first addressed. As
noted then, extensions on this basic idea using bootstrap samples are available
(Efron and Tibshirani, 1993: Chapter 17).

Unfortunately, cross-validiation neglects the extracted pattern of associa-
tions between the inputs and the outputs, which may, because of overfitting,
be very misleading. Although one may obtain a more honest measure of over-
all performance, the structure of the associations revealed by the analysis is
not addressed. One may be stuck with a tree that makes little substantive
sense or will not generalize well. But in the use of subsamples of the data and
in averaging over subsamples, there is a very powerful idea. Bagging exploits
that idea to address overfitting in a more fundamental manner.

4.3 Bagging as an Algorithm

The notion of combining fitted values from a number of fitting attempts
has been suggested by several authors (LeBlanc and Tibshirani, 1996; Mo-
jirsheibani, 1997; 1999) In an important sense, the whole becomes more than
the sum of its parts. “Bagging,” which stands for “Bootstrap Aggregation,”
is perhaps the earliest procedure to exploit a combination of fitted values
based on random samples of the data (Breiman, 1996). Bagging may be best
understood initially as nothing more than an algorithm.

Consider the following steps in a fitting algorithm with a dataset having
N observations and a binary response variable.

1. Take a random sample of size N with replacement from the data.

2. Construct a classification tree as usual but do not prune.

3. Assign a class to each terminal node, and store the class attached to each
case coupled with the predictor values for each observation.

4. Repeat Steps 1-3 a large number of times.

5. For each observation in the dataset, count the number of times over trees
that it is classified in one category and the number of times over trees it
is classified in the other category

6. Assign each observation to a final category by a majority vote over the
set of trees. Thus, if 51% of the time over a large number of trees a given
observation is classified as a “1,” that becomes its classification.

7. Construct the confusion table from these class assignments.
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Although there remain some important variations and details to consider,
these are the key steps to produce “bagged” classification trees. The idea of
classifying by averaging over the results from a large number of bootstrap
samples generalizes easily to a wide variety of classifiers beyond CART. Later
we show that bagging can be usefully applied for quantitative responses as
well.

4.3.1 Margins

Bagging introduces some new concepts that need to be addressed, not just to
deepen the understanding of bagging, but for some other procedures consid-
ered in later chapters. One of these concepts is the “margin.”

Operationally, the difference between the proportion of times a case is
correctly classified and the proportion of times it is incorrectly classified is
sometimes called the “margin” for that case. If, over all trees, an observation
is correctly classified 75% of the time and incorrectly classified 25% of the
time, the margin is .75 — .25 = .50. Large margins are desirable because a
more stable classification is implied. In a large number of random samples of
the data, the class assigned to that observation is far more likely than not to
be the same. Ideally, there should be large margins for all of the observations.
This bodes well for generalization to new data. A more formal and extensive
treatment of the concept of the “margin” is provided in the next chapter.

Recall the discussion in the previous chapter on instability in CART fitted
values. Overfitting in CART tends to be more serious when for the terminal
nodes the proportions of observations in each of the response variable classes
tend to be similar. If the split is .51 versus 49, for instance, the movement of a
little more than one percent of the cases from one class to another could change
the class assigned to that node. Then, all of the cases that were correctly
classified are now misclassified, and all of the cases incorrectly classified are
now correctly classified. Were another sample taken, the initial node class
might be reassigned, and the pattern of classification errors would change
again. It follows that for any given observation in this terminal node, the
margin is likely to be very small or even negative. Such observations will not
be classified in a reliable manner. One might say that the vote over trees is
too close to call.

Conversely, if the proportions within each terminal node are quite different,
it would take the movement of relatively many cases to change the classes
assigned. The bagged margins for observations across trees are likely to be
larger and the classifications more stable. More reliable classifications result.
One might say that the vote is a landslide.

4.3.2 Out-Of-Bag Observations

In the steps just described, the tree is built and then the data used to build
the tree are used again to compute the classification error. One way to think



174 4 Bagging

about this is that training data are “dropped down” the tree to determine
how well the tree performs. The training data are “resubstituted” when tree
performance is evaluated.

In some implementations of bagging, one can do better. For each tree,
observations not included in the bootstrap sample (called “out-of-bag” obser-
vations) can be treated as a test dataset. These are then dropped down the
tree instead of the data used to build the tree. A record is kept of the class
with which each out-of-bag observation is labeled, as well as its values on all of
the predictors. Then in the averaging process, it is these assigned values that
are used as class labels, and based on these, a confusion table contructed. In
other words, the averaging for a given observation over trees is done only using
the trees for which that observation was not used in the fitting process. Thus,
a fitting enterprise has been turned into a genuine forecasting enterprise. This
leads to more honest fitted values and more honest confusion tables.

It is important to emphasize that the improvement will usually be seen in
forecasting accuracy. If bagged CART results are compared to the results from
a single classification tree, the single tree may seem to perform better. But this
is misleading. If resubstituted values are used to construct the confusion tables
for both the single tree and the bagged trees, the bagged trees should look
worse. The bagging results have been adjusted for overfitting, at least in part.
When out-of-bag data are used to construct the confusion table for the bagged
trees, the bagged results will appear to suffer even more by comparison. A fair
competition between the performance of a single tree and a set of bagged trees
requires confusion tables for both procedures constructed from test data. On
this level playing field, bagged trees will usually perform better than single
trees. Some exceptions are considered shortly.

In summary, by assigning cases to categories using a majority vote over
a set of bootstrapped classification trees, overfitting can be dramatically cur-
tailed. Forecasting accuracy is improved because generalization error is re-
duced. Using the out-of-bag observations can further curb the potential over-
fitting.

4.4 Some Thinking on Why Bagging Works

The core of bagging’s potential is found in the averaging over results from
a substantial number of bootstrap samples. As a first approximation, the
averaging helps to cancel out the impact of random variation. However, there is
more to the story, some details of which are especially useful for understanding
a number of statistical learning procedures discussed in subsequent chapters.

4.4.1 More on Instability in CART

One can get an initial sense of the need for bagging from Figures 4.1 to 4.3.
The three figures are three classification trees constructed from the same data,
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but each uses a different bootstrap sample (i.e., sampled with replacement
from the data). The data were collected to help forecast incidents of domes-
tic violence within households served by a sheriff’s department from a large
metropolitan area. For a sample of households to which sheriff’s deputies were
dispatched for domestic violence incidents, the deputies collected information
on a series of possible predictors of future domestic violence. For example,
they determined whether police officers had been called to that household in
the recent past. Then, the households were followed for two months and any
new incidents of domestic violence recorded. The data were used to construct
a forecasting algorithm so that when information was collected on new house-
holds, forecasts of the likelihood of more domestic violence incidents could be
made.

It is clear that the three figures are very different. Although each tree’s
initial splitting variable is the number of times the police had been called
to that household before, different break points are chosen. More important,
the subsequent splits vary widely across the three trees. It is clear that in
this instance, CART does not produce trees that are likely to be stable under
different random samples from the same population. It would follow that
interpretations of the results would be unreliable.

This is a very important lesson. Interpretations from the results of a single
tree can be quite risky when CART performs in this manner. And recall from
the previous chapter that CART can produce unstable results because of
any number of common problems: small sample sizes, heterogeneous terminal
nodes, or highly correlated predictors.

Also problematic may be the classes that CART assigns to nodes. For
each of the figures, the sample sizes in the terminal nodes are generally quite
small. This can increase substantially the instability of the classes assigned.
With node distributions such as 4 to 3, 5 to 4, or even 9 to 6, changes in
the composition of the data from sample to sample could easily alter how the
observations in a node are classified or even whether the node is constructed
at all.

However, if over trees the different nodes in which a given case might fall
tend to classify that case in the same manner, instability in tree structure does
not necessarily translate into instability in the class assigned. In other words,
when CART is used solely as a classification tool, the classes assigned may be
relatively stable even if the tree structure is not. Experience suggests that such
is sometimes the case. Recall that much the same phenomenon can be found in
conventional regression when predictors are highly correlated. The regression
coefficients estimated for particular predictors may be very unstable, but it
does not necessarily follow that the fitted values will be unstable as well.

Finally, each tree has many terminal nodes. As a result, each tree repre-
sents a very flexible fitting function; there are a large number of conditional
proportions estimated. As a result, the number of classification errors is likely
to be relatively few for each tree individually. Each fit, therefore, may be quite
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Fig. 4.1. Tree diagram for first bootstrap sample.

good. Were the original data a random sample from a well-defined population,
one might be able to argue that the bias in the assigned classes is small.

At the same time, one must be clear about what is being estimated. Sup-
pose there is a real population and CART were applied to all of the data in
that population. Then, if CART is applied to a random sample of observations
from that population, one might be able to grow a tree providing unbiased
estimates of the splits and the fitted values. A requirement would be to have
a large enough sample so that a sufficiently large tree could be grown with
the sample data. That is, all of the terminal nodes in the population tree
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Domestic Violence Sample 2
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Fig. 4.2. Tree diagram for second bootstrap sample.

could be reproduced with the sample data. The deeper problem is that there
is no guarantee whatsoever that the population tree, let alone the sample
tree, captures the way in which the population data were generated. In the
most obvious case, there may be no information in the population about all
predictors that in fact were relevant.

At a more abstract level, the same concerns apply to data said to be
a product of a particular stochastic process. If that stochastic process really
functions through mechanisms that comport with a classification or regression
tree, and if the inputs to that stochastic process are included in the dataset
being analyzed, there is again the possibility of obtaining unbiased tree esti-
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Domestic Violence Sample 3
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Fig. 4.3. Tree diagram for third bootstrap sample.

mates. But if the stochastic process does not comport with a classification or
regression tree, or if the requisite predictors are unavailable, bias will likely
result.

In short, it is not clear how much bias exists in the three trees. But it

is clear that the variance across trees is large. Bagging can help with the
variance.
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4.4.2 How Bagging Can Help

Consider the classifications that would follow from each tree. Suppose that
for each observation one averaged over trees to determine the class assigned.
With a binary outcome, the averaging would take form of a vote across trees.
Because there are three trees in this illustration, a majority vote would be
two out of three or three out of three. If an observation were classified as
having a new incident of domestic violence (i.e., “b”) in two of the three trees
or in three of the three trees, it would be classified as a high-risk domestic
violence household. If an observation were classified as having a new incident
of domestic violence in none of the three trees or one of the three trees, it
would not be classified as a chronic domestic violence household.

As an averaging process, voting over trees tends to cancel out the impact
of random sampling error on the classes assigned to observations (Brieman,
1996; 2000). Idiosyncratic results from tree to tree can be averaged away and
more stable estimates can follow. The variance in the assigned classes can be
reduced as a consequence.

The idea of independent random samples from a population must not be
confused with bootstrap samples from the data. Independent random samples
from a population are the conceptual foundation for conventional (frequentist)
statistical inference. One works within the thought experiment of a limitless
number of independent random samples from a population or a limitless num-
ber of independent realizations of a stochastic process. The definitions of the
bias and variance for a statistic computed from the data on hand follow from
this thought experiment.

Bootstrap samples are probability samples with replacement from the data
on hand. Often such procedures are justified as an effort to simulate the
thought experiment. For bagging, however, the bootstrap samples serve an-
other purpose: they are the foundation for the averaging process by which the
bias—variance tradeoff may be constructively addressed. Statistical inference is
not the motivation. One can think of the averaging as a kind of shrinkage that
can, as before, increase the stability of the fitted values. For each observation,
fitted values are pulled toward their mean over bootstrap samples.

There is actually no requirement in bagging that the samples drawn from
the training data be with replacement. It seems that in general, one can use
samples without replacement and obtain virtually the same results as long as
a particular relationship is maintained between the size of the larger samples
with replacement and the size of the smaller samples without replacement
(Buja and Stuetzle, 2006). If there are N observations in the training data, a
sample without replacement of N/2 effectively will produce the same bagged
results as a sample with replacement of size N. So, the key idea is working with
a large number of random samples of the training data. Whether the sampling
is with or without replacement does not by itself seem to be a critical factor.

The results developed by Buja and Steutze (2006) make clear that when
sampling with replacement, the nominal sample size can be larger than N, and
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as that sample size increases, the equivalent sample size for sampling without
replacement can approach N. However, there is no definitive message about
what the ideal sample size should be, whether with or without replacement.
Therefore, the discussion that follows emphasizes a sample of size N sampling
with replacement, consistent with the traditional bootstrap.

Finally, bagging can have implications for the bias (Bithlmann and Yu,
2002). The basic concern is this: bagging acts as a smoother for the step
functions CART produces. If the underlying f(X) is smooth, bagging will
tend to reduce bias by “sanding off” the corners of the step functions. If the
underlying f(X) has the same jagged structure as step functions, “sanding off”
the corners can increase the bias. Apparently, neither of these consequences
were anticipated in the initial work on bagging but were eventually recognized
as a byproduct of the averaging that bagging employs. More is said about
bagging and bias shortly.

4.4.3 A Somewhat More Formal Explanation

We can now formalize these ideas a bit (Breiman, 1996) by applying con-
cepts from conventional regression analysis. We begin with a discussion of the
variance and a simple illustration to set the stage.

Bagging and Variance

Consider first a given predictor value o and an associated response. Imagine
a single random draw from a population, conditional on zg. The value of the
response for that draw is an unbiased estimate of the mean response for all
observations in the population with the same value of x, xy. But because that
estimate is constructed from a single observation, the estimate can vary a lot
from sample to sample if the response is not homogeneous at zy. Had a random
sample of, say, ten observations at xy been drawn instead, the mean of those
10 values would still be an unbiased estimate of the mean of the responses at
zo. But now, the sampling variability would likely be much smaller because
the sample size is much larger. With more observations one can shrink the
variance, and in this case, still have an unbiased estimate.

Consider now a more complicated illustration. We assume for the moment
that the response variable is quantitative. We focus on a single observation.
For that observation, assume there is a true function of the predictor f(zg)
through which the response is related to zy. That true function can be found
in the population or in the stochastic process responsible for the data. What
is the mean squared error of an observed value of the response variable y with
respect to the fitted value f(z0)?

The mean squared error over repeated random samples (or realizations)
can be decomposed into the sum of three parts: !1) an irreducible error, (2)
the bias in the fitted value, and (3) the variance of the fitted value. More
explicitly (Hastie et al., 2001: 197),
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El(y— f(x0))*|x = mo] = 02 + [Ef(w0) = f(x0)]* + E[f (x0) = Ef (wo)]*. (4.1)

There is nothing that can be done about the o2. It reflects the variance of y
around its true conditional mean at . Generally, the more complex the model
f, the smaller the squared bias, shown in Equation 4.1 as [Ef(xq) — f(z0)]%
A more complex model will generally fit the data better. But with greater
complexity, a greater number of degrees of freedom is used up. The likely
result is greater variance, shown in Equation 4.1 as E[f (o) — Ef(x0)]?. Put
another way, the available information in the sample is being spread more
thinly over the fitted values being estimated. The bias—variance tradeoff is
with us again.

Bagging can, in principle, usefully address the link between the bias and
the variance. For any given amount of bias, averaging over many bootstrap
samples produces a far more stable collection of fitted values than is likely
from any single sample. It is as if one had a large number of samples (or real-
izations) generated by the frequentist thought experiment. Moreover, because
bagging helps to produce more stable estimates, one is more free to fit com-
plex functions to the data. If there is a subject matter rationale for fitting a
tree with a large number of terminal nodes, for example, concerns about high
variance need not automatically be a serious constraint.

Equation 4.1 should be understood as illustrative. In particular, it does
not literally apply when the response variable is categorical. When models
for categorical data are used, the bias of the fitted values is related to the
variance of the fitted values. The simple partitioning shown in Equation 4.1
does not follow. Nevertheless, the same general implications apply.

Bagging and Bias

Having addressed the variance, we turn to the bias. Figure 4.4 illustrates how
bagging can affect the bias. To keep the graph simple, there is a single predictor
with the f(X) the smooth S-shaped function shown linking the predictor to
a binary 0/1 response. Imagine now that CART is applied one time to each
of four different bootstrap samples of the data. Each time, only one break in
the predictor is allowed. (Such trees are sometimes call “stumps.”) The four
step functions that result are overlaid.

Consider now a single value of the predictor zg of 14. At zq, the value
of f(X) is about .8. If only the single step function on the far right were
available, f (X) would be around .9. If only the single step function just to
the left were available, f(X) would be around .75. Yet, the average of the two
would be pretty close to .8. More generally, with a greater number of CART
step functions averaged, the S-shaped f(X) is better approximated. Bagging
can reduce bias by what is, in effect, smoothing (Bithlmann and Yu, 2002).
The key is that f(X) is a smooth function to begin with.
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Bagging as a Smoother

o

1.0

0.6

0.0
|

Fig. 4.4. How bagging smooths.

4.5 Some Limitations of Bagging

Bagging has been used recently in a number of interesting ways beyond classi-
fication and regression trees (Hothorn and Lausen, 2003). The principles that
bagging exploits are quite general. But there are also important limitations.

4.5.1 Sometimes Bagging Does Not Help

Bagging only returns different fitted values from those that could be obtained
from one pass over the original data if the fitting procedure is a nonlinear or
an adaptive function of the data. For example, all of the smoothers considered
earlier were, with the predictors treated as fixed, linear in the data. Recall
that the fitted values were just a linear combination of the original values
of the response variable. There are no gains from bagging such estimators.
The fitted values from bagging would be effectively the same as the fitted
values from the original data with no sampling (and identical if the number
of bootstrap samples increases without limit).
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4.5.2 Sometimes Bagging Can Make the Bias Worse

Look again at Figure 4.4. Suppose f(X) is really very jagged, much like a step
function. Then, the smoothing that bagging accomplishes can increase bias
because the smoothing on the average moves the fitted values away from the
correct f(X). One does not want the sharp corners of the CART estimates
sanded off. Classification can also be adversely affected.

Weak classifiers can also create problems, especially when the distribution
of the response is highly unbalanced. Weak classifiers are sometimes defined as
those that do no better than the marginal distribution. Suppose the marginal
distribution of the response is unbalanced so that it is very difficult for a
model using the predictors to perform better than the marginal distribution.
Under those circumstances the rare class will likely be misclassified most of
the time because votes will be typically be won by the class that is far more
common.

To illustrate this point, suppose there is a binary response variable, and
for the moment, we are interested in a single observation that happens to
be a “success.” For a given set of trees, that observation is classified as a
success about two times out of ten. So, the classification for that observation
will be wrong about 80% of the time. But if one classifies by majority vote,
the class assigned would be a failure and that would be wrong 100% of the
time. Because the classifier does a poor job, the majority vote produces a
disappointing result. And if the other observations in the training data tend
to be affected by the same difficulty, bagging will perform less well than CART.
Bias is increased.

In practice, such problems will be rare if the data analyst pays attention
to how the classifier performs before bagging is applied. A key question is
how the estimated functions being bagged correspond to the function being
estimated. If serious mismatches are avoided, one important source of bias
can be reduced. In addition, one should always proceed with great caution if
one has very weak classifiers. We show in later chapters that if one has weak
classifiers, alternative procedures may be called for.

4.5.3 Sometimes Bagging Can Make the Variance Worse

Bagging sometimes can also perform poorly with respect to the variance
(Grandvalet, 2004). Figure 4.5 shows a scatterplot with a binary outcome.
The observations are represented by shaded rectangles. Two are far darker
than the rest. Both are outliers in z. Consider now their role for the fitted
values.

Suppose that the response is a linear function of the z. The fitted values,
therefore, should also be a linear function of . Working with a linear function
makes the exposition much easier, and the general lessons from the discussion
that follows apply when the response and the fitted values are a nonlinear
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Fig. 4.5. The role of influence in bagging.

function of x. The lessons carry over as well to fitting exercises when there is
more than one predictor.

The solid line shows the fitted values with the lower-right outlier excluded
from the data. The dotted line shows the fitted values with the lower-right
outlier included. The lines are rather different, implying that whether that
value is included in the analysis alters the response function substantially.
Therefore, the outlier is influential.

In contrast, whether the outlier in the upper-right part of the scatterplot
is included makes little difference in the fitted values. It happens to fall very
near the line generated by the other fitted values. Deleting it does not change
the fit a great deal. Therefore, it is not influential.

However, because the upper-left outlier increases substantially the vari-
ance of x without increasing the variance of the residuals very much, it helps
to anchor the fitted values. Within the thought experiment of independent
random samples of training data from a well-defined population, the fitted
values will be more stable if values such as the upper-left outlier are present.
Recall that to have substantial influence, an observation needs to be away
from the mass of the data in the space defined by the predictors and also
needs to have a large disparity between its fitted value of the response and its
actual value. For an accessible discussion in the case of linear regression see
Cook and Weisberg (1999: 360) and Pena (2005).

Now think about a set of bootstrap samples of the data. If there is an
observation like the lower-right outlier, the fitted values will vary a great deal
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depending on whether that influential observation happens to be in the sam-
ple. But then, averaging over bootstrap samples can help to stabilize the fitted
values. This means that in the canonical thought experiment, the variance over
random samples from the same population will be reduced. Bagging is doing
just what it is supposed to do; the bagged results are an improvement.

The outlier observation in the upper right is not influential but helps to
stabilize the fitted values. As a result, bootstrap sampling tends to destabilize
the fitted values. When that outlier is by chance not included in the bootstrap
sample, the fitted values derived from the other observations will tend to vary
more over bootstrap samples. An observation that helps to anchor the fit is
absent.

In practice, instances in which bagging can increase the variance some-
times can be spotted. A good place to start is with the univariate statistics
for all predictors and the usual search for outliers and highly skewed or un-
balanced distributions. Insofar as outliers can be excluded from the analysis
on subject matter grounds (e.g., an observation is so atypical that it proba-
bly represents some kind data of error), the risks to bagging can be reduced.
In the same spirit, highly skewed distributions might be transformed toward
more symmetric distributions.

For highly unbalanced, categorical predictor variables with three or more
classes, it can help to collapse classes. In the binary case, sometimes it is
possible to combine two or more predictors in a way that still makes subject
matter sense and restores some balance. For example, people with a PhD
could be combined with people holding other advanced degrees to define a
new variable equal to 1 if there is any post college education, and 0 otherwise.
And there is always the option of dropping highly unbalanced predictors from
the analysis.

However, problems with univariate distributions may not prove to have
serious consequences. The predictor in question may not figure importantly
in the fit because its relationship with the response is weak. Indeed, it may be
excluded from the model altogether. In addition, the region in the predictor
space where the instability is most manifest may be of little subject matter
interest. For example, there may be little interest in the fitted values near the
tails of the predictor distribution. Finally, where the mass of the data are, the
impact of the instability may be modest. Thus in Figure 4.5, the two lines are
much the same toward the middle of the distribution of x. In short, some trial
and error can be useful before a final decision is made to exclude outliers.

There are extensions of conventional influence statistics that can be applied
to bagging before the bagging begins (Grandvalet, 2004: 267-268). Although
they have yet to be battled tested, they may be able to help in finding ob-
servations that are likely to be influential. But, the problem for bagging is
somewhat different. One needs to find observations that ought to be influ-
ential because they are outliers in the space defined by the predictors, but
that are actually not influential because they fall on the path of the fitted
values constructed from the other observations. In Grandvalet’s words, such
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values provide “good” influence. Unfortunately, good influence leads to “bad”
bagging.

The problems with bagging just described have their analogues for quan-
titative responses. Bagging is at its best when the problem to overcome is
instability. Bagging when the fitted values are already very stable (or when
the fitted values contain large amounts of bias) can make things worse. It is
important to examine the data carefully before bagging is applied.

4.5.4 Losing the Trees for the Forest

Even when bagging performs as advertised, the price for averaging over trees
can be high. There is no longer a single tree structure to interpret and, there-
fore, no tree diagram. Consequently, there is no direct way to consider how
the inputs are related to the output. This is a very serious problem to which
we return in the next chapter.

With no tree to interpret, the basic output from bagging is the predicted
class for each case. Commonly there is an estimate of the classification error
and a cross-tabulation of the classes predicted by the classes observed. This is
nothing more than a confusion table but now based on averaging over trees.
In addition, there can be separate error calculations for the different response
classes, and a comparison of the number of false negatives to the number of
false positives. If out-of-bag data are used, the confusion table is an even more
honest representation of the results. Sometimes the software will store each of
the trees as well, although these are rarely of any interest because the amount
of information is typically overwhelming.

4.5.5 Bagging Is Only an Algorithm

Bagging may be seen less as an extension of CART and more as an illustration
of what Breiman (2001b) calls “algorithmic modeling.” Algorithmic models
are computer algorithms designed to solve very particular data analysis prob-
lems. Linking inputs to outputs so that classification errors are small is a key
example. Although there may also be an interest in describing how the in-
puts are linked to outputs, there is no effort to represent in the algorithm the
mechanisms by which the linkage occurs. Thus, algorithmic models are not
causal models. For researchers who want causal models, bagging is not the
procedure.

4.6 An Example

Table 4.1 shows the bagged confusion table for the domestic violence data.
Before bagging was applied, some CART results were examined to determine
if in general CART might be appropriate for these data. Taking the empirical



4.7 Bagging a Quantitative Response Variable 187

distribution as the prior and using the default of equal costs for false negatives
and false positives, CART seemed to help.

According to the bagged results in Table 4.1, there are 516 observations
overall with .29 of them misclassified. About .15 of the households are in-
correctly classified as having chronic domestic violence problems, and about
.82 of the households are incorrectly classified as not having chronic domestic
violence problems. The proportion of incorrect no DV classifications is .22,
and the proportion of incorrect DV classifications is .75. Table 4.1 uses the
out-of-bag (OOB) data to construct the fitted values, so the confusion table
is more honest than the CART confusion tables in which the test data are
the same as the training data. A confusion table was constructed from CART
output using the same data, but with no bagging applied. The proportion
of misclassified cases overall was .24, down from .29. CART was a bit too
optimistic.

Predict No DV |Predict DV Model Error
No DV 347 60 .15
DV 89 20 .82
Use Error .22 .75 Overall Error = .29

Table 4.1. Bagged CART confusion table for estimates of domestic violence.

4.7 Bagging a Quantitative Response Variable

Bagging works by the same general principles when the response variable is
quantitative. Recall that CART constructs a regression tree by maximizing
the reduction in the error sum of squares at each split. Each case is placed in
a terminal node with a conditional mean. That mean is the predicted value
for all cases of that terminal node.

All of the concerns about overfitting apply, especially given the potential
impact that outliers can have on the fitting process when the response variable
is quantitative. Recall that with the sum of squares fitting function, a few cases
that fall a substantial distance from the mass of the data can produce results
that do not characterize well the data on hand and do not generalize well
either.

At the same time, overfitting is not always a problem. The consequences
of overfitting can be unimportant if

1. The number of observations is large.
2. The number of predictors is small.
3. The number of terminal nodes is small.
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4. There are no observations that fall some distance away from the mass of
the data for the joint distribution of response variable and the predictors.

With a numerical response variable, bagging averages over trees in much
the same way it averages over trees when the response variable is categorical.
For each tree, each observation is placed in a terminal node and assigned the
mean of that terminal node. Then, the average of these assigned means over
trees is computed for each observation. This average value for each case is
the bagged fitted value used. It is an average of conditional means for a large
number of regression trees. The averaging process will tend to cancel out the
impact of trees producing extreme conditional means and in so doing, helps
to reduce the impact of overfitting. If for each tree, it is the OOB data that
are placed in terminal nodes, the overfitting problems can be reduced even
more.

As just noted however, overfitting is not necessarily a problem for CART
analyses. To illustrate, the CART regression analysis undertaken earlier for
high school grade point average was done again with bagged regression trees.
Recall that there were approximately 8000 observations. This time eight pre-
dictors were used.

There was no evidence of outliers in the joint distribution of the predictors
and the response. A series of bivariate scatterplots was first examined, and no
apparent outliers were spotted. However, a series of bivariate plots is not the
same as a single multivariate plot. So, the model implied by the CART results
was re-estimated using linear regression with appropriate interaction terms.
Then Cook’s distance was computed for each observation. As expected, with
so large a sample and relatively few predictors, no single observation stood
out as problematic. Taken together, these two approaches are not iron clad
proof that all is well, but make it a reasonable working premise.

It was not surprising, therefore, that bagging did not make an important
difference. The root mean squared error (i.e., the standard deviation of the
residuals) was .4136 for the CART results and .4132 for the bagged CART
results. The grade point average response variable ranged from 1.0 to 5.0,
therefore a difference of the root mean square error in the fourth decimal
place is effectively noise.

4.8 Software Considerations

In R, the bagging procedure (i.e., bagging() in the ipred library) can be ap-
plied to classification, regression, and survival trees. The arguments from these
procedures can be passed to ipred(). For example, one set the prior in rpart()
to take misclassification costs into account, and this information is used in
ipred(). The library was written by Andrea Peters (Andrea.Peters@imbe.
imed.uni-erlangen.de) and Torsten Hothorn (Torsten.Hothorn@rzmail.uni-
erlangen.de). The package maintainer is Andrea Peters. Perhaps the key con-
cern is that when confusion tables are constructed, or when other measures of
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performance are computed, one must be clear on what is being done. There
are at least three possibilities.

1. Trees are bagged as usual, and bagged classifications or bagged conditional
means constructed. These are then compared to the actual classifications
or response variable values in the original data from which bootstrap
samples were drawn.

2. Trees are bagged as usual, and bagged classifications or bagged conditional
means constructed. The software stores the predictor values leading to
each terminal node. New data (from a test sample) are dropped down the
bagged tree and assigned to terminal nodes based on the values of their
predictors. Each of the new observations is assigned a class or conditional
mean determined by the class or conditional mean of the terminal node
in which it lands. These fitted values for the new data are compared to
the actual values of the response in the new data.

3. CART is used to grow a single tree using a bootstrap sample of the data.
As usual, classifications or conditional means are constructed for each
terminal node. The set of predictor values leading to each terminal node
is stored. Observations not included in the bootstrap sample are noted.
These are the out-of-bag observations for that tree. The out-of-bag obser-
vations are then dropped down the tree and assigned the class or condi-
tional mean of the terminal node in which they land. The same process
is repeated for a number of trees. When the votes are cast to determine
class membership or when conditional means over trees are averaged, the
only trees considered for a given observation are the ones for which that
observation was not in the training data. That is, for a given case i, the
only trees that count are the trees for which case ¢ was not used (i.e., it
was among the out-of-bag observations). Generally about one-third of the
original data are not chosen to be included in each training sample. Even
with a relatively small number of trees, therefore, each of the observations
will have several votes or conditional means to average.

The third method was used for analysis of grade point average, just re-
ported. The second and third methods are generally more honest than the
first because the separation between training data and the test data is more
complete. But all three methods are often better than no bagging at all. The
drawback to the second method is that a second random sample from the
same population is needed. The drawback to the third method is that it will
often be useful to construct a larger number of trees because for each tree,
only about a third of the data figure in the voting. For example, although
25 trees may be good enough for methods one and two, 100 trees may be a
good number for method three. But usually, 100 trees will not be a prohibitive
computational burden.

A rather different set of issues can sometimes be raised by the bootstrap
sampling process. In particular, a given sample may produce predictors or
response variables that are constants. This is more likely when predictor or
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response observations are categorical and unbalanced. For example, if in a
sample of 300 inmates only 30 are Asian-Americans, a bootstrap sample may
include no Asian-Americans whatsoever.

The problem for the software is what to do in such situations. One ap-
proach would be to discard samples in which any of the variables were con-
stants. Another approach would be to throw out the offending variables. How-
ever, discarding variables is not an option if the response variable is one of
the set. In any case, the worst outcome is for the software to crash. It can be
well worth the time to read the software documentation especially carefully if
there are highly unbalanced variables in the dataset.

4.9 Summary and Conclusions

Bagging is an important conceptual advance and a useful tool in practice.
The conceptual advance is to aggregate fitted values from a large number of
bootstrap samples. Ideally, many sets of fitted values, each with low bias but
high variance, may be averaged in a manner than can effectively reduce the
bite of the bias—variance tradeoff. Thanks to bagging, there can be a way to
usefully address this long-standing dilemma in statistics. Moreover, the ways
in which bagging aggregates the fitted values is the basis for other statistical
learning developments.

In practice, bagging can generate fitted values that often reproduce the
data well and forecast with considerable skill. Both masters are served without
making unrealistic demands on available computing power. Bagging can also
be usefully applied to a wide variety of fitting procedures.

But bagging also suffers from several problems. Perhaps most important,
there is no way within the procedure itself to depict how the predictors are
related to the response. One can obtain a more honest set of fitted values
and a more honest evaluation of how good the fitted values really are. But as
a descriptive device, bagging is pretty much a bust. Other tools are needed,
which are considered in the next chapter.

A second problem is that because the same predictors are available from
tree to tree, the sets of fitted values are not fully independent. The averaging
is not as effective as it could be if the sets of fitted values were closer to
independent. This too is addressed shortly.

Third, bagging can stumble badly if the fitting function is consistently and
substantially inappropriate. Large and systematic errors in the fitted values
are just reproduced a large number of times and do not, therefore, cancel out
in the averaging process. For categorical response variables, bagging a very
weak classifier can sometimes make things worse.

Fourth, the bootstrap sampling can lead to problems when categorical
predictors or outcomes are highly unbalanced. For any given bootstrap sample,
the unbalanced variable can become a constant. Depending on the fitting
function being bagged, the entire procedure may abort.
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Finally, bagging can actually increase instability if there are outliers that
help to anchor the fit. Such outliers will be lost to some of the bootstrap
samples. Bagging can be extended so that many of these problems are usefully
addressed, even if full solutions are not available. We turn to some of these
solutions in the next chapter. And in their potential solutions is found another
form of statistical learning, still farther away from conventional regression
analysis.

Exercises
Problem Set 1

The goal of this first exercise is to compare the performance of linear regres-
sion, CART, and bagging applied to CART. Construct the following data set
in which the response is a quadratic function of a single predictor.

x1=rnorm(500)
x12=x1"2
y=1+(2*(x12) )+ (2*rnorm(500) )

1. Plot the 1 4+ (2 x x12) against x1. This is the “true” relationship between
the response and the predictor without the complication of the distur-
bances. This is the f(X) you hope to recover from the data.

2. Proceed as if you know that the f(X) is quadratic. Fit a linear model
with x12 as the predictor. Then plot the fitted values against x1. You can
see how well linear regression does when the functional form is known.

3. Now suppose that you do not know that the f(X) is quadratic. Apply
linear regression to the same response variable using x1(not x12) as the
sole predictor. Construct the predicted values and plot the fitted values
against x1. How do the fitted values compare to what you know to be the
correct f(X)? (It is common to assume the functional form is linear when
the functional form is unknown.)

4. Apply CART to the same response variable using rpart() and x1(not x12)
as the sole predictor. Use the default settings. Construct the predicted
values, using predict(). Then plot the fitted values against x1. How do the
CART fitted values compare to what you know to be the correct f(X)?
How do the CART fitted values compare to the fitted values from the
linear regression with x1 as the sole predictor?

5. Apply bagging to the same response variable using ipred() and x1 as the
sole predictor. Use the default settings. Construct the predicted values
using predict(). Then plot the fitted values against x1. How do the bagged
fitted values compare to the linear regression fitted values?
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6. You know that the relationship between the response and x1 should be a
smooth parabola. How do the fitted values from CART compare to the
fitted values from bagging? What feature of bagging is highlighted?

Problem Set 2

Load the dataset “Freedman” from the car library. For 100 American cities,
there are four variables: the crime rate, the population, population density,
and proportion nonwhite. As before, the crime rate is the response and the
other variables are predictors.

1. Use rpart() and its default values to fit a CART model. Compute the
root mean square error for the model. One way to do this is to use pre-
dict.rpart() to obtain the fitted values and with the observed values for
the variable “crime,” compute the root mean square error in R. Then use
bagging() from the library ipred and the out-of-bag observations to obtain
a bagged value for the root mean square error for the same CART model.
Compare the two estimates of fit and explain why they differ.

2. Using sd(), compute the standard deviation for the CART fitted values
and the bagged fitted values. Compare the two standard deviations and
explain why they differ.

Problem Set 3

Load the dataset “frogs” from the library DAAG Using “pres.abs” as the
response build a CART model under the default settings.

1. Construct a confusion table with “pres.abs” and the predicted classes from
the model. Now, using bagging() from the library ipred, bag the CART
model using the out-of-bag observations. Construct a confusion table with
“pres.abs” and the bagged predicted classes from the model. Compare the
two confusion tables and explain why they differ.

2. Cross-tabulate using table() or xtab() the fitted classes from CART and
the bagged CART. Examine the two cells for cases in which the two sets
of fitted classes do not agree. Why is the number of observations in each
about the same?
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Random Forests

5.1 Introduction and Overview

Just as in bagging, imagine constructing a large number of trees with boot-
strap samples from a dataset. But now, as each tree is constructed, take a
random sample of predictors before each node is split. For example, if there
are twenty predictors, choose a random five as candidates for defining the
split. Then construct the best split, as usual, but selecting only from the five
chosen. Repeat this process for each node. And as in bagging, do not prune.
Thus, each tree is produced from a random sample of cases, and at each split
a random sample of predictors. Finally, just as in bagging, classify by a major-
ity vote of the full set of trees. Breiman calls the set of such trees a “random
forest” (Breiman, 2001a).

The random forest algorithm is, therefore, very much like the bagging
algorithm. Again let N be the number of observations and assume for now
that the response variable is binary.

Take a random sample of size N with replacement from the data.

Take a random sample without replacement of the predictors.

Construct the first CART partition of the data.

Repeat Step 2 for each subsequent split until the tree is as large as desired.

Do not prune.

5. Drop the out-of-bag data down the tree. Store the class assigned to each
observation along with each observation’s predictor values.

6. Repeat Steps 1-5 a large number of times (e.g., 500).

7. Using only the class assigned to each observation when that observation
is not used to build the tree, count the number of times over trees that
the observation is classified in one category and the number of times over
trees it is classified in the other category.

8. Assign each case to a category by a majority vote over the set of trees.

Thus, if 51% of the time over a large number of trees a given case is

classified as a “1,” that becomes its estimated classification.

Ll

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_5, (© Springer Science+Business Media, LLC 2008
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5.1.1 Unpacking How Random Forests Works

It should be clear that random forests draws on many features of procedures
discussed in the last two chapters. To begin, random forests uses CART as a
key building block. An important benefit is that one can capitalize on CART’s
strengths and flexibility. For example, large trees can be effective tools for
reducing bias, and the averaging over trees can substantially reduce instability
that might otherwise result. In addition, the relative costs of false negatives
and false positives can be explicitly considered. Especially for policy-related
applications, this can be vital.

It should also be apparent that random forests is bagging, but more so.
By working with a random sample of predictors at each possible split, the
fitted values across trees are more independent. Consequently, the gains from
averaging over a large number of trees can be more dramatic. But there is
more to the story.

If the individual trees in a random forest are unbiased in their fitted values
and estimated splits, the gains from random forest are solely with respect to
the variance. In practice, of course, there is no way to know if this is true and
there are usually lots of reasons for skepticism. Sometimes, therefore, random
forests can be seen as helping to reduce the bias.

Perhaps most directly, random forests is able to work with a very large
number of predictors, even more predictors than there are observations. In
addition to conventional regression modeling, all of the statistical learning
procedures considered thus far have required that the number of predictors
be less than the number of observations (usually much less). An obvious gain
with random forests is that more information may be brought to bear on the
fitting process. More predictors can weigh in, which can reduce bias. Variables
that should play a role and that otherwise would have been excluded, can
participate.

A more subtle gain is that different sets of predictors can be evaluated
for different splits so that different “models” can be applied as needed. To
appreciate how this works recall the CART splitting criterion:

Al(s, A) = I(A) — p(AL)I(AL) — p(ARr)I(ARr), (5.1)

where I(A) is the value of the parent impurity, p(Ag) is the probability of
a case falling in the right daughter node, p(Ay,) is the probability of a case
falling in the left daughter node, I(Ag) is the impurity of the right daughter
node, and I(Ay) is the impurity of the left daughter node. CART tries to find
the predictor and the split for which AI(s, A) is as large as possible.

The key point is that the usefulness of a split is a function of the two
new impurities and the probability of cases falling into either of the prospec-
tive daughter nodes. Suppose there is a predictor that could produce splits in
which one of the daughter nodes is very homogeneous but has relatively few
observations whereas the other node is quite heterogeneous but has relatively
many observations. Suppose there is another predictor that could generate
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two nodes of about the same size, each of which is only moderately homo-
geneous. If these two predictors were forced to compete against each other,
the second predictor might well be chosen, and the small local region that
the first predictor would address be ignored. However, if the second predictor
were not in the pool of competitors, the first might be selected instead.

Similar issues arise with predictors that are substantially correlated. There
may be little difference empirically between the two so that when they compete
to be a splitting variable, one might be chosen almost as easily as the other.
But they would not partition the data in exactly the same way. The two
partitions that would be defined would largely overlap. But each partition
would have unique content as well. The unique content defined by the predictor
not chosen would not be included in that step. Moreover, with the shared area
now removed from consideration, the chances that the neglected predictor
would be selected later would be significantly reduced. But if the two variables
each had an opportunity to be selected without competing against each other,
each might be able to contribute.

Both kinds of competitions are in practice likely to involve many variables,
especially if there are a large number of predictors. Then, there can be a few
predictors that in a procedure such as CART will dominate the fitting process
because on the average they consistently perform just a bit better than their
competitors. Consequently, many other predictors, which could be useful for
very local features of the data, are rarely selected as splitting variables.

The same issues can arise for a single predictor. Recall that in CART,
all predictors are evaluated, even predictors previously selected. The same
predictor may be selected more than once. But each new selection for a given
predictor implies the construction of a new basis function for that predictor
(i.e., a different break point). In the competition between all predictors at
each stage, basis functions that might be very important, but only for a small
fraction of the data, risk being overlooked.

With random forests computed for a large enough number of trees, each
predictor will have at least several opportunities to be the predictor defining a
split. And in those opportunities, it will have very few competitors. Moreover,
if there are a relatively small number of dominant predictors, much of the
time a dominant predictor will not be included. As a result, predictors that
might ordinarily be overlooked have the opportunity to contribute to the fit.
The same implications follow for different basis functions for given predictors.
With a changing mix of competitors, highly specialized basis functions may
have the opportunity to define a split.

The sampling of predictors also has beneficial effects for the variance be-
cause of the averaging over trees. In effect, the predictor sampling and aver-
aging leads to shrinkage of the impact of each predictor on the fitted values.
The impacts on the fitted values when a predictor is included are averaged
with the impacts on the fitted values when that predictor is not included.
This regularization can help to reduce the variance beyond what would follow
solely from the sampling of observations.
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To help fix these ideas, Figure 5.1 shows a partitioning diagram much like
the one used earlier when CART was first introduced. As before, there are two
predictors, « and z. There is a choice to be made between the vertical split on
z represented by the solid line and the horizontal split on z represented by the
dashed line. The horizontal split might not be selected because its one very
homogeneous partition has relatively few observations. But if the predictor z
were not available, the horizontal split shown might well be chosen.

Very much the same issues arise if the vertical split is made, but then the
choice is between a horizontal split and another vertical split, which would
imply a second basis function for z. Consider the right vertical partition, for
example. The potential horizontal split shown would have to compete against
all possible vertical splits of z. But if z were not among the competitors for
the second split, the horizontal split might well be chosen.

A
A A
A
______ P T
X |A B AA B
A
5 AA [AB BB
B B
A B B
A B B

Recursive Partitioning of a Binary Outcome With Rare Cases
(where G = A or B and predictors are Z and X)

Fig. 5.1. Partitioning for some rare cases.

Consider now Figure 5.2, a reproduction of Figure 3.8. This figure was
used earlier to illustrate CART instabilities when two predictors were highly
correlated. Here the point is that whether the partition defined by the dashed
line or the partition defined by the dotted line were selected, it would make
no difference for the three As in the upper-right hand corner. But whether
the fourth A, just below the dashed line, would be included depends on which
partition won in the fitting competition. If the horizontal partition were to win,
the fourth A would be placed in a very heterogeneous grouping. If the vertical
partition were to win, the fourth A would be placed in a very homogeneous
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grouping. And if the former, the fact that the fourth A was very similar to
its three A neighbors would probably be lost to the analysis. With the three
As already in their own partition, it is unlikely that another partition would
be defined later which was also very high on x and z. If x were not available
when the second split were determined, the vertical slice shown might well be
the one selected.

A
______ A_A
" "BA B A
A A B
X B B|A AB
A B B
B BA|A
B B
A B
B
Z

Recursive Partitioning of a Binary Outcome with High Colinearity
(where G =A or B and predictors are Z and X)

Fig. 5.2. Competition between highly correlated predictors

The goal of finding a role for highly specialized predictors is an argument
for growing very large, unpruned trees. Generally, this seems to be a wise strat-
egy. However, large trees can sometimes lead to very unstable results when
there are a substantial number of predictors that at best are weakly related to
the response and correlated substantially with one another (Segal, 2003). In
effect, this becomes a problem with multicolinearity that the averaging over
trees becomes more difficult. The instability is too large to be readily averaged
out. In practice, therefore, it can occasionally be useful to work with smaller
trees, especially when there are a large number of weak predictors that are
strongly associated with one another. If before a data analysis is begun there
are reasons to worry about such problems, tree size can be used as a tuning
parameter in yet another manifestation of the bias—variance tradeoft.

Geurts and his colleagues (2006) have proposed another method for select-
ing predictors for enhancing independence across trees and further opening
up the predictor competition. They do not build each tree from a bootstrap
sample of the data. Rather, for each random sample of predictors, they select
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splits for each predictor at random (with equal probability), subject to some
minimum number of observations in the smaller of the two partitions. Then, as
in random forests, the predictor that reduces heterogeneity the most is chosen
to define the two subsets of observations. They claim that this approach will
reduce the overall heterogeneity at least as much as other ensemble procedures
without a substantial increase in bias. However, this conclusion would seem to
depend on how good the predictors really are. Moreover, if one is interested in
interpreting the manner in which inputs are related to outputs, their method
risks serious subject matter errors. In the averaging process over trees, model
results characterized by optimal splits are weighted the same as model results
characterized by random spits.

In summary, with forecasting accuracy as a criterion, bagging is in principle
an improvement over CART. And by this same criterion, random forests is in
principle an improvement over bagging. Indeed, random forests is among the
very best classifiers invented to date (Breiman, 2001a). A key reason is the
ability to consider a very large number of predictors, even more predictors
than observations. This can lead to reductions in the bias and reductions in
the variance.

5.2 An Initial Illustration

Table 5.1 shows some results for the domestic violence data described earlier.
As before, there are a little over 500 observations, and even if just double
interactions are considered, well over 100 predictors. This time, the goal is not
to forecast new calls for service to the police department that likely involve
domestic violence, but only those calls in which there is evidence that felony
domestic violence has actually occurred. Such incidents represent about 4%
of the cases. They are very small as a fraction of all domestic violence calls for
service. And as such, they would normally be extremely difficult to forecast
with better skill than using the marginal distribution of the response alone.
One would make only four mistakes in 100 households if one classified all
households as not having new incidents of serious domestic violence.

Using the response variable as the only source of information would in
this case mean never correctly identifying serious domestic violence house-
holds. The policy recommendation might be for the police to assume that the
domestic violence incident to which they had been called would be the last se-
rious one for that household. This would almost certainly be an unsatisfactory
result, which implies that there are significant costs from false negatives.

Using a cost ratio of 10 to 1 for false negatives to false positives favored by
the police department (more on how to do that shortly), Table 5.1 shows that
random forests incorrectly classifies households 13 times out of 100 overall.
If equal costs were used and the empirical distribution of the response vari-
able taken as the prior distribution, random forests would likely do at least
as well as the marginal distribution (i.e. four mistakes per 100 households).
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But whenever costs other than equal ones are introduced, the overall error
proportion will increase, so this result is no surprise. It is also not a problem.
More instructive measures of performance are found in the row propor-
tions. Random forests manages to correctly identify the very rare serious do-
mestic violence households about half the time with a model error of only .30
for households without these problems. As one would expect, when a logistic
regression was applied to the data, not a single incident of serious domestic
violence was identified, either correctly or incorrectly. The logistic regression
performed no better than the marginal distribution of the response.

No DV Forecasted|DV Forecasted Model Error
No DV 341 146 .30
DV 15 14 51
Use Error .04 91 Overall Error = .13

Table 5.1. Confusion table for the ten-to-one random forest model for new domestic
violence incidents.

The use errors (i.e., column proportions) also look promising. When no
future incidents of domestic violence are forecasted, that forecast is correct
about 96 times out of 100. When future incidents of domestic violence are fore-
casted, that forecast is correct about 1 time in 10. Although that might seem
to be disappointing, it is a reflection of the costs assigned. The results imply
that the police department is prepared to live with nine false positives for
every true positive. If that tradeoff is indeed acceptable, then the forecasting
exercise works as intended.

5.3 A Few Formalities

With some initial material on random forests behind us, it is useful to take a
bit more formal look at the procedure. We build on an exposition by Breiman
(2001a). The concepts considered make more rigorous some ideas that we have
used in the past two chapters, and provide important groundwork for material
to come. As before, we focus on categorical, and especially binary, response
variables.

We also need to change notation just a bit. Bold type is used for vectors
and matrices. Capital letters are used for random variables.

5.3.1 What Is a Random Forest?

With categorical response variables, a random forest is a classifier. More than
two classes can be used. The intent is to assign classes to observations using
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information contained in a set of predictors. A random forest is constructed
from a set of K classification trees, each based in part on chance mechanisms.

We formally represent the random forest classifier as a collection of tree-
structured classifiers {f(x,0%),k = 1,...}, where x is an input vector of P
predictor values used to assign a class, and k is an index for a given tree. Each
Oy, is a random vector constructed for the kth tree so that it is independent
of past random vectors @q,...,0,_1, and is generated from the same dis-
tribution. For bagging, it is the means by which observations are selected at
random with replacement from the training data. For random forests, it is also
the means by which subsets of predictors are sampled without replacement
for each potential split. In both cases, Oy is a collection of integers. Integers
for both sampling procedures can be represented by Oj.

But we are getting ahead of ourselves. The output from a given classifier
is an assigned class for each observation, determined by the input values x. In
CART, for example, the class assigned to an observation is the class associated
with the terminal node in which an observation falls. With random forests,
the class assigned to each observation is determined by a vote over the set of
tree classifiers for which that observation was not part of the training dataset.
That is, classes are assigned to observations much as they are in bagging. It
is conceptually very important to distinguish between the class assigned by
the kth classifier and the class ultimately assigned by a vote.

5.3.2 Margins and Generalization Error for Classifiers in General

Suppose there is a training dataset with predictor values and associated values
for a categorical response. A training dataset has been drawn at random. This
means that the data on hand can be treated as a realization of two kinds of
random variables: a set of predictors and a response variable.

Consider now a single data point from the training data. If the training
data have, for instance, 250 observations and 20 variables, that data point
might be the 27th row in a 250 by 20 data matrix. The values in this row will
change from sample to sample. Consequently, the set of P predictor values
can be represented by the random variable X. The actual class for that data
point will be represented by the random variable Y.

Suppose there is an ensemble of K classifiers, fi(x), f2(x),. .., fx(x). For
the moment, we do not consider how these different classifiers are constructed.
The margin function at the data point X, Y is then defined as

mg(X,Y) =avI(fr(X)=Y) — I]_I;éa%(aka(fk(X) =7), (5.2)

where I(.) is an indicator function, j is an incorrect class, avy denotes averag-
ing over the set of classifiers for a single realized data point, and max denotes
the largest value.

For a given set of z-values and the associated observed class, the margin is
the average number of votes for the correct observed class minus the maximum
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average number of votes for any other incorrect class. Thus, the margin is the
smallest spread between the number of correct and incorrect votes for a given
data point. When there are only two classes, there is only one spread to worry
about, and the word “maximum” is unnecessary.

From the definition of the margin function, generalization error is then

9= PX,Y(mg(Xv Y) < 0)7 (53)

where P means probability (easily confused with p, which can be the number
of predictors.

The probability is over the space represented by the random variables
X,Y, so that generalization error addresses what happens to the margin
over different realizations of the data point. Generalization error, therefore, is
the probability over realizations of the data point that the classification vote
will be overturned (i.e., go from positive to negative), and the assigned class
changed. A low probability indicates the class assigned is likely to be stable
over random samples from the same population.

This definition can be somewhat confusing. Generalization error, some-
times called “prediction error”or “test error,” is more typically defined as the
expected loss over all sources of randomness built into the full set of fitted
values. Then, generalization error can be written as

E[L(Y, f(X))]. (5-4)

The loss function L(Y, f(X)), is derived from disparities between the values
of the response predicted and the values of the response observed. Sometimes
a “hat” is placed over the “f” to indicate that it is an estimated function.

Here, we are using a “1-0 loss” because the assigned class is compared
to the observed class via the indicator function. It would also be possible to
compare the observed class to the predicted probability of membership in that
class. Then, a popular loss function is the deviance. But using the deviance
is more appropriate when constructing a given classifier, and if used instead
of the 1-0 loss here would fundamentally change random forests.

5.3.3 Generalization Error for Random Forests

Now, suppose the classifier f(X) = f(X, Oy); the classifier is a random forest.
Breiman proves (2001a) that as the number of trees increases, the estimated
generalization error converges to the population generalization error, which is

The arguments for Px y are (1) the probability of the correct classification
over trees, and (2) the maximum probability over trees of a wrong classifica-
tion. The number of these trees increases without limit. Then the estimated



202 5 Random Forests

generalization error converges to the probability over X, Y that a vote will be
overturned.

There is a lot going on here. The data used for a given tree are a bootstrap
sample of the training dataset. The training dataset is a realization of the
random variables. Thus, two different chance mechanisms are involved, the
first reflected in Pg and the second reflected in Px y.

The importance of the convergence is that demonstrably random forests
does not overfit as more trees are grown. One might think that with more
trees one would get an increasingly false sense of how well the results would
generalize. Breiman proves that this is not true. Given all of the concern about
the problem of overfitting, this is an important result.

It is also important to appreciate the limitations of what is being claimed.
The convergence is to a value for the generalization error in the population.
(This implies that the data are a random sample from that population or
a random realization from a specified stochastic process.) This says nothing
about the quality of the population classifier responsible for that generaliza-
tion error. That classifier could well generate fitted values some distance from
the actual response variable’s observations, and these fitted values could con-
tain substantial systematic error. As a result, the target generalization error
could be some distance from the “true” generalization error were the classifier
in the population the “correct” classifier (Traskin, 2008). In short, Breiman
does not prove that the classifier estimated from the data is a consistent es-
timator of the f(X), even if one has access to all of the necessary predictors
perfectly measured. We return to this point in a slightly different context
shortly.

As noted earlier, however, if there is no postulated f(X), or if the data
analyst is prepared to accept that with the data available the f(X) will not
be well estimated, then concerns about whether the population classifier is
“correct” are moot. Breiman’s proof remains relevant nevertheless because
one might otherwise believe that growing lots of trees in order to assemble a
random forest would lead to overfitting.

5.3.4 The Strength of a Random Forest

The margin function for a given realized data point in a random forest (not
just any classifier) is defined as

mr(X,Y) = Po(f(X,0)=Y) —rjr;éai)/{P@(f(X,@) =) (5.6)
where f(X,0) is a set of classifications that varies because of the chance
mechanism represented by ©. Thus, considering all possible trees and that
realized data point, the margin function of a random forest is the probability
that a classification will be correct minus the maximum probability that it
will be incorrect.
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The margin function for a given random forest takes the training data
as fixed. If one allows for different realizations of the data point, the margin
function for a random forest will vary from realization to realization. But if we
take the expected value of Equation 5.6, over realizations of the data point,
the strength of a random forest is defined as

s = Bx ymr(X,y). (5.7)

Thus, the strength of a random forest is essentially the average margin
over randomly drawn training data. Clearly, the larger this expected value is,
the better.

5.3.5 Dependence

For a given data point, the trees from which a random forests is constructed
differ from each other because of the chance mechanism represented in ©p.
Recall that for both the selection of observations in the bootstrap sample
and the selection of potential predictors at each split, the chance mechanism
generates a set of integers.

For the bootstrap sample, the chance mechanism generates the number of
times each observation in the training data is selected. For the predictors, the
chance mechanism generates integers denoting which predictors are chosen.
For example, if there are 10 predictors 1,...,10, and a decision is made to
select three of them, the integers 1, 3, and 8 might be drawn at random.

Ideally, both chance mechanisms should perform so that the output from
each tree is as independent as possible. That allows the averaging to occur
most effectively. But what output in particular?

For the binary outcome case, there is a relatively straightforward result.
Draw an observation from the relevant population. For any one tree, clas-
sify that realized data point. If the classification is correct, record a 1. If
the classification is incorrect, record a 0. Repeat the process beginning with
random sampling of a single observation. The average correlation between
these coded values, which represent whether the classification is correct, over
samples and trees, is the appropriate measure of dependence. Ideally, this
correlation should be small. The probability that a given observation chosen
at random is classified correctly should be unrelated to whether any other
randomly chosen observation is classified correctly.

5.3.6 Implications

The central concept in this more technical discussion is the margin. From
the margin comes the definition of generalization error. Generalization error,
in turn, depends on the strength of the collection of classifiers and the de-
pendence between them. When the dependence between trees is small and
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the strength of the trees is large, the generalization error will be small. More
precisely, Breiman shows that the upper bound for the generalization error is
- 2
g* = /’(1725)7 (5.8)
s

where p is the average correlation over realizations of the data and trees, and
s is the strength of the set of trees. We want the former to be small and the
latter to be large.

In addition, generalization error will not increase with the number of trees.
Indeed, more trees are generally better than fewer trees because the true value
of the generalization error will be more accurately approximated. In practice,
this means that unless one is limited by the computer being used, a random
forests can usefully include several thousand trees.

Another practical lesson is that a useful random forest classifier will on
the average produce large margins as observations are classified. Put another
way, one should have less confidence in random forest results when the margins
tend to be small. This point and related ones have been made informally in
earlier discussions.

A final lesson is that the random selection of predictors helps to make
random forests more desirable than bagging because dependence is reduced.
Other advantages of random forests are considered shortly.

5.4 Random Forests and Adaptive Nearest Neighbor
Methods

A conceptual link was made earlier between CART and adaptive nearest
neighbor methods. Not surprisingly, similar links can be made between ran-
dom forests and adaptive nearest neighbor methods. But for random forests,
there are a number of more subtle issues (Lin and Jeon, 2006). These are im-
portant not just for a deeper understanding of random forests, but for some
extensions of random forests considered at the end of this chapter.

Recall that in CART, each terminal node represented a region of nearest
neighbors. The boundaries of the neighborhood were constructed adaptively
when the best predictors and their best splits were determined. With the
neighborhood defined, all of the observations inside were used to compute
a mean or proportion. This value became the measure of central tendency
for the response within that neighborhood. In short, each terminal node and
the neighborhood represented had it own conditional mean or conditional
proportion. Figure 3.1 might be a useful memory refresher.

Consider the case in which equals costs are assumed. This makes for a
much easier exposition, and no key points are lost. The calculations that take
place within each terminal node, in effect, rely on a weight given to each value
of the response variable. (Meinshausen, 2006; Lin and Jeon, 2006). For a given
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terminal node, all observations not in that node play no role when the mean
or proportion is computed. Consequently, each such observation has a weight
of zero. For a given terminal node, all of the observations are used when the
mean or proportion is computed. Consequently, each value of the response
variable in that node has a weight equal to 1/n,, where n is the number of
observations in terminal node 7. Once the mean or proportion for a terminal
node is computed, that mean or proportion can serve as a fitted value for all
cases that fall in that terminal node.

CART Use of Weights

\ Terminal Node
B

Terminal Node /
A

G =(0%1)+ (0%2) 4+ (0%4) + (1/3%4) + (1/3%2) + (1/3%6) =4

Fig. 5.3. CART weighting.

Figure 5.3 shows a toy rendering of this account. The tree has but a single
partitioning of the data. There are three values of the response variable in
each terminal node. Consider terminal node B. The mean for terminal node
B is 4, computed with weights of 1/3 for the values in that node and weights
of 0 otherwise. Each of the three observations landing in terminal node B can
be assigned a value of 4 as their fitted value. If the response variable had been
binary, the numbers in the two terminal nodes would have been replaced by
1s and 0s. Then a conditional proportion for each terminal node would be the
outcome of the weighted averaging. And from this an assigned class could be
determined as usual.

A Dbit more formally, a conditional mean or proportion for any terminal
node T is

N
:UT|1' = Zw(iﬂ')yi; (59)
i=1

where the sum is taken over the entire training dataset, and w; is the weight for
each y;. The sum of the weights over all observations is 1.0. In practice, most
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of the weights will be zero because they are not associated with the terminal
node in question. This is really no different from the manner in which nearest
neighbor methods can work when summary measures of a response variable
are computed.

It may be important to underscore that each observation in the training
dataset has a set of weights, one weight for each y;. So, if there are 150
observations in the training data, there will be 150 weight values. It is these
weights and y-values from which the mean or proportion for each terminal
node is computed. Then each observation can have one fitted value depending
on the node in which it comes to rest.

When a classification or regression tree becomes part of a random forest,
there are a large number of trees with which to contend. For a given obser-
vation, there will now be a set of weights produced by each tree. Once again,
most of the weights will be 0, with the rest fractions. Because of the stochastic
nature of each tree, the weights will vary.

Consider a given observation xo characterized by a set of predictor values
and a value for the response variable. From tree to tree, the observations in
the terminal nodes in which xq falls will vary. Consequently, the node mean
will likely vary as well. It follows that the set of weights used to compute the
fitted value for x( will change. In effect, random forests averages these weights
for x¢ (and for all other observations). Then, the average weight replaces the
tree-specific weight in Equation 5.9. Weights greater than zero are sometimes
called “voting points” when the mean or proportion for xq is computed (Lin
and Jeon, 2006: 579-580). The sum of the average weights over all observations
is 1.0. Clearly, the links to adaptive nearest neighbors remain. It is just that
each weight is an average weight over trees.

To help firm up these ideas, Table 5.2 carries on with the toy example
for a single case. There are six observations in the dataset represented in the
table as columns. A very small random forest of three trees is grown. To keep
the table format manageable, assume that despite sampling with replacement,
each observation appears just once in each bootstrap sample. The cell entries
for the first three rows are the CART weights for each of the three trees. The
last row is the average of each column. Each row sums to 1.0 and the average
weights sum to 1.0 (except for rounding error).

Tree i=1|i=2|i=3|i=4|i=5|i=6

1 01.33].33] 0 [.33] O
2 S| H[0]010]0
3 25(.250 0 .25 0 |.25

Average|.25|.36|.11|.083|.11|.083

Table 5.2. Weights from three random trees for a single observation.
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Table 5.2 contains three sets of CART weights and their average for a
given observation. When in random forests the fitted value is computed for
that observation, the average weights in the last row are used. Each value of
Yiyt = 1,2,...,6, is multiplied by its weight and summed. There would be a
corresponding table for each of the six observations in the dataset.

There are at least three interesting implications that follow from formu-
lating the random forest fitted values in terms of weights. First, a plot of the
weights in the space defined by the predictors can be instructive. To begin,
consider a given xg and all of the nonzero weights for all of the observations
associated with that target point. Then, find each z-value in the predictor
space and mark that point with a symbol for the weight. Figure 5.4 is an
example for CART in which just two predictors are shown: age and income.
The response might be years of education. For the moment, assume that age
and income are unrelated. For ease of exposition, we can ignore the other
predictors used in the analysis such as gender or ethnicity. For simplicity, we
also ignore the weight values.

CART Weights

Income

Age

Fig. 5.4. Weights with two unrelated predictors.

Predictors that define the terminal node in which xq falls will have all of
nonzero weights (1) clustered along the dimensions of x used to define x¢’s
terminal node and (2) spread out along the dimensions of x not used to define
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Xo’s terminal node. Suppose, for example, age alone is used to define the
terminal node. The terminal node only includes individuals between 18 and
24 years of age. Then, the plotted weights would be found within the range
of 18 to 24 years old.

For Figure 5.4, income is not a defining feature of the node; it was not used
to define the relevant splits. Then, the weights would be spread out over its
range. Income is not by itself important for how the terminal node is defined
and plays no systematic role in how the node mean or proportion is computed.
In other words, such plots are characterized by tight clustering along some
dimensions and little clustering at all along others, much as in Figure 5.4.

Suppose now that age and income are related. Perhaps older people tend to
have higher incomes. The basic ideas just presented still apply, but the plot
will be less dramatic. There will now be some clustering along the income
dimension as well because of the association between the two predictors.

Random Forest Weights

Income

Fig. 5.5. Weights with two related predictors.

Random forests leads to somewhat different looking plots. As Figure 5.5
shows, the distinction between predictors that are included and predictors that
are excluded is far less dramatic. One reason is that even weak predictors may
be selected on occasion for use in partitioning the data if the predictors against
which it is competing are even weaker. Another reason is that depending on
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the competing predictors selected by chance for consideration, a splitpoint for
strong predictors may sometimes be chosen that would otherwise be ignored.

Consequently, although there will be more nonzero weights clustering
within regions defined by stronger predictors than elsewhere, there will also
be instances where weights for weak predictors or weak regions within strong
predictors will be greater than zero. Notice that in Figure 5.5 there is cluster-
ing in the vertical direction implying that now there is a cutpoint separating
moderate to low incomes from high incomes. When income does not compete
with age, a useful partitioning of the data tends to be found. Notice also that
there are now voting points for years of age outside of 18 to 24.

It follows that information from income that would have been pushed aside
under CART can be brought to bear in random forests. The fitting burden
is shared, at least a bit, between age and income because nonzero weights
are more widely distributed. In this context, income is an illustration of a
highly specialized predictor that random forests is able to exploit. This is also
another way to think about how random forests regularizes the fitted values.

Compared to CART more generally, random forests can include a wider
variety of locations in the predictor space when conditional means or pro-
portions are computed. There can be more voting points for a larger set of
predictors and partitions within predictors. It is this ability to make better
use of predictors that in part explains random forests’ successes.

A second implication of the weighting formulation is that once one rec-
ognizes that random forests computes its fitted values as weighted averages,
other uses can be made of the weights (Meinshausen, 2006). In particular,
when one has a quantitative response variable (more on this later), the weights
can be used to construct the cumulative distribution of the response values
for each configuration of x-values. And with this in hand, one can compute for
quantitative variables any conditional quantiles of interest such as the median
or the 90th percentile. In effect, one can do random forests quantile regression.

Table 5.3 provides a simple illustration for a given target value xq. There
are ten response values available for xg, listed in order, that have nonzero
average weights across trees. The mean is computed by multiplying each re-
sponse value by its average weight and adding the products. In this case, the
mean is 83. However, quantiles are also available. The 10th quantile is 66.
The 50th quantile (the median) is 82. The 90th quantile is 92. In short, if
information such as that found in Table 5.3 is available, one is not limited to
the mean of each xg.

There will sometimes be interest in the fitted values of conditional medians
to “robustify” random forest results or to consider a central tendency measure
unaffected by the tails of the distribution. Sometimes, there is subject-matter
interest in learning about the conditional distribution of a very high or very
low quantile, especially if those conditional distributions differ from one an-
other and from the conditional distribution for the median.

For example, in today’s world of school accountability based on standard-
ized tests, perhaps students who score especially poorly on standardized tests
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Average Weight|Response Value|Cumulative Weight
.10 66 .10
11 71 21
12 74 .33
.08 78 A1
.09 82 .50
.10 85 .60
.13 87 .73
.07 90 .80
11 98 91
.09 99 1.0

Table 5.3. Weights and cumulative weights for a target value x¢

respond better to smaller classroom sizes than students who excel on standard-
ized tests. The performance distribution on standardized tests, conditioning
on classroom size, differs for good versus poor performers. Random forests
quantile regression can address such concerns. A real illustration is provided
later in this chapter.

A final implication is that the weights provide another way to think about
how a correct classifier would perform. In the population or stochastic process
responsible for the data, the f(X) leads to weights that in turn generate as
a weighted average the systematic part of the response variable. A desirable
classifier working with a random sample from this population or a random
realization from the stochastic process might provide unbiased, or at least
consistent, estimates of those weights. From these estimated weights, unbi-
ased or consistent estimates of the fitted values could be constructed. By this
standard, CART and random forest do not measure up.

5.5 Taking Costs into Account in Random Forests

Just as in CART, there is a need to consider the relative costs of false negatives
and false positives. Otherwise, for each tree, one again has to live with the
default values of equal costs and a prior distribution for the response variable
that is the same as its empirical distribution in the data.

Perhaps the most conceptually direct method would be to allow for a cost
matrix just as CART does. To date, this option is not available in random
forest software, and there are suspicions that it might not work effectively if
it were.

There are four approaches that have been seriously considered for the
binary class case. They differ by whether costs are imposed on the data before
each tree is built, as each tree itself is built, or at the end when classes are
assigned.
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1. Just as in CART, one can use a prior distribution to capture costs when
each tree is built. This has the clear advantages of being based on the me-
chanics of CART and a straightforward way in the binary case to translate
costs into an appropriate prior.

2. After all of the trees are built, one can differentially weight the classi-
fication votes over trees. For example, one vote for classification in the
less common category might count the same as two votes for classifica-
tion in the more common category. This has the advantage of being easily
understood.

3. After all of the trees are built, one can abandon the majority vote rule and
use thresholds that reflect the relative costs of false negatives and false
positives. For instance, rather than classifying as “1” all observations for
which the vote is larger than 50%, one might classify all observations as
“1” when the vote is larger than 33%. This too is easy to understand.

4. When each bootstrap sample is drawn before a tree is built, one can over-
sample one class of cases relative to the other class of cases in much the
same spirit as disproportional stratified sampling used for data collection
(Thompson, 2002: Chapter 11). Before a tree is built, one oversamples the
cases for which forecasting errors are relatively more costly. Conceptually,
this is a lot like altering the prior distribution.

All four approaches share the problem that the actual ratio of false nega-
tives to false positives in the confusion table may not sufficiently mirror the
cost ratio. In practice, this means that whatever method is used to introduce
relative costs, that method is simply considered a way to “tune” the results.
With some trial and error, an appropriate ratio of false negatives to false
positives can usually be achieved.

Although some very tentative experience suggests that in general all four
methods can tune the results as needed, there may be some preference for
tuning by the prior or by stratified bootstrap sampling. Both of these methods
will affect the confusion table through the trees themselves. The structure of
the trees themselves responds to the costs introduced. Changing the way votes
are counted or the thresholds used only affects the classes assigned, and leaves
the trees unchanged. The defaults of equal costs and the empirical prior remain
in effect. It would seem that by allowing the trees themselves to respond to
cost considerations, more responsive forecasts should be produced. Moreover,
any output beyond a confusion table will reflect the role of costs. More is said
about such output shortly.

There is one very important situation in which the stratified sampling ap-
proach is likely to be superior to the other three approaches. If the response
variable is highly unbalanced (e.g., a 95-5 split), any given bootstrap sample
may fail to include enough observations for the rare category. Then, a useful
tree will be difficult to construct. As observed earlier, it will often be difficult
under these circumstances for CART to move beyond the marginal distribu-
tion of the response. Oversampling rare cases when the bootstrap sample is
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drawn will generally eliminate this problem. Using a prior that makes the rare
observations less rare can also help, but that help applies in general and will
not be sufficient if a given bootstrap sample makes the rare cases even more
rare. We consider some examples in depth shortly. But a very brief illustration
is provided now to prime the pump.

5.5.1 A Brief Illustration

Forecast No Misconduct|Forecast Misconduct Model Error
No Misconduct 3311 1357 .29
Misconduct 58 80 42
Use Error .02 .94 Overall Error = .29

Table 5.4. Confusion table for forecasts of serious prison misconduct.

Table 5.4 was constructed using data from the prison misconduct study
described earlier. In this example, the response is incidents of very serious
misconduct, not the garden-variety kind. As noted previously, such miscon-
duct is relatively rare. Less than about 3% of the inmates had such reported
incidents. So, just as for the domestic violence data shown in Table 5.1, it is
difficult to do better than the marginal distribution under the usual CART
defaults.

Suppose that the costs of forecasting errors for the rare cases were substan-
tially higher than the costs of forecasting errors for the common cases. These
relative costs can be effectively introduced by taking a stratified bootstrap
sample, oversampling the rare cases. And by making the rare cases less rare,
problems that might follow from the highly unbalanced response variable can
sometimes be overcome.

For Table 5.4, the bootstrap samples for each of the response categories
was set to equal 100. The “50-50" bootstrap distribution was selected by trial
and error to produce a cost ratio of false negatives to false positives of about
20 to 1. This may be too high for real policy purposes, but it is still within
the range considered reasonable by prison officials.

Why 100 cases each? Experience to date suggests that the sample size
for the less common response category should equal about two-thirds of the
number of cases in the class. If a larger fraction of the less common cases is
sampled, the out-of-bag sample size may be too small.

With the number of bootstrap observations for the less common category
determined to be 100, the 50-50 constraint leads to 100 cases being sampled for
the more common response category. In practice, one determines the sample
size for the less common outcome and then adjusts the sample size of the more
common outcome as needed.
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Table 5.4 can be interpreted just as any of the earlier confusion tables. For
example, the overall proportion of cases incorrectly identified is .29. Random
forests forecasts 42% of the incidents of misconduct incorrectly and 29% of the
no misconduct cases incorrectly. Were prison officials to use these results for
forecasting, a forecast of no serious misconduct would be wrong only 2 times
out of 100, and a forecast of serious misconduct would be wrong 94 times out of
100. But for very serious inmate misconduct, having 1 true positive for about
20 false positives may be an acceptable tradeoff. The misconduct represented
can include homicide, assault, sexual assault, and narcotics trafficking.

To summarize, random forests provides several ways to take the costs of
false negatives and false positives into account. Ignoring these options does
not mean that costs are not affecting the results. The default is equal to the
costs and the use of the marginal distribution of the response variable as the
empirical prior. However, there is to date no formal justification for preferring
one costing method over the others, and the early hands-on experience is far
from conclusive.

5.6 Determining the Importance of the Predictors

Just as for bagging, random forests leaves behind so many trees that col-
lectively they are useless for interpretation. Yet, a central goal of statistical
learning is to explore how inputs are related to outputs. Exactly how best to
do this is currently unresolved, but there are several useful options available.
We begin with a discussion of variable “importance.”

5.6.1 Contributions to the Fit

One approach to predictor importance is to record the decrease in the fitting
measure (e.g., Gini index) each time a given variable is used to define a split.
The sum of these reductions for a given tree is a measure of importance for
that variable when that tree is built. For random forests, one can average this
measure of importance over the set of trees.

As with variance partitions, however, reductions in the fitting criterion
ignore the forecasting skill of a model, which many statisticians treat as the
gold standard. Fit measures are computed with the data used to build the
classifier. They are not computed from test data.

Moreover, it can be difficult to translate contributions to a fit statistic
into practical terms. Simply asserting that a percentage contribution to a fit
statistic is a measure of importance is circular. Importance must be defined
outside of the procedure used to measure it. And what is it about contributions
to a measure of fit that makes a predictor more or less important? Even if an
external definition is provided, is a predictor important if it can account for,
say, 10% of the reduction in impurity?
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In any case, one must be fully clear that contributions to the fit by them-
selves are silent on what would happen if in the real world a predictor is
manipulated. Causality can only be established by how the data were gen-
erated, and causal interpretations depend on there being a real intervention
altering one or more predictors (Berk, 2003).

5.6.2 Contributions to Forecasting Skill

Breiman (2001a) has suggested another form of randomization to assess the
role of each predictor. This method is implemented in the R version of random
forests. It is based on the reduction in predictive accuracy when a predictor
is shuffled so that it cannot make a systematic contribution to a forecast. Re-
ductions in predictive accuracy can be translated into practical terms. Would
a reduction of, say, 10% in forecasting accuracy matter in real applications?
In contrast to fit statistics, forecasting skill has direct implications for actual
decisions.

Breiman’s approach has much in common with the concept of Granger
causality (Granger and Newbold, 1986: Section 7.3). Imagine two times series,
Y; and X,. If the future conditional distribution of Y given current past values
of Y is the same as the future conditional distribution of Y given current and
past values of Y and X, X does not Granger cause Y. If the two future
conditional distributions differ, X is a prima facie cause of Y.

These ideas generalize so that for the baseline conditional distribution,
one can condition not just on current and past values of Y but on current
and past values of other predictors (but not X). Then X Granger causes Y,
conditional on the other predictors, if including X as a predictor changes the
future conditional distribution of Y. In short, the idea of using forecasting skill
as a way to characterize the performance of predictors has been advanced in
both the statistical and econometrics literature.

Breiman’s importance measure of forecasting skill differs perhaps most
significantly from Granger’s in that Breiman does not require time series
data and randomly shuffles the values of predictors rather than dropping (or
adding) predictors from the forecasting model. The latter has some important
implications discussed shortly.

For Breiman’s approach a categorical response variable is constructed us-
ing the following algorithm.

1. Construct a measure prediction error v for each tree as usual by drop-
ping the out-of-bag (OOB) data down the tree. Note that this is a real
forecasting enterprise because data not used to build the tree are used to
evaluate its predictive skill.

2. If there are p predictors, repeat Step 1 p times, but each time with the
values of a given predictor randomly shuffled. The shuffling makes that
predictor on the average unrelated to the response and all other predictors.
For each shuffled predictor j, compute new measures of prediction error,

Vj.
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3. For each of the p predictors, average over trees the difference between the
prediction error with no shuffling and the prediction error with the jth
predictor shuffled.

The average increase in the forecasting error when a given predictor j is
shuffled represents the importance of that predictor for forecasting skill. That
is,

K
IjZ[Il((yju)], j=1,....p, (5.10)
k=i
where there are K trees, v; is the forecasting error with predictor j shuffled,
and v is the forecasting error with none of the predictors shuffled. It is some-
times possible for forecasting accuracy to improve slightly when a variable is
shuffled because of the randomness introduced. A negative measure of fore-
casting importance follows. Negative forecasting importance can be treated
as no decline in accuracy or simply can be ignored.

As written, Equation 5.10 is somewhat open-ended. The measures of fore-
casting error (v and v;) are not defined. One could imagine using the number
of forecasting errors, the percentage of cases forecasted incorrectly, the change
in the margin, or some other measure. Currently, the preferred measure is the
same as the one used when confusion tables are constructed: the proportion
(or percentage) of cases misclassified. This has the advantage of allowing di-
rect comparisons between predictor importance and either the row or column
totals in the table. In addition, all of the other measures considered to date
have been found less satisfactory for one reason or another. For example, some
measures are misleadingly sensitive; small changes in the number of classifi-
cation errors can lead to large changes in the importance measure.

One significant complication is that Equation 5.10 will almost always pro-
duce different importance measures for given predictors for different categories
of the response. That is, there will be for any given predictor a measure of
importance for each class forecasted, and the measures will not generally be
the same. For example, if there are three response classes, there will be three
measures of importance for each predictor that will generally not be the same.
Moreover, this can lead to different rankings of predictors in the forecasting
importance depending on which response category is being considered. Al-
though this may seem odd, it follows directly from the fact that the number
of observations in each response class and the margins for each class will typi-
cally differ. Consequently, a given increase in the number of misclassifications
can have different impacts. A detailed illustration is be presented shortly.

Partly in response to such complications, one can standardize the declines
in forecasting skill. The standard deviation of Equation 5.10 can be computed
over the K trees. In effect, one has a bootstrap estimate over trees of the
standard error associated with the increase in forecasting error, which can be
used as a descriptive measure of stability. Larger values imply less stability.
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Then, one can divide Equation 5.10 by this value. The result can be in-
terpreted as a z-score so that importance measures are now all on the same
scale. And with a bit of a stretch, confidence intervals can be computed and
conventional hypothesis tests performed. It is a stretch because the sampling
distribution of the predictor importance measure is usually not known. Per-
haps more important, the descriptive gains from standardization are modest
at best, as the illustrations that follow make clear.

One of the drawbacks of the shuffling approach to variable importance is
that only one variable is shuffled at a time. There is no role for joint impor-
tance over several predictors. This can be an issue when predictors are not
independent. There will be a contribution to forecasting skill that is uniquely
linked to each predictor and a joint contributions shared between two or more
predictors.

There is currently no option in the random forest software to shuffle more
than one variable at a time. However, it is relatively easy to apply the predic-
tion procedure in random forests using as input the original dataset with two
or more of the predictors shuffled. Then, Equation 5.10 can be employed as
before, where j would now be joined by other predictor subscripts. The main
problem is that the number of potential joint contributions can be very large.
In practice, some subset selection procedure is likely to be needed, perhaps
based on substantive considerations.

It might seem that Granger’s approach of examining forecasting skill with
and without a given predictor included is effectively the same as Breiman’s
shuffling approach. And if so, one might consider, for instance, dropping sets of
predictors to document their joint contribution. But actually, the two strate-
gies are somewhat different. In Granger’s approach, dropping or adding pre-
dictors to the model means that the model itself will be re-estimated each
time. So, the comparisons Granger favors are the result of different predictors
being included and different models. Under Breiman’s approach, the model
is not reconstructed. The shuffling is undertaken as an additional procedure
with the model fixed.

In summary, for many scientists the ability to forecast accurately is the
gold standard of a model’s worth. If one cannot forecast well, it means that
the model cannot usefully reproduce the empirical world. It follows that such
a model has little value. And as now stressed a number of times, a model that
fits the data well will not necessarily forecast well. The take-home message is
simple: if forecasting skill is the gold standard (or even just a very important
criterion by which to evaluate a model), then a predictor’s contribution to
that skill is surely one reasonable measure of that predictor’s importance.

Some Examples

Figures 5.6 to 5.9 show how predictor importance can be represented as a
reduction in forecasting accuracy. The data are, once again, from the prison
study with the response variable very serious misconduct in prison. In each



5.6 Determining the Importance of the Predictors 217

figure, importance is on the horizontal axis and predictor names are on the
vertical axis.

Figure 5.6 displays predictor importance for the “misconduct” response
category. Importance is just the average decline over trees in forecasting accu-
racy. It is, therefore, “unscaled” or “unstandardized.” Taking all the variables
into account, Table 5.4 indicates that serious misconduct is correctly fore-
casted about 58% of the time. That accuracy drops to about 51% (i.e., about
7%) if the variable “Term” is shuffled. It drops to about 52% (i.e., about 6%)
if the variable “Gang” is shuffled. None of the other predictors meaningfully
affect forecasting accuracy. The two most important predictors are “Term”
and “Gang.” Recall that “Term” refers to sentence length and “Gang” refers
to street or prison gang activity.

It is useful to keep in mind that the importance represented is the decline
in forecasting accuracy uniquely attributable to each predictor. Predictive skill
shared between predictors is not included. Thus, for example, the sum of the
declines in forecasting accuracy for all predictors is usually less, often far less,
than overall forecasting accuracy.

Figure 5.7 shows the unscaled importance of the predictor for the no mis-
conduct response category. Now the base is different because the absence of
misconduct is forecast with about 71% accuracy. Moreover, there is no particu-
lar reason why the predictors that play a major role in forecasting misconduct
should play a major role in forecasting no misconduct. Because this may seem
to be counterintuitive, some discussion is warranted.

Recall how classification is accomplished in random forests. The class is
assigned by majority vote. Two features of those votes are especially relevant
here: the margin and the number of actual class members.

Consider a simple example. Suppose a given inmate receives a vote of 25 to
24 to be assigned to the misconduct class category. Suppose that in fact that
inmate has a reported incident of serious misconduct; the forecast is correct.
Now a predictor is shuffled. The vote might be very different. But suppose it
is now 24 to 25. Only one vote has changed. Yet, the inmate is now placed in
the no misconduct class. This increases the forecasting error by one inmate.

Is that one inmate increase enough to matter? It depends on how many
inmates were correctly predicted to have a serious misconduct incident and
how many were incorrectly predicted to have a serious misconduct incident.
Suppose 10 inmates actually had an incident of serious misconduct, with 7
correctly predicted to have an incident of serious misconduct and 3 incorrectly
predicted to have an incident of serious misconduct. Changing just one inmate
from a true positive to a false negative reduces forecasting accuracy from 70%
to 60%. If there had been 100 inmates who actually had incidents of serious
misconduct with 70 true positives and 30 true negatives, changing that one
inmate would reduce forecasting accuracy from 70% to 69%.

In summary, if the margins tend to be small, dropping a predictor can
easily change the class assigned for a significant number of cases. Then, if
the number of true class members is small as well, the change of even a few
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Reduction in Forecasting Accurcy for Misconduct Outcome
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Fig. 5.6. Unscaled forecasting importance for misconduct

cases from one assigned class to another can dramatically affect the proportion
of cases whose class membership was accurately forecasted. Because both the
margins and the class sizes can differ depending on which response category is
considered, forecasting importance of the predictors can differ as well. Thus,
Figure 5.6 looks somewhat different from Figure 5.7. Comparisons such as
these seem to argue for some kind of standardization, perhaps through the
z-scores mentioned earlier.

In Figure 5.7, none of the predictors affect forecasting skill very much. Yet,
“Term” is still the most important predictor. A previous sentence in a state
juvenile facility (CYA) now comes in second. Gang activity drops to third
place.

The differences between Figures 5.6 and 5.7 illustrate the kinds of com-
plications just noted. As an empirical matter, the number of no misconduct
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observations is large. Other things being equal, many cases would have to
change from true negative to false positive for forecasting accuracy to decline
a substantial amount. But it is more complicated than that because mar-
gins for each case will likely differ from the margins when misconduct is the
response category.

Reduction in Forecasting Accurcy for No Misconduct Outcome
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Fig. 5.7. Unscaled forecasting importance for no misconduct.

Figures 5.8 and 5.9 replay the same analysis in standardized scores. The
horizontal axis is now in z-scores. Because forecasting importance is scaled
to be in units of the same size, the two figures can be more easily compared.
However, we already know that forecasting skill declines very little for the
no misconduct class when predictors are shuffled. Those are the facts. It is
not clear, therefore, how standardizing helps if the goal is to characterize
predictors by their forecasting skill. Two predictors may be deemed strong



220 5 Random Forests

and equally important by the z-score metric when in fact one substantially
affects forecasting skill and the other does not.

Standardized Reduction in Forecasting Accurcy for Misconduct Outcome
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Fig. 5.8. Scaled forecasting importance for misconduct.

Let’s return to the matter of stability over trees and take “Term” for the
misconduct outcome as an example. The standard deviation over trees of the
measure of forecasting importance is about .03. Thus for term length, one can
say that although mean importance over trees is about .07, importance will
typically vary from about .04 to about .10. If, however, the standard deviation
over trees were .10, importance would typically vary from the lower bound of
0.0 to about .17. Clearly, one has a much worse fix on how important term
length really is for the second case.

Insofar as the distribution of raw importance scores over trees is approx-
imately normal, formal hypothesis tests and confidence intervals can follow.
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Standardized Reduction in forecasting Accurcy for No Misconduct Outcome
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Fig. 5.9. Scaled forecasting importance for no misconduct.

For example, if term length had a z-score of over 2.0, one might justifiably take
that as a rejection of the null hypothesis at the .05 level that the importance
of term length is 0.0. If one is not prepared to bet that the distribution of
importance is approximately normal, one can in principle resort to resampling
tests directly over the set of trees. This capability is currently not available
in R’s random forests software, but with very modest changes in the code it
could be.

One must be clear that the uncertainty being assessed comes from the
bootstrap sampling and predictor sampling within random forests itself. Noth-
ing whatsoever is being said about the stability of importance measures over
sets of training data selected by probability sampling. Random forests outputs
a single measure of importance for each predictor as an average over trees. If
one were interested in the overall uncertainty in this single measure for each
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predictor, one would at least need to address in addition the implications of
random samples of training data. A possible approach would be to embed the
random forest procedure in bootstrap samples of the existing training data.

In summary, the decision to standardize or not standardize raises the old
saw of substantive versus statistical significance. The unstandardized measure
of forecasting importance addresses substantive significance. The standardized
measure of forecasting importance addresses (ideally) statistical significance.
Both can be important, but they are different.

The implications of these illustrations generalize to response variables with
more than two categories. There can be scaled or unscaled plots for each re-
sponse category. This underscores a point made earlier. Moving from two
response categories to more than two does not change anything fundamen-
tal. But analysis complexity will increase dramatically with each additional
response category.

5.7 Response Functions

Predictor importance is only part of the story. In addition to knowing the
importance of each predictor, it can be very useful to have a description of
how each predictor is related to the response. The set of response functions
needs to be described.

One useful solution, based on an earlier suggestion by Breiman and his
colleagues (1984) is “partial dependence plots” (Friedman, 2001; Hastie et al.,
2001: Section 10.13.2). For tree-based approaches such as CART, one proceeds
as follows.

1. Grow a forest.
2. Suppose x is the initial predictor of interest, and it has v distinct values
in the training data. Construct v data sets as follows.
a) For each of the v values of x1, make up a new dataset where z only
takes on that value, leaving all other variables untouched.
b) For each of the v datasets, predict the response using random forests.
There will be a single value averaged over all observations.
c) Average each of these predictions over the trees.
d) Plot the average prediction for each value for each of the v datasets
against the v values of x;
3. Go back to Step 2 and repeat for each predictor.

Partial dependence plots show the relationship between a given predictor
and the response averaged within the joint values of the other predictors as
they are represented in a tree structure. In this way, the other predictors are
being “held constant” by matching. Consequently, no assumptions are made
about how the predictors are related to one another or to the response variable.
One price for this approach is that interaction effects are not represented
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unless the appropriate interaction variables are constructed in advance and
included among the set of predictors.

Unlike the plots of fitted values constructed by smoothers (e.g., from the
generalized additive model), partial dependence plots impose no smoothness
constraints, and the underlying tree structure tends to produce somewhat
bumpy results. In practice, one usually imposes an “eyeball” smoother when
the plot is interpreted. Alternatively, it is often possible to overlay a smoother
if the software stores the requisite output.

Partial plots can be constructed for quantitative responses and for re-
sponses with more than two categories. For quantitative response variables,
the units represented on the vertical axis usually are the natural units of the
response, whatever they happen to be. For categorical response variables, the
units of the response represented on the vertical axis are unconventional and
easily misunderstood. Because partial dependence plots can be so very useful
for applied work, the metric used needs to be examined in some detail. We
begin with the binomial case.

It is common to see a logistic regression equation written as

log (ﬁp) = X8, (5.11)

where p is the probability of success. The term on the left-hand side is the log
of the odds of a success, often called the “logit.” The change in the response
for a unit change in a predictor is in “logits.”

For the multinomial case, the most common approach to logistic regres-
sion builds up from the familiar binary formulation. If there are K response
categories, there are K — 1 equations, each of the same general form as Equa-
tion 5.11. However, one equation of the K possible equations is redundant
because the response categories are exhaustive and mutually exclusive. Thus,
if an observation does not fall in categories 1, ..., K —1, it must fall in the Kth
category. This implies that a single category can be chosen as the reference
category, just as in the binomial case (i.e., there are two possible outcomes
and one equation). Then, for each of the K — 1 equations, the logit is the log
of the odds for a given category compared to the reference category.

Suppose there are four response categories, and the fourth is chosen as the
reference category. There would then be three equations with three different
responses, one for log(py /p4), one for log(ps/p4), and one for log(ps/ps). The
predictors would be the same for each equation, but each equation would have
its own set of regression coefficients differing in values across equations.

One might think that partial dependence plots would follow a similar con-
vention. But they don’t. The choice of the reference category determines which
logits will be used, and the logits used affect the regression coefficients that
result. Although the overall fit is the same no matter what the reference cat-
egory, and although one can compute from the set of estimated regression
coeflicients what the regression coefficients would be were another reference
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category used, the regression coefficients reported are still different when dif-
ferent reference categories are used.

There is no statistical justification for choosing one reference category
or another. The choice is usually made on subject matter grounds to make
interpretations easier, and the choice can easily vary from data analyst to data
analyst. So, the need for a reference category can complicate interpretations of
the results and means that a user of the results has to undertake considerable
additional work if regression coefficients using another reference category are
desired.

In response to these complications, partial dependence plots are based on
a somewhat different approach. There are K, rather than K — 1, response
functions, one for each response variable class. For the logistic model, these
take the form of

efk(X)
B Zszl efr(X)’

There is still a redundancy problem to solve. The solution employed by
partial dependence plots is to constrain 25:1 fx(X) = 0. This leads to the
multinomial deviance loss function and the use of a rather different kind of
baseline.

Instead of using a given category as the reference, the unweighted mean
of the proportions in the K categories is used as the reference. In much the
same spirit as analysis of variance, the response variable units are then in
deviations from a mean. More specifically, we let

Pr(X) (5.12)

K
() = loglpi(X)] — 2= > loglps (X)) (1)
k=1

Thus, the response is the disparity between the logged proportion for category
k and the average of the logged proportions for all K categories. The units
are essentially logits but with the mean over the K classes as the reference.
Consequently, each response category can have its own equation and, there-
fore, its own partial dependence plot. This approach is applied even when
there are only two response categories, and the conventional logit formulation
might not present interpretive problems.

To help fix these ideas, consider an example of a single data point for a
binary outcome. Here, a single data point is defined by a single value of a given
predictor. For that data point, the partial dependence algorithm classifies all
of the observations as described earlier. For each of the response variable
categories, there is a proportion of observations assigned. Then Equation 5.13
is applied.

To illustrate, consider once again the prison data. Suppose term length
in years was the predictor whose relationship with the binary misconduct
response variable was of interest. And suppose for a term length of say, 1
year, the proportion of inmates engaging in an incident of misconduct was
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.20 (computed using the partial dependence algorithm). If the proportion of
success is .20, the value plotted is log(.2) —[log(.2) +log(.8)]/2 = —0.693 (using
natural logarithms). This is the value that would be plotted on the vertical
axis for the term length value on the horizontal axis of 1.0.

The same approach could be used for the proportion of inmates with no
misconduct. The proportion of failures is necessarily .80, so that value plotted
for failures is log(.8) —[log(.2) +1log(.8)] /2 = 0.693, also associated with a term
length of 1.0. In the binary case, essentially the same information is obtained
no matter which response class is examined. The partial dependence function
is centered on 0.0 because of the constraint that the sum of the response
functions is zero; these are deviation scores in logit units. So, the distance
above zero for the response function of one class is the same as the distance
below zero for the response function of the other class. One response function
is the mirror image of the other. Thus, one partial dependence plot is the
mirror image of the other partial dependence plot, and only one of the two is
required for interpretation.

In the binary case, it is easy to get back into more familiar logit units.
The values produced by Equation 5.13 are half the usual log of the odds. And
from there, one can easily get back to the relevant probabilities. For example,
multiplying —693 by 2 and exponentiating yields an odds of .25. Then, solving
for the numerator probability results in a value of .20. We are back where we
started.

Equation 5.13 would be applied for each value of term length. Thus, for
1.5 years, the proportion of inmates engaging in misconduct might be .25.
Then the value plotted on the horizontal axis would be 1.5, and the value on
the vertical axis would be log(.25) — [log(.25) + log(.75)]/2 = —.549.

The value of —.549 is at a region where the response function is increasing.
With .5 units (i.e., six months) increase in term length, the value of the re-
sponse increases .144 (i.e., from —.693 to —.549). And all other values produced
for different term lengths can be interpreted in a similar way. Consequently,
one can get a sense of how the response variable changes with changes in a
given predictor, all other predictors held constant.

For more than two response variable categories, each of the response cate-
gories can be usefully plotted. Suppose, for example, there are three response
categories: no misconduct, minor misconduct, and serious misconduct. And
suppose the respective proportions when term length is 1.0 years are .70, .20,
and .10. The three values computed for the three response categories are re-
spectively 1.066, —.187, and —.880. Note that as before the sum of the values
is again 0.0. Each of these values would likely change as the value of the
predictor of interest changed. For each, the sum would still be zero. But the
changing values could not be represented as a set of mirror images. Three
partial dependence plots would follow.

To summarize, the vertical axis in partial dependence plots is the response
function as defined by Equation 5.13. It is derived from Equation 5.12 with
the constraint that the sum of response functions fj(X) is equal to zero. Thus,
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the sum of the values from Equation 5.13 for the categories of the response
variable is zero as well.

5.7.1 An Example

Partial Dependence on Term

0.5

0.0
1

-0.5

-1.0

Term

Fig. 5.10. Response function for misconduct and term.

Figures 5.10 and 5.11 show partial dependence plots constructed from
the prison data. Figure 5.10 is for the misconduct response category and
Figure 5.11 is for the no misconduct response category. For both, term length
in years is the predictor. In both cases the vertical axis is in the logit units
just discussed, and the horizontal axis is in years. From the discussion just
completed, one plot should be the mirror image of the other. For the binary
case, one partial plot is sufficient.

Both plots indicate that the odds of serious misconduct generally increase
with term length. The increase is relatively rapid for terms from two to ten
years. There seems to be no relationship between term length and misconduct
for terms less than two years, and the rate of increase is relatively slow for
terms greater than about ten years.

In order to get a practical sense of whether misconduct varies a lot with
term length, it can be useful to transform the logits back to their underlying



5.7 Response Functions 227
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Fig. 5.11. Response function for no misconduct and term.

probabilities. For example, a logit value of —1 is equal to a probability of about
.12. A logit value of .5 is equal to a probability of about .73. Because —1 and .5
represent the approximate minimum and maximum values of the response in
logit units, the probability of serious misconduct increases from about .12 to
about .72 as term length increases from two years to about ten years. This is
a large effect in practical terms. Note that this increase is in deviation scores
and that, therefore, it is the difference that matters, not the values themselves.

Finally, it is important to keep in mind that the response functions dis-
played in partial dependence plots reflect the relationship between a given
predictor and the response, conditioning on all other predictors. All other
predictors are being “held constant” in a manner that is equivalent to match-
ing. That is why the plots are called partial dependence plots. Consequently,
Figures 5.10 and 5.11 show how term length is related to serious miscon-
duct, with gang activity, age at the time of admission to prison, and all other
predictors included in the analysis held constant.

Figures 5.12 — 5.14 show the response functions for three classes of inmate
misconduct and sentence length. The three classes, as before, are no miscon-
duct, minor misconduct, and serious misconduct. Three partial dependence
plots are necessary because although the values of the three response func-
tions sum to zero, no plot is the mirror image of another. The baseline is, in
the sense discussed above, the typical proportion of inmates over the three
response classes.
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Partial Dependence on Term

0.5

0.0
1

-0.5
1

-1.0

0 5 10 15 20 25

Term

Fig. 5.12. Response function for no misconduct and term for a three class response.

Figure 5.12 shows the partial dependence of no misconduct on sentence
length. The proportion of inmates with no reported incidents of misconduct
decreases rapidly for sentences up to five years. Then the response function
becomes flat.

Figure 5.13 shows the partial dependence of minor misconduct on sentence
length. The proportion of inmates with reported incidents of minor miscon-
duct increases rapidly for sentences up to about five years, levels off, and then
declines for sentences of more than ten years. The downward trend ends with
sentences of about 18 years. After that, it may even increase a bit.

Figure 5.14 shows the partial dependence of serious misconduct on sen-
tence length. The proportion of inmates with reported incidents of serious
misconduct increases rapidly up to a sentence of about five years and then
increases much less rapidly thereafter.

Viewed as a group, the three figures complement one another and show
associations that are large in practical terms. With increasing sentence length,
the proportion of inmates who engage in no misconduct drops off rapidly until
a sentence of about five years. Over those same shorter sentences, the propor-
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Fig. 5.13. Response function for minor misconduct and term for a three class
response.

tion of inmates who engage in minor misconduct increases commensurately.
And over the same short sentences, the proportion of inmates who engage in
serious misconduct also increases commensurately.

But for sentences of around ten years or more, the proportion of inmates
who engage in minor misconduct falls off, and the proportion of inmates who
engage in serious misconduct continues to increase. Longer sentences are asso-
ciated with increases in the likelihood of both minor and serious misconduct,
but for very long sentences, the association is only with serious misconduct.
One interpretation is that with very long sentences, inmates who might com-
mit acts of minor misconduct now commit acts of serious misconduct.

5.8 The Proximity Matrix

It can be useful to determine the degree to which individual observations tend
to be classified alike. In random forests, this information is contained in the
“proximity matrix.” The proximity matrix is constructed as follows.
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Fig. 5.14. Response function for serious misconduct and term for a three class
response.

1. Grow a tree as usual.

2. Drop all the training data (in-bag and out-of-bag) down the tree.

3. For all possible pairs of cases, if a pair lands in the same terminal node,
increase their proximity by one.

4. Repeat Steps 1-4 until the designated number of trees has been grown.

5. Normalize by dividing by the number of trees.

The result is an n X n matrix with each cell showing the proportion of trees
for which each pair of observations winds up in the same terminal node. The
higher that proportion, the more alike those observations are in how CART
places them, and the more “proximate” they are.

However, it can be very demanding to store an n X n matrix and even more
demanding to operate on it. The storage problem can be partly addressed by
only storing the upper or lower triangle, but working with tens of thousands of
proximity values (or more) remains a serious difficulty. When feasible, it can
help to work with a random sample of the training data instead of the full set
of observations. Another work around is to store only the largest proximity
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values. There are currently efforts under way to find more elegant and formally
defensible solutions.

The proximity matrix is also usually far too large to be directly examined
in a meaningful manner. But helpful information can be extracted from the
proximity matrix in several different ways. We consider three applications that
are sufficiently well developed to be of some practical use.

5.8.1 Clustering by Proximity Values

The proximity matrix can be treated as a similarity matrix and subjected to
multidimensional scaling. Plots of the observations in the first two dimensions
extracted can help show whether the data tend to cluster in the space defined
by predictors and whether those clusters tend to differ by the class to which
the observations in each cluster belong. This information can give an initial
sense of whether a classification exercise is likely to be successful.

The existing methods for displaying the scaling results are currently in
some flux. A lot depends on first solving the computational problems associ-
ated with the proximity matrix. In addition, the current graphic display will
no doubt be refined as hands-on experiences accumulates.

5.8.2 Using Proximity Values to Impute Missing Data

There are two ways in which random forests can impute missing data. The
first and quick method relies on a measure of location. If a predictor is quanti-
tative, the median of the available values is used. If the predictor is categorical,
the modal category from the available data is used. If there are small amounts
of missing data, this method may be satisfactory, especially given the compu-
tational demands of the second method.

The second method capitalizes on the proximity matrix in the following
manner.

1. The “quick and dirty” method of imputation is first applied to the training
data, a random forest is constructed, and the proximity values computed.

2. If the missing value is from a quantitative variable, the weighted average
of the values of the nonmissing cases for that variable is used. The prox-
imity values between that missing observation and all of the nonmissing
observations are used as the weights. So, cases that are more like the cases
with the missing data are given greater weight. All missing values for that
variable are computed in the same fashion.

3. If the missing value is from a categorical value, the inputed value is the
most common nonmissing value for the variable, with the frequencies
weighted by proximity. Again, cases more like the case with the miss-
ing data are given greater weight. All missing values for that variable are
are computed in the same fashion.
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The step using proximity values is then iterated several times. Experience
to date suggests that four to six iterations is sufficient. But the use of imputed
values tends to make the OOB measures of fit too optimistic. There is really
less information being brought to bear in the analysis than the random forest
algorithm knows about. The computational demands are also quite daunting
and may be impractical for many datasets until more efficient ways to handle
the proximities are found.

5.8.3 Using Proximities to Detect Outliers

The proximity matrix can be used to spot outliers in the space defined by the
predictors. The basic idea is that outliers are observations whose proximities
to all other observations in the data are small. Currently, the procedures
in R’s version of random forests to detect outliers are not implemented for
quantitative response variables. For categorical response variables, outliers are
defined within categories of the response variable. For each observed outcome
class, each observation is given a value for its “outlyingness” computed as
follows.

1. For a given observation, compute the sum of the squares of the proximities
with all of the other observations in the same outcome class. Then take
the inverse. A large value will indicate that on the average the proximities
are small for that observation. Do the same for all other observations in
that class. One can think of these values as unstandardized.

2. Compute the median and mean absolute deviation around the median of
the unstandardized values.

3. Subtract the median from each of the unstandardized values and divide
by the mean absolute deviation. In this fashion, the unstandardized values
are standardized.

4. Values less than zero are set to 0.0.

These steps are then repeated for each category of the response variable.
Observations with values larger than about ten can be considered outliers.

Especially if the number of observations overall is modest (e.g., less than
100), it can be instructive to drop the outliers from the training data, repeat
the random forest analysis, and see if the results change by a meaningful
amount. If the number of observations is large, it is very unlikely that a few
outliers will make an important difference in the results.

When the data analyst considers dropping one or more outlying cases, a
useful diagnostic tool can be a cross-tabulation of the classes assigned for the
set of observations that the two random forest analyses have in common. If
the observations are, by and large, classified in the same way in both analyses,
the outliers do not make an important difference to the classification process.
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5.9 Quantitative Response Variables

There is not very much new that needs to be said about quantitative response
variables once one appreciates that random forests handles quantitative re-
sponse variables much as CART does. Recall that for CART, impurity when
trees are constructed is defined as the within-node error sum of squares. A
new partition of the data is determined by the split that would most reduce
the within-node error sum of squares. Predicted values are determined by
the mean of the response variable in each of the terminal nodes. For each
observation, the mean of its terminal node is the value assigned.

For regression trees, therefore, there are no classification errors, only resid-
uals. Concerns about false negatives and positives and their costs are no longer
relevant. There are no confusion tables and no measures of importance based
on predictor errors.

To turn a regression tree into a fully operational random forest, there are
several operations required.

1. Just as in the classification case, each tree is constructed from a random
sample (with replacement) of the training data.

2. Just as in the classification case, at each potential partitioning of the data,
a random sample (without replacement) of predictors is used.

3. Just as in the classification case, the out-of-bag data are used to con-
struct predicted values. After a tree is built, the OOB observations are
dropped down the tree. From these observations, a mean is computed for
each terminal node. These means serve as the predicted values for the
observations in their respective terminal nodes. The predicted values are
not (and cannot be) membership in a particular class.

4. Then, random forest averages in much the way as it does for classification
problems. For a given observation, the average of the tree-by-tree pre-
dicted values is computed using only the predicted values from trees in
which that observation was not used to build the tree. This is the predicted
value that random forest returns. Then the deviations between these over-
tree predicted values and the observed values are used to construct the
mean square error reported for the collection of trees that constitutes a
random forest. The value of the mean square error can be used to compute
a pseudo R? as (1 — MSE)/Var(Y).

5. Construction of partial dependence plots is done in the same manner as
for classification trees, but now the fitted response is the set of condi-
tional means for different predictor values, not a set of transformed fitted
proportions.

6. Importance is computed using the shuffling approach as before. And as
before there is a “resubstitution” measure and a forecasting measure. For
the resubstitution measure, consider a single tree. Each time a given vari-
able is used to define a partitioning of the data, the reduction in the
within-node error sum of squares is recorded. When the tree is complete,
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the reductions are summed. The result is the error sum of squares that
can be attributed to each predictor. These totals, one for each predictor,
are then averaged over trees.

7. The forecasting measure uses the OOB observations. For each tree, the
OOB observations are used to compute the predicted values and the
within-node mean square error around them. Then a given predictor is
shuffled, and the OOB predicted values and mean square error computed
again. An increase in this mean square error is a decrease in accuracy.
These decreases are averaged over trees to get an average decrease in ac-
curacy for that predictor. The standard deviation of these decreases over
trees can be used to standardize the average decrease, if that is desirable.

Despite the tight connection between regression trees and random forests,
there are a few features found in some implementations of regression trees
that have yet to be introduced into random forests. Perhaps most important,
random forests is currently limited to the normal regression model. There are,
for instance, no accommodations for count data, where some form of Poisson
regression might be appropriate. Likewise, there are no accommodations for
bounded response variable distributions such as might be found for survival
data. However, such generalizations are likely to come soon.

For example, there is a new procedure in R called quantregForest() that
computes for each terminal node quantiles of the user’s choosing. Instead
of storing only the mean of each terminal node as trees are grown, the entire
distribution is stored. Recall the earlier discussion surrounding Table 5.3. Once
the user decides which quantiles are of interest, they can be easily computed.

If one is worried about the impact of within-node outliers on the condi-
tional mean, the conditional median can be used instead. If for substantive
reasons there is interest in the first or third quartile, those can be used. Per-
haps most interestingly, the quantile option provides an interesting way to take
the costs of forecasting errors into account. For example, if the 75th quantile is
chosen, the consequences of underestimates are three times more costly than
the consequences of overestimates. However, such calculations only affect what
is done with the information contained in the terminal nodes across trees. This
approach does not require that the trees themselves be grown again with a
linear loss function, let alone a loss function with asymmetric costs. In other
words, the trees grown under quadratic loss are not changed. As a result, the
quantile adjustments are not complete. An example is discussed later in this
chapter.

5.10 Tuning Parameters

Despite the complexity of the random forest algorithm and the large number
of potential tuning parameters, most of the usual defaults work well in prac-
tice. The tuning parameters most likely to require some manipulation are the
following.
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1. Node Size—Unlike in CART, the number of observations in the terminal
nodes of each tree can be very small. The goal is to grow trees with as
little bias as possible. The high variance that would result can be tolerated
because of the averaging over a large number of trees. In the R implemen-
tation of random forests, the default sample sizes for the terminal nodes
are one for classification and five for regression. These seem to work well.
But one must also keep in mind the concerns raised earlier when there
are a large number of predictors weakly related to the response and at
least moderately related to each other. If such predictors are not dropped,
it is usually wise to grow smaller trees. If one is interested in estimating
a quantile, such as in quantile random forests, then terminal node sizes
about twice as large will often be necessary. If there are only five obser-
vations in a terminal node, for instance, it will be difficult to get a good
read on, say, the 90th percentile.

2. Number of Trees—The number of trees used to constitute a forest needs to
be at least several hundred and probably no more that several thousand.
In practice, 500 trees is often a good compromise. It sometimes makes
sense to do most of the intitial development (see below) with about 500
trees and then confirm the results with a run using about 3000 trees.

3. Number of Predictors Sampled—The number of predictors sampled at
each split would seem to be a key tuning parameter that should affect how
well random forests performs. Although it may be somewhat surprising,
very few predictors need to be randomly sampled at each split, and with
sensible bounds on the number sampled, it does not seem to matter much
for the OOB error estimates. With a large number of trees, each predictor
will have an ample opportunity to contribute, even if very few are drawn
for each split. For example, if the average tree in a random forest has ten
terminal splits, and if there are 500 trees in the random forest, there will
be 5000 chances for predictors to weigh in. Sampling two or three each
time should then be adequate.

But a lot depends on the number of predictors and whether all have good
potential or whether some do and some don’t. In the manual for the
FORTRAN version of random forests, Breiman recommends starting with
the number of predictors sampled equal to the square root of the number
of predictors available. Then, trying a few more or a few less as well can
be instructive.

In the R implementation of random forests, one can search for the best
number of predictors to sample using the OOB error statistic as a crite-
rion. This is an excellent tool in principle. In practice, large differences in
performance are rarely found. Also, one must be careful not to overtune
and introduce the overfitting that random forests is designed to prevent.

The feature of random forests that will usually make the biggest difference
in the results is how the costs of false negatives and false positives are handled.
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These costs have already been extensively discussed and are not reconsidered
now. At the same time, costs are not really a tuning parameter, but a key
aspect of how the data are to be analyzed.

5.11 An Illustration Using a Binary Response Variable

Industrialized fishing is dramatically reducing the stock of predatory fish
throughout the oceans of the world. Large-scale commercial fishing affects
not just the target species but other species that become the “bycatch.” The
impact on dolphin populations of commercial fishing for tuna is perhaps the
most visible illustration and has been the subject of a National Research
Council committee report (Committee on Reducing Porpoise Mortality from
Tuna Fishing, 1992). Over the past decade, international cooperation to re-
duce dolphin mortality has led to efforts to monitor tuna fishing practices and
penalize offenders. The political and technical issues are very complex.

Dolphin are put at risk in tuna fishing because they are often used to locate
large schools of tuna. For reasons that are not fully understood, dolphin are
often found swimming above schools of tuna and because the dolphin typically
swim close to the surface, they can be seen by fishermen some distance away.
Then, when large nets are deployed to catch the tuna, the dolphin can be
caught as well. Over the past two decades fishing technology and procedures
have been changed so that dolphin mortality can be dramatically reduced,
but the mortality is far from zero.

The Inter-American Tropical Tuna Commission (ITTC), which oversees
the international purse-seine fishery for tuna in the eastern Pacific Ocean,
has provided data on dolphin mortality. The dataset includes over 100,000
observations. An observation is a “set,” defined as placing a large net into
the water to encircle a school of tuna. There are over 200 predictors. Here,
the intent is to determine the circumstances under which dolphin mortality is
likely to be high.

For example, a major cause of dolphin deaths apparently is whether the
net “collapses” as it is drawn to the boat. A net collapse is a relatively rare
event, but one to be actively avoided. For similar reasons, it would be helpful
to learn which other predictors are associated with dolphin mortality so that
preventive actions might be taken by fishermen.

Sanctions can be applied to fishermen if any dolphin are killed. There is
zero tolerance for any dolphin mortality. This suggests treating the response
as a binary outcome: whether any dolphin are killed or not. And this is how
we proceed here.

For this illustration, we use the predictors listed below. In discussions with
the ITCC, these predictors were singled out as by far the most promising. We
could have included well over 100 predictors, but some of the graphics would
have been unnecessarily cluttered and difficult to explain.
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1. capskill: Captain skill coded “0 for less than 30 dolphin sets/year and “1”
for 30 or more.

. biomass: The number of animals encircled in the net.

. cwtunay: Catch weight of yellowfin tuna in metric tons.

. cwtunao: Catch weight of other tuna in metric tons.

. encircle: Duration of the encirclement phase of the set in decimal hours.

. netretrieval: Duration of the prebackdown net retrieval in decimal hours.

. backdown: Duration of the backdown procedure in decimal hours.

. netcanopy: Coded “1” if a net canopy present and “0” if a net canopy is
not present. Net canopies are associated with collapsed nets.

9. diver: Coded “1” if divers were used to help dolphin escape and “0” if not.

0~ O U W N

Using a random sample of 10,000 observations, we consider first the results
under the default costs. A failure to identify correctly a set in which dolphin
were killed has the same costs as a failure to identify correctly a set in which
no dolphin were killed. In addition, the prior used is the empirical distribution
of the binary response variable.

Predict No deaths|Predict deaths Model Error
No Deaths 7859 142 .02
Deaths 797 202 78
Use Error .09 41 Overall Error = .10

Table 5.5. Confusion table for forecasting dolphin deaths using equal costs.

Table 5.5 shows the confusion table. Overall, random forests is able to fore-
cast with about 90% accuracy. Given the unbalanced nature of the response,
this is not a very impressive feat. It is clear that most of this accuracy comes
from the predictions of true negatives (i.e., no dolphin deaths), which random
forests incorrectly identifies only about 2 times out of 100. About 78 times
out of 100, random forests incorrectly identifies true positives (i.e., dolphin
deaths). Were the random forest results used for forecasting by ITTC ad-
ministrators, ship captains or on-board observers, they would be wrong only
about 9 times out of 100 when they forecasted no dolphin deaths, but about
41 times out of 100 when they forecasting dolphin deaths.

Figure 5.15 shows a plot of predictor importance for the response category
in which dolphin were killed. It is clear that the presence of a net canopy is the
dominant predictor, followed by the length of the backdown procedure, and
then two measures of the size of the tuna catch. Given that random forests
identifies correctly on 22% of the time sets in which dolphin are killed, the
accuracy reductions are large. Shuffling the net canopy variable reduces the
model’s forecasting accuracy from .22 to .15.

Figure 5.16 shows a plot of predictor importance for the response category
in which no dolphin are killed. It is here that random forests stumbles badly.
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Fig. 5.15. Variable importance when the outcome is dolphin deaths and the costs
are equal.

In general the same predictors are important, but their contributions to fore-
casting accuracy are trivial. A key reason is that it is very difficult for random
forests to do better than always concluding that no dolphin were killed.
Partial dependence plots can be constructed for each of the predictors. We
will consider just one to illustrate the sorts of insights that can be obtained
and to highlight some important limitations. Thus, Figure 5.17 shows the
empirical response function for the predictor backdown time. Backdown time
is how long it takes for the net, once the tuna are encircled, to be drawn to the
boat. Long backdown times are thought to be dangerous for dolphin because
they increase the risk of dolphin getting caught in the net and drowning.
Figure 5.17 suggests that for very short backdown times, which are rare
and probably reflect serious reporting errors, increases in backdown time are
associated with decreases in dolphin mortality. This is a result that should
not be taken seriously. For backdown times between about 15 minutes and an
hour, increases in backdown time are, as expected, associated with substantial
increases in dolphin mortality. Beyond an hour, where again the number of
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Fig. 5.16. Variable importance when the outcome is no dolphin deaths and the
costs are equal.

observations is very few, the relationship essentially become flat. This too
should not be taken seriously.

Recall that the units on the vertical axis are not probabilities or conven-
tional logits. Thus, it is difficult to judge in subject matter terms whether
the changes in the response shown are large enough to be important. But as
shown earlier, the logit units can be transformed back into probabilities, and
for Figure 5.17, the change in the logits is large enough to be very significant.
When the backdown time is under 20 minutes, the chances of any dolphin
deaths are less than 1 in 20 below what is typical. When the backdown time
is over 40 minutes, the chances of death are around 15 in 20 above what is
typical. So, the probabilities are increased a maximum of about .70.

From the off-diagonal cells in Table 5.5, one can see that there are a little
over five false negatives for every false positive. Therefore, false positives are
being treated as about five times more costly than false negatives. Discussion
with representatives of the ITTC led to the conclusion that false negatives
were actually much more costly than false positives. There were few harmful
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Fig. 5.17. Partial dependence on backdown time when the costs are equal.

consequences from failing to identify sets with no dolphin mortality, but many
from failing to identify sets in which dolphin were killed. They suggested a
ratio of about one to ten for the ratio of false negatives to false positives.

Predict No Deaths|Predict Deaths Model Error
No Deaths 5468 2533 .32
Deaths 271 728 27
Use Error .04 78 Overall Error = .31

Table 5.6. Confusion table for forecasting dolphin deaths using a cost ratio of one
to ten.

Table 5.6 shows the confusion table when the one to ten cost ratio is used.
The changes are substantial. Just as one would expect, overall forecasting
error increases substantially from .10 to .31.

Consistent with the cost applied, random forests now does a much better
job identifying sets in which dolphin are killed. The proportion of sets incor-
rectly identified drops from .78 to .27. At the same time, random forests does
much worse identifying sets in which dolphin are not killed. The proportion of
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sets incorrectly identified increases from .02 to .32. These changes stem from
the new ratio of false negatives to false positives, which by intent is about one
to ten.

If forecasts of no dolphin deaths are made, they will be incorrect about 4
times out of 100. If forecasts of dolphin deaths are made they will be incorrect
about 78 times out of 100. This properly reflects the new cost ratio. Decision-
makers are now more prepared to predict sets in which dolphin will be killed
because the costs of false positives are relatively low. Table 5.6 indicates that
there will be a bit more than three false positives for every true positive.

Variable Importance for The Mortality Category
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Fig. 5.18. Variable importance when the outcome is dolphin deaths and the costs
are one to ten.

Figures 5.18 and 5.19 show the two importance plots. It is again apparent
that the predictors matter far more for forecasts of dolphin deaths than for
forecasts of no dolphin deaths. But the change in a cost ratio of one to ten has
altered a bit the importance of some variables. For example, in predictions
of dolphin deaths, the presence of a net canopy and backdown time are now
about equally important. Under equal costs, backdown time was a little less



242 5 Random Forests

Variable Importance for The No Mortality Category

backdown °

biomass )

netcanopy o

cwtunay o

diver o

cwtunao 5}

encircle )

capskill o

netretrieval o

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Importance

Fig. 5.19. Variable importance when the outcome is no dolphin deaths and the
costs are one to ten.

important. And under the new cost ratio, the biomass of the tuna caught has
moved up somewhat in importance.

It is not unusual to see the importance of variables change with changes
in relative costs. In effect, there is a new weighting of observations. Variables
that predict well the observations now given more weight will increase in
importance.

Finally, Figure 5.20 shows the partial dependence plot for backdown time
under the one to ten cost ratio. The overall shape of the curve is basically the
same, but the increase in dolphin mortality is not quite as large.

5.12 An Illustration Using a Quantitative Response
Variable

A recent effort was made to count the number of homeless in Los Angeles
County (Berk et al., 2008). There are over 2000 census tracts in the county,
and enumerators were sent to a sample of a little over 500. The details of the
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Fig. 5.20. Partial dependence on backdown time when the costs are one to ten

sampling need not trouble us here, and in the end the overall county total was
estimated to be about 90,000.

In addition to countywide totals, there was a need to have estimated counts
for tracts not visited. Various stakeholders might wish to have estimates at
the tract level for areas to which enumerators were not sent. Random forests
was used with tract-level predictors to impute the homeless counts for these
tracts. About 21% of the variance in the homeless counts was accounted for
by the random forests model.

Figure 5.21 is an importance plot for three of the most useful predictors.
When the response variable is quantitative, the “external” and “internal” mea-
sures of importance differ from when the response variable is qualitative. The
external measure, based on the OOB observations, is the average percentage
increase in mean square forecasting error over trees when a given predictor is
randomly shuffled. The internal measure is the average reduction in the error
sum of squares over trees when a given predictor is used to define a split,
which can also be called the increase in node purity.

For example, when median household income is shuffled, the mean square
forecasting error increases about 7%. For the percentage of dwellings in a tract
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Fig. 5.21. Variable importance when the outcome is the number of homeless in a
census tract.

that is vacant, shuffling increases forecasting error about 6%. For the percent-
age of land that is devoted to residential use, shuffling increases forecasting
error about 5%. In this case, therefore, all three variables have about the same
impact on forecasting skill. The rank ordering of importance is the same when
the contribution to fit is used, but it is far more difficult to tell whether the
contributions are large or small. It is difficult to think in raw error sum of
squares units.

Figures 5.22 to 5.24 show the partial dependence plots for each predic-
tor. For a quantitative response, the vertical axis is the conditional mean of
the response for different values of the predictor in question, with all other
variables fixed. Compared to the categorical response variable case, the only
feature of the partial dependence algorithm that has changed is the units in
which the response is represented.

From Figure 5.22, one can see that the fitted values for the number of
homeless individuals in a census tract drops from a high of around 150 when
median income is less than about $20,000 a year to around 30 when median
income is $50,000 or more. Overall, the relationship is strongly negative. But
the drop is precipitous, implying what some have called a “tipping effect.”

The visual story is much the same in Figure 5.23. When most of the land
in a census tract is not used for residential dwellings, the number of homeless
individuals is about 130. That figure drops to about 30 when a quarter of
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Fig. 5.22. The response function when median household income is the predictor.

the land or more is used for residents. Overall, the relationship is strongly
negative with more evidence of a tipping effect.

Figure 5.24 shows a positive association between the percentage of the res-
idential dwellings that are vacant and the number of homeless. When vacancy
is near zero, the average number of homeless is about 10 per tract. When the
vacancy percent is above approximately 10%, the average count increases to
between 60 and 70 (with a spike right around 10%). Once again the change is
very rapid.

In summary, a larger number of homeless are to be found in low income
census tracts with relatively few occupied dwellings. Perhaps more interesting
is that the transition from tracts with few homeless individuals to tracts with
many homeless individuals occurs over a very small range of predictor val-
ues. An important methodological point is that the highly nonlinear response
functions would not likely have been found using conventional regression pro-
cedures unless there were a strong a priori belief in a tipping effect and the
the ability to specify a functional form that would find it. Given the sharp
transition for predictor values that would have been difficult to anticipate,
determining the functional form would have probably been difficult.
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Fig. 5.23. The response function when residential land use is the predictor.

Unfortunately, even with the power of random forests, there is a marked
tendency to underestimate the few very largest homeless counts. These census
tracts matter a great deal in the overall amount of resources allocated to
take care of homeless individuals and how those resources are allocated. As
suggested earlier, this is precisely where quantiles might be more instructive
than the mean.

Figure 5.25 shows a plot of the actual census tract counts against the
fitted census tract counts using the conditional .05 quantile. Overestimates
are being treated as far more important than underestimates: about 19 to 1.
A 1-to-1 line is overlaid.

The mean absolute disparity between the fitted values and the actual val-
ues is 29.4. This is quite large considering that most of the measured homeless
counts are under 50. Ideally, moreover, all of the points should fall to the 1-to-
1 line. Most of the points fall above the 1-to-1 line, indicating underestimated
counts much of the time. Finally, one can see that although the actual counts
are sometimes larger than 400, the largest fitted count is a little over 80.

Figure 5.26 shows a plot of the actual census tract counts against the fitted
census tract counts using the conditional .50 quantile: the median. Using the
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Fig. 5.24. The response function when vacant dwellings is the predictor.

median implies that the costs of overestimates are the same as the costs of
underestimates. Again, a 1-to-1 line is overlaid.

Overall the fit looks quite good. The mean absolute disparity is only 3.5.
In addition, the fitted counts can now be as large as about 450, which is
a clear improvement if large underestimates are a serious concern. However,
the very largest counts are still substantially underestimated. Allowing the
overestimates and underestimates to have the same costs produces results
much like those produced by the conditional mean.

Figure 5.27 shows a plot of the actual census tract counts against the
fitted census tract counts using the conditional .95 quantile. Now the costs of
underestimates are 19 times larger than the costs of overestimates. A 1-to-1
line is again overlaid.

Virtually all of the points fall below the 1-to-1 line, and the mean absolute
disparity is 36.0. Overestimates dominate the plot. There are several fitted
counts in excess of 800, which in most cases are also overestimates. On the
other hand, the very highest count is fitted perfectly. Clearly, one can have
very different fitted values depending on which quantiles are used.

Much as in our earlier discussion, there is no purely statistical way to de-
termine what costs should be used. The costs need to be determined by how
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Fig. 5.25. Actual counts plotted against fitted counts using the .05 quantile: MAD
= 29.4.

the results are to be used and by how various stakeholders view the conse-
quences of those uses. For example, although using the conditional median
minimizes the sum of the absolute deviations between the actual values and
the fitted values, the mean absolute deviation assumes that underestimates
have the same costs as overestimates. As such, it will be a misleading measure
of fit when equal costs do not apply.

Figure 5.28 shows the results when the conditional .80 quantile is used.
Underestimates are taken to be four times more costly than overestimates.
Stakeholders might find these results the most congenial. The mean abso-
lute disparity of 7.4 is relatively small, and the very largest counts are fitted
values about as well as possible, given their variability. For our purposes, how-
ever, the statistical point is that quantile regression provides a way to employ
asymmetric cost functions with random forests.

Quantile random forests is hardly the final answer to the need for asym-
metric cost functions in statistical learning for quantitative response variables.
As noted earlier, the trees are grown as usual using the random forests algo-
rithm. Also, one has to be happy with linear loss. Finally, the importance
plots and partial dependence plots currently available in the quantile random
forests procedure are still those from the underlying random forest algorithm.
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Fig. 5.26. Actual counts plotted against fitted counts using the .50 quantile: MAD
= 3.5.

5.13 Software Considerations

At the moment, there are three species of random forests available. One can
obtain from Leo Breiman’s Web site (http://stat-www.berkeley.edu/users/
breiman/RandomForests/) a FORTRAN version of random forests and some
supporting documentation. Leo Breiman and Adele Cutler are the software’s
authors. There are some features that are otherwise not available and some
features available elsewhere that are not included. It is perhaps the least user-
friendly of the three.

The version of random forests available in R is far more user friendly,
has better documentation, and has the key advantage of an R computing
environment. It has features that are unique but lacks some of the highly ex-
perimental tools found in the FORTRAN version. The R port was undertaken
by Andy Liaw and Matthew Weiner. Andy Liaw (andy_liaw@merck.com) is
the maintainer.

Quantile random forests, which draws so heavily on conventional random
forests, is also an R-based procedure. Quantile random forests (quantregFor-
est) was written and is maintained by Nicolai Meinshausen.

The version of random forests available from Salford Systems (http://
www.salford-systems.com/) is by far the most user-friendly. But, the user
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Fig. 5.27. Actual counts plotted against fitted counts using the .95 quantile: MAD
= 36.0.

gives up considerable control and in general, the features included are sev-
eral iterations behind those that can be found in the R version. And unlike
the FORTRAN and R implementations, there is a substantial charge for the
software.

It is important to stress that random forests is a new procedure still very
much under development. Although it is unlikely that its main algorithm will
change significantly, lots of the special routines and displays of output will. If
history is any measure, one can expect significant updates of random forests at
least once a year, often sooner. And unfortunately, it is often difficult for the
documentation to keep up. There are also likely to be spinoffs from random
forests, such as quantile random forests and others. One can imagine some of
these being very handy for certain kinds of problems.

For example, Geurts and his colleagues (2006) propose what they call
“extremely randomized trees.” No bootstrap sample is used; the full training
sample is used to grow each tree. Then the algorithm proceeds as follows.

1. For each potential partitioning, choose a random sample of predictors
without replacement.

2. For these selected predictors, choose the break points at random.

3. Compute the reduction in heterogeneity for each predictor at its randomly
chosen break point.
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Fig. 5.28. Actual counts plotted against fitted counts using the .80 quantile: MAD
= T7.4.

4. Choose the predictor that reduces the heterogeneity the most.
5. Repeat Steps 1-4 for each subsequent split.
6. Average over trees as usual.

The underlying rationale is that by selecting break points at random,
greater independence is achieved across the trees in a forest compared to
conventional random forests. That is, the sets of fitted values will be less de-
pendent. As a result, instability is more effectively controlled. The price for
this reduction in instability can be an increase in the bias because the ran-
dom break points are not likely to be the optimal break points. Ideally, the
reduction in the instability will more than offset the increase in the bias.

When the set of predictors is weak, extremely randomized trees may per-
form at least as well as random forests; the tradeoff works because random
break points do not perform much worse than optimal break points. When the
predictors are not weak, extremely randomized trees is not likely be a good
choice.

There will also in the future likely be important improvements in how the
results from random forests are visualized. For example, it might be useful to
have a receiver operating characteristic (ROC) curve that would depend on
such things as the relative costs for false negatives to false positives or the val-
ues of tuning parameters. Such a plot would have the number of true positives
on the vertical axis and the number of false positives on the horizontal axis.
The best result would fall in the upper-left hand corner: all true positives and
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no false positives. The worst result would be in the lower-right hand corner:
no true positives and all false positives. Locations between these extremes
would represent different tradeoffs between the two, and one could see how
these tradeoffs changed with alterations of the model’s features. Drummond
and Holte (2006) have suggested an interesting alternative, consistent with
much of the earlier discussion, in which on the vertical axis is the (normal-
ized) expected total cost of the classification errors. This too could come in
handy.

5.14 Summary and Conclusions

There is growing evidence that random forests is a very powerful statistical
learning tool. If forecasting accuracy is one’s main performance criterion, there
are no other tools that have been shown to consistently perform any better.
We consider a chief competitor in the next chapter.

Random forests seems to get its leverage from five features of the algo-
rithm:

1. Growing large, low bias trees

2. Using bootstrap samples as training data when each tree is grown

3. Using random samples of predictors for each partitioning of the data

4. Constructing fitted values and output summary statistics from the out-
of-bag data

5. Averaging over trees.

At the same time, very few of random forest’s formal properties have been
proven, and there remains the nettlesome problem that if one is interested in
knowing the f(X), a random forest estimate is not consistent. At a deeper
level, the precise reasons why random forests performs so well and why it does
better with some datasets than others is fully understood. There is some hard
work ahead for theoretical statisticians.

Exercises

5.14.1 Problem Set 1

The goal of this first exercise is to compare the performance of linear regres-
sion, CART, and random forests. Construct the following dataset in which
the response is a quadratic function of a single predictor.

x1=rnorm(500)
x12=x1"2
y=1+(-5%x12) + (5*xrnorm(500))
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. Plot the 1+ (=5 x x12) against x1. This is the “true” relationship be-

tween the response and the predictor without the complication of the
disturbances. This is the f(X) you hope to recover from the data.

Proceed as if you know that the relationship between the response and
the predictor is quadratic. Fit a linear model with x12 as the predictor.
Then plot the fitted values against x1. The results show how the linear
model can perform when you know the correct function form.

Now suppose you do not know that the relationship between the response
and the predictor is quadratic. Apply CART to the same response vari-
able using rpart() and x1 as the sole predictor. Use the default settings.
Construct the predicted values, using predict(). Then plot the fitted val-
ues against x1. How do the CART fitted values compare to the linear
regression fitted values? How well does CART seem to capture the true

fFx)?

Apply random forests to the same response variable using randomForests()
and x1 as the sole predictor. Use the default settings. Construct the pre-
dicted values using predict(). Then plot the fitted values against x1. How
do the random forest fitted values compare to the linear regression fitted
values? How well does random forests seem to capture the true f(X)?

How do the fitted values from CART compare to the fitted values from
random forests? What feature of random forests is highlighted?

Construct a partial dependence plot with x1 as the predictor. How well
does the plot seem to capture the true f(X)?

Why in this case does the plot of the random forest fitted values and the
partial dependence plot look so similar?

5.14.2 Problem Set 2

Load the dataset SLID from the car library. Learn about the data set using
the help() command. Treat the variable “wages” as the response and all other
variables as predictors. The data have some missing values you will want to
remove. Try using na.omit().

1.

Using the default settings, apply random forests and examine the fit qual-
ity.

Set the argument miry at 4. Apply random forests again and examine fit
quality. What if anything of importance has changed?

Now set ntrees at 100 and then at 1000 applying random forests both
times. What if anything of importance has changed?
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Going back to the default settings, apply random forests and examine the
variable importance plots with no scaling for each predictor’s standard
deviation. Explain what is being measured on the horizontal axis on both
plots when no scaling for the standard deviation is being used. Interpret
both plots. If they do not rank the variables in the same way, why might
that be? Now scale the permutation-based measure and reconstruct that
plot. Interpret the results. If the ranks of the variables differ from the
unscaled plot, why might that be? Focusing on the permutation-based
measures (scaled and unscaled) when might it be better to use one rather
than the other?

Construct partial dependence plots for each predictor and interpret them.

5.14.3 Problem Set 3

Load the MASS library and the dataset called Pima.tr. Read about the data
using help().

1.

Apply random forests to the data using the diagnosis of diabetes as the

response. Use all of the predictors and random forest default settings.

Study the confusion table.

a) How accurately does the random forests procedure forecast overall?

b) How accurately does the random forests procedure forecast each of
the two outcomes?

¢) If the results were used to forecast either outcome, what proportions
of the time would each of the forecasts be incorrect?

Construct variable importance plots for each of the two outcomes. Use

the unscaled plots of forecasting accuracy. Compare the two plots.

a) Which predictors are the three most important in forecasts of the
presence of diabetes compared to forecasts of the absence of diabetes?
Why might they not be the same?

b) Why are forecasting contributions for the less common outcome gen-
erally larger than the forecasting contributions for the more common
outcome?

Construct and interpret partial dependence plots of each predictor.

Suppose now that medical experts believe that the costs of failing to iden-
tify future cases of diabetes are four times larger than the costs of falsely
identifying future cases of diabetes. For example, if the medical treatment
is to get overweight individuals to lose weight, that would likely be benefi-
cial even if the individuals were not at high risk for diabetes. But failing to
prescribe a weight loss program for an overweight individual might be an
error with very serious consequences. Repeat the analysis just completed
but now taking the costs into account by using the stratified bootstrap
sampling option in random forests.
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a) How has the confusion table changed?
b) How have the two variable importance plots changed?
¢) How have the partial dependence plots changed?
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Boosting

6.1 Introduction

One of the reasons why random forests is so effective for complex response
functions is that it capitalizes on very flexible fitting procedures. As a result,
it can respond to highly local features of the data. Such flexibility is desirable
because it can substantially reduce the bias in fitted values compared to the
fitted values from parametric regression, unless based on prior information,
the parametric regression happens to hit upon an appropriate functional form.

The flexibility in random forests comes in part from individual trees that
can find nonlinear relationships and interactions. Another source of the flexi-
bility is large trees that are not precluded from having very small sample sizes
in their terminal nodes. Yet another source of the flexibility is the sampling
of predictors. Predictors that work well, but only for a very few observations,
have the opportunity to participate.

But as now stated many times, that flexibility comes at a price: the risk
of overfitting. Random forests consciously addresses overfitting by using OOB
observations to construct the fitted values and measures of fit, and by averag-
ing over trees. Experience to date suggests that this two-part strategy—very
flexible fitting functions and averaging over OOB observations—can be highly
effective.

But the two-part strategy, broadly conceived, can be implemented in other
ways. An alternative method to accommodate highly local features of the data
is to give the observations responsible for the local variation more weight
in the fitting process. If in the binary case, for example, a fitting function
misclassifies those observations, that function can be applied again, but with
extra weight given to the observations misclassified. Then, after a large number
of fitting attempts, each with difficult-to-classify observations given relatively
more weight, overfitting can be reduced if the fitted values from the different
fitting attempts are combined in a sensible fashion. Ideas such as these lead to
very powerful statistical learning procedures that can compete with random
forests. These procedures are called “boosting.”

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_6, (© Springer Science+Business Media, LLC 2008
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Boosting gets its name from its ability to take a “weak learning algorithm,”
which performs just a bit better than random guessing, and “boosting” it into
an arbitrarily “strong” learning algorithm (Schapire, 1999: 1). It “combines
the outputs from many ‘weak’ classifiers to produce a powerful ‘committee’ ”
(Hastie et al., 2001: 299). So, boosting has some of the same look and feel as
random forests.

But, boosting formally differs from random forests in at least four impor-
tant ways. First, in traditional boosting, there are no chance elements built
in. At each iteration, boosting works with the full training sample and all of
the predictors. Some recent developments in boosting exploit random samples
from the training data, but these developments are enhancements that are not
fundamental to the usual boosting algorithms. Second, with each iteration the
observations that are misclassified, or otherwise poorly fitted, are given more
relative weight. No such weighting is used in random forests. Third, the ulti-
mate fitted values are a combination over a large set of earlier fitting attempts.
But the combination is not a simple average as in random forests. Finally, the
fitted values and measures of fit quality are usually constructed from the
“within-sample” data. There are no out-of-bag observations, although some
recent developments make that an option.

To appreciate how these pieces can fit together, we turn to Adaboost,
which is perhaps the most widely known boosting procedure (Freund and
Schapire, 1996). For reasons we soon examine, the “ada” in Adaboost stands
for “adaptive” (Schapire, 1999: 2). Adaboost illustrates well boosting’s key
features and despite a host of more recent boosting procedures is still among
the best classifiers available (Mease and Wyner, 2008).

6.2 Adaboost

Adaboost is the poster child for boosting and provides a useful introduction
to the method. It was designed originally for classification problems, which
once again are discussed first.

Consider a binary response coded as 1 or —1. Adaboost then has the follow-
ing general structure. The pseudocode that follows is basically a reproduction
of what Hastie et al. (2001) show on their page 301.

1. Initialize the observation weights w; = 1/N,i =1,2,... N.

2. Form =1 to M:
a) Fit a classifier Gy, (z) to the training data using the weights w;.
b) Compute: err,, = Loimy Wil 7 Cm(r:))

i=1 Wi

¢) Compute oy, = log[(1 — erry,)/erry].
d) Set w; «— w; - expla, - I(y; # Gm(x;))],i=1,2,...,N.

3. Output G(x) = sign [E;Vf:l oszm(a:)]
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There are N cases and M iterations. G,,(x) is a classifier for pass m over
the data. Any number of procedures might be used to build a classifier, but
highly truncated trees (called “stumps”) are common. The operator I is an
indicator variable equal to 1 if the logical relationship is true, and 0 otherwise.
The binary response is coded 1 and —1 so that the sign defines the outcome.
The classification error for pass m over the data is denoted by err,,.

The value of err,, is transformed into a logit, which then defines «a,,. The
new weights, one for each case, are then computed as w;. All cases incorrectly
classified are “up-weighted” relative to the previous pass over the data by
e*m. Consequently, Adaboost will pay relatively more attention in the next
iteration to the cases that were misclassified. In some expositions of Adaboost
(Freund and Schapire, 1999), «,, is defined as %log(l — errmy/erry,). Then,
incorrectly classified cases are up-weighted by e®m and correctly classified
cases are down-weighted by e~®m. In the end, classification is determined by
a vote over the M classifiers G,,,, with each vote weighted by a,.

To summarize, Adaboost combines a large number of fitting attempts of
the data. Each fitting attempt is undertaken by a classifier using weighted
observations. The observation weights are a function of how poorly an obser-
vation was fitted in the previous iteration. The fitted values from each iteration
are then combined as a weighted average. There is one weight for each fitting
attempt, applied to all of the fitted values, which is a function of the overall
classification error of that fitting attempt. The observation weights and the
iteration weights both are a function of the classification error, however, their
forms and purposes are quite different.

There are now several variants on the basic Adaboost algorithm (Friedman
et al., 2000). For example, one can think of Adaboost as “discrete” Adaboost
because the fitting function produces a binary response. “Real” Adaboost ex-
ploits a fitting function that generates class membership probabilities instead.
For these probabilities, the log-odds of class membership can be computed,
which in turn, are used instead of an assigned class when weights are updated.
Because the output from real Adaboost is less lumpy than from Adaboost,
a claim is made that the algorithm may perform a bit better. “Gentle Ad-
aboost” is a more robust version of Adaboost whose loss function gives less
weight to extreme values. Limited experience to date with realistic datasets
suggests that all three procedures classify about equally well. But there are
exceptions, and it is possible to construct datasets in which one or the other
will perform substantially better. More will be said about such performance
assessments later.

6.2.1 A Toy Numerical Example of Adaboost

To help fix these ideas, it is useful to go through a numerical illustration with
very simple data. There are five observations with response variable values for
1=1,2,3,4,50f 1,1,1,—1, —1, respectively.

1. Initialize the observations with each weight w; = 1/5.
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2. For the first iteration using the equal weights, suppose the fitted values
for observations ¢ = 1,2,3,4,5 are 1,1,1,1,1. The first three are correct
and the last two are incorrect. The error for this first iteration is:

. . . : 20 x 1
em:(20><0)+(20><0)+(201><0)+(20><1)+(20>< ) _ w.

3. The weight to be given to this iteration is

1—.40
ap = log% = log(.60/.40) = log(1.5) = .41.

4. The new weights are:
wy = .20 x e41X0) = 90

wy = .20 x t41X0) = 20
ws = .20 x X0 = 20
wy = .20 x 4D = 30
ws = .20 x etHXD) = 30

5. Now we begin the second iteration. We fit the classifier again and for
1=1,2,3,4,5 get 1,1,1,1,—1. The first four are correct and the last one
is incorrect. The error for the second iteration is

[(:20 x 0) + (.20 x 0) + (.20 x 0) + (.30 x 0) + (.30 x 1)]

— =.2
errsy 12 )
6. The weight to be given to this iteration is
1-25
= logg =log(.75/.25) = 1.1.

.25

7. We would normally keep iterating, beginning with the calculation of a
third set of weights. But suppose we are done. The classes assigned are:

g1 =sign[(1 x 41)+(1x1.1)]>0=1

y2 =sign[(1 x.41)+ (1 x1.1)]>0=1
=sign[(1 x.41)+ (1 x1.1)]>0=1

g4 =sign[(1 x 41)+(1x1.1)] >0=1

U5 = sign[(1 x .41) + (-1 x 1.1)] < 0 = —1.

One can see in this toy example how in the second iteration, the misclas-
sified observations are given relatively more weight. One can also see that the
class assigned (i.e., +1 or —1) is just a weighted average of the classes assigned
at each iteration. The second iteration had fewer wrong (one out of five rather
than two out of five) and so was given more weight in the ultimate averaging.
These principles would apply even for very large datasets and thousands of
iterations.
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6.2.2 A Statistical Perspective on Adaboost

Adaboost has of late been studied by statisticians, (e.g., Ridgeway, 1999;
Friedman et al., 2000; Wyner, 2003; Bithlmann and Yu, 2004; Friedman et
al., 2004; Zhang and Yu, 2005; Mease at al., 2007; Mease and Wyner, 2008)
and in response, by its original inventors (Shapire, 2002). From this recent
work several interesting features of Adaboost have been clarified.

Adaboost fits a stagewise additive model using basis functions in much the
same spirit as CART and random forests. In CART, the basis functions are
indicator variables that determine the optimal splits. Once a split is defined,
it is fixed. Later splits have no impact on earlier splits. Each terminal node
is characterized by a set of indicator variables that define the basis functions
for that node. The weighted sum of the basis functions is the classifier for all
of the data.

In random forests, the basis functions are the individual tree classifiers,
each a function of X. Farlier trees are unaffected by later trees. Classes are
assigned to observations by determining the class most commonly assigned
over trees. Votes are summed over trees, with each tree weighted the same.

In Adaboost, as with random forests, the basis functions are the individual
“weak” classifiers, each also a function of X. Often these weak classifiers are
trees. Earlier classifications are unaffected by later classifications. Classes are
assigned by a weighted sum over classifiers, with weights determined by the
values of «,.

Given the broad similarities between Adaboost and random forests, it is
not surprising that many of the same concepts can be applied to both. Just
as in random forests, for example, there is in Adaboost a margin, which plays
much the same role as the margin in random forests. Thus, a larger margin
implies less generalization error. There can also be in Adaboost population
generalization error, although unlike random forests, there is no convergence
to that value as the number of iterations increases without limit. The lack
of convergence raises some important issues (addressed shortly) about how
Adaboost should be used in practice.

There also are a number of formal links between Adaboost and a variety
of statistical procedures that provide a very useful bridge between the two
and a statistical framework within which to place boosting (Breiman, 1999;
Friedman et al., 2000). With this framework in place, several important con-
clusions can be derived that have significant implications for work with real
data.

Recall that in conventional parametric regression with a quantitative re-
sponse variable, the goal is to fit conditional means of the response variable.
If the intent is description, the regression hyperplane for the training data
ideally goes right through the conditional means. If the enterprise is estima-
tion, the regression hyperplane provides unbiased estimates of the conditional
means in the population, or the conditional means implied by the underly-
ing stochastic process. As noted in Chapter 1, the same motives can drive
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any of the statistical learning procedures we have discussed when there is a
quantitative response. When the response variable is categorical, a similar
motivating framework can be applied, but the units of the response are dif-
ferent. For example, it is common to fit or estimate the conditional log odds
(i.e., conditional logits) of the response categories. What is Adaboost trying
to fit?

Hastie et al. (2001: 306-308) show that the Adaboost iterations are im-
plicitly targeting
P(Y =1|X)
P(Y = -1|X)

This is just one-half the usual log-odds (logit) function for P(Y = 1|X). The
1/2 implies using the sign to determine the class. In other words, the “so-
lution” Adaboost is seeking is the population conditional probabilities, or if
within-sample results are all that matter, the conditional proportions. This
is familiar territory. However, the means to the end shown in Equation 6.1 is
minimizing the loss function e~#/(®) . Adaboost is attempting to minimize ex-
ponential loss with the observed class and the predicted class as its arguments.
This focus on exponential loss raises at least two important issues.

First, relying on the mathematical relationship between the exponential
loss function and conditional probabilities can miss a key point in practice.
Mease and Wyner (2008) show that although at each stage the true conditional
probability is indeed the minimizer, over stages there can be gross overfitting
of the estimated probabilities. Mease et al. (2007) had earlier demonstrated
that because classification depends only on the sign of the classifier, the com-
puted probabilities of class membership are pushed toward 0.0 or 1.0 as the
number of iterations increases. In other words, even when there is no evidence
of overfitting for class membership, there can still be massive overfitting of the
conditional probabilities (Buja et al., 2008). Indeed, the massive overfitting
is desirable because it implies large margins for the fitted classes. Possible
solutions to this form of overfitting are discussed later, but one must be very
cautious about making too much of the estimated conditional probabilities.

Second, the exclusive attachment to the exponential loss function naturally
raises the question of whether there are other loss functions that might per-
form better. Hastie and his colleagues (2001: 306—-309) show that minimizing
negative binomial log likelihood (i.e., the deviance) is also (as in Adaboost) in
service of finding the true conditional probabilities, or the within-sample con-
ditional proportions. Might this loss function, implemented as “Logitboost,”
be preferred?

On the matter of overfitting conditional probabilities, the answer is no.
The same overfitting problems surface (Mease et al., 2007). With respect
to estimating class membership, the answer is maybe. Hastie et al. (2001:
308-312) show that the Logitboost loss function is somewhat more robust to
outliers than the Adaboost loss function. They argue that, therefore, Log-
itboost may be preferred if a significant number of the observed classes on

F(X) = Jlos (6.1)
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the response variable are likely to be systematically wrong or noisy. Biased
or noisy measurement could produce large disparities between the observed
and fitted classes that would tend to dominate the fit. However, Mease and
Wyner (2007) show through simulation counterexamples that this advice can
often be wrong. There is no doubt that exponential loss is more vulnerable
to outliers in principle, but the implications of this for practice are not yet
clear. Perhaps the best advice when analyzing a given dataset is to try both
procedures with the training data, and then with test data see which classifies
more accurately.

Despite these and other controversies, there are some real gains to be had
placing boosting within a statistical framework of loss function minimization.
Statisticians have done a lot of thinking about loss functions. We turn to one
particularly useful approach shortly.

6.3 Why Does Adaboost Work So Well?

There is no formal stopping rule for Adaboost and as a result, Adaboost can
overfit (Jiang, 2004). The number of passes over the data is a tuning parameter
that in practice depends on trial and error, often indexed by a measure of fit.
One such measure is the cross-validation statistic, but there are several others
that each penalize model complexity a bit differently. Often the number of
classification errors will decline up to a certain number of passes over the
data and then begin to increase. The point of inflection can sometimes be
treated as a useful stopping point. But, there is nothing in boosting implying
convergence.

Indeed, for a given sample size, “boosting forever” is not consistent (Man-
nor et al., 2002). But, for a given stopping point, Zhang and Yu (2005) show
that under fairly general conditions, boosting will estimate the population gen-
eralization error as the number of observations increases without limit. The
population characteristic being estimated is essentially the same as Breiman’s
for random forests, but the number of observations rather than the number
of iterations increases without limit. Importantly, the same caveat holds: the
proof of consistency says nothing about the quality of the population classifier
responsible for generalization error.

There are also some interesting twists on the usual problem of what can
be learned from asymptotics about the results from some data on hand. For
example, in a given sample, there may be by random selection no observations
where there are several critical turning points in the f(X). It is likely, there-
fore, that at least those turning points will be fitted in a misleading manner,
which a proof of consistency cannot usefully address. That is, even if an esti-
mator can be shown to be consistent under certain conditions, a given sample
may miss key features of the f(X).

Still, there is broad consensus that Adaboost performs remarkably well.
Part of the reason may be that as does random forests, Adaboost provides an
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opportunity for many different predictors to usefully contribute. Rather than
working with random subsets of predictors, Adaboost reweights the data so
that predictors that might have contributed little to the fit in earlier stages
may do so for later stages. In the same spirit, a basis function for a given
predictor that may work poorly at an early stage may work better at a later
stage. Just as in random forests, the result is a very flexible fitting procedure
that can help reduce bias in the fitted values. Then in the weighted averaging
process, the variance can be brought under better control.

6.3.1 Least Angle Regression (LARS)

One can obtain a useful window on this process through Least Angle Regres-
sion (Efron et al., 2004). Although the initial focus for LARS was on model
selection, there are some insights to be had on boosting. LARS proceeds in a
stagewise fashion in the spirit of forward stepwise regression. But rather than
making an all-or-nothing decision about how a prospective regressor should
participate in the model, each variable selected has its role somewhat diluted.

Recall conventional forward stepwise regression. For a given response vari-
able,

1. Find the predictor that has the largest absolute correlation with the re-
sponse.

2. Compute the one-predictor regression equation and the residuals.

3. Find among the remaining predictors the one that has the largest absolute
correlation with the residuals.

4. Add that predictor to the model, and compute the two-predictor regres-
sion equation and the residuals.

5. Keep adding predictors in this fashion until there is an insufficient im-
provement in the model’s performance.

A usual feature of this approach is that the basis function that produces
the largest reduction in the error sum of squares is the one added to the
model. Such algorithms are sometimes characterized as “greedy” because by
a specified criterion they make an optimal decision at each step that does not
necessarily lead to a global optimum. Greedy algorithms have the advantage,
however, of being practical and often give very good results. The alternative
of searching over all possible models for a global optimum is typically far too
taxing and in some cases, effectively impossible.

The full impact of the included predictors is at each step transmitted
through the fitted values to the residuals. One result is residuals that are
uncorrelated with the regressors currently in the model. Another result is
that other predictors correlated with the regressors already selected may have
their chances of being included seriously compromised. Their potential fitting
capabilities may be to some extent pre-empted by predictors already in the
model.
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Consider now stagewise regression. Stagewise regression has some of the
same look and feel as forward stepwise regression, but there are important
differences. As before, there is a response variable and for ease of exposition,
it is common to assume predictors that have been standardized to have a
mean of 0.0 and a standard deviation of 1.0. Then,

1. Find the predictor that has the largest absolute correlation with the re-
sponse.

2. Compute a “regression” coefficient proportional to that correlation coef-
ficient.

3. Compute the fitted values and residuals.

4. Find among the remaining predictors the one that has the largest absolute
correlation with the new residuals.

5. Compute a “regression” coefficient proportional to that correlation coef-
ficient.

6. Update the fitted values and compute new residuals.

7. Keep adding predictors in this fashion until there is an insufficient im-
provement in the model’s performance.

Underneath Steps 3 and 6 is an updating procedure for the fitted values
of the following form,
g — y+e-sign(é)) -z, (6.2)

where ¢ is the fitted values of the response, x; is the predictor selected at a
given stage, c; is proportional to correlation with the residualized response,
and ¢ is a small constant (Efron et al., 2004: 410). Then, residuals are com-
puted as one would expect by subtracting the updated fitted values from the
values of the observed response. These residuals serve as the response variable
for the next stage.

At each stage, therefore, a new fitting equation with a single new predic-
tor is computed from which new residuals follow. The impact of each new
predictor is discounted substantially by the multiplicative factor €. The re-
sult is residuals whose correlation with each newly added predictor is reduced
but not eliminated. Prospective predictors, correlated with the included pre-
dictors are then more likely to remain in play and have a greater chance of
being included in later stages. Also, predictors used in earlier stages can be
used again in later stages. In this sense, the “greediness” of the algorithm is
reduced.

How is the value of £ determined? To date, there is no formal way to
determine the value of . The standard recommendation is that € should be
very small (e.g., .01) and that the fitting process should be allowed to run
for several thousand stages. There is some experience suggesting that in this
manner, a very flexible fitting function will result. In short, the fitted values
should be allowed to very gradually arrive at a satisfactory result.

LARS can be seen in part as a computational shortcut for stagewise re-
gression. Rather than incrementing the fitted values in tiny steps over many
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stages, LARS only requires up to as many stages as there are regressors. It ar-
rives more quickly at the desired regression function by using different weights
in the updating process. At any given stage, the residuals from the previous
stage serve as the response varible. But when a new predictor is added to the
model, all of the earlier included predictors, as well as the new one, participate
in the fitting process. Moreover, they are each forced to have equal impact on
the fitted values regardless of what might have happened had, say, forward
stepwise regression been applied to the data.

Like for stagewise regression, the LARS residuals are not forced to be
uncorrelated with the included predictors, and regressors can have more than
one opportunity to contribute to the fitted values. Also, predictor variables
not yet in the model have a better chance of being included in later stages. In
the language we have been using, weak and highly specialized predictors can
participate in the fitting process. The result is a very flexible fitting function.

But, what has all this to do with boosting? In conventional regression,
regressors are either included in the model or not. In some circumstances this
is too ham-fisted. Predictors compete for the opportunity to be included, and
there are clear winners and clear losers. LARS illustrates how that the all-or-
nothing strategy can be improved. Often it will be better to blend the impact
of a wide variety of predictors rather than choose among them. Random forests
and boosting share much the same perspective. And this can be very effective
when highly flexible fitting functions are needed and when there is not a clear
distinction between the regressors that belong in the model and those that
do not. Another benefit is a kind of shrinkage that can increase the stability
of the fitted values. As new predictors are added to the model, their weights
are discounted and their potential impact on the fitted values is spread across
other predictors.

Finally, the links among LARS, the lasso, and boosting mean that one
can see boosting in part as a shrinkage procedure (Bithlmann and Yu, 2006;
Biithlmann, 2006). If one looks backwards from the final boosting pass through
the data, there is shrinkage at work. The shrinkage is more dramatic as one
gets closer to the initial iteration.

In summary, there is no definitive explanation of why Adaboost works as
well as it does. But it is likely that two factors are important: the weighting of
residuals over many passes through the data so that weak and strong predic-
tors can play a role, and the averaging across sets of fitted values that help to
reduce overfitting and to increase stability. These assets carry over to a wider
range of boosting procedures to which we can turn now.

6.4 Stochastic Gradient Boosting

Boosting can be approached from an unusually wide variety of perspectives
(Shapire, 2002). Many different classifiers can be boosted using many differ-
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ent algorithms and loss functions. It also seems that boosting is related not
just to a number of traditions in statistics but to game theory, linear pro-
gramming, other core areas in applied mathematics, and computer science.
Finally, boosting is “hot.” The half-dozen journals or so that publish work on
statistical learning have in almost every issue a useful paper on boosting or
related approaches.

To have so much new and interesting work is surely a joy for the re-
searchers. But practitioners are faced with the serious problem of needing
stable tools already programmed that reflect the best of these recent develop-
ments. Yet, it is not even clear at this point which procedures work best for
which kinds of data analyses or even any consensus on how “best” is to be
defined. And the availability of software depends as much on happenstance as
a well-considered response to what the user community needs.

In so confused and volatile an environment, moving from discussions of
the various procedures in principle to tools ready for serious practice means
making a number of educated guesses about what will be most productive. To
that end, the material that follows emphasizes boosting additive trees. Just as
in random forests, CART serves as the base classifier. We also limit ourselves
to several rather conventional loss functions. Finally, we stay within R and
what is one of the best implementations of boosting widely available (Ridge-
way 2005), based on stochastic gradient boosting (Friedman, 2001, 2002).
Experience to date suggests that stochastic gradient boosting using trees pro-
vides a very flexible boosting framework without, in general, sacrificing fitting
performance. Moreover, stochastic gradient boosting can be used with either
categorical response variables or quantitative response variables, depending on
the loss function used. Finally, stochastic gradient boosting is closely linked
to a number of common statistical traditions which, given the exposition style
of this book, will seem familiar.

The basic logic behind stochastic gradient boosting is very clever. What
follows is a first approximation of gradient boosting with a few key details
overlooked for now. As has become our didactic practice, we start with a
binary response variable.

Suppose that the response variable is binary and coded as 1 or 0. From a
regression tree, not a classification tree, fitted values 7; can be obtained. For
each observation, there is also the observed value of the response y;. After
applying a monotonic transformation to y; (details later), the transformed
values of 7; are subtracted from the y; to obtain what are, in effect, residuals.
In the next iteration, a regression tree is fit to these residuals. The new set
of fitted values is then added to the old fitted values (details later) to obtain
a new set of fitted values. After a sufficient number of such iterations, the
last set of fitted values can be used to assign classes. Commonly, observations
with ¢; > 0.5 are assigned a “1,” and observations with ¢; < 0.5 are assigned
a “0.”

Larger positive or negative residuals imply that for those observations,
the fitted values are less successful. When the regression tree attempts to
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maximize the quality of the fit overall, it will respond more to the observations
with larger positive or negative residuals. In effect, therefore, these residuals
serve as weights and hence, provide a key connection to boosting as originally
proposed.

Now consider gradient boosting more formally. The discussion that follows
on boosting trees draws heavily on Ridgeway (1999) and on Hastie et al. (2001:
Sections 4.9-4.11.

A given tree can be represented as

J
T(x;0) = ijl(x € R;), (6.3)

with, as before, the tree parameters © = {Rj,~;}, where j is an index of
the terminal node, j,...,J, R; a predictor-space region defined by the jth
terminal node, and ~y; is the value assigned in each observation in the jth
terminal node. The goal is to construct values for the unknown parameters
O so that the loss function is minimized. At this point, no particular loss is
specified, and we seek

J
O =argminy | > Ly ). (6.4)

Jj=1lz;€ER;

How this can be done for a given tree was discussed when CART was
examined. The problem now is more difficult. We seek to minimize the loss
over a set of trees. We once again proceed in a stagewise fashion so that at
iteration m we need to find

N
Qm = arg H@linnz L(yia fm—l(xi) + T(xtv Q'm))a (65)

i=1

where f,,—1(z;) are the results as of the previous tree. Given the results from
the previous tree, the intent is to reduce the loss as much as possible using the
fitted values from the next tree. This can be accomplished through an astute
determination of ©,,, = [Rjm,Vjm] for j =1,2,...,J,,. Thus, Equation 6.5 is
a way to update the fitted values in an optimal manner.

Equation 6.5 can be reformulated as a numerical optimization task. In this
framework, g;,, is the gradient for the ith observation on iteration m, defined
as the partial derivative of the loss with respect to the fitting function. Thus,

o= - [T |
im Of (x;) F (@)= Ffrm—1(zs)

Equation 6.6 represents for each observation the potential reduction in the
loss as the fitting function f(z;) is altered. The larger the absolute value of
gim, the greater is the change in the loss as f(x;) changes. So, an effective
fitting function would respond most to the larger absolute values of g, .

(6.6)
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The gin, will generally vary across observations. A way must be found to
exploit the g;,, so that over all of the observations, the loss is reduced the
most it can be. One approach is to use a numerical method called “steepest
descent,” in which a “step length” p,, is found so that

pm = argmin L(f,,—1 — pg,,)- (6.7)
p

In other words, a scalar p,, is determined for iteration m so that when it
multiplies the vector of gradients, the loss function from the previous iteration
is reduced the most it can be.

The link between the method of steepest descent and gradient boosting
is gim- Consider the disparities between tree-generated fitted values and the
actual values of the response. Those disparities are a critical input to the loss
function. The size of the loss depends on all of the N disparities, but larger
disparities make greater contributions to the loss than smaller disparities.
Thus, a fitting function will reduce the loss more substantially if it does an
especially good job at reducing the larger disparities between its fitted values
and the actual values. There is a greater payoff in concentrating on the larger
disparities. Thus, disparities resulting from the fitting process play much the
same role as the gradients in the method of steepest descent.

And now the payoff. Friedman (2002) show that if one uses certain trans-
formations of the disparities as the gradients (details soon), there is a least
squares solution to finding the best parameter values for the fitting function.
That is,

N
O,, = arg m@in ;(—gim —T(z;0))% (6.8)

What this means in practice is that if one fits successive regression trees by
least squares, each time using as the “response variable” a certain transforma-
tion of the disparities produced by the previous regression tree, one can obtain
a useful approximation of the required parameters. For a binary outcome, the
classifier that results, based on a large number of combined regression trees,
is much the same as Adaboost. Moreover, by recasting the boosting process
in gradient terms, many useful variants follow.

We turn, then, to the steps involved in gradient boosting as implemented
in ghbm(), the software R we soon apply. The algorithm is also called stochastic
gradient boosting because of the random sampling in Step 2b below.

Consider a training dataset with NV observations and p variables, including
the response y and the predictors z.

1. Initialize fo(2) so that the constant x minimizes the loss function: fo(z) =
. N
argmin, y ", L(ys, k).
2. Formin 1,..., M, do Steps a through e.
a) For ¢ = 1,2,..., N compute the negative gradient as the working
response



270

3.

6 Boosting

Tim = — {W}f=fml '

b) Randomly select without replacement W X p cases from the data set,
where W is less than the total number of observations. Note that this
is a simple random sample, not a bootstrap sample. How large W
should be is discussed shortly.

c¢) Using the randomly selected observations, fit a regression tree with
Jm terminal nodes to the gradients r;,,, giving regions R;,, for each

terminal node 7 =1,2,..., Jp,.
d) For j = 1,2,...,J,,, compute the optimal terminal node prediction
as

Yjm = arg min > Ly, (@) +7),
;i €ERjm

where region Rj,, is denotes the set of z-values that define the terminal
node j for iteration m.
e) Still using the sampled data, update f,,(z) as

Jm

fm(2) = fono1(z) + v - Z’yjml(x € Rjm).

j=1

where v is a “shrinkage” parameter that determines the learning rate.
The importance of v is discussed shortly.

Output f(z) = fu ().
Ridgeway (1999) has shown that by using this algorithmic structure, all

of the procedures within the generalized linear model, plus several extensions
of it, can properly be boosted by the stochastic gradient method. Stochastic
gradient boosting relies on an empirical approximation of the true gradient
(Hastie et al., 2001: Section 10.10). The trick is determining the right r; for
each special case. The “residuals” need to be defined. Among the definitions
of r;,, are the following.

1.
2.

his

Gaussian: y; — f(x;) ... the usual regression residual.
Bernoulli: y; — He—ilfw) ... the difference between the binary outcome
coded 1 or 0 and the fitted (“predicted”) proportion for the conventional

logit link function.

. Poisson: y; — ef(#) | the difference between the observed count and the

fitted count for the conventional log link function.

. Laplace: sign[y; — f(x;)] ... the sign of the difference between the values

of the response variable and the fitted medians.

. Adaboost: —(2y; — 1)e~vi=DF (=) | not within the generalized linear

model so not as easily seen as a kind of “residual.”

There are a number of other gradient boosting possibilities. Hastie and
colleagues (2001: 321) provide the gradient for a Huber robust regres-

sion. Ridgeway (2005) offers boosted proportional hazard regression in gbm().
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Kriegler (2007) has added to gbm() a Laplace loss function that through an
analogy to quantile regression, allows for asymmetric loss. More is said about
Kriegler’s work later.

Stochastic gradient boosting also can be linked to various kinds of penal-
ized regression of the general form discussed in earlier chapters. One insight,
implied earlier, is that the sequences of results that are produced with each
pass over the data can be seen as a regularization process akin to shrinkage
(Biithlmann and Yu, 2004; Friedman et al., 2004). There is less shrinkage with
each successive pass over the data.

In short, with gradient boosting, each tree is constructed much as a con-
ventional regression tree. The difference is how the “target” for the fitting is
defined. By using disparities defined in particular ways, a wide range of fitting
procedures can be boosted.

6.4.1 Tuning Parameters

The stochastic gradient boosting algorithm just described has two important
innovations beyond the original version of gradient boosting. First, a page is
taken from bagging with the use of random sampling in Step 2b to help control
overfitting. The sampling is done without replacement, but as noted earlier,
there can be an effective equivalence between sampling with and without
replacement, at least for conventional bagging (Buja and Stuetzle, 2006).

The sample size, whether with or without replacement can be a tuning pa-
rameter. The issues are rather like those that arise when the number of folds
in N-fold cross-validation is considered. And as with N-fold cross-validation,
there seems to be no formal and general answer. Practice seems to favor a
conventional sample size of N when sampling with replacement and a con-
ventional sample size of N/2 when sampling without replacement. But it can
make sense for any given data analysis to try sample sizes that also are about
25% smaller and larger and choosing the best sample size based on out-of-
sample performance.

Second, it can be very useful to reduce the rate at which the updating
occurs by setting v to a value substantially less than 1.0 (Step 2e). A value
of .001 often seems to work reasonably well, but values larger and smaller by
up to a factor of 10 are usually worth trying as well. Again, the value of the
tuning parameter is usually determined best by out-of-sample performance.

By slowing down the rate at which the algorithm “learns,” a larger number
of basis functions can be computed. The flexibility of the fitting process is
increased, and the small steps lead to shrinkage at each pass through the
data. A cost is a larger number of passes through the data. Fortunately, one
can usually slow the learning process down substantially without a prohibitive
increase in computing.

Third, a tuning parameter that also affects the flexibility of the fitting
function is the “depth” of the interaction variables desired: no interactions,
two-way, three-way, and so on. In other words, by allowing for what are, in
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effect, sets of product variables, one can increase the “dictionary” of basis
functions evaluated. This may seem unnecessary because CART already has
the capacity, at least in principle, for building interaction effects basis func-
tions. But, depending on how the partitioning proceeds and on the ways in
which predictor variables are related to one another, CART may fail to find
some needed interactions or represent them improperly. For example, it may
miss entirely a given two-way interaction or represent it as a three-way interac-
tion. By explicitly building in interaction variables, one increases the chances
that for many passes through the data CART will get it right.

The price, once again, can be computational. For example, one could in-
clude main effects plus all two-way and three-way interaction effects. But even
for a small number of predictors, all two-way interactions alone will dramati-
cally increase the number of terms evaluated at each CART partitioning of the
data. In practice, therefore, it is rare to go beyond all two-way interactions.
And unless the response function is thought to be rather complex, including
only main effects may well suffice.

Fourth, yet another tuning parameter that affects fitting function flexi-
bility is the minimum number of observations in each tree’s terminal node.
Smaller node sizes imply larger trees and a more flexible fitting function. Min-
imum terminal node sizes of between 5 and 15 seem to work reasonably well
in many settings, but it can be worth experimenting with somewhat larger
terminal node sizes if computational constraints are significant and if the
number of observations used to construct each tree is large. The risk is that
with larger terminal node sizes and the smaller trees that can result, some
important nonlinearities may be missed.

Finally, the number of passes over the data needs to be determined. Be-
cause there is no convergence and no clear stopping rule, the usual practice
is to run a large number of iterations and inspect a graph of the fitting er-
ror (e.g., residual deviance) plotted against the number of iterations. Usually,
the error will decline rapidly at first and then level off. It can even start to
increase when the number of iterations is very large. If there is an inflection
point at which the fitting error starts to increase, the number of iterations can
be stopped just short of that number. If there is no inflection point, the num-
ber of iterations can be determined by when reductions in the error effectively
cease.

Determining the number of iterations is rarely a serious problem in prac-
tice. One proceeds in steps. Several hundred iterations are run, and the per-
formance of the fitting procedure examined. There are often useful tools, such
as cross-validation statistics, to help evaluate performance. If the results are
unsatisfactory, more iterations are run. This process stops when the perfor-
mance of the fitting procedures no longer seems to be improving. Stochastic
gradient boosting results can be quite robust to the number of iterations used,
once it is apparent that there are no important gains to be made. But there
are exceptions. In particular, when the response is binary and interest centers
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on the fitted probabilities, the fitted probabilities can be quite sensitive to the
number of iterations. An example is provided later.

There are some important relationships between the tuning parameters.
The usual goal of a data analysis is to construct a set of fitted values with
low bias and low variance. Larger trees, higher-order interaction variables,
and smaller steps can contribute to reducing the bias. Smaller steps can also
help reduce the variance by not allowing a few sets of widely varying fitted
values to destabilize the procedure, and by indirectly increasing the need
for more passes through the data. Random sampling, which will increase the
independence between the sets of fitted values, also can help increase stability.

But exactly how the possible values for each of the tuning parameters
should be tuned as a group is not apparent. Is one better off, for instance,
to proceed with larger trees and small learning steps? More generally, can
certain values for one tuning parameter compensate for certain values for the
another? At this point, it is difficult to find clear guidance (Buja et al., 2008).

To summarize, there are several tuning parameters associated with stochas-
tic gradient boosting. Fortunately, much of the available software comes with
sensible defaults, and it is often a good idea to stick with these, at least at
first. Then some trial-and-error tuning can also be useful. The only tuning
parameter likely to need immediate attention is the number of trees to grow.
The program gbm(), for example, offers useful information on how many trees
are needed, but the user is free to do what seems appropriate. Perhaps the
most important message is that gradient boosting can be quite forgiving in
general with respect to its tuning parameters.

6.4.2 Output

The key output from stochastic gradient boosting is much the same as the
key output from bagging: predicted classifications, predicted probabilities, er-
ror rates, and confusion tables. However, unlike bagging and random forests,
there are not the usual out-of-bag observations. Therefore, the confusion ta-
bles commonly depend on resubstituted data; the data used to build the model
are also used to evaluate its performance. As a result, it can be important to
have both a training dataset and a test dataset. Confusion tables should be
constructed from the test data set. If a simple random sampling option is
available, a kind of out-of-bag data is available for evaluation. Recall these
are not what is excluded from random samples drawn with replacement, but
a fraction of the total training dataset not chosen when a subset of the obser-
vations is selected for each tree. Exactly how these data are used will depend
on the software.

Just as for bagging and random forests, the use of multiple trees means that
it is impractical to examine tree diagrams to learn how individual predictors
perform. The solutions currently available are much like those implemented
for random forests. There are partial dependence plots that are effectively the
same as those used in random forests. However, these plots must be treated
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cautiously when the outcome variable is binary. Recall that in an effort to
classify well, boosting can push the fitted probabilities away from .50 toward
0.0 and 1.0, and in the case of stochastic gradient boosting, the fitted proba-
bilities can be very sensitive to values of the tuning parameters. Consequently,
the fitted probabilities can be misleading. For partial dependence plots with
binary predictors, the vertical axis is a function of these fitted probabilities,
usually in a logit metric. If the probabilities are suspect, so are the logits.
There are also importance measures for each predictor. The exact form
these importance measures can take depends on the software used. But one
common option is the reduction of the loss function normalized to 100. The
software stores how the loss decreases when each predictor is chosen for partic-
ular splits over trees. The average decrease over trees is the raw contribution
each predictor makes to the fit. Then these contributions are summed, and
each contribution is reported as a proportion of the total. In gbm(), there
is on a somewhat experimental basis a random shuffling approach to impor-
tance based on predictive skills, but to date it does not use the out-of-bag
observations. So it does not represent true forecasting accuracy. Recall that
for random forests, importance is defined by contributions to forecasting skill.

6.5 Some Problems and Some Possible Solutions

Because there are so many different kinds of boosting, it is difficult to arrive
at any overall assessments of strengths and weaknesses. Moreover, the menu
of boosting options continues to grow partly in response to concerns about
the performance of older boosting methods. Nevertheless, a few provisional
observations may be useful for practitioners.

6.5.1 Some Potential Problems

Boosting is a very powerful tool whose reach will no doubt expand in the
near future. For many data analysis problems, it performs well and can be
a legitimate competitor to random forests when either approach could be
properly applied. But boosting also has some serious drawbacks.

As with random forests, the existing proofs of consistency are not fully
satisfying. Suppose in the population there is some function of X, h(X), con-
structed that links inputs of outputs. Under certain reasonable conditions,
including a training dataset that is a random sample from that population,
boosting will provide a consistent estimate of h(X). But unless h(X) is the
same as the true mechanism f(X) linking inputs to outputs, the function esti-
mated from the training data will not be a consistent estimate of f(X). That
is, in large samples boosting can get the wrong function approximately right.
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Boosting also can overfit the data. Unlike random forests, there is no mech-
anism in boosting for capitalizing on random samples of the data and then
averaging the results over these samples. Some implementations of boosting
have the option of cross-validation measures of fit or other measures that can
provide useful guidance on when to stop the boosting process. But even a very
good cross-validation stopping rule does not necessarily imply that all is well.
The problems with binary outcomes and the fitted probabilities noted earlier
are an instructive example.

A related matter is that costs are addressed solely within the functional
form of the loss. In Adaboost, for example, classification errors are weighted
exponentially but symmetrically. There is no distinction between false posi-
tives and false negatives and hence, no way to take their different costs di-
rectly into account. In stochastic gradient boosting, classification problems are
transformed into regression problems when the residuals are defined. Thus,
fitting errors as used in the algorithm are no longer categorical, and there are
no longer false negatives and false positives. And the loss functions are once
again symmetric. A positive residual of a given size is treated the same as a
negative residual of the same size.

Similar issues carry over when the response is quantitative. Although the
concepts of false negatives and false positives no longer apply, one might
still wish for an asymmetric loss function. If the intent, for instance, is to
characterize how the number of homeless people in a census tract is related
to features of that tract, overestimates of the number of homeless might have
very different consequences from underestimates of the number of homeless.
Homeless advocates would perhaps see underestimates as more costly than
overestimates. Local public officials might take the opposite view. But neither
would like see the costs of overestimates and underestimates treated the same
(Berk et al., 2008)

In short, the inability to take asymmetric costs into account means that
symmetric costs are being assumed. In practice, this can be untenable. A
closely related consequence is that there is no principled way to address the
problems that can follow when a response variable is highly skewed. For clas-
sification exercises, then, it can be very difficult for boosting to perform better
than assigning classes solely from the modal response variable category.

Finally, tuning parameters on occasion can make an important difference
in the results. Then, one has no choice but to experiment with different sets of
tuning parameter values. Unfortunately, this can be at best a trial-and-error
process with too often no definitive resolution.

6.5.2 Some Potential Solutions

Many of boosting’s vulnerabilities, just as for any statistical procedure, are
exposed by inadequate data. Stated a bit differently, it will be rare indeed, for
boosting to be able to solve problems stemming from weaknesses in the infor-
mation on which it operates. Little more need be said about the importance
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of large samples, a rich set of predictors, and accurate measurement. Better
data are always better, and data analysis difficulties that may seem to result
from the boosting procedure applied, can be remedied if by data of higher
quality.

The difficulties that can arise by assuming symmetric costs and/or work-
ing with highly skewed response variables can be addressed within the same
broad framework. The key is to allow for asymmetric costs. For stochastic
gradient boosting and quantitative response variables, Kriegler (2007) sug-
gests attaching weights to the loss functions that can capture asymmetric
costs. These weights, in turn, are carried forward when the empirical gradi-
ents are constructed so that the CART fitting process at each pass through the
data takes them into account. To date, this idea has been employed for the
Laplace, Gaussian, and Poisson distributions. Applications to real datasets
look promising. One can use the weights to make the costs of forecasting er-
rors responsive to policy and where appropriate, use such costs to adjust for
skewed distributions. Asymmetric weighting for the Laplace distribution has
been implemented in ghm(). An illustration is provided later.

When the response variable is binary, Mease and his colleagues (2007)
argue for weighting the classification errors directly and asymmetrically within
an Adaboost (not stochastic gradient boosting) framework. Imagine that one
can estimate accurately the probability that a given case is in a given class. It
is common to assign that case to a particular class if the associated probability
is greater than .50. As noted in earlier chapters, the .50 threshold implies that
the costs of false positives and false negatives are the same, and by raising
the threshold above or below .50, asymmetric costs can be taken into account.
For example, if the threshold were placed at .75, it would imply that the costs
of falsely placing a case in the specified class are three times higher than the
costs of incorrectly failing to place a case in that class. If one thinks of these
thresholds as quantiles, there is a direct connection between the use of such
quantiles and the use of costs in classification exercises. Using the quantiles
to classify has been called quantile classification (Mease et al., 2007).

In practice, quantile classification is undertaken by oversampling or under-
sampling in much the same way it is done in random forests. The algorithm is
called Jous-Boost and is available in R. The direct links between asymmetric
costs, quantile classification, and disproportional stratified sampling allow one
to implement costs sensitive boosting within an Adaboost framework. More-
over, one can then obtain appropriate estimates of the probability function.
The details can be found in a paper by Mease and his colleagues (2007).

About all that can be said about problems with determining the values
of tuning parameters is that it is important to be systematic in one’s search
of the parameter space. Increasingly, there is software to aid in this process.
The procedure tune() in the el071 library is one example. It can also be
important to appreciate at a deeper level that one usually tunes in response
to some function of fit quality. For many applications this is appropriate.
But there is no necessary connection between fit quality and scientific or
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policy responsiveness. As noted several times in earlier chapters, a better-
fitting model may be less instructive than a worse-fitting model. Tuning for
fit quality, therefore, is no assurance of sensible results. Finally, one must
be cautious about boosting output that is highly sensitive to values of the
tuning parameters. For example, one might reasonably decide that the fitted
probabilities from a binomial model should not be used or interpreted. And, it
would not be a good idea under these circumstances to use fitted probabilities
to construct propensity scores (McCaffrey et al., 2004).

6.6 Some Examples

6.6.1 A Garden Variety Data Analysis

Among the most common kinds of analyses in the social sciences are regres-
sions of wages on various biographical variables. We turn to some survey data
from the Panel of Income Dynamics to do just such an analysis. We boost us-
ing a Gaussian loss function in gbm() to provide a relatively straightforward
illustration.

Figure 6.1 shows a boosting performance plot. On the horizontal axis is
the number of iterations. On the vertical axis is the change in the normal
log-likelihood computed, in this case, from out-of-bag observations. These are
the observations not used when the fractional simple random samples were
drawn for each tree. They can provide a more conservative assessment of how
well the iterations are doing than the resubstituted data. Because the point
is to determine how well the interations are doing with the data actually
being processed, it is not clear that a more conservative estimate is called for.
No measure of fit is being computed that will be generalized to out-of-sample
data. In this instance, and as expected, the big improvements come early with
no substantial gains after about iteration 4000.

The purpose of Figure 6.1 is to see how the fitting proceeds as the number
of iterations increases and to choose a cutoff point. If there is evidence that the
performance has not bottomed out, additional iterations can be undertaken.
If the performance curve has become effectively flat, there is important in-
formation about the useful number of additional iterations needed. Iterations
beyond the cutoff point can be discarded.

Commonly, there is statistic a computed from OOB data or through cross-
validation that evaluates whether the improvement in performance in a given
iteration is worth the increase in complexity. Recall that each additional it-
eration can be viewed as adding another basis function, which makes the
fitting procedure more complex. In this case, the cutoff was determined to be
iteration 7746.

Figure 6.2 is an importance plot. Importance is measured by the reduction
in the log-likelihood attributable to each predictor, then normalized so that
the contributions to the fit add to 100. Recall that for CART the contribution
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Fig. 6.1. Performance of Gaussian boosting for wages.

of each predictor to the fit of a given tree can be easily calculated. When a
predictor is chosen as the splitting variable, the reduction in heterogeneity is
determined. The sum of such reductions over the entire tree is that predictor’s
importance. Random forests averages each predictor’s importance over trees.
Stochastic gradient boosting, as implemented in gbm(), does the same. In
Figure 6.2, a little more than 50% of the fit can be attributed to age. Education
accounts for about 35% of the fit. Sex accounts for about 12% of the fit.
Language spoken makes almost no contribution.

Finally, Figure 6.3 is the partial dependence plot for age. The vertical axis
is in dollars per hour. The horizontal axis is in years of age. One can see that
after about age 20, increases in age are associated with increases in wages,
but that after about age 40, the relationship flattens out and after age 60,
may even decline a bit. Note how one would have been misled had a linear
relationship been assumed, and a quadratic form would have only done a
little better. Even a cubic polynomial, had that been anticipated, would have
missed some of the more interesting features of the relationship, such as the
flat part up to about age 20.
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Predictor Importance for Wages
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Fig. 6.2. Predictor importance for Gaussian boosting for wages.

In general, it is useful to construct partial dependence plots for all quanti-
tative predictors as long as there are a sufficient number of different predictor
values and a substantial number of observations for each. Recall that there is
often no point in trying to overlay a smoother when the predictor values are
few. But, a lot depends on the complexity of the partial response function. If
the function is simple, a partial dependence plot based on few unique predictor
values can be helpful. One must also consider whether there are a sufficient
number of observations for each unique predictor value. Regions where the
data are sparse risk unstable results that can make the response function look
more complex than it really is.

It is not appropriate to construct dependence plots for the categorical
variables such as sex and language. The values on the horizontal axis would
be meaningless. Bar charts are a more useful option. For each category, the
conditional mean is plotted. Recall that this is the strategy employed by
random forests.

There are no confusion tables for quantitative response variables. But in
principle, one has access to all of the usual regression diagnostics. For this
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Partial Dependence for Age
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Fig. 6.3. Partial dependence on age for Gaussian boosting for wages.

boosted Gaussian regression, about 35% of the variance is accounted for by
functions of the predictors. A conventional linear regression accounted for
about 29% of the variance. Boosting clearly improves the fit in this example,
although it also uses a larger effective number of parameters. Most of the
improvement comes from the nonlinear relationship between age and income.
Boosting can help most when one or more relationships between the response
variable and predictors is complex.

Figure 6.4 shows four common plots used to evaluate the quality of a
regression fit. Beginning with the plot in the upper-left corner, it is clear that
the variance in wages increases with the average wage. This is confirmed by
the plot at the lower left corner. In both, there also seems to be some evidence
of a cluster of outliers suggesting an omitted categorical predictor. The plot on
the upper-right corner indicates that the residuals are quite close to normal.
The plot on the lower-right hand corner initially gives the impression that
there are several influential observations, but the values they have for Cook’s
distance are very small.
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Residuals vs Fitted Normal Q-Q plot
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Fig. 6.4. Diagnostic plots for Gaussian boosting of wages.

We make more of such diagnostics in a later example. For now it may suffice
to note that the importance of these diagnostics depends in part on the goals
of the analysis. Just as in conventional regression, whether the residuals are
normal, for instance, will typically not matter much unless the sample is small
and traditional hypothesis tests and/or confidence intervals are desired.

6.6.2 Inmate Misconduct Again

Although boosting can be expected in general to perform at least as well as
Gaussian regression models, it will sometimes shine when such a conventional
regression model does not fit the data very well. The boosting process can im-
prove the fit, sometimes dramatically. The same holds for binomial regression
models. But when the response variable is highly unbalanced, there can be
serious problems. To make this point, we return to the prison inmate data. We
once again consider inmate misconduct using the same predictors as before.
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Figure 6.5 shows a boosting performance plot. As expected, the big im-

provements come early with few real gains after about iteration 4000. The
cutoff was determined to be iteration 6148.
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Fig. 6.5. Performance of binomial boosting for inmate misconduct.

Table 6.1 shows the confusion table using the training data, not OOB data
or test data. Overall, the fit is quite good. Only about a fifth of the data are
misclassified. However, all of the success comes from predicting the nomiscon-
duct class well. And this is pretty easy to do with no predictors all because
if the marginal distribution alone is used, and no misconduct is predicted,
about 21% of the cases will be identified incorrectly. Moreover, boosting fails
miserably when trying to identify inmates who engage in misconduct. Out
of every 100 inmates who engaged in misconduct, only about 9 are correctly
identified as such.

Table 6.1 is not necessarily an accurate rendering of how the classifier
would perform in practice because only training data are used to construct
the table. But it is likely from the reported use errors that if no misconduct
was predicted, the forecast would be correct the vast majority of time. If
misconduct was predicted, the forecast would be correct somewhat more than
half the time.
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None Predicted|Misconduct Predicted Model Error
No Misconduct 3745 62 0.01
Misconduct 900 99 0.91
Use Error .19 .39 Overall Error = .21

Table 6.1. Confusion table for binomial boosting of inmate misconduct.

But the errors in use, as well as the model errors, depend on the costs
of classification errors. And one can see where at least part of the problem
lies. The cost ratio of false negatives to false positives is approximately .02.
About one false positive is equal to about 50 false negatives. Recall that this
is completely upside down from the point of view of corrections officials. And
there is currently no way to intervene in the stochastic gradient boosting
process and alter these relative costs.

In short, this is about the best that boosting is likely to do and indeed,
probably overly optimistic because the confusion table is constructed from the
training data. On these same data with the same predictors, random forests
performs a bit better, but neither really shines with the default ratio of false
negatives to false positives. Costs must be better taken into account. Then,
using the cost ratio favored by prison administrators, random forests does
dramatically better predicting the true positives.

Figure 6.6 shows predictor relative importance through their contribu-
tions to the fit. Sentence length dominates, followed by the two age variable,
and gang activity is close behind. This is roughly consistent with our earlier
random forest results but difficult to compare directly because Figure 6.6 is
derived from contributions to the fit, not forecasting accuracy.

As one illustration of an estimated response function, Figure 6.7 shows the
partial dependence plot for sentence length. The vertical axis is in logits as
previously defined for partial dependence plots. Recall, fi.(X) = log[px(X)] —
+ Zszl log[pr (X)], where pg(X) is the proportion of observations in category
k. However, because of the sensitive nature of the conditional probabilities,
it is not clear how seriously one can take the logit values shown. For what
it may be worth, inmate misconduct increases rather linearly with sentence
length up to a sentence of around six years and then levels off.

We now repeat the analysis using very serious misconduct as the response.
Recall that such behavior is very rare. A bit less than 3% of the inmates are
reported for incidents of very serious misconduct. Figure 6.8 shows how the
boosting algorithm performs. Many fewer iterations are required this time.
Also, it is clear from the wider vertical spread of the points that the boost-
ing results are much less stable than before. A likely explanation is that the
margins associated with each iteration are substantially smaller and if so, it
suggests that the boosted model is not faring well.

Indeed, boosting binomial regression fares quite badly in this case. The
confusion table reproduces the marginal distribution of the response because
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Predictor Importance for Inmate Misconduct
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Fig. 6.6. Predictor importance for binomial boosting for inmate misconduct.

not a single inmate is identified as have engaged in very serious misconduct
although 138 actually had. Figure 6.9 underscores how bad the performance
is. The figure is a histogram for the subset of cases in which there actually was
an incident of very serious misconduct. On the horizontal axis are the fitted
probabilities. The largest of these values is less than .20, whereas a value of
more than .50 is needed for an inmate to be classified as a serious risk. About
the best that can be said about the analysis is that because no cases of very
serious misconduct are correctly identified, the potential problems with fitted
probabilities pushed toward 0 and 1 do not materialize.

Figure 6.10 shows the relative importance of each predictor for the quality
of the fit. The pattern is largely the same, but gang activity has moved up
to second place, and the gap in importance between sentence length and the
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Fig. 6.7. Partial dependence on sentence length in years for binomial boosting for
inmate misconduct

other predictors has increased. Thus, sentence length and gang activity are
more important for the fit of very serious misconduct compared to the full
range of inmate misconduct.

Finally, Figure 6.11 shows the partial dependence plot for sentence length.
The response function is now roughly linear over all sentence lengths and does
not flatten out for very long sentences. This may help to explain why sentence
length has gained in its relative importance. For the reasons discussed earlier,
however, it is may not be wise to make much of the response function shown.

In summary, in this application and for the default symmetric costs, boost-
ing does a bit worse than random forests for incidents of general misconduct
and much worse than random forests for very serious incidents of misconduct.
Boosting, just as conventional regression can stumble badly with highly un-
balanced response variables. Moreover, for a binary outcome and stochastic
gradient boosting, there is currently no direct way to build asymmetric costs
into the fitting process. Consequently, the views of corrections administrators
cannot be taken into account. The best one can do is change the classification
threshold so that fitted probabilities other than .50 determine the assigned
class. This assumes that one has confidence in those probabilities.
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Fig. 6.8. Performance of binomial boosting for very serious inmate misconduct

6.6.3 Homicides and the Impact of Executions

Boosting cannot be expected to improve on conventional Gaussian regression
if that regression already fits the data very well. There is nothing to boost.
To see how this plays out when the conventional regression already performs
with near perfection, and to raise some new issues, we return to the homicides
data.

Once again, there are for all 50 states over a 21-year period, the number
of homicides per year. As predictors we use the number of executions lagged
by one year and then state and year as factors. The key question is whether
once one controls for the average number of homicides in a state over the 21
years and the average number of homicides by year over each of the states,
the number of executions is related to the number of homicides. For purposes
of this illustration, we assume that the number of homicides is conditionally
Poisson. Using the generalized additive model we are able to account for well
over 95% of the deviance.
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Fig. 6.9. Predicted probability of very serious misconduct.

Figure 6.12 shows how gradient boosting performs in this application. As
usual, the changes in the log-likelihood are large early and after about 2000
iterations, the gains are small. Still, the optimal number of iterations is a little
less than 10,000.

Figure 6.13 shows that virtually all of the fitting story belongs to the state
categorical variable. Its relative contribution is 99.6 out of 100. In contrast,
the relative contribution of the number of executions is .008 out of 100.

In Figure 6.14 is plotted the partial dependence of the number of homicides
on the number of executions. For less than five executions in a given state in
a given year, the relationship is flat. For five or more executions in a given
state in a given year, the relationship is negative. But as pointed out earlier,
only about 1% of the states have five or more executions in a given year. The
apparent evidence for a deterrent effect can only be found where there are
almost no data. There is no evidence for deterrence for most states in most
years, and too little data to tell when the number of executions is five or more.
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Fig. 6.10. Predictor importance for binomial boosting for very serious inmate mis-
conduct.

A confusion table makes no sense for count data. But we have access to
most of the usual regression diagnostics. To begin, the predictors as a group
account for about 98% of the deviance. So, the fit is excellent. In addition,
Figure 6.15 shows in clockwise order beginning at the upper left 1) the actual
number of homicides plotted against the predicted number of homicides, 2)
a normal-normal plot of the residuals, 3) a plot of the transformed residuals
against the predicted number of homicides, and 4) a plot of Cook’s distance
by observation number.

From these plots we learn that there are three clumps of fitted values.
The two clumps on the right side of the first plot suggest that two smaller
subsets of years and /or states may differ from the rest. There is lots of daylight
between the clumps. From the first and third plot, we learn that roughly
consistent with the Poisson model, the conditional variance of the residuals
increases with the conditional mean. However, there is also ample evidence
of overdispersion. The second graph indicates that, as one would expect, the
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Fig. 6.11. Partial dependence on sentence length in years for binomial boosting for
very serious inmate misconduct.

residuals are far from normal, especially at the tails. In fact, the residuals
are strongly skewed to the right. This is to be expected given an outcome
assumed to be conditionally Poisson. However, the skewing may be linked to
a few influential variables. The fourth graph reveals that there are several
large influential observations that may well be affecting the fit in significant
ways. All of these diagnostics suggest problems with the model, even though
most of the variation is accounted for by the predictors.

Figure 6.16 reproduces the partial dependence plot but from data reana-
lyzed with observations having five executions or more removed. A little more
than 1% of the data are lost. Even with only five values for the predictor,
the plot is instructive; the plot is a flat straight line. If the response function
is even a little more complex, the plot would not have been helpful, even if
the computer agreed to construct the plot. There are too few values for the
predictor.
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Fig. 6.12. Performance of Poisson boosting for the number of homicides

There is no evidence whatsoever of any deterrence. So, the few influential
observations really did affect the boosting results. This is an important lesson.
Just as in conventional regression, outliers can make a very big difference. Not
surprisingly, the four diagnostic plots (not shown) now look a lot better.

One can in this case obtain virtually the same story using the generalized
additive model, including the story about the influential observations. Boosted
Poisson regression fits the data slightly better, but not enough to matter;
both models fit the data nearly perfectly. And the subject matter conclusions
are the same; the gains from boosting compared to parametric regression are
slight. The intent in boosting is to take weak predictors and make them strong.
There is not much point in boosting predictors that are already very strong.

6.6.4 Imputing the Number of Homeless

Consider again the problem of imputing the number of homeless individuals
in Los Angeles County census tracts (Berk et al., 2008). Recall that when
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Fig. 6.13. Predictor importance for Poisson boosting for the number of homicides.

random forests was discussed, quantile random forests was applied in order
to respond to a few especially high counts. At that time, it was noted that
quantile random forests takes the composition of the forest as given, and
only adjusts for the summary statistics extracted. A key problem with that
approach was that variable importance measures and partial dependence plots
were unaltered because they rely on the random forest.

Kriegler (2007) has developed a procedure to weight the loss function in
stochastic gradient boosting so that asymmetric costs can be taken into ac-
count, not just at the end when summary statistics are constructed, but as the
boosting procedure proceeds. Consequently, measures of predictor importance
and partial dependence plots are altered accordingly. To date, cost-weighting
has been applied to linear (Laplace) loss, Gaussian loss, and Poisson loss, and
linear loss has been implemented in gbm().

Figure 6.17 shows for the homeless data, observed street counts plotted
again predicted street counts for the weighted linear loss function. Smoothers
are overlaid. For the 1/11th quantile, corresponding to weighting overesti-
mates as ten times more costly than underestimates, the fitted values change
little, and counts larger than about ten are captured poorly. For the 1/2 quan-
tile, corresponding to equal costs, the overall fit is quite good, but observed
counts larger than 50 are not captured well. For the 10/11th quantile, cor-
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Fig. 6.14. Partial dependence on Executions for Poisson Boosting for the Number
of Homicides

responding to costing underestimates as ten times more than overestimates,
the overall fit is disappointing, but the larger observed counts are much more
effectively fitted. However, still larger relative costs for underestimates would
be needed if the very highest observed counts were to be fitted well.

In this instance, the partial dependence plots for key predictors do not
change shape materially across different cost ratios. One would tell pretty
much the same story about how the predictors are related to the response for a
wide range of cost ratios. However, there are some rearrangements of variable
importance suggesting that several predictors vary in their forecasting skill
depending on which quantile in the response distribution is the target. The
details need not concern us here.

As before, there is no statistical answer to the question of which set of
fitted values should be preferred. That decision depends on which relative
costs are appropriate for the decisions to be made. But it is likely that for
counts of the homeless, homeless advocates would see underestimates as far
more costly than overestimates. It is less clear what position public officials
would take. Larger counts might lead to criticisms to their policies but might
also help generate increased funding.
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Fig. 6.15. Fit diagnostics for Poisson boosting for the number of homicides.

6.6.5 Estimating Conditional Probabilities

As a final illustration, consider a random sample of American female adults
and whether they are in the labor force. The data come from the “Mroz” data
in the car library in R. The response variable is binary. For this example, the
predictors are age, the log of expected wage, household income, and whether
there is a child under six in the household.

Two different fit statistics were used to determine when to stop iterating:
one based on the OOB data and one based on the data used to build the
model. The former indicated that 4000 iterations would be about right. The
latter indicated that 10,000 iterations would be about right.

Both stopping rules led to 72% of the observations being correctly clas-
sified; classification accuracy was virtually identical. However, the fitted pro-
portions that might be used as estimates of conditional probabilities differed
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Fig. 6.16. Partial dependence on executions for Poisson boosting for the number
of homicides—outliers excluded.

substantially. Figure 6.18 is a scatterplot of the two sets of fitted proportions
with a 1-to-1 line overlaid. Because of the stochastic content in the algorithm,
the two sets of fitted proportions cannot be exactly the same, but they should
cluster tightly around the 1-to-1 lines. The plot shows that fitted proportions
are significantly more spread out when there are 10,000 iterations rather than
4000 iterations. On the average the two sets of values differ most at the tails,
especially the lower tail.

There is some craft lore arguing that determining the number of iterations
using the OOB data can lead to underfitting, which implies that the fitted
proportions based on 10,000 iterations should be preferred. Even if this is true,
the sensitivity of the fitted proportions to at least one tuning parameter when
classification skill is nearly the same, is a bit unsettling. And although craft
lore can be very helpful, it comes with no guarantees. If there is a keen interest
in the fitted proportions, perhaps as estimates of conditional probabilities,
it may be important to consider using Jous-Boost, described briefly earlier
(Mease et al., 2007). .
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Fig. 6.17. Observed and fitted values for different quantiles.

6.7 Software Considerations

As noted earlier, boosting is in a great state of flux, and nowhere is this more
evident than in the software available. The boosting analyses reported in this
chapter were done with the procedure gbm() in R. It performs very well using
gradient boosting, allowing for a wide variety of loss functions. It also has
a number of useful tuning parameters and several helpful forms of graphical
output. The name “gbm” stands for Generalized Boosted Models. The package
is written by Greg Ridgeway, who also is the maintainer (gregr@rand.org).
There are several other boosting procedures in R. The procedure mboost(),
for example, does gradient boosting for the generalized linear model and
the generalized additive model. GAMBoost() boosts the generalized addi-
tive model using likelihood based approaches. The procedures boost() and
ada() implement Adaboost, Logitboost, and other classification procedures.
To date, an important advantage that ghm() has over the alternatives in R
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Fig. 6.18. Fitted proportions for two different stopping rules.

is a better range of outputs. The documentation that goes with ghm() is also
especially good.

The only visible private sector provider currently is, once again, Salford
Systems. Salford Systems offers a program called Multiple Additive Trees
(MART), which is essentially gradient boosting. As with all Salford System
products, the user interface is very friendly and the documentation excellent.
But the price is substantial and the advertising hype a bit offputting.

6.8 Summary and Conclusions

Boosting is a very slick approach to statistical learning. The underlying con-
cepts are interesting and their use to date creative. Boosting has also stim-
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ulated very productive interactions among researchers in statistics, applied
mathematics, and computer science. Perhaps most important, boosting has
been shown to be very effective for certain kinds of data analysis.

However, there are important limitations to keep in mind. First, boosting
is designed to improve the performance of weak predictors. Trying to boost
predictors that are already strong is not likely to be productive. A set of strong
predictors can lead to an effective fit within a conventional regression model.
Then, the residuals are essentially noise. Then, there is no more information
to extract.

Unfortunately, there is no convincing way from the data alone to know if
the residuals really lack any systematic information. But if the list of variables
represents all the predictors known to be important, if these predictors are
well measured, and if the partial response plots are consistent with widely
accepted and detailed theory, the chances are good that boosting will not
help much.

Second, if the goal is to fit conditional probabilities, boosting can be a
risky way to go. One useful alternative was discussed, but it has yet to be
extensively field-tested with real data. It follows that calculations using the
fitted probabilities can be highly suspect.

Third, boosting is not alchemy. Boosting can improve the performance of
many weak fitting procedures, but the improvements may fall far short of the
performance needed. Boosting cannot overcome variables that are measured
poorly or important predictors that have been overlooked. The moral is that
(even) boosting cannot overcome a seriously flawed measurement and badly
executed data collection. The same applies to all of the statistical learning
procedures discussed in this book.

Finally, when compared to other statistical learning procedures, especially
random forests, boosting will often allow for a wider range of applications, and
for the same kinds of applications, perform competitively. In addition, its clear
links to common and well-understood statistical procedures can help make
boosting understandable. However, boosting’s usual reliance on symmetrical
loss functions is a major difficulty, especially for research results that will be
used to inform practical decisions and broader public policy.

Exercises

Problem Set 1

Generate the following data. The systematic component of the response vari-
able is quadratic. If 1000 observations are too large for your computer to easily
handle, work with a sample of 500 observations.

x1=rnorm(1000)
x12=x1"2
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ysys=1+(-5*x12)
y=ysys+(5*rnorm(1000))
dta=data.frame(y,x1,x12)

. Plot the the systematic part of y against the predictor x1. This represents

the f(z) you are trying to recover. Plot y against x1. This represents the
data to be analyzed. Why do they look different?

. Apply gbm() to the data. There are a lot of tuning parameters and pa-

rameters that need to be set for later output so, here is some code to get
you started.

out<-gbm(y~x1,distribution="gaussian",n.trees=10000,
data=dtal,cv.folds=5)
gbm.perf (out,method="cv")

Construct the partial dependence plot using
plot(out,n.trees=777)

where the 777 is the number of trees, which is the same as the number
of iterations. Make five plots, one each of the following number of itera-
tions: 100, 500, 1000, 5000, and the number recommended by the cross-
validiation method in the second step above. Study the sequence of plots
and compare them to the plot of the true f(X). What happens to the
plots as the number of iterations approaches the recommended number?
Why does this happen?

Problem Set 2

From the car library load the data “Leinhardt.” Analyze the data using gbm().
The response variable is infant mortality.

1.

Plot the performance of ghm(). Interpret the two lines that are plotted
and explain what their divergence implies.

. What is the recommended number of iterations?

Construct a graph of the importance of the predictors. Which variables
seem to affect the fit substantially and which do not?

Construct the marginal partial dependence plot for each predictor Inter-
pret each plot.

Construct all of the two-variable plots (see examples in help(gbm)). In-
terpret each plot.

Construct the three-variable plot (see examples in help(ghm)) Interpret
the plot.
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7. Consider the quality of the fit. How large is the improvement compared
to when no predictors are used?

8. Write a paragraph or so, on what the analysis of these data has revealed
about correlates of infant mortality at a national level.

9. Now repeat the analysis using random forests. How do the results com-
pare to the results from stochastic gradient boosting? Would you have
arrived at substantially different conclusions depending on whether you
used random forests or stochastic gradient boosting?

Problem Set 3

From the MASS library, analyze the dataset called Pima.tr. The outcome is
binary: diabetes or not (coded as “Yes” and “No”). Assume that the costs of
failing to identify someone who has diabetes are three times higher than the
costs of falsely identifying someone who has diabetes. The predictors are all
of the other variables in the dataset.

The goal is to analyze these data using several different procedures and
then make comparisons across the results. The statistical procedures to com-
pare are logistic regression, the generalized additive model, random forests,
and stochastic gradient boosting. You will need to make a number of decisions
so that the methods are as comparable as possible (e.g., what loss function to
use for stochastic gradient boosting). But also feel free to try several differ-
ent versions of each procedure (e.g., “Adaboost” v. “bernoulli” for stochastic
gradient boosting).

1. Construct confusion tables for each model. Be alert for whether the fitted
values are for “resubstituted” data. Do some procedures fit the data better
than others? Why or why not?

2. Cross-tabulate the fitted values for each model against the fitted values
for each other model. How do the sets of fitted values compare?

3. Compare the “importance” assigned to each predictor. This is tricky. For
example, how can sensible comparisons be made between the output of a
logistic regression and the output of random forests?

4. Compare partial response functions. This too is tricky. For example, what
can you do with logistic regression?

5. If you had to make a choice to use one of these procedures, which would
you select? Why?
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Support Vector Machines

Support vector machines (SVM) will seem somewhat far afield from the sta-
tistical learning procedures discussed to this point. SVM was developed as
a classifier, largely in computer science, with its own set of research ques-
tions, conceptual frameworks, technical language, and culture. In addition, a
substantial amount of the initial interest in support vector machines stemmed
from the important theoretical work surrounding it (Vapnick, 1996). The early
applications were not especially compelling.

Over the past few years, the applications to which support vector ma-
chines has been applied have broadened (Christianini and Shawe-Taylor,
2000; Moguerza and Munoz, 2006), and the available software has responded
(Joachims, 1998; Hsu et al., 2007; Chen et al., 2004). Support vector machines
now can have more the look and feel of regression. Formal links to statistical
learning in statistics have been made so that there are increasingly shared con-
cepts and language across interested disciplines (Hastie et al., 2001: Sections
12.1-12.3; Bishop, 2006: Chapters 6-7). And although there are still some
very important components of a legitimate regression analysis that are a bit
beyond SVM’s reach, these drawbacks will probably be remedied reasonably
soon. It is useful therefore to spend some time providing a brief summary
of how support vector machines works. It introduces a number of intriguing
ideas and has considerable promise for regressionlike applications.

7.1 A Simple Didactic Illustration

Consider a very simple classification problem. A guidance counsellor in a small
high school is trying to determine which students are at risk for dropping
out. There are data on students from the past several years from which one
can determine which students dropped out. There is also a promising set
of covariates. In looking at the data, the guidance counsellor notices that all
students who were reading at second-grade level dropped out of school. At the
other extreme, none of the students who were reading at a twelfth-grade level

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_7, (© Springer Science+Business Media, LLC 2008
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ever dropped out. For both of these sets of students, the high-risk students
and the low-risk students, the classification job is done because this eyeball
classifier works perfectly.

What about the rest of the students? The eyeball classifier stumbles be-
cause it is not apparent how to subset the students any further so that the
two classes of students are homogeneous. For example, among those students
reading at tenth-grade level, seven out of every ten graduate. It might make
sense, therefore, to employ a more powerful classifier for these students. And
the quality of the classifier overall will depend on how accurately the students
between the two extremes can be classified. In other words, variation in the
loss function will depend only on how accurately the middle group of students
is assigned to the binary outcome.

Focusing only on the middle group of students, a useful classifier might try
to put the students into one of the two classes so that a pair of objectives are
achieved. First, there should be a small number of misclassifications: students
incorrectly labeled as dropouts and students incorrectly labeled as graduating
high school. There is nothing new in this.

Second, subject to this small number of misclassifications, the students
in the two classes should be as different as possible in their reading ability.
If there is a continuum of reading ability monotonically related to dropping
out of school, greater separation between the two groups can imply more
stable classifications. For example, if the two groups can be divided so that
the highest reading level for the dropout group is at least one grade level
below the lowest reading level for the higher reading group, a relatively clear
distinction has been made. In contrast, if that gap is only 5% of a grade level,
the distinction is not nearly so clear. One grade level implies approximately
nine months of class time, whereas 5% of a grade level may imply only two
weeks of class time. The larger distinction is desirable because it implies that
the classifications are more stable under random perturbations of the data.
Generalization error will be smaller.

Operationally, suppose the guidance counsellor is prepared to live with 20
misclassifications. Given 20 misclassifications, what reading level should be
chosen to separate the two classes? A fourth-grade level? A sixth-grade level?
An eighth-grade level? It would make sense to choose a threshold so that on
either side, the difference in reading ability between the two groups was as
large as possible.

This method of partitioning the data has some important similarities to
nearest neighbor methods. The distinction between the two groups of students
only depends on where students are located on the measure of reading abil-
ity. Students who have similar reading abilities will be classified in the same
manner. It is the distance between students that matters, not their raw score.
Note that there is no concern with how the data were generated and no sub-
stantive interest in how predictors might be related to a response. The goal
is solely to construct accurate and stable classifications by classifying similar
students similarly.
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An accurate and stable classification procedure could give the guidance
counsellor a helpful forecasting device. In the future, students similar to those
who had been classified as dropouts because of their inability to read well
would be seen as having a great risk of dropping out. Interventions of various
sorts might follow.

This very simple example illustrates several fundamental features of SVM.
It is a classifier that partitions the data, but unlike classification trees, does
not do so in a stagewise fashion. In addition, only observations near the clas-
sification boundary figure directly in the fitting process. Then, the partition-
ing is accomplished so that the distance in the predictor space between the
two groups is as large as possible; separation is maximized conditional on a
predetermined and tolerable number of classification errors. Maximizing the
separation serves much the same purpose as large margins in bagging and
random forests. Finally, the key information extracted from the predictors is,
in effect, a matrix of distances. Observations sufficiently near one another in
predictor space will be treated alike.

No simple example can be made to map exactly onto support vector ma-
chines. Moving back and forth between the guidance counsellor illustration
and the diagrams and equations that follow will reveal an imperfect match.
But with some central issues now raised, the new material may be somewhat
more accessible.

7.2 Support Vector Machines in Pictures

With the simple example behind us, we can turn to a bit more formal expo-
sition of SVM. Despite its roots in computer science and its focus on classifi-
cation per se, at its core support vector machines can be treated in a manner
introduced in Chapter 2. Hastie et al. (2001: 380-381) point out that one can
use the familiar formulation of fitting a set of observed values of a response
variable subject to a complexity penalty. But if we skip to that punch line,
the underlying intuitions will likely be lost.

7.2.1 Support Vector Classifiers

Suppose there is a binary response variable coded, as is often done in boosting,
as“1” and “~1.” There is a fitting function f(z), where  can be one or more
predictors. If the f(x) returns a positive number, the label “1”7 is assigned
to the observation. If the f(z) returns a negative number, the label “~1” is
assigned to the observation. A fitting function can be written as

f(@) = Bo + h(z)" 5, (7.1)

where, as before, h(z)” are basis functions of .
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In the SVM literature, the response variable is often called the “target
variable,” and the intercept in Equation 7.1 is often called the “bias.” Never-
theless, the basic idea is the same as before: there is a series of basis functions
h(z), where 2 can represent more than one predictor. The basis functions
are additively combined, with the vector (s as the weights. Then the goal, as
usual, is to minimize the loss without making the fitting function unnecessarily
complex.

But beneath the surface, the fitting exercise is quite novel. A key feature is
that when undertaking a classification task, some observations are treated very
differently from others. In much the same spirit as boosting, the observations
that are more difficult to classify receive more attention. But unlike boosting, a
qualitative distinction is first made between the observations that are difficult
to classify and observations that are not. Then, the problematic observations
determine the criterion by which classes are to be assigned. This, in turn,
implies the use of an unusual loss function. Thinking back to the guidance
counsellor illustration, observations that fall in regions where there is a mix
of students who drop out and students who graduate are the observations that
are difficult to classify and consequently, the observations that determine the
precise location of the threshold to be imposed separating high-risk from low-
risk students.

Another key feature is that the predictors affect the class assigned by how
they locate observations in the space defined by the predictors. What matters
is where observations fall with respect to one another. This is a significant
difference between the statistical learning procedures in this chapter and those
discussed in earlier chapters. Details are provided a little later. But it is a bit
like what real estate agents often say: what matters is “location, location,
location.”

Figure 7.1 shows a partitioning diagram. As before, there are two predic-
tors (z and z) and a binary response y, that can take on values of A or B.
B might represent dropping out of school and A might represent graduating.
(A could be coded as 1 and B could be coded as —1.) The two predictors
might be reading grade level and the number of truancies per semester. In
this figure, the As and the Bs are each located in quite different areas of
the two-dimensional space defined by the predictors. In fact, there is lots of
daylight between the two groupings.

With data of this sort, one can apply a “support vector classifier.” The
goal is to locate a “decision boundary,” here represented by the dark straight
line, using information from the predictors so that the partitions are as ho-
mogeneous as possible. In spirit, this is lot like CART. The decision boundary
is also called a “separating hyperplane.” Observations that fall on one side
of the decision boundary are assigned to one class, and observations that fall
on the other side of the decision boundary are assigned to the other class.
In this instance, each observation above and to the right would be correctly
classified as an A. Each observation below and to the left would be correctly
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SupportVector Classifier for the Separable Case
(where G = A or B and predictors are Z and X)

Fig. 7.1. Support vector classifier when there are two separable classes.

classified as a B. Future observations would then be forecasted to an A or a
B depending on where in the predictor space they fell.

For Figure 7.1, finding a decision boundary is easy. In fact, it is too easy.
There are a limitless number of linear decision boundaries one could draw
that would also define two perfectly homogeneous partitions. A way needs
to be found to determine the “best” decision boundary among all those that
sensibly could be constructed.

For data such as those shown in Figure 7.1, the support vector classifier
solves this problem by constructing two parallel lines on either side of, and the
same distance from, the decision boundary. The two lines are as far apart as
possible without including any observations within the space between them.
One can think of the two lines as fences defining a data “buffer zone.” Ob-
servations can fall right on either fence but not across them, inside the buffer
zone. In Figure 7.1, the total width of the buffer zone is shown with the two
double-headed arrows.

The distance between the two fences or the distance between the decision
boundary and either fence is called the “margin.” The different definitions
amount to the same thing in practice, and justification for maximizing the
margin has a familiar ring. The wider the margin is, the greater the separation
between the two classes. Larger margins are desirable because generalization
error will usually be smaller. A more definitive and, therefore, more stable
distinction is being made between the two classes. Thus, the buffer zone’s
margin plays much the same role as the margin used in bagging and random
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forests, although it is not defined in the same way. Sometimes the two fences
are called the “margin boundary.”

A

Support Vector Classifier for the Nonseparable Case
(where G=A or B and predictors are Z and X)

Fig. 7.2. Support vector classifier when there are two classes that are not separable.

The data shown in Figure 7.1 are very cooperative, and such cooperation
is in practice rare. Figure 7.2 shows a partitioning diagram that is much like
Figure 7.1, but the two sets of values are no longer separable with a straight
line. The three larger As and the two larger Bs violate the margin boundary.
They are on the wrong side of their respective buffer zone fences. The large
As are too far toward the lower left of the figure, and the large Bs are too far
toward the upper right. Moreover, there is no way to relocate and/or narrow
the buffer zone so there is a separating hyperplane able to partition the space
into two perfectly homogeneous regions. There is no longer any linear solution
to this classification problem.

One possible response is to permit some misclassifications. One could spec-
ify some fraction of the observations that could be allowed to fall on the wrong
side of the decision boundary. That is, one could try to live with a result that
looked a lot like Figure 7.2. The idea would be to maximize the width of the
buffer zone subject to some specified number of misclassifications.

But that is not quite enough. Some misclassified observations fall just
across the decision boundary and some fall far away. Some correctly classified
observations fall on the wrong side of their fence, violating the need for wide
separation between the two classes. But these observations can differ on how
far on the wrong side of the fence they fall. In response, the distance between
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the relevant fence and the location of an observation can be taken into account
for both kinds of violations. For example, there are two large As whose distance
from their fence is small, and one whose distance is substantial. The first two
are correctly classified. The last one is not. There is a large B close to its
fence and a large B much farther away. The former is correctly classified. The
latter is not.

The sum of such distances can be viewed as a measure of how permissive
one has been when the margin is maximized. If one is more permissive by
allowing for a larger sum, it usually possible to construct a larger margin.
Again, larger margins are good. More stable classifications can follow. But
more permissive solutions imply more bias. There will be a greater number
of misclassifications and/or the misclassifications will be more in error. The
bias—variance tradeoff reappears. It follows that the sum of the distances can
be a tuning parameter when a support vector classifier is applied to data.

Sometimes, several observations will fall right on the margin boundary.
These observations, in addition to the observations on the wrong side of the
margin boundary are used to determine, in the space defined by the predictors,
the precise location of the decision boundary and the buffer zone. Because such
observations “support” the location of the decision boundary, they are called
“support vectors.” No other observations play that role.

The support vectors represent the observations most difficult to correctly
classify. These As and Bs inhabit much the same space that the predictors
define. They can differ from each other in their response values even though
they are near each other and, therefore, alike on their predictor values. Thus,
the special attention given to the support vectors is in the same spirit as the
extra weight given to misclassified cases in boosting.

Figure 7.3 is almost the same as Figure 7.2, but the buffer zone has been
enlarged and reoriented a bit to represent a solution to the classification prob-
lem. There are two kinds of support vectors: those on the wrong side of the
margin boundary and those on top of the margin boundary. The support
vectors are shown in large letters. Classification is determined by the side of
the decision boundary on which an observation falls. In Figure 7.3, one A is
misclassified and one B is misclassified.

7.2.2 Support Vector Machines

There is a still better solution to the classification problem when the classes
are nonseparable. Suppose one allows for a nonlinear decision boundary. In
somewhat the same manner of the smoothers we considered in Chapter 2, the
data are used to help determine an appropriate nonlinear function, within a
given category of functions, that can separate the two classes of data. The
added flexibility makes it much more likely that the decision boundary will
classify accurately and with a large margin.

Once again, a basis function approach can be applied. One can enlarge
the predictor space in which the observations sit and construct a nonlinear
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Support Vector Classifier for the Nonseparable Case
(where G = A or B and predictors are Z and X)

Fig. 7.3. Support vector classifier when there are two classes that are not separable
with support vectors shown.

function of the original variables. Support vector machines capitalizes on these
ideas by allowing for a very large number of transformations of the predictors,
but only for particular classes of transformations. A few of these transforma-
tion are considered shortly. We show that with the focus on the location of
observations in the predictor space, and especially on their proximity to one
another, the transformations are applied not to each predictor by itself, but
to the predictor space they define. This is a useful and very clever approach.

There are some of the same tuning issues for support vector machines as
there are for support vector classifiers. One tuning parameter is a function
of the sum of the distances of the observations on the wrong side of the
margin boundary. This sum serves the same purpose as it did for support
vector classifiers. One or more other tuning parameters are also common,
depending on which predictor transformations are employed. We will see that,
somewhat in contrast to random forests and stochastic gradient boosting,
variation across a set of reasonable values for the tuning parameters can have
a large impact on the results.

In summary, the goal of support vector classifiers is to linearly partition the
space defined by the predictors so that two homogeneous regions are defined.
The decision boundary for those two regions is determined by making the
margin as large as possible. This often leads to a compromise in which some
observations are allowed to cross over into, and even beyond, the region inside
the margin boundary. Support vector machines takes support vector classifiers
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one significant step further by allowing the decision boundary and the margin
boundary to be nonlinear. But in both cases, the tradeoff between variance
and bias remains.

7.3 Support Vector Machines in Statistical Notation

Support vector classifiers and support vector machines can be considered along
with some other procedures as maximum margin classifiers. It is probably fair
to say that support vector machines is at this point the most popular. But
despite its popularity, or perhaps because of its popularity, there are several
somewhat different ways it can be formulated and presented. What follows
draws heavily on Hastie and his colleagues (2001) and on Bishop (2006). As
before, we start with support vector classifiers to introduce some of the key
concepts.

7.3.1 Support Vector Classifiers

There is a set of p predictors and a binary outcome. The goal is to find a
linear boundary so that in the space defined by the predictors, the data are
partitioned into two regions, both of which are perfectly homogeneous with
respect to the response. In addition, the margin is to be as large as possible.

The Separable Case

There are N observations in the training data. Each observation has a value
for each of p predictors and a value for the response. The response is coded
“1” or “~1.” A separating hyperplane of dimension p — 1 is defined as

f(@) =B +a2"B=0. (7.2)
Classification is then undertaken by the following rule,
G(x) = sign(fo + 27 3). (7.3)

The f(z) in Equation 7.2 can be used to compute the signed distance of
any point from the separating hyperplane. Thus, one can determine for any ¢
whether y; f(z;) > 0 and, therefore, is correctly classified. Because y is coded
as 1 and —1, products that are positive represent correctly classified cases. One
can also determine if that observation is on the wrong side of its fence and if
so, how far. Finally, for observations that are misclassified, one can determine
how badly.

The ability to generate signed distances greater than 0 between observa-
tions and the separating hyperplane, conditional on the values of 3 and [y,
implies that one can maximize the margin by how ( and (3, are chosen. Values
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of 8 and [y are sought so that the distance from the decision boundary to the
closest observations is as large as possible. This implies the use of a novel loss
function that is discussed later.

More formally, the goal is to

C, (7.4)

max
BBo;|18]1=1

subject to
yi(Bo +alB)>C, i=1,...,N. (7.5)

The left-hand side of Equation 7.5 is the distance between the decision bound-
ary and an observation. In this formulation, C' is the distance from the decision
boundary to the margin boundary; 2C' is the margin. Because C' is a distance
centered on the decision boundary, Equation 7.5 identifies correctly classified
observations on or beyond the margin boundary. Because Equation 7.5 applies
to cases 1,..., N, no cases are inside their fences. Thus, C' is sometimes char-
acterized as producing a “hard boundary” that is impermeable. In short, the
goal is to find the values of the coefficients that maximize the margin, such
that there are no observations inside the fences. This basically characterizes
the support vector classifier for the separable case.

Tt is sometimes useful to work with an equivalent formulation (Hastie et
al., 2001: 372):

min 7.6
i |9 (76)
subject to

yi(Bo+aiB) =1, i=1,...,N. (7.7)

A key change from Equation 7.4 is that the norm constraint on the coefficients
has been discarded, so that one can set C' = 1/||3|| (Hastie, 2001: 108-109).
Equation 7.7 then can follow. Equation 7.7 requires that the point closest to
the decision boundary has a distance 1.0 and that all other observations are
farther away (i.e., distance > 1). This particular normalization is arbitrary
but does not change the basic problem and can lead to a more direct and
easily comprehended solution (Bishop, 2006: 327-328).

Minimizing the norm can be thought of as trying to make the values of
the coefficients as small as possible, which forces the margin to be as large
as possible. Then, at least one observation must fall on the margin boundary
(Bishop, 2006: 328). One can do no better than this and maintain separation.

The Nonseparable Case

To move toward the non separable case, some misclassifications have to be
tolerated. Define a set of “slack” variables & = (&1,&2,...,&n), & > 0, that
measure how far incorrectly classified observations are on the wrong side of
their fence. We let &; = 0 for observations that are correctly classified and on
the proper side of their fence or right on top of it; they are not in the buffer
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zone. The farther an observation moves across its fence into and even through
the buffer zone, the larger is the value of the slack variable. In other words, the
value for a slack variable i denotes how inaccurate the classification exercise
is for observation i.

The slack variables lead to a revised setting in which the coefficients are
chosen so that C' is maximized. Specifically,

vi(Bo + 21 B) > C(1 - &) (7.8)

for all & > 0, and Zf\; & < K, with K as some constant.

In Equation 7.8, the “hard boundary” C has been transformed into a “soft”
boundary C(1 — &;). The boundary moves from observation to observation
depending on the value of §; so that crossing into the buffer zone and even
to its other side can be permitted (Bishop, 2006: 331-332). Because slack
variables cannot be negative, the constraint becomes smaller as the value of
the slack variable increases. It is as if the margin were shrunk proportionally
for observations that have a slack variable defined.

For a response variable coded “1” or “~17,

& =y — fxi)]. (7.9)
Equation 7.9 then implies that

1. 0 < & <1 for observations that violate the buffer zone but are correctly
classified.

2. & =1 for observations that are correctly classified and right on top of the
decision boundary.

3. & > 1 for misclassified observations, implying that the constraint in Equa-
tion 7.8 is negative.

These are the values whose sum cannot exceed K. Because for all mis-
classified observations & > 1, K can be interpreted as the upper bound on
the number of misclassifications. As a result, K can become a useful tuning
parameter. With a larger K, there are more support vectors. The decision
boundary that follows is more stable; there is less variance from sample to
sample. But the price is more misclassifications. There is greater bias. There
is no “right” value for K beyond how the classifier performs, and as we show
later, choosing the “best” value for K depends heavily on craft lore.

For completeness, we again offer an equivalent formulation much like the
one provided earlier (Hastie et al., 2001: 373).

i 7.10
min ] (7.10)

subject to
yi(Bo+2TB)>1—-¢&, i=1,...,N, (7.11)

for all £ > 0, and Zf\]:l ¢ < K, with K as some constant. In exposition
coming from computer science traditions, Equations 7.10 and 7.11 are con-
sidered “canonical.” But canonical does not mean trouble free. Bishop (2006:
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322) observes that the minimization process can be distorted by outlier values
of &. A very small number of badly misclassified observations can drive the
solution.

7.3.2 Support Vector Machines

We now turn from the support vector classifier to the support vector machine.
A key difference is the use of nonlinear transformations of the predictors. Thus,
beginning with Equation 7.2, = is replaced by h(z). However, the nature of
the transformations is unlike any of those considered in earlier chapters.

Suppose one has an N x M data matrix D of data, which includes a
response variable and a set of predictors. N is the number of observations
and M is the number of variables. A conventional scatterplot of the data will
locate each observation in a space defined by the variables. A cross-product
matrix of the data will be M x M and symmetric with each off-diagonal entry
a measure of how one variable is related to another. With proper scaling the
cross-product matrix can become a conventional correlation matrix. One can
learn which variables are strongly associated with other variables.

One can alternatively proceed with a transpose of D. Now rows are vari-
ables and the columns are observations. A different kind of scatterplot might
follow in which variables are located in a space defined by observations. Com-
pared to the usual scatterplot, the roles of variables and observations are
reversed. A cross-product matrix is now N x N and symmetric with each off-
diagonal entry a measure of how one observation is related to another. Again,
with proper scaling the cross-products can be turned into correlations. One
can learn which observations are strongly associated with other observations.

Figure 7.4 shows the two different scatterplots. To keep the plots manage-
able, there are for both just two variables and two observations. The plot on
the left shows a conventional scatterplot with variables defining the space. The
plot on the right shows an alternative scatterplot with observations defining
the space.

This dual representation of data can be applied to any dataset or a subset
thereof. In SVM, the predictors are arrayed in observation space so that the
relationships between observations can be exploited. The key to all this is a
set of inner products. For example, if a is an N x 1 vector, the inner product
is aTa, a scalar that is the sum of the squared values of a. If there are two
N x 1 vectors a and b, the inner product is a”b = ba”, which is the sum of
their cross-products.

For every pair of cases ¢ and j, one computes xlej If there are two pre-
dictors, for example, there will be two predictor values for case ¢ and two
predictor values for case j. The inner product would be the sum of two cross-
products. This sum can be viewed as the distance between case i and case j, or
their similarity. And again, with proper scaling the sum of the cross-products
can be turned into a correlation.
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Two Representations of the Same Data

0. Y

0. X

Variable Space Observation Space

Fig. 7.4. Variable space and observation space.

In order to allow for more flexible fitting, the cross-products can be trans-
formed using a “kernel function” K(z;, ;). For example, a relatively simple
kernel is the polynomial, which can be represented as

K(z;,zj) = (1+ :EiT:cj)d, (7.12)

where d is the order of the polynomial.

The term “kernel” used in SVM is different from the term “kernel” used in
smoothing. In smoothing, a kernel refers to a region of the predictor space in
which some calculations are to be undertaken. In SVM, a kernel represents a
transformation applied to the transposed cross-product matrix of predictors.

Consider a simple numerical example. For observation 7, the value for the
first variable is 2, and the value for the second variable is 3. For observation
j the value for the first variable is 1, and the value for the second variable is
3. So the inner product is (2 x 1) 4 (3 x 3). With a second-order polynomial,
the result is

K(zj,o;))=[1+2x1)+Bx3)>=[1+2+09 = 144. (7.13)

For observation ¢ and observation j, 144 is the value of the transformed pre-
dictors. The goal of the transformation is to alter how the two observations
are related to each other. More generally, it is as if observations are moved
around so that separation is more effectively achieved.

There are many different kinds of kernels currently in use or recently pro-
posed (Bishop, 2006: 295-297), but at this point, there is no universal set nor
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much consensus about which work best for which kinds of data. In each case,
the result must be an N x N symmetric, positive definite matrix K. This is
the input into the optimization procedure whose solution has the following
form (Hastie et al., 2001: 378; Bishop, 2006: 329),

N
fla) = Po+ ZdiyiK(l’, i), (7.14)
i=1

where ¢&; is a positive weight given to each observation estimated from the
data (Hastie et al., 2001: Section 12.3.3).

Support Vector and Logistic Loss Functions
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Fig. 7.5. A comparison of classification loss functions.

Interestingly, the minimization exercise for support vector classifiers can
be written in regularized sum of squares form (Hastie et al., 2001: 380; Bishop,
2006: 293):

N

min (1~ /() + AP, (7.15)
OPi=1

where the 4+ indicates that only the positive values are used, and A plays
the same role as K. Note that these residuals are treated in a linear fashion,
implying less sensitivity to extreme values than, for instance, a quadratic
function.

The use of a regularized sum of squares naturally raises questions about
characteristics of the loss function for support vector classifiers and support
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vector machines (Hastie et al., 2001: 380-381; Bishop, 2006: 337-338). Fig-
ure 7.5 shows the “hinge” loss function (the thin solid line) used by both and
for purposes of comparison, the logistic loss function (the thin broken line).
The logistic loss function has been rescaled to facilitate a comparison.

Some speak of the support vector loss function as a “hockey stick.” The
thick vertical line represents the separating hyperplane. Values of yf(z) to
the left denote observations that are misclassified. Values of yf(x) to the
right denote observations that are properly classified. The product of y and
f(x) will be > 1 if a correctly classified observation is on the proper side of
its fence.

Consider the region defined by yf(z) < 1. Moving from left to right, both
loss functions decline. At yf(x) = 0, an observation is correctly classified, but
in the buffer zone. The loss is equal to 1.0. Moving toward yf(z) = 1, both
loss functions continue to decline. The support vector loss function is equal to
0 at yf(x) = 1. The logistic loss function is greater than 0. For yf(z) > 1, the
support vector loss function has a loss of 0. The logistic loss function continues
to decline, but still has a loss greater than 0.

One could argue that the two loss functions are not dramatically differ-
ent. Both can be seen as an approximation of misclassification error. The
misclassification loss function would be a step function equal to 1.0 to the
left yf(z) = 0 and equal to 0.0 at or to the right of yf(z) = 0. It is not
clear in general when the support vector loss function or the logistic loss func-
tion should be preferred although it would seem that the support vector loss
function would be somewhat less affected by outliers.

7.3.3 SVM for Regression

Support vector machines can be altered to apply to quantitative response
variables. One common approach is in the fitting process to only use residuals
smaller in absolute value than some constant (called “e-insensitive” regres-
sion). These are somewhat analogous to observations on the incorrect side of
the fence. For the other residuals, one has a linear loss function. The result
is a robustified kind of regression. The relative advantage in practice of sup-
port vector machine regression compared to any of several forms of robust
regression is not clear.

7.4 A Classification Example

Support vector machines is sufficiently different from the procedures discussed
earlier that a graduated illustration may be helpful. We begin with a relatively
simple analysis using the Mroz dataset from the car library.

The data come from a sample survey of 783 husband—wife households.
The response variable will be whether the wife is employed. For now, two
predictors are selected: household income exclusive of the wife’s earnings in
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tens of thousands of dollars, and the log of the wife’s expected weekly wage.
Expected wage is the earnings anticipated if the wife finds a job. The data
are divided randomly into a training dataset of 400 observations and a test
data set of 383 observations. About 60% of the wives are employed, so the
response variable is reasonably well balanced, and there is nothing else in the
data to make an analysis of labor force participation especially problematic.

7.4.1 SVM Analysis with a Linear Kernel

Predict Unemployed|Predict Employed Model Error
Unemployed 38 136 .78
Employed 38 188 A7
Use Error .50 A1 Overall Error = .44

Table 7.1. SVM confusion table for forecasting employment: linear kernel, cost = 1,
v = NULL, 339 support vectors.

Table 7.1 shows the SVM confusion table with a linear kernel, and tuning
parameters set at their default values. The linear kernel is used for simplicity.
For pairs of observations, the transformation is of the form (2! z;). The tuning
parameter that svin() calls v is not relevant to the linear kernel and is set
to “NULL”. The tuning parameter that svm() calls “cost” plays the same
role as A in Equation 7.15 or K in Equation 7.8. It determines how much
weight is given to the penalty function or alternatively, how tolerant one is
prepared to be about observations that are not fit well. It is through this
tuning parameter that one trades bias against variance. The default sets cost
to 1.0. Resubstituted data are used to build the table, but with the linear
kernel, two predictors, and a sample of 400, overfitting is not likely to be
problematic.

The overall proportion of cases misclassified is .44. The SVM model mis-
classifies unemployed wives 78% of the time and employed wives 17% of the
time. Clearly, it is more difficult in this case to accurately classify employed
women.

Figure 7.6 shows a classification plot with the linear boundary implied by
the linear kernel. The darker area to the lower right represents that part of
the predictor space in which all cases are classified as unemployed. The lighter
area to the upper left represents that part of the predictor space in which all
cases are classified as employed. The “x” symbols denote support vectors. The
“0” symbols denote vectors that are not used to locate the decision boundary.
The plotting procedure in svm() also has the ability to show which observa-
tions represent employed wives and which observations represent unemployed
wives, but one has to be able to plot in color. R does, but there are no color
reproductions in this book.
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SVM classification plot
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Fig. 7.6. Plot of observations, support vectors, and classifications for linear kernel.

Employed wives are identified as coming from households with lower in-
comes but who have higher expected wages (in log units). The diagonal deci-
sion boundary implies that an additive model has been applied. Overall, the
story seems sensible enough, but perhaps a nonlinear kernel can do better.

Predict Unemployed|Predict Employed Model Error
Unemployed 110 64 37
Employed 52 174 23
Use Error .32 .19 Overall Error = .29

Table 7.2. SVM Confusion table for employment: radial kernel, cost = 1, v = .50,
275 support vectors.
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7.4.2 SVM Analysis with a Radial Kernel

Table 7.2 shows how well SVM classifies when a nonlinear kernel is used, in
this case the radial kernel. The radial kernal is popular because it is relatively
easy to understand and seems to perform well. Specifically, we use

K(zg,a;) = el (7.16)

The distance between a pair of observations is squared, multiplied by —-,
and exponentiated. Because of the negative sign, for a given value of v, larger
distances between observations have smaller kernel values. It also follows that
larger values of « for a given distance have smaller kernel values. In other
words, smaller values of v make differences in the distances between observa-
tions in the predictor space more important; observations are spread out more
with respect to one another. Therefore, v can be a useful tuning parameter.

For Table 7.2, the same tuning parameters are as before, but v is set to
the default value of .5. Somewhat fewer support vectors are found implying
that fewer observations are difficult to classify. Overall, there is a dramatic
improvement in fitting skill, implying the linear kernel was missing important
relationships between the two predictors and the response that were uncovered
by the radial kernel.

The overall proportion of cases misclassified is .29. The SVM model mis-
classifies unemployed wives 37% of the time and employed wives 23% of the
time. The better performance, compared to the linear kernel comes from a
substantial improvement in the ability to correctly classify unemployed wives.

But the improved classification skill comes at a high price. The classifica-
tion plot shown in Figure 7.7 is challenging to interpret. Wives who fall in the
middle ranges of the log of expected wages tend to be unemployed almost re-
gardless of household income. In other words, a U-shaped relationship between
the log of expected wages and employment surfaces that holds across most
income levels. Wives with relatively high or relatively low expected wages are
more likely to be employed than wives with middling expected wages. Why
wives with relatively low expected wages behave as do wives with relatively
high expected wages is not apparent and perhaps reflects the role of predic-
tors not included in the model. The exception to this pattern is found when
household income is very low. Then, wages do not seem to matter at all. Wives
from very low income households are classified as employed.

7.4.3 Varying Tuning Parameters

It usually important to vary the SVM tuning parameters to see which give
the best results. Hsu and his colleagues (2007) suggest trying a range of cost
values between 27° and 2'°, and ~ values between 271% and 23, ideally in a
highly systematic manner. Over such a wide range of values, there will likely
be dramatic changes in performance.
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SVM classification plot
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Fig. 7.7. Plot of Observations, Support Vectors, and Classifications for Radial
Kernel.

The overall classification skill shown in Table 7.2 is somewhat robust to
variation in the values for cost. Essentially, the same overall classification
skill materializes with values for cost between .1 and 10,000. However, the
ratio of false positives to false negatives can change enough to matter and the
classification plots can change substantially. In particular, the unemployment
“hole” changes shape and size as the cost parameter increases. And with costs
much above 10, the classification plot begins to fragment in a manner that
makes little substantial sense. Figure 7.8 shows one example when costs are set
at 10. Overall classification is not materially affected because the same region,
located to the center left of the plot, contains largely the same observations
classified the same way regardless. Put another way, the shape and size change
most where there are very few observations. One important lesson is much
like that learned for smoothers. Great caution is required if one tries to draw
substantive conclusions in regions where there are few data.
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SVM classification plot
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Fig. 7.8. Plot of Observations, Support Vectors, and Classifications for Radial
Kernel with cost=10

Varying « between .0001 and 10 can have very important effects. Until a
value for v of about .005 is reached, there is virtually no classification skill
beyond the marginal distribution. Useful classification skill can be obtained
thereafter, but v values larger than about 5 lead again to fragmentation of
the classification plots that is very difficult to interpret. Figure 7.9 is a repre-
sentative illustration.

There is no formal justification for the ranges of cost and ~ values tried
and unfortunately, there seems to be no principled way to choose among the
results that can follow by varying the values of the SVM tuning parameters.
One has the option of trial and error with some measure of classification
skill as the criterion. Indeed, the procedure tune.svm() will undertake a grid
search over specified values of several tuning parameters with some overall
measure of performance the arbiter. A key problem with such trial-and-error
approaches is that substantive concerns have no direct way to contribute. One
risks results that are substantive nonsense. Another concern is that one cannot
easily take into account differential classification skill for the true positives
and true negatives. Finally, overtuning is encouraged. Even with test data,
repeated trials over a large grid will soon lead to a model tuned to the test
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SVM classification plot
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Fig. 7.9. Plot of observations, support vectors, and classifications for radial kernel
with y=5.

data. The same dangers exist with cross-validiation or bootstrap approaches.

7.4.4 Taking the Costs of Classification Errors into Account

We have not yet addressed the issue of how to value false positives and false
negatives. In part because of the concern with overall classification accuracy,
there is little discussion in the SVM literature about taking the costs of false
positives and false negatives into account. But in svm(), one can manipu-
late the number of false negatives and false positives in a confusion table by
weighting the response categories. In the spirit of CART and random forests,
one can implicitly alter the prior distribution of the response by weighting the
data.

The prior distribution of the response variable has 43% of the wives unem-
ployed and 57% of the wives employed. Suppose one gives unemployed wives
a weight of .60 and unemployed wives a weight of .40. The intent is to change
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the 43-57 marginal distribution into something closer to 60-40. One might
employ weights because of what the proper marginal distribution should be
(e.g., to correct for oversampling employed wives) or to alter the relative num-
ber of false positives and false negatives so that their ratio is more responsive
to policy considerations.

Predict Unemployed|Predict Employed Model Error
Unemployed 154 17 .10
Employed 98 131 .43
Use Error .39 A1 Overall Error = .29

Table 7.3. SVM confusion table for employment with weighting: radial kernel,
cost =1, v = .50, 268 support vectors.

Table 7.3 shows the result. The overall amount of forecasting error has
not changed materially, but predictive skill has shifted toward unemployed
wives. We are doing better with unemployed wives and worse with employed
wives. Consistent with this, the implicit relative costs of false negatives and
false positives has changed substantially. Without weighting, the costs of false
negatives and false positives were about the same. There were 64 incorrectly
classified unemployed wives and 52 incorrectly classified employed wives. Now,
there are 17 incorrectly classified unemployed wives and 98 incorrectly classi-
fied employed wives. In short, weighting may in practice be a useful approach
for altering the prior distribution of the response and the relative costs of false
positives and false negatives. For this simple analysis, however, there seems to
be no clear rationale for choosing a particular prior other than the empirical
prior, which is the implicit default.

7.4.5 Comparisons to Logistic Regression

One might wonder how SVM compares to a logistic regression analysis of
the same data. If a radial SVM kernel is used with the default values of the
tuning parameters, logistic regression’s overall forecasting accuracy is about
50% worse than SVM’s when both SVM and logistic regression are evaluated
with the test data (N = 353). One explanation might be that there are im-
portant nonlinear relationships between the two predictors and the response,
and SVM is able to find them. Logistic regression cannot find them because
logistic regression is committed to whatever functional forms one builds in.
Here a simple additive model is used. Such an interpretation is consistent with
the earlier comparisons between the SVM results with a linear kernel and a
radial kernel.

Alternatively, the nonlinear relationships that SVM finds might be paper-
ing over the impact of omitted variables. In other words, although SVM is



7.4 A Classification Example 323

better able to link the two predictors to the response, the true roles of the
two predictors may be misrepresented in the classification plots. Recall that
just this concern was raised earlier. Given the two predictors, SVM is able to
show in the classification plots how those predictors are related to the decision
boundary. But one must be cautious about attributing to these two variables
substantive relationships that may really be in part a function of predictors
not included in the analysis. If a richer set of predictors were available, the
performance differences between SVM and logistic regression might be re-
duced. Put another way, a two-predictor description may look very different
from a description using more than two predictors.

Consider a somewhat more complicated analysis. The response variable
is the same as before but there are now five additional predictors: (1) the
number of children in the household 5 years of age or younger, (2) the number
of children in the household 6 to 18 years old, (3) whether the wife attended
college, (4) whether the husband attended college, and (5) the wife’s age.

Predict Unemployed|Predict Employed Model Error
Unemployed 89 65 42
Employed 51 148 .26
Use Error .36 .30 Overall Error = .32

Table 7.4. Logistic regression confusion table for forecasting employment.

Table 7.4 shows the confusion table for the logistic regression analysis. The
table is constructed from the test data. Table 7.5 shows the confusion table
for the SVM analysis. It too is constructed from the test data. The overall
forecasting error is the same. There are modest differences in forecasting skill
for employed wives and unemployed separately. Logistic regression does some-
what better with employed wives and SVM does somewhat better with the
unemployed wives. There are related differences in the ratio of false positives
to false negatives. But on its face, it is not apparent which model is preferable.
One possible implication is that once a richer set of predictors is used, the
linear relationships imposed by logistic regression are sufficient. There are no
important nonlinearities remaining, at least as a function of the predictors
available.

It would be useful if one could examine a classification plot for the SVM
analysis. Unfortunately, on this svin() stumbles. Because there are seven pre-
dictors, the space defined by the predictors is in seven dimensions. What svm()
offers is to plot any plane in that space. There are in practice a very large
number of such planes (in theory a limitless number) and no principled way to
determine which should be examined. Moreover, if the goal is to understand
how predictors are related to the response, a plane through a high-dimensional
space is not likely to be helpful unless the decision boundary is very simple.
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Predict Unemployed|Predict Employed Model Error
Unemployed 111 43 .28
Employed 71 128 .36
Use Error .39 .25 Overall Error = .32

Table 7.5. SVM Confusion Table for Forecasting Employment: cost = 1, v = .125,
278 Support Vectors

More likely, the decision boundary will change in important ways from plane
to plane in ways that will defy any simple explanation.

One possible solution would be to construct marginal plots, in the spirit of
partial dependence plots, by integrating out all but one predictor dimension at
a time. Such plots would be far more interpretable but at the price of throwing
out a lot of information. In particular, interaction effects would be lost unless
interaction variables are constructed and included among the predictors.

In summary, SVM has its roots in classification problems so that classi-
fication accuracy has been a driving concern. Less attention has been paid
to representing how inputs are related to outputs so that from a regression
perspective, SVM has some serious limitations. However, there seems to be no
reason in principle why analogues to importance plots and partial dependence
plots could not be developed, and it is likely that they will be introduced in
the near future.

7.5 Software Considerations

There are several free software packages available to download that have good
implementions of SVM. There are also lots of free modules that can be down-
loaded and cobbled together (see http//www.kernel-machines.org/). In R, the
procedure SVM (in the R library e1071) implements four different kernel
functions, two kinds of classification procedures and two kinds of regression
procedures. Initial experience with the software is good. It runs well and seems
to be largely bug-free. Two other SVM programs in R that seem to work sat-
isfactorily are in the library svmpath and ksvm. The discussion that follows
concentrates on the SVM implementation in e1071, but the comments apply
more generally.

For reasons discussed earlier, it is not easy to learn from SVM how inputs
are related to outputs. The SVM software in R relies on plots much the same
as those used in this chapter. Multivariate relationships are, therefore, very
difficult to visualize and in addition, one is effectively limited to quantitative
predictors. There is also no direct help in determining predictor importance.

A second difficulty with the software is that the user must specify the
kernel function. As noted earlier, guidance is pretty thin on which kinds of
kernel functions work better for which kinds of data. Typically, there is a bit
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of theory and some simulations suggesting that if the data are generated by
a certain kind of stochastic process, one kind of kernel may perform better
than another kind of kernel. However, in practice one usually has little idea
what stochastic process has generated the data, so such information is not
very helpful. In effect, the kind of kernel becomes a tuning parameter.

A third difficulty is that the software requires at least one tuning parame-
ter, and usually two. One must always specify the value of the tuning parame-
ter that determines the weight given to the slack observations. However, there
is usually no clear way to link that value to subject matter or decision-making
concerns. For most kernels, a second tuning parameter is needed, whose re-
lationships to the data and the goals of the analysis are even more distant.

The current advice, at least for “beginners,” is to proceed by trial and error
using a cross-validation measure of generalization error (Hsu et al., 2007). For
each combination of tuning parameters, a cross-validation measure of perfor-
mance is computed with the training data. Eventually, the set of values with
the smallest generalization error is selected. These are then applied when SVM
is used on the full set of training data to arrive at final results. Alternatively,
the trial-and-error process can be automated with tune.svm(), as noted earlier

This strategy has several related problems. To begin, the informal grid
search strategy recommended has a large number of grid points. The strategy
is time consuming. An automated approach can help a lot in cutting the
amount of human labor required, but substantive considerations get short
shrift.

In addition, the application of a cross-validation measure of performance
is usually often a good idea and in principle, overfitting can be usefully ad-
dressed. However, the grid search procedure goes back to the same well many
times, so the assets of cross-validation are gradually dissipated. The same data
are being recycled over and over. Similar problems affect the use of test data
and the bootstrap. And overtuning leads to overfitting.

Also, the benchmark for the grid search procedure is some estimate of over-
all forecasting error. This ignores potentially important differences between
the errors that result from trying to forecast “successes” and the errors that
result from trying to forecast the “failures.” Misleading results can follow. At
the very least, important information is not taken into account.

A final difficulty with the software is that there is no direct way to address
the relative costs of false negatives and false positives. The software provides
a method to reweight the data to adjust for unbalanced response variable
distributions and it seems that the weights can be used much as a prior distri-
bution. In effect, the weighting becomes another tuning parameter. But, the
formal justification for this approach is thin and one could in principle try to
address differential costs with combinations of other tuning parameters.

Perhaps the best advice at this point is to undertake the data analysis
with statistical learning procedures that have the requisite tools for exam-
ining the output and that seem to be easier to implement in an informed



326 7 Support Vector Machines

manner. Then, SVM can be applied to the same data. In the comparisons
across statistical learning tools, the performance of SVM may be better un-
derstood and appreciated. Perhaps then it can be used in a more informed
manner.

7.6 Summary and Conclusions

Support vector machines has some real strengths. SVM was developed initially
for classification problems and seems to perform well in a variety of real clas-
sification applications. As a form of robust regression, it may also prove to be
useful when less weight needs to be given to more extreme residuals. And, the
underlying fundamentals of support vector machines rest on well-considered
and sensible principles.

However, SVM was not developed to capture the f(X) and therefore,
does not fit well within a regression framework in which one cares about how
predictors are related to a response. It also stumbles badly as an exploratory
tool to inform future work on some f(X). Finally, although SVM can often fit
the data at least as well as random forests and stochastic gradient boosting,
it is rare to find applications for which it performs dramatically better.

At the same time, it is difficult to arrive at an overall assessment. Sup-
port vector machines is still evolving rapidly with new kernel functions and
computer algorithms appearing on a regular basis. The tradeoffs between the
various kernels and between them and alternative statistical learning proce-
dures is not at all clear. In short, it is difficult at this time to make a strong
case one way or another for support vector machines compared to procedures
such as random forests and boosting even if the primary goal of the primary
data analysis is to fit the response as well as possible.

Exercises

Problem Set 1

Construct a dataset as follows. You will need to load the Rlab.

w<-rnorm(500)
z<-rnorm(500)

w2<-w"2
x<=(-1+3*w2-1%z)
p<-exp(x)/(1 + exp(x))
library(Rlab)
y<-rbern(500,p)

As you proceed, you will need to read carefully the help commands for the
various procedures to determine which require that y be a factor, and the
form in which the data are expected.
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1. Regress y on w and z using logistic regression and construct a confusion
table with the resubstituted data. You know that the model has been
misspecified. Examine the regression output and the confusion table. Now
regress y on w2 and z using logistic regression and construct a confusion
table with the resubstituted data. You know that the model is correct.
Compare the two sets of regression coefficients, their hypothesis tests, and
two confusion tables. How does the output from the two models differ?
Why?

2. Repeat the two analyses using svm() from the library e1071. Use the
default settings. First regress y on w and z and then regress regress y on
w2 and z. Compare the confusion tables and classification plots from the
two analyses. How does the output from the two models differ? Why?

3. What do you answers to the first two question tell you how about how
SVM responds to nonlinear relationships that are not introduced explicitly
in the predictors used?

Problem Set 2

From the MASS library, load the Pima.tr dataset. The variable “type” is
the response. All other variables are predictors. Apply svm() to the data (in
library e1071). Use all of the predictors and the defaults. Study the output
by constructing a confusion table and some classification plots. There are
a very large number of possible classification plots. To get a feel for what
they can reveal, use“glu” and “bp” to define the two axes and set the other
predictors at their means. So, you get to see the decision boundary for “glu”
and “bp” with all other variables fixed at their average values. Now see what
happens when the predictors are set at their first quartile and then their third
quartile. There is no “right” classification plot. Each shows a different part of
the decision boundary in different locations of the predictor space.

1. Apply svm() to the data (in library e1071). Use all of the predictors and
the defaults. Study the output by constructing a confusion table and a
classification plot. Use the first plot constructed above. Now change the
default radial kernel to a linear kernel. Study the output by constructing
a confusion table and a classification plot. Compare the output from the
radial kernel to the output from the linear kernel. How are they much the
same and how are they somewhat different. Why?

2. For the response variable type, about a third of the observations are “yes”
and about two-thirds are “no.” Try imposing a prior with the proportions
reversed. For example, the weights can be constructed with

wts=table(type)
wts[1]=.3
wts[2]=.7
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Repeat the earlier analysis with the radial kernel. Also consider the ratio
of false positives to false negatives. How have things changed? Are the
changes consistent with the alternation in the attempt to alter the prior?
Look at both a confusion table and a classification plot. For the latter,
use“glu” and “bp” to define the two axes and set the other predictors at
their means.

With the weighting as before (the default), repeat the analysis with cost
parameter values of .1 and 10. How have things changed? Consider both
a confusion table and a classification plot. For example, what does the
classification plot convey when the cost is set at 107

With the weighting as before and the cost parameter set to 1, try a values
of v of .01, .5, 1, and 5. How have things changed? Consider both a
confusion table and a classification plot as before. How does the output
change? From the confusion table alone, which value of v produces the
most accurate classifications? Is this the best model? Why or why not?
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Broader Implications and a Bit of Craft Lore

It is difficult to arrive at any overall assessment about the state of statisti-
cal learning. Statistical learning is currently undergoing very rapid growth
and change. Efforts to evaluate the relative merits of various procedures are
further complicated by little agreement on what the performance yardsticks
should be: goodness-of-fit, forecasting accuracy, robustness, interpretabilty,
computational feasibility, consistency proofs, and so on.

One consequence is that the number of alternative procedures is large,
growing, and changing. Another consequence is that there are no clear winners
among the list of credible contenders. A final consequence is that because
there is little policing of claims made, one must evaluate all assertions about
performance with considerable care. This may be especially true about claims
about statistical learning procedures made by for-profit enterprises.

Nevertheless, it is probably useful to assemble what craft lore there may
be and to provide some general observations and suggestions. Both are offered
with some trepidation. They could easily change as more experience is gained.

8.1 Some Fundamental Limitations of Statistical
Learning

It is important to start at the top. Ideally, what is statistical learning sup-
posed to get done? What are its goals? Recall that in most formal expositions
of statistical learning, especially those within a regression framework, there
exists in nature an explicit data-generation mechanism. Key features of that
mechanism can be represented in a function linking a set of predictors to a
response. Then, the function, symbolized by f(X), can be assigned one of
two roles. If the conditional distribution of the response is assumed to be the
result of a causal process, f(X) represents the causal machinery. It depicts
how independent manipulation of each predictor alters the value of the re-
sponse. Alternatively, the f(X) can be used to describe how the conditional

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_8, (© Springer Science+Business Media, LLC 2008
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distribution of the response varies with different xz-values, but with no causal
interpretation. One has the conditional distribution, but nothing more.

If either of these accounts is credible, the goal of statistical learning can be
to determine the function linking predictors to the response. One must have in
the dataset all of the predictors, and each must be very well measured. Then,
if the training data can be plausibly treated as a random sample from an
appropriate population or a random realization from the relevant stochastic
process, many statistical learning procedures can be seen as an effort to obtain
a good estimate of the f(X). “Good” can be defined in several different ways,
but minimizing generalization error is a common yardstick.

Even under ideal circumstances, however, statistical inference can be prob-
lematic. If the goal is to construct confidence intervals, very little may be
known about the relevant sampling distribution. If a priori ignorance prevails
about the f(X) as well, there may be no sensible hypotheses to test that
were posed before the data were examined. Hypotheses generated as part of
the data analysis process violate a key assumption of statistical tests. The
computed p-values will likely be too small.

More fundamentally, one must be clear that there are no formal math-
ematical results stating that statistical learning procedures will accurately
capture the f(X). There also are no proofs of unbiased estimation, and the
consistency proofs that exist to date address generalization error for some
population model. There is no guarantee that the population model is in any
sense “right” or even useful. Moreover, there remains the usual difficulty of
figuring out what asymptotic results convey about the results from the data
on hand.

In practice, matters are usually worse. One will rarely have all of the re-
quired predictors, and it will be rare indeed for all of them to be well measured.
Therefore, statistical learning applications will more typically be exploratory
and descriptive, and occasionally be the basis for forecasting.

Perhaps most important, one must not see statistical learning as the magic
bullet of data analysis. Over the past several decades great promises have been
made for any number of statistical procedures, which sometimes proved to be
useful, but hardly the revolutions that many of their advocates claimed: SEM,
ARIMA, HLM, robust regression, raking, specification tests, sliced inverse re-
gression, Rasch models, ARCH, meta-analysis, life history analysis, log-linear
models, latent class analysis, and on and on. So that there be no mistake, no
such claims are being made here about statistical learning.

8.2 Some Assets of Statistical Learning

The benefits of statistical learning can be organized into three large categories.
Some of the benefits boil down to an attitude adjustment. Others come from
an ability to better address certain kinds of data analysis tasks. A final set
involves improving other statistical procedures.
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8.2.1 The Attitude Adjustment

Statistical learning may be seen as implicit criticism of conventional causal
modeling that has for several decades dominated much research in the social
and life sciences. There are certainly many overt critiques of business as usual
(Box, 1976; Leamer, 1978; Rubin, 1986; Freedman, 1987; Manski, 1990; Heck-
man, 1999; Breiman, 2001b: Berk, 2003: Freedman, 2005). Statistical learning,
by contrast, delivers its message by example. And this message has several
related themes.

First, statistical learning can proceed quite happily without worrying much
about cause and effect. Inputs are associated with outputs, but the inputs are
not necessarily causes and the outputs are not necessarily effects. One can use
causal insights to help determine inputs and outputs when prior information
about cause and effect is available. But, within the framework emphasized
in this book, outputs are nothing more than variables whose conditional dis-
tributions are of interest. Inputs are nothing more than the variables to be
used in the conditioning. Consequently, the inputs may be selected to help in
classification or forecasting even if they play no causal role whatsoever.

Second, the data do not have to be generated by a real intervention. This
means that randomized experiments, for example, usually deliver no special
leverage. There is also no formal need to proceed as if the predictors in an
observational dataset were treatments that could be manipulated. It is often
said that experiments are the gold standard for causal inference. Unless deter-
mining the effects of causes is a key goal of a statistical learning data analysis,
the underpinnings and tools of causal inference are likely to be irrelevant

Third, the most important statistical benchmark for a successful data anal-
ysis is successful forecasting. If fitted values correspond well to observed val-
ues one may be on the right track. But a good fit is not good in and of itself.
Rather, it implies that the forecasts may be good as well. This means that
goodness-of-fit statistics and tests are in statistical learning rarely of much
interest. The broader message is that one must look beyond the data used to
build a model in order to determine if that model has genuine merit.

Fourth, with forecasting skill as the standard, many statistical learning
procedures perform well, and very often substantially better than conventional
causal modeling. One reason can be that a statistical learning procedure may
use more of the information in a dataset than a conventional model does.
Another reason can be that the conventional models represent the associations
between the predictors and the response less well than an inductive model
does. Finally, statistical learning procedures are often designed to maximize
forecasting skill. Conventional models rarely are.

At the same time, there is nothing in statistical learning that precludes
causal thinking. With conventional causal modeling, the regression coefficients
associated with each predictor are supposed to reveal what the average change
in the response would be if the predictor values for a given observation were
actually altered (e.g., a person with no high school degree obtained one). In
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statistical learning, partial response plots make no such claim. They simply
show how, on the average, the response variable varies depending on the value
of a given predictor, with the values of all other predictors fixed at their cur-
rent levels. Likewise, plots of predictor importance are not plots of regression
coefficients; they do not represent causal importance. And one must not think
that tree diagrams are anything like path diagrams.

Partial plots, importance plots, classification plots, and tree diagrams can,
however, provide some ideas about how the response variable might change if
a predictor were manipulated. These can be very useful for designing future
studies to get directly at possible causal relationships (e.g., with a random-
ized experiment). Partial plots, importance plots, classification plots, and tree
diagrams can also generate new ideas and even theoretical insights. In short,
statistical learning results can be useful for understanding possible causal re-
lationships but unlike causal models, they are not meant to be surrogates for
real experiments.

Finally, perhaps the most important attitude adjustment is that descrip-
tion is a noble and useful scientific enterprise. One can do good science and
not do causal modeling or experiments.

8.2.2 Selectively Better Performance

Although statistical learning of the sort described in this book is certainly
more than a niche player, it performs far better at some tasks than others.
Here are some tasks at which statistical learning can excel.

1. Determining Functional Forms—When the response functions are not
known but are likely to be highly nonlinear, statistical learning proce-
dures can shine. Even if no claims are made that the true f(X) has been
determined, important information about that function may be revealed.
For example, there may be good evidence that the function is roughly S-
shaped and for which z-values the response is changing especially rapidly.
This can be extremely instructive, even if the particular S-shaped curve
(e.g., cumulative normal v. cumulative logistic) cannot be identified. Re-
call the many earlier examples in which unanticipated nonlinear functions
were found.

2. Discovering Unexpected Predictors—The ability of many statistical learn-
ing procedures to exploit a large number of inputs means that some pre-
dictors, or transformations of predictors, that might have unanticipated
relationships with the response variable can be found. This is true for
CART, but especially boosting and random forests. For example, in re-
search on racial bias in decisions to charge with a capital crime, some un-
expected two-way and three-way interactions are sometimes needed (Berk
et al., 2005a).

3. Discovering Which Predictors Matter—Even if there is a broad consensus
about the predictors that need to be included in the training data, there
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may be little agreement about how important each of the predictors is. If
one finds contribution to the fit or to forecasting skill a useful definition of
“importance,” several statistical learning procedures can provide instruc-
tive measures of predictor importance. For example, particularly for the
most serious form of prison misconduct, sentence length delivers the most
forecasting skill (Berk et al., 2006).

. Providing Useful Regression Diagnostics—By being able to find useful
predictors whose roles were unanticipated and by being able to reveal
unanticipated response functions, statistical learning procedures can serve
as very useful diagnostic tools for parametric regression models (Berk et
al., 2005a). More is said about this shortly.

. Avoiding or Compensating for Overfitting—In exploratory data analysis,
overfitting is almost unavoidable. But bagging can correct in part for
overfitting, and random forests does not overfit. Boosting can overfit in
principle, but as commonly used does not seem to overfit significantly.
Moreover, statistical learning is embedded in a statistical tradition where
concerns about overfitting and tools to counter overfitting are very salient.
There are several measures of fit adjusting for degrees of freedom, cross-
validation, the use of test data, and a variety of regularization methods.
. Forecasting—Especially if the data do not constitute a time series, random
forests and boosting are probably state-of-the-art forecasting tools. For
example, there seems to be some success to be had using random forests to
forecast future incidents of serious domestic violence (Berk et al., 2005b)
. Responding to asymmetric costs—All of the procedures discussed require
a commitment to a particular costs/loss function. But when the response
variable is categorical, CART and random forests are especially able to
take account of asymmetric costs. For many applied problems, asymmetric
costs are critical because the costs of false negatives can be very different
from the costs of false positives. Many examples were provided in earlier
chapters. Asymmetric costs for quantitative variables are at a very early
stage. But quantile random forests has some promise as do methods being
developed for stochastic gradient boosting.

. Exploiting Many Predictors—When there are a very large number of pre-
dictors, most procedures attempting to link inputs to outputs will stumble,
especially if the number of predictors exceeds the number of observations.
CART and random forests are particularly strong in this regard and can
handle hundreds of predictors even if there are far more predictors than
cases. The main limitation is not the statistical procedure, but comput-
ing power. Some have claimed that because SVM works with the cross-
products between observations, the curse of dimensionality is lifted. This
turns out to be at least an exaggeration (Hastie et al., 2001: 384-385).
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8.2.3 Improving Other Procedures

The results of a statistical learning analysis can be a useful intermediate step
in another statistical procedure. The key attribute that statistical learning
brings to these tasks is an ability to construct fitted values that can corre-
spond especially well to the actual values. When a good fit is very important,
statistical learning procedures can be especially effective.

A useful example is in the construction of propensity scores (Rosenbaum,
2002; McCaffrey, 2004). If one is interested in the causal impact of some
categorical intervention, such as a school program to enhance reading, and if
that intervention is not provided through random assignment, there will be
the substantial likelihood of selection bias. In the school illustration, students
who participate in such a program will probably differ on the average from
students who do not. These “pre-existing” differences are then confounded
with estimates of the impact of the reading program.

However, if an unbiased estimate of the probability of program partic-
ipation can be constructed, that estimated probability can be used as an
effective statistical control through matching or other means (Imbens, 2004).
The probability of program participation is called a “propensity score.” In
principle, using propensity scores to adjust for selection bias in estimates of
the treatment effects can be an effective tool.

For example, propensity scores can be used as weights in what is called
the “difference-in-differences” estimator (Heckman et al., 1998). The data
analysis problem is still the same: selection bias into the experimental and
control groups. But now there is a pretest and a posttest. The difference-
in-differences estimator compares the members of the experimental group to
members of the control group through the change in their performance be-
tween the pretest and the posttest, with those changes weighted by propensity
scores. If those propensity scores are estimated in a consistent manner, the
difference-in-differences estimator will in principle deliver a consistent esti-
mate of the treatment effect. (But see Freedman and Berk, 2008).

Usually propensity scores are estimated with logistic regression, and one
always has to wonder how close to unbiased the fitted values really are. Sta-
tistical learning procedures can improve the quality of those fitted values by
making them closer to the actual values. Then, instructive estimates of the
treatment effects may be more likely. But the issues are a little tricky. Conven-
tional boosting procedures applied to classification problems would seem to
be a tool of choice, but it risks pushing any estimated probabilities away from
.50 toward 0.0 and 1.0. Recall that an alternative approach was discussed.

Another useful asset of statistical learning procedures is the very flexible
functional forms that are often constructed. These, in turn, can be instruc-
tive as conventional regression models are built. As noted earlier, statistical
learning procedures may reveal predictors or functional forms not anticipated
by conventional regression models. These models might then be revised ac-
cordingly. Conversely, predictors that seem to be important within a conven-
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tional regression model may vanish when more appropriate functional forms
are used. This might suggest dropping such regressions from the regression
analysis.

Yet another example is improving covariance adjustments. Recall that co-
variance adjustments for a given predictor depend on residualizing that pre-
dictor and the response with respect to all other predictors. That is, any
linear dependence between the response and the other predictors is removed
and any linear dependence between the given predictor and the other predic-
tors is removed. But the quality of this “purging” depends on using the right
predictors with the correct functional forms. Many statistical learning proce-
dures can exploit hundreds of predictors and search for the functional form
that fits the data best. Then, one option is applying statistical learning tools
to residualize the response and key predictors for the “nuisance” covariates
before the important relationships are examined.

8.3 Some Practical Suggestions

Just as for any other set of statistical procedures, practice is guided signifi-
cantly by craft lore. In that spirit, we turn to a bit of craft lore about the use
of statistical learning. It is important to keep in mind, however, the craft lore
can change dramatically with experience, and the experience with statistical
learning to date is somewhat spotty.

8.3.1 Matching Tools to Jobs

To begin, it can be useful to reconsider which procedures are likely to be most
effective for which data analysis tasks. The smoothers discussed in Chap-
ter 2 are primarily visualization aids that can be applied in a wide variety
of settings. They can be taken as standalone tools, as when one smooths
a two-dimensional or three-dimensional scatterplot. They can be used as a
component of other procedures, such as the generalized additive model. Their
main strength is providing information in a very accessible manner about how
predictors are related to a response variable.

If the primary goal is good fit, accurate classification, and/or accurate
forecasting, the procedures discussed in Chapters 4 through 7 are likely to
be a better choice: random forests, boosting, and support vector machines.
CART can be a handy way to hunt for possible interaction effects and can
serve as a intermediate step for more powerful statistical learning procedures.
But otherwise, CART has largely been superseded.

Random forests, boosting, and support vector machines can all perform
well. It is not clear yet which perform better for which kinds of datasets,
or even if the differences in performance are likely to matter a great deal in
practice. It is easy to get caught up in differences of a few percent in forecasting
accuracy, which are too small to matter and may not hold up.
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For example, suppose the goal is to forecast which high school students
are at the greatest risk for dropping out. A classifier might be trained on data
from several cohorts of high school students and evaluated with test data that
are a random sample from the same population. But as a practical matter,
the forecasting tool developed would be applied to new cohorts of students
that would likely differ from the training and test samples by more than
random sampling error. One might well expect a gradual drift in the back-
ground of incoming freshmen and the mix of incentives to remain in school.
As a result, forecasting accuracy could decline by an amount that could easily
swamp the performance differences between competing classifiers, and a new
analysis might show that the classifier that had previously performed best no
longer did. In short, differences in performance that may be of methodological
interest may also be of no practical importance.

Therefore, one key factor in choosing between statistical learning tools can
be the quality of the output. To date, there are important differences among
random forests, boosting, indexboosting and support vector machines beyond
the predicted values and a confusion table. If one needs to examine response
functions and evaluate predictor importance, an implementation of support
vector machines may not have what is needed. There are implementations of
random forests and boosting that do, although at the moment, the measures
of variable performance in random forests, which exploit the out-of-bag data
for forecasting, is probably more desirable.

Another key factor in choosing among statistical learning tools is their
ability to address in a flexible manner the relative costs of false negatives
and false positives. Currently, random forests is likely to do this better for
classification problems than either boosting or support vector machines. More
generally, asymmetric loss functions can be important. There are very recent
developments for random forests and stochastic gradient boosting that have
the promise of allowing for certain special cases.

One should also consider the relationship between the sample size and
the number of predictors. If the number of predictors exceeds the number of
observations, random forests may be the only viable choice among the better-
performing statistical learning procedures. There may even be reason to prefer
random forests if the number of predictors is large compared to the number
of observations, even if there are fewer predictors than observations.

A final factor is the range of response variables that can be properly an-
alyzed. At this point, boosting may be the most flexible, at least within the
gradient boosting approach. But there seems to be no reason in principle why
random forests and support vector machines cannot be made more broadly
applicable, and it is likely that the range of response variable types that can
be handled by these procedures will increase over the next several years.
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8.3.2 Getting to Know Your Software

There is not yet, and not likely to be in the near future, a consensus on
how any of the various statistical learning procedures should be implemented
in software. For example, a recent check on software available for support
vector machines found working code for over a half dozen procedures. There
is, as well, near anarchy in naming conventions, and notation. Thus, the term
“cost,” for instance, can mean several different things and a symbol such as
v can be a tuning parameter in one derivation and a key feature in another
derivation.

One cannot assume that a description of a procedure in a textbook or
journal article corresponds fully to software using the very same name. Con-
sequently, it is very important to work with software for which there is good
technical documentation on the procedure and algorithms being used. There
also needs to be clear information on how to introduce inputs, outputs, and
tuning parameters. Two computer programs can use the same name for differ-
ent items, or use very different names for the same item. And in either case,
the naming conventions may not correspond to the naming conventions in the
technical literature.

Even when the documentation looks to be clear and complete, a healthy
dose of skepticism is useful. There are sometimes errors in the documentation,
or in the software, or in both. So, it is usually important to “shake down”
any new software with data that have previously been analyzed properly to
determine if the new results come out as expected. In addition, it is usually
helpful to experiment with various tuning parameters to see if the results
make sense. In short, caveat emptor.

It is also very important keep abreast of software updates, which can come
as often as two or three times a year. As a routine matter, new features are
added, bugs fixed and documentation rewritten. These changes are often far
more than cosmetic. Working with an older version of statistical learning
software can lead to unnecessary problems.

Finally, a key software decision is whether to work primarily with share-
ware such as R or with commercial products. The tradeoffs have been dis-
cussed earlier at various points. Cost is certainly an issue, but perhaps more
important is the tension between having the most current software and having
the most stable software and documentation. Shareware is more likely to be
on the leading edge, but often lacks the convenience and stability of commer-
cial products. One possible strategy for individuals who are unfamiliar with a
certain class of procedures is to begin with a good commercial product, and
then once some hands-on skill has been developed, migrate to shareware.

8.3.3 Not Forgetting the Basics

It is very easy to get caught up in the razzle-dazzle of statistical learning and
for any given data analysis, neglect the more simple fundamentals. All data
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explorations must start with an effort to get “close” to the data. This requires
a careful inspection of elementary descriptive statistics: means, standard devi-
ations, histograms, cross-tabulations, scatterplots and the like. It also means
understanding how the data were generated and how the variables were mea-
sured. Moving into a statistical learning procedure without this groundwork
can lead to substantial grief. For example, sometimes numeric values are given
to missing data. Treating these values as legitimate measures can seriously
distort any data analysis, including ones undertaken with statistical learning.

It will usually be helpful to apply one or more forms of conventional re-
gression analysis before moving to statistical learning. One then obtains an
initial sense of how good the fit is likely to be, the likely signs of key rela-
tionships between predictors and the response, and hints of problems that
might be more difficult to spot later (e.g., high correlations among some pre-
dictors). An important implication is that it will often be handy to undertake
statistical learning within a larger computing environment in which a variety
of statistical tools can be applied to the same data. This can weigh against
single-purpose statistical learning software.

To take one simple example, a tuning parameter in random forests may
require a distinct value for each response class. But the order in which those
arguments are entered into the function for the tuning parameter may be
unclear. In the binary case, for example, which category comes first? Is it
w=¢(1,0) or w = ¢(0,1)? It is easy to make the wrong choice. Random forests
runs just the same and generates sensible-looking output. But the analysis has
not been tuned as it should have been. It can be difficult to spot such an error
unless one knows the marginal distribution of the response variable and the
likely sign of relationships between each predictor and the response. A few
cross-tabulations and a preliminary regression analysis can help enormously.

To take a little more complicated example, one of the few graphical displays
of output from support vector machines depends on specifying a slice of the
control variables used to the subset of the data so that a plane can be plotted.
If there are several control variables, it is easy to choose a slice in which there
are no data, or too few observations to construct a useful plot. Yet, no error
message may be produced, and misleading interpretation can follow. A series
of cross-tabulations or conditional plots can help a lot.

8.3.4 Getting Good Data

As noted many times, there is no substitute for good data. The fact that
boosting, for example, can make a weak classifier much stronger, does not
mean that boosting can make weak data stronger. There are no surprises in
what properties good data should have: a large number of observations, little
measurement error, a rich set of predictors, and a reasonably well-balanced
response variable distribution. The clear message is that it is very important
to invest time and resources in data collection. One cannot count on statistical
learning successfully coming to the rescue. Indeed, some forms of statistical
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learning are quite fragile and easily pulled off course by noisy data, let alone
data that have systematic measurement error.

The case for having legitimate test data is a bit more ambiguous. Statistical
learning procedures that use out-of-bag data or the equivalent do not formally
need a test dataset that is a random sample from the same population as
the training data. The out-of-bag observations serve that purpose. But most
statistical learning procedures currently are not designed to work with random
samples of the data, even when that might make a lot of sense. Therefore,
having access to test data is usually very important.

Even for random forests, test data beyond the out-of-bag observations can
come in handy. Comparisons between how random forests performs and how
other approaches (including conventional regression) perform are often very
instructive. Yet such comparisons cannot be undertaken unless there are test
data shared by all of the statistical procedures applied. Finally, having a true
test dataset can help a great deal if random forests is applied repeatedly to the
same training data after changes in the tuning parameters. At the very end
of the tuning process, there is still the opportunity to get an honest measure
of performance from data that until that moment have not been used.

8.3.5 Being Sensitive to Overtuning

We have discussed several summary measures of model performance that can
be used to help tune models. Tuning can be an important process in model de-
velopment. However, if the tuning process goes on for very long, the desirable
properties of the summary measures can be badly diluted.

For example, neither the AIC or BIC take into account the number of
parameters estimated for earlier models that were considered and rejected.
Cross-validation can be compromised when the same dataset is used over
and over. The independence between the training data and the test data is
gradually lost.

These concerns suggest a strategy, just noted, in which there is a hold-out
sample, or another random sample from the same population, that is used
at the very end to evaluate the final model. Ideally there would be a large
number of hold-out or random samples that could be used for tuning as well.
In addition, it will generally be a good idea to show great restraint when
there is an opportunity to tune, particularly when the number of observations
is relatively small and the number of predictors is relatively large.

8.3.6 Matching Your Goals to What You Can Credibly Do

Much of the literature on statistical learning is formulated around some f(X).
There is a real mechanism by which the data were generated. A key goal of a
data analysis is to recover the data-generation function from a dataset. It can
be very tempting, therefore, to frame all data analyses in a similar manner.
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But, one of the themes of this book has been that in reality, more modest
goals are likely to be appropriate. Perhaps most important, one will not have
access to all of the requisite predictors, let alone predictors that are all well
measured. In addition, various kinds of data snooping will often be difficult
to avoid, and even the best adjustments for overfitting may prove insufficient.
For these and other reasons, description will be what the data analysis is
really about.

This does not mean that the stability of one’s results cannot be usefully
addressed. It also does not mean that causal thinking is unimportant. And
it certainly does not mean that one cannot achieve an improved understand-
ing of what the f(X) might be. For example, entire classes of functions can
sometimes be effectively eliminated.

But what it does mean is that much of the formal rationale for any sta-
tistical procedure, including statistical learning procedures, cannot be relied
upon. It can be very difficult to know, for example, what use to make of proofs
of consistency. It also means that packaging one’s results as function estima-
tion or as a model of how the data were generated can be false advertising. If
description is the enterprise, it needs to be labeled as such.

8.4 Some Concluding Observations

Statistical learning has considerable potential, and its reach and power will
likely increase in the next several years. But with that potential comes almost
certain misuse. There are already some instructive examples.

As just noted, it can be very seductive to proceed as if the goal were
to estimate f(X) even when one does not have the requisite predictors or
predictors of the requisite quality. Then, the actual work being undertaken
is description. Concepts such as bias and consistency no longer apply and
cannot be appealed to. And the work cannot properly be packaged as function
estimation.

Another error is to undertake statistical inference as part of a statistical
learning analysis when the p-values are not likely to make much sense. The
p-values may be wildly misleading because the data are not a random sample
or random realization of anything, because the statistical learning procedure
invalidates the required assumptions, and/or because the necessary sampling
distributions are unknown or not credibly estimated.

Still another error is to accept statistical learning results uncritically. The
very flexibility with which fitted values are constructed can lead to results
that are factual nonsense. There is also the possibility that software will mal-
function or be fundamentally flawed. In general, all results must pass the sniff
test of subject matter credibility.

Finally, data snooping can lead to significant data analysis errors. Even
data analysts who are well aware of its risks can inadvertently lower their
guard and allow data snooping errors to affect their results. For example, a
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number of different applications of random forests, using different tuning pa-
rameters, may be examined before selecting a single model and the particular
values of its tuning parameters.

The concluding message, therefore, is to users of statistical learning re-
sults. At the very least, demand that all results to be taken seriously rest on
test data or their equivalent. And if the results do not make subject matter
sense, skepticism is a sensible stance. Ask that each step in the data analy-
sis, including how the data were collected, be reviewed. If anomalies persist,
consider getting an independent third party involved. As with any new and
complicated procedure, there is lots of room for mistakes and even a substan-
tial amount of fakery.
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data summary, 13
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data-generation process

data-generation process, 9-11, 22, 23,
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degrees of freedom, 28-29, 47, 136
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entropy, 114, 115
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expected prediction error, 31-34
exploratory data analysis, 1
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GAM, see generalized additive model

generalized additive model, 84-88, 91
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generalized linear model, 66, 84

gentle Adaboost, 259
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GLM, see generalized linear model
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knots, 50, 53-54, 56-57, 70-71, 76
Kullbeck—Leibler information, 30
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Li—penalty, 61, 64-66
Lo—penalty, 61, 62
lasso, 64-67, 69, 266
adaptive, 65
least angle regression(LARS), 264266
leave-one-out cross-validation, 31
linear basis expansion, 37
linear estimators, 26-27
linear loss, 25
locally adaptive smoothers, 81, 91-93
locally weighted regression, 39, 73-80
logitboost, 262
loss function, 14, 23-26, 42, 44, 157
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symmetric, 25, 26
lowess, 75, 82-84, 86
robust, 77

M-estimators, 77

margin, 154, 173, 261

Matlab, 43

mean squared error, 29, 33, 243
decomposition, 180

missing data, 131

model evaluation, 29-34

model selection, 34-37, 44, 135

model-based sampling, 14, 95, 114

multidimensional scaling, 231

multivariate adaptive regression splines,

158-159
multivariate smoothers, 80-88

N-fold cross-validation, 31, 71

natural cubic splines, 54-57, 70-71

nearest neighbor methods, 24, 73-76,
110-112, 204-210, 302

omitted variable, 79
out-of-bag observations, 173174, 186
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penalized smoothing, 60-69, 86

piecewise linear basis, 49-53
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polynomial regression splines, 53-54

principal components analysis, 69
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prior probability, 125-128

pruning, 128-131, 155

quadratic loss, 24, 25
quantile classification, 276
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adjusted, 29, 47, 48
random assignment, 15
random forests, 257, 258, 261, 263, 267,
273, 274, 276, 279, 283, 285, 290,
303, 308, 321, 326, 332, 333, 335,
336, 338, 339, 341
clustering, 231
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dependence, 203
generalization error, 200-204
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missing data, 231-232
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partial dependence plots, 222-226
predictor importance, 213-216
proximity matrix, 229-232
quantile, 234-235, 245-248
quantitative response, 233-234
specialized basis functions, 195, 197
strength, 202-203
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variance, 195
real Adaboost, 259
receiver operator characteristic curve,
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recursive partitioning, 105
regression analysis, 2—8
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regression splines, 49-60

Index 357
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resubstitution, 29

ridge regression, 62-65, 71
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rug plot, 72

Salford Systems, 43, 249
shrinkage, 61-69, 95, 179
smoother, 52
smoother matrix, 26, 28, 72
smoothing, 8
smoothing splines, 70-73, 81-84
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squared loss, see quadratic loss
stagewise algorithms, 261, 268
stagewise regression, 36, 105, 264-266
statistical inference, 7, 14-16, 63, 65,
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statistical learning
definition, 23
statistical test, 14-16, 66, 68, 69, 96-97,
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Stein estimator, 68
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stochastic gradient boosting, 266274
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target variable, 303
support vector machines, 307-309,
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linear kernel, 316
overfitting, 325
overtuning, 325



358 Index

quantitative response, 315
radial kernel, 318

regularized sum of squares, 314
separating hyperplane, 315
tuning, 318-321, 325

test data, 34, 44, 339
thin plate splines, 81
training data, 44
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