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Preface
Random Effect and Latent Variable
Model Selection

In recent years, there has been a dramatic increase in the collection of multivariate
and correlated data in a wide variety of fields. For example, it is now standard prac-
tice to routinely collect many response variables on each individual in a study. The
different variables may correspond to repeated measurements over time, to a battery
of surrogates for one or more latent traits, or to multiple types of outcomes having
an unknown dependence structure. Hierarchical models that incorporate subject-
specific parameters are one of the most widely-used tools for analyzing multivariate
and correlated data. Such subject-specific parameters are commonly referred to as
random effects, latent variables or frailties.

There are two modeling frameworks that have been particularly widely used as
hierarchical generalizations of linear regression models. The first is the linear mixed
effects model (Laird and Ware , 1982) and the second is the structural equation
model (Bollen , 1989). Linear mixed effects (LME) models extend linear regres-
sion to incorporate two components, with the first corresponding to fixed effects
describing the impact of predictors on the mean and the second to random effects
characterizing the impact on the covariance. LMEs have also been increasingly used
for function estimation. In implementing LME analyses, model selection problems
are unavoidable. For example, there may be interest in comparing models with and
without a predictor in the fixed and/or random effects component. In addition, there
is typically uncertainty in the subset of predictors to be included in the model, with
the number of candidate predictors large in many applications.

To address problems of this type, it is not appropriate to rely on classical methods
developed for model selection and inferences in non-hierarchical regression models.
For example, the widely used BIC criteria are not valid for random effects models,
and likelihood ratio and score tests face difficulties, since the null hypothesis often
falls on the boundary of the parameter space. The objective of the first part of this
book is to provide an overview of a variety of promising strategies for addressing
model selection problems in LMEs and related modeling frameworks.

In the chapter, “Likelihood Ratio Testing for Zero Variance Components in
Linear Mixed Models,” Ciprian Crainiceanu provides an applications-motivated
overview of recent work on likelihood ratio and restricted likelihood ratio tests for
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testing whether random effects have zero variance. The approaches he describes
represent an important advance over the current standard practice in testing for zero
variance components in hierarchical models. Such approaches include ignoring the
boundary problem and assuming the likelihood ratio test statistic has a chi-square
distribution under the null and relying on asymptotic results showing a mixture of
chi-squares is more appropriate (Stram and Lee, 1994). Crainiceanu shows that as-
ymptotic approximations may be unreliable in many applications, motivating use of
finite sample approaches. He illustrates the ideas through several examples, includ-
ing applications to nonlinear regression modeling.

Score tests provide a widely-used alternative to likelihood ratio tests, and in the
chapter, “Variance Component Testing in Generalized Linear Mixed Models for
Longitudinal/Clustered Data and Other Related Topics,” of this volume Daowen
Zhang and Xihong Lin provide an excellent overview of the recent literature on
score test-based approaches. In addition, Zhang and Lin consider a broader class of
models, which includes GLMMs and generalized additive mixed models (GAMMs).
GAMMs provide an extremely rich framework for semiparametric modeling of lon-
gitudinal data allowing flexible predictor effects through replacing linear terms in a
generalized linear model with unknown non-linear functions, while also including
random effects to account for within-subject dependence and heterogeneity.

The first part of the volume is completed with two companion chapters describ-
ing Bayesian approaches for variable selection in LMEs and GLMMs. The likeli-
hood ratio and score test methods provide an approach for comparing two nested
models with the smaller model having a random effect excluded. However, in many
applications one is faced with a set of p candidate predictors, with uncertainty in
which subsets should be included in the fixed and random effects components of the
model. Clearly, the number of candidate models grows extremely rapidly with p, so
that it often becomes impossible to fit each model in the list. One possibility is to
use a likelihood ratio test within a stepwise selection procedure. However, the final
model selected will depend on the order in which candidate predictors are added or
deleted and it is difficult to adjust for uncertainty in subset selection in performing
inferences and predictions. In non-hierarchical regression models, Bayesian vari-
able selection implemented with stochastic search algorithms has been very widely
used to address this problem. In the chapter, “Bayesian Model Uncertainty in Mixed
Effects Models,” Satkartar Kinney and I describe an approach for LMEs, while in
the chapter, “Bayesian Variable Selection in Generalized Linear Mixed Models,” Bo
Cai and I describe an alternative for GLMMs.

The second part of the book switches gears to focus on structural equation models
(SEMs), which have been very widely used in social science applications for assess-
ing relationships among latent variables, such as poverty or violence, that can only
be measured indirectly through multiple surrogates. SEMs provide a generalization
of factor analysis, which allows for modeling of linear relationships among the la-
tent factors through a linear structural relations (LISREL) model. SEMs are also
quite useful outside of traditional application areas for sparse covariance structure
modeling of high-dimensional multivariate data. However, one of the main issues
in applying SEMs is how to deal with model uncertainty, which commonly arises
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in deciding on the number of factors to include in each component and the rela-
tionships among these factors. In the chapter, “A Unified Approach to Two-Level
Structural Equation Models and Linear Mixed Effects Models,” Peter Bentler and
Jiajuan Liang provide a bridge between the first and second parts of the volume in
linking LMEs and SEMs, while also considering methods for model selection.

In the chapter, “Bayesian Model Comparison of Structural Equation Models,”
Sik-Yum Lee and Xin-Yuan Song provide a general Bayesian approach to com-
parison of SEMs. Typical Bayesian methods for comparing models rely on Bayes
factors. However, Bayes factors have proved quite difficult to estimate accurately in
SEMs. Lee and Song propose a useful and clever solution to this problem using path
sampling. One well-known issue in model selection using Bayes factors is sensitiv-
ity to prior selection. This has motivated a rich literature on default priors. In the
chapter, “Bayesian Model Selection in Factor Analytic Models” Joyee Ghosh and I
build on the approach of Lee and Song, proposing a default prior, and an efficient
approach for posterior computation relying on parameter expansion. In addition, an
importance sampling algorithm is proposed as an alternative to path sampling.

In summary, this volume provides a practically-motivated overview of a variety
of recently proposed approaches for model selection in random effects and latent
variable models. The goal is to make these methods more accessible to practition-
ers, while also stimulating additional research in this important and under-studied
area of statistics. There are a number of topics related to model selection in ran-
dom effects and latent variable models that are in need of new research, with so-
lutions having the potential for substantial applied impact. The first topic is the
development of simple methods to calculate model selection criteria, which modify
AIC and BIC to incorporate a penalty for model complexity that is appropriate for
a hierarchical model. A second topic is the development of efficient methods for
simultaneous model search and posterior computation in SEMs. Often, one has a
high-dimensional set of SEMs that are plausible a priori and consistent with current
scientific or sociologic theories. It is of substantial interest to identify high posterior
probability models and to average across models in making predictions. However,
typical tricks used in other model classes, such as zeroing out coefficients, do not
work in general for SEMs, and efficient alternatives remain to be developed.
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Likelihood Ratio Testing for Zero Variance
Components in Linear Mixed Models

Ciprian M. Crainiceanu

Mixed models are a powerful inferential tool with a wide range of applications in-
cluding longitudinal studies, hierarchical modeling, and smoothing. Mixed models
have become the state of the art for statistical information exchange and correla-
tion modeling. Their popularity has been augmented by the availability of dedicated
software, e.g., the MIXED procedure in SAS, the lme function in R and S+, or the
xtmixed function in STATA.

In this paper, we consider the problem of testing the null hypothesis of a zero
variance component in a linear mixed model (LMM). We focus on the likelihood
ratio test (LRT) and restricted likelihood ratio test (RLRT) statistics for three rea-
sons. First, (R)LRTs are uniformly most powerful for simple null and alternative
hypotheses and have been shown to have good power properties in a variety of theo-
retical and applied frameworks. Second, given their robust properties, (R)LRTs are
the benchmark for statistical testing. Third, (R)LRT can now be used in realistic
data sets and applications due to a better understanding of their null distribution and
improved computational tools.

The paper is organized as follows. Section 1 describes three applications of test-
ing for a zero variance component. Section 2 contains the model and a description of
the testing framework. Section 3 describes standard asymptotic results and provides
a short discussion of their applicability. Section 4 presents finite sample and as-
ymptotic results for linear mixed models (LMMs) with one variance component.
Section 5 introduces two approximations of the finite sample (R)LRT distribu-
tion for testing for zero variance components in LMMs with multiple variance
components. Section 6 presents the corresponding testing results for the ex-
amples introduced in Sect. 1. Section 7 provides the discussion and practical
recommendations.

C.M. Crainiceanu
Department of Biostatistics, Johns Hopkins University
ccrainic@jhsph.edu

D. B. Dunson (ed.) Random Effect and Latent Variable Model Selection, 3
DOI: 10.1007/978-0-387-76721-5, c© Springer Science+Business Media, LLC 2008



4 C.M. Crainiceanu

1 Examples

The three examples in this section illustrate the wide variety of applications of test-
ing for zero variance components in LMMs. This list is far from being exhaustive
but provides a foretaste of what is possible and needed in this framework.

1.1 Loa loa Prevalence in West Africa

Figure 1 displays village locations from one of the several parasitological survey
location in West Africa. In all these villages parasitological sampling was conducted
to assess the prevalence of Loaisis. Here we provide a short summary, but a complete
description of the problem can be found in Crainiceanu et al. (2007). Loaisis, or
eyeworm, is an endemic disease of the wet tropics, caused by Loa loa, a filarial
parasite which is transmitted to humans by the bite of an infected Chrysops fly. In
Fig. 1 the empirical prevalence rates at location x, p̂(x), are indicated as dots coded
according to their size: small p̂(x) < 0.18, medium 0.18 ≤ p̂(x) < 0.20, large
0.20 ≤ p̂(x) < 0.25, and very large p̂(x) > 0.30.

A complete bivariate binomial analysis of this data set can be found in
Crainiceanu et al. (2007). Here, we consider the following simpler univariate
model for the logit prevalence at the spatial location x

logit{ p̂(x)} = α0+α1g(x)+α2s(x)+α3e(x)+α4{e(x)−800}++S(x)+ε(x), (1)
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3
4

5
6

7

longitude

la
tit

ud
e

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 1 Village sampling locations in one subregion from West Africa. The empirical prevalence
rates are indicated as dots coded according to their size: small p̂(x) < 0.18, medium 0.18 ≤
p̂(x) < 0.20, large .20 ≤ p̂(x) < 0.25, very large p̂(x) > 0.30. The estimated mean prevalence
based on model (1) is grey-scale coded according to the legend
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where g(x) is an annual average measure of greenness, s(x) the standard deviation
of greenness, e(x) the elevation in meters, S(x) a spatial component, and ε(x) ∼
Normal(0, σ 2

ε ) are the independent errors. Here a+ is equal to a if a > 0 and 0
otherwise, so that {e(x) − 800}+ represents the elevation at location x truncated
below 800 m. If the spatial component S(x) is modeled as a low rank penalized thin
plate spline then

{

S(x) = xtβ + Z(x)b,
b ∼ Normal(0, σ 2

b IK ),
(2)

where Z(x) is the low rank specific design vector (for details see (Ruppert et al.,
2003; Kammann and Wand, 2003)), b the thin plate spline coefficients describing
the spatial features of S(x), σ 2

b the smoothing parameter controlling the amount of
smoothing, and IK is the identity matrix where K is the number of spatial knots.

In the case of low rank smoothers the set of K knots for the covariates have to
be chosen. One possibility is to use equally spaced knots. Another possibility is to
select the knots and subknots using the space filling design (Nychka and Saltzman,
1998), which is based on the maximal separation principle. This avoids wasting
knots and is likely to lead to better approximations in sparse regions of the data. The
cover.design() function from the R package Fields (Fields Development
Team, 2006) provides software for space filling knot selection.

If the smoothing parameter is estimated by restricted maximum likelihood
(REML), then the model described in (1) and (2) is equivalent to a particular LMM
with one variance component. Figure 1 displays the estimated mean prevalence
at all locations in the map coded according to the legend. In this context testing
whether the nonlinear spatial component of S(x) is necessary to explain the residual
variability after fitting the scientifically available covariates is equivalent to testing

H0 : σ 2
b = 0 vs. HA : σ 2

b > 0 .

From a scientific perspective testing H0 is equivalent to testing whether simpler
models including only covariates could capture the complex stochastic nature of the
spatial data and have good predictive power.

1.2 Onion Density in Australia

Figure 2 contains data on yields (grams/plant) of white Spanish onions in two lo-
cations: Purnong Landing and Virginia, South Australia (Ratkowsky, 1983). The
horizontal axis corresponds to areal density of plants (plants/m2). Detailed analyses
of these data are given by Ruppert et al. (2003) and Crainiceanu (2003). Denote
by (yi , xi , si ) the yield, density of plants and location for the i th observation. Here,
si = 1 corresponds to Purnong Landing and si = 0 corresponds to Virginia. The
solid lines in Fig. 2 correspond to fitting the linear additive model

log(yi ) = β0 + β1si + β2di + εi . (3)
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Fig. 2 Log yield for the onion data plotted against density (circle Purnong Landing; asterisk
Virginia), straight line fit (solid line), binary offset model using a penalized linear spline fit with
K = 15 knots and REML estimation of smoothing parameter (dashed line), discrete by continuous
interaction model (dotted line)

The dashed lines represent the mean fit using a semiparametric binary offset model
(Ruppert et al., 2003)

log(yi ) = β1si + f (di )+ εi , (4)

which contains a parametric component, β1si , and a nonparametric component,
f (di ). The binary variable s vertically offsets the relationship between E[log(y)]
and density according to location. By specifying a linear penalized spline model for
f (di ) the model becomes

log(yi ) = β0 + β1si + β2di +
K
∑

k=1

bk(di − κk)+ + εi ,

where bk are i.i.d. N (0, σ 2
b ) and εi are i.i.d. N (0, σ 2

ε ). Following Ruppert et al.
(2003), we use K = 15 knots chosen at the sample quantiles of density correspond-
ing to frequencies 1/(K + 1), . . . , K/(K + 1).

Testing model (3) corresponding to the solid line fits in Fig. 2 versus model
(4) corresponding to dashed lines in Fig. 2 corresponds to testing H0 : σ 2

b = 0
vs. HA : σ 2

b > 0. For these data and hypothesis testing framework, Crainiceanu
(2003) calculated RLRT = 35.93 with a corresponding p-value< 0.001. The calcu-
lation of the p-value was based on the exact distribution of the RLRT as obtained
by Crainiceanu and Ruppert (2004b). This result is not surprising, given the large
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discrepancies between the two model fits in Fig. 2. In fact, results would not change
even if one used the more conservative (but incorrect in this case) 0.5χ2

0 : 0.5χ2
1

approximation to the null RLRT distribution (Self and Liang, 1987).
It is natural, however, to ask whether the binary offset model accurately repre-

sents the data. To address this question we nest model (4) into the following discrete
by continuous interaction model

E {log(yi )} =
{

fPL(di ) if si = 1;
fVA(di ) if si = 0,

where the subscripts PL and VA denote the Purnong Landing and Virginia loca-
tions, respectively. The basic idea is to model the mean response at one of the loca-
tions, say Purnong Landing, as a nonparametric spline and the deviations from this
function corresponding to the other location, say Virginia, as another nonparametric
spline. The discrete by continuous interaction model is

log(yi ) = β0+β1di +
K
∑

k=1

bk(di −κk)++{γ0+γ1di +
K
∑

k=1

vk(di −κk)+}I (i ∈ PL)+εi

(5)
for Virginia (s = 0), where β0, β1, γ0, and γ1 are fixed unknown parameters, bk are
i.i.d. N (0, σ 2

b ), vk are i.i.d. N (0, σ 2
v ), and I (i ∈ PL) is 1 if the observation i is from

Purnong Landing and 0 otherwise. The model (5) is an LMM with two random
effects variance components, σ 2

b and σ 2
v , and the fit to the data is depicted by the

two dotted curves in Fig. 2. Testing for linear versus nonlinear deviations from the
smooth regression function corresponding to the Purnong Landing location reduces
in this model to testing

H0 : σ 2
v = 0 vs. σ 2

v > 0,

which is equivalent to testing for a zero variance component in an LMM with two
variance components. After discussing the state of the art in statistical testing in this
framework we will revisit this example in Sect. 6.

1.3 Coronary Sinus Potassium

We consider the coronary sinus potassium concentration data measured on 36 dogs
published by Grizzle and Allan (1969) and Wang (1998). The measurements on each
dog were taken every 2 min from 1 to 13 min (seven observations per dog). The 36
dogs come from four treatment groups. Figure 3 displays the data for the nine dogs
in the first treatment group (dotted lines).

If yi j denotes the j th concentration for the i th dog at time ti j = 1 + 2 j then a
reasonable LMM model for the first treatment group is

yi j = β0 + ui + β1ti j + β2t2
i j + εi j , (6)
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Fig. 3 Sinus potassium concentration for nine dogs in the first treatment group (dotted lines)

where ui ∼ N (0, σ 2
u ) are independent dog specific intercepts and εi j ∼ N (0, σ 2

ε )
are independent errors. Figure 3 displays the fit of model (6) as a dashed line. It is
natural to ask the question whether model (6) is enough to capture the complexity
of the population mean function. One way to answer this question is by embedding
model (6) into the following more general model

yi j = β0 + ui + β1ti j + β2t2
i j +

K
∑

i=1

bk(ti j − κk)
2+ + εi j , (7)

where bk ∼ N (0, σ 2
b ) are independent truncated spline coefficients, K the number

of knots and κk , k = 1, . . . , K are the knots. All the other assumptions are the same
as in model (6). Note that model (6) is an LMM with two variance components: one,
σ 2

u , controlling the shrinkage of random intercepts towards their mean and the other
one, σ 2

b , controlling the shrinkage of the population function towards a quadratic
polynomial. Figure 3 displays the fit of this model as a solid line together with 95%
pointwise confidence intervals (shaded area).

Testing the null hypothesis described by model (6) versus the alternative de-
scribed by model (7) is equivalent to testing for

H0 : σ 2
b = 0 vs. σ 2

b > 0.
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Similarly, testing for dog response homogeneity is equivalent to testing

H0 : σ 2
u = 0 vs. σ 2

u > 0.

Both frameworks correspond to testing for a zero variance component in an LMM
with two variance components.

As the last point for this example, note that a naive way to test for H0 : σ 2
b = 0

is to check whether the null fit is contained in the shaded area. This may seem like
a good idea, but leads to incorrect inferences. Indeed, all the confidence intervals
for the mean function based on model (7) contain the fit based on model (6). How-
ever, as we show in Sect. 6, the RLRT indicates strong evidence against the null
hypothesis of a quadratic population curve.

2 Model and Testing Framework

All examples in Sect. 1, and many others, involve testing for a zero variance com-
ponent as the methodological answer to important scientific questions. To formalize
the framework, let us assume that the outcome vector, Y , is modeled as an LMM

⎧

⎨

⎩

Y = Xβ + Z1b1 + · · · + ZS bS + ε,

bs ∼ N (0, σ 2
s I Ks ), s = 1, . . . , S,

ε ∼ N (0, σ 2
ε In).

(8)

Here the random effects bs , s = 1, . . . , S, and the error vector ε are mutually inde-
pendent, Ks denotes the number of columns in Zs , n the sample size, and Iν denotes
the identity matrix with ν columns. This is not the most general form of an LMM,
but it is often used in practice and keeps the presentation simple.

We are interested in testing

H0,s : σ 2
s = 0 vs. HA,s : σ 2

s > 0, (9)

where the hypotheses are indexed by s = 1, . . . , S to emphasize that these are
distinct and not joint hypotheses for all variance components. Note that because
bs ∼ N (0, σ 2

s I Ks ), the null hypothesis is equivalent to bs = 0, indicating that
under the null the component Zs bs of model (8) is zero.

Denote by θ−s all the parameters in model (8) with the exception of σ 2
s . The

RLRT for testing H0,s is then defined as

RLRT = 2supθ−s ,σ 2
s
{log L(θ−s, σ

2
s )} − 2supθ−s

{log L(θ−s, 0)},

where L(θ−s, σ
2
s ) is the restricted likelihood function for model (8). A similar defin-

ition holds for LRT using the likelihood instead of the restricted likelihood function.
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3 Standard Asymptotic Results for LMMs

Testing for zero variance components is not new in mixed models. Using theory
originally developed by Chernoff (1954), Moran (1971), and Self and Liang (1987),
Stram and Lee (1994) proved that the LRT for testing (9) has an asymptotic 0.5χ2

0 :
0.5χ2

1 mixture distribution under the null hypothesis H0,s if data are independent
and identically distributed both under the null and alternative hypothesis. For more
details on standard asymptotic results, see the chapter by Zhang and Lin (2007) in
this book. Thus, it could be surprising that in many applications the null distribution
of the LRT using simulations is far from being a 0.5χ2

0 : 0.5χ2
1 mixture.

There are several reasons for these inconsistencies. First, the Laird and Ware
(1982) model used by Stram and Lee (1994) allows the partition of the outcome
vector Y into independent subvectors. This could be revealed by close inspection
of this model, which is typically described in terms of the subject-level vector Y i
and not in terms of the data vector Y . The independence assumption is violated, for
example, when representing nonparametric smoothing as a particular LMM. Sec-
ond, even when the outcome vector can be partitioned into independent subvectors,
the number of subvectors may not be sufficient to ensure an accurate asymptotic
approximation. Third, subvectors may not be identically distributed due to unbal-
anced designs or missing data. In the case of an LMM with one variance component
(S = 1) Crainiceanu and Ruppert (2004b) and Crainiceanu et al. (2005) have de-
rived the finite sample and asymptotic distribution of the LRTs showing that, under
general conditions, the null distribution for testing H0,s is typically different from
0.5χ2

0 : 0.5χ2
1 . In the following section, we provide a summary of these results and

discuss the implications for applied statistical inference.

4 Finite Sample and Asymptotic Results for General Design
LMMs with One Variance Component

Consider the particular case of model (8) with Gaussian outcome vector and one
variance component

⎧

⎨

⎩

Y = Xβ + Z1b1 + ε,

b1 ∼ N (0, σ 2
1 I K1 ),

ε ∼ N (0, σ 2
ε In),

(10)

where b1 and ε as mutually independent.
As model (10) has only one variance component, σ 2

1 , the exact null distribution
of the RLRT for testing H0,1 : σ 2

1 = 0 versus HA,1 : σ 2
1 > 0 is Crainiceanu and

Ruppert (2004b)

RLRTn
d= sup
λ≥0

⎧

⎨

⎩

(n − p) log
[

1 + Nn(λ)

Dn(λ)

]

−
K1
∑

l=1

log(1 + λµl,n)

⎫

⎬

⎭

, (11)
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where “ d=” denotes equality in distribution, p is the number of columns in X ,

Nn(λ) =
K1
∑

l=1

λµl,n

1 + λµl,n
w2

l , Dn(λ) =
K1
∑

l=1

w2
l

1 + λµl,n
+

n−p
∑

l=K1+1

w2
l ,

wl , l = 1, . . . , n − p, are independent N (0, 1), and µl,n, l = 1, . . . , K1, are the
eigenvalues of the K1 × K1 matrix Z1

′(In − X(X ′X)−1 X ′)Z1. The asymptotic
distribution of the LRT was also derived by Crainiceanu and Ruppert (2004b) and
depends essentially on the asymptotic geometry of the eigenvalues µl,n . This dis-
tribution may or may not be equal to the 0.5χ2

0 : 0.5χ2
1 mixture, depending on the

asymptotic behavior of these eigenvalues. A similar result for LRT can be found in
Crainiceanu and Ruppert (2004b).

There are several reasons for preferring the distribution in (11) over the 0.5χ2
0 :

0.5χ2
1 of Stram and Lee (1994). First, this is the finite sample distribution of the

RLRT. Second, the 0.5χ2
0 : 0.5χ2

1 asymptotic distribution can be inaccurate when
the number of independent sub-vectors of Y is small to moderate or when designs
are unbalanced. Typically, the 0.5χ2

0 : 0.5χ2
1 provides a conservative approxima-

tion of the finite sample distribution with considerable associated losses in power.
Third, calculating the distribution in (11) is very fast. Indeed, the distribution in
(11) depends only on the eigenvalues µl,n of a K1 × K1 matrix, which need to be
computed only once. Simulation effectively reduces to simulation of (K1 + 1) χ2

variables and a grid search over λ. This simulation does not depend on the sample
size, n, and is fast (5,000 simulations per second with a 2.66 GHz CPU and 1 Mbyte
random access memory). Fourth, when assumptions in Stram and Lee (1994) hold
the distribution in (11) converges weakly to the asymptotic 0.5χ2

0 : 0.5χ2
1 .

5 Linear Mixed Models with Multiple Variance Components

The results in Crainiceanu and Ruppert (2004b) have solved the problem for mixed
models with Gaussian outcomes and one variance component. However, in many
practical applications there are multiple variance components controlling shrinkage.
Two such examples are the onion density and the coronary sinus potassium models
in Sects. 1.2 and 1.3, respectively.

The methodology developed by Crainiceanu and Ruppert (2004b) could be used
to derive the null distribution for the more general case discussed in this paper.
While the result is theoretically interesting, this distribution is obtained by maximiz-
ing a stochastic process over the variance components of model (8), which makes
the implementation computationally equivalent to the parametric bootstrap. For this
reason, Crainiceanu (2003) and Crainiceanu and Ruppert (2004a) suggest using the
parametric bootstrap in this context. One could debate the elegance of this approach,
but the parametric bootstrap is a practical and robust alternative to the 0.5χ2

0 : 0.5χ2
1

approximation.
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One problem with the parametric bootstrap is that, in many applications, evalu-
ating the likelihood is computationally expensive and it may not be reasonable to
perform thousands of simulations. To illustrate this problem, consider the following
simple longitudinal model:

Yi j = ui + f (xi j )+ εi j , (12)

where ui∼N (0, σ 2
u ) are random independent subject specific intercepts,

εi j∼N (0, σ 2
ε ) are independent errors, i = 1, . . . , I , j = 1, . . . , J , I is the

number of subjects and J is the number of observations per subject. Here f (.)
is an unspecified population mean function. If the function f (.) is modeled as a
linear penalized spline, then testing for linearity of f (.) against a nonparametric
alternative is equivalent to testing

H0 : σ 2
b = 0 vs. HA : σ 2

b > 0, (13)

where σ 2
b is a variance component controlling the degree of smoothness of f (.).

Computation times both for LRT and RLRT were very long even for small sample
sizes. For example, for six subjects and 50 observations per subject, computation
time for 10,000 simulations was 4.5 h for R and 1 h for SAS on a server (Intel Xeon
3 GHz CPU). Additionally, run time increased steeply with both I and J for R. For
R significant reduction of computation times could be achieved by interfacing it with
C or FORTRAN. SAS is faster with its default convergence criterion, but we found
numerical imprecisions, especially when estimating the probability mass at zero.
These problems were mitigated when the convergence criterion was more stringent,
but was accompanied by an increasing proportion of unsuccessful model fits. For
more details see the extensive simulation study in Greven et al. (2008). Needless to
say that in more complex models with larger sample sizes the computational burden
is even more serious, especially when running several tests or performing simulation
studies.

Therefore, for many applications there is a need for fast and accurate approxima-
tions of the null finite sample distribution of the RLRT for testing H0,s . We describe
two such approximations. The first approximation was introduced by Greven et al.
(2008), is practically instantaneous, and avoids bootstrap. The second approxima-
tion was introduced by Crainiceanu (2003) and Crainiceanu and Ruppert (2004a)
and uses a simple parametric approximation that reduces the necessary number of
bootstrap samples. In extensive simulation studies, Greven et al. (2008) show that
both methods outperform the 0.5χ2

0 : 0.5χ2
1 approximation and the parametric

bootstrap. The approximation used by standard software is the 0.5χ2
0 : 0.5χ2

1
approximation. The necessary regularity conditions for this approximation to be
asymptotically valid are independence under null and alternative hypothesis, large
number of subvectors, and balanced designs. When these conditions are met both
approximated distributions discussed in the following converge weakly to 0.5χ2

0 :
0.5χ2

1 distribution. However, when conditions are not met, both approximate distri-
butions agree with each other, are different from the 0.5χ2

0 : 0.5χ2
1 distribution, and

better fit the finite sample distribution of the RLRT.
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5.1 Fast Finite Sample Approximation

The approximation proposed by Greven et al. (2008) is a combination of results
in Crainiceanu and Ruppert (2004b) and the pseudo-likelihood estimation idea in
Gong and Samaniego (1981). Recall that the pseudo-likelihood function is obtained
by plugging in a consistent estimator of the nuisance parameters instead of the nui-
sance parameters. More precisely, let L(θ ,φ) be the likelihood for independent and
identically distributed (i.i.d.) random variables X1, . . . , Xn , where the likelihood
depends on the parameters of interest θ and on nuisance parameters φ. Assume that
L(., .) is a complicated function of θ and φ, but simple as a function of θ alone
when φ is fixed. In this case, pseudo-likelihood replaces φ by a consistent estimator
φ̂ and maximizes L∗(θ) = L(θ , φ̂) over θ to obtain the pseudo-maximum like-
lihood estimator θ̂ . The pseudo-LRT for testing H0 : θ = θ0 is then defined as
LRT∗ = 2 log L∗(θ̂)− 2 log L∗(θ0).

In our framework, θ = (σ 2
s ,β, bs) could be viewed as the parameters of interest,

and the bi , i �= s, as nuisance parameters. If the bi ’s were known, the outcome
vector could be redefined as ˜Y = Y − ∑

i �=s
Zi bi and our model could be reduced

accordingly. The idea we transfer from pseudo-likelihood estimation is, that under
regularity conditions, the prediction of

∑

i �=s
Zi bi might be good enough to allow the

RLRT null distribution for testing H0 : σ 2
s = 0 to be closely approximated by

the RLRT distribution when
∑

i �=s
Zi bi is known. Thus, Greven et al. (2008) use the

following reduced model
⎧

⎨

⎩

˜Y = Xβ + Zs bs + ε,
bs ∼ N (0, σ 2

s I Ks ),

ε ∼ N (0, σ 2
ε I Kn ),

(14)

where notations are similar to notations for model (10). The idea is to calculate the
RLRT for testing H0,s : σ 2

s = 0 using an LMM of type (8) but use an approximated
RLRT null distribution based on testing for zero variance in the LMM (14). The
advantage of this approach is that this finite sample distribution can be obtained
very easily, as described in Sect. 4.

5.2 Mixture Approximation to the Bootstrap

In some cases, one might still want to use a simple parametric bootstrap to deter-
mine the distribution of the (R)LRT. Given the steep computational penalty in many
applications, we propose to use a parametric approximation to the (R)LRT distribu-
tion. While in the case of i.i.d. data the distribution is asymptotically a 0.5χ2

0 : 0.5χ2
1

mixture, Crainiceanu and Ruppert (2004b) showed that for correlated responses and
finite sample sizes the distribution can severely deviate from this mixture. We pro-
pose to use the following finite sample approximation
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(R)LRT
d≈ aU D, (15)

where U ∼ Bernoulli(1 − p), D ∼ χ2
1 , p = P(U = 0), and a are unknown

constants, and
d≈ denotes approximate equality in distribution. The parameters of

the aU D approximation are estimated using a bootstrap sample that is typically
much smaller than the one required to estimate small tail probabilities.

Note that the flexible class of distributions in (15) Contains, as a particular case,
the 0.5χ2

0 : 0.5χ2
1 distribution with a = 1 and p = 0.5, and is just as easy to use. As

the point mass at zero, p, and the scaling factor, a, are unknown in all other cases,
we propose to estimate them from a bootstrap sample. The idea of the parametric
approximation is to use the entire bootstrap sample to fit a flexible two parameter
family of distributions, thus reducing the necessary number of simulations required
for estimating tail quantiles. Greven et al. (2008) show that the approximation (15)
generally outperforms the 0.5χ2

0 : 0.5χ2
1 approximation. This happens in many ap-

plications when the correlation structure imposed by the random effects, bi , cannot
be ignored, or when the sample size is small to moderate. Note that both approxi-
mations are asymptotically identical to the 0.5χ2

0 : 0.5χ2
1 approximation when the

assumptions in Self and Liang (1987) and Stram and Lee (1994) hold.
This methodology has been applied by Crainiceanu (2003) and Crainiceanu and

Ruppert (2004a). Its behavior has been studied in extensive simulation studies by
Greven et al. (2008) in a wide variety of settings indicating excellent agreement with
long bootstrap simulations. The main strengths of the method are that it requires
few bootstrap samples (100–200), provides a finite sample approximation, and can
be applied to data with a moderate number of clusters and unbalanced designs.

6 Revisiting the Applications

In this section, we revisit the applications described in Sect. 1. Table 1 provides the
RLRT calculated for each application together with the p-value estimated nonpara-
metrically from 10,000 simulations using the parametric bootstrap. We also report
the estimated aU D approximation to the bootstrap.

The first row of Table 1 provides results for testing the null hypothesis of a linear
spatial drift against a general alternative in the Loa loa application. This is testing

Table 1 RLRT testing for the three examples introduced in Sect. 1

Example Test Value p-Value aU D

Loa loa σ 2
b = 0 127.47 <0.001 0.66χ2

0 + 0.34(0.91χ2
1 )

Onion σ 2
b = 0 1.98 0.048 0.66χ2

0 + 0.34(0.91χ2
1 )

Dogs σ 2
b = 0 4.89 0.0057 0.69χ2

0 + 0.31(0.88χ2
1 )

Dogs σ 2
u = 0 19.03 <0.001 0.56χ2

0 + 0.44(0.96χ2
1 )
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whether there remains sizable spatial correlation after controlling for the effects of
available covariates. In this case RLRT = 127.47, suggesting very strong evidence
against the linear spatial trend, irrespective of the particular approximation to the
null distribution. In this case, because the alternative model is an LMM with one
variance component, we actually have the exact null finite sample distribution. The
aU D approximation is still displayed because it provides a compact and accurate
summary of the exact distribution.

In many testing examples, decisions are not as easy to make as in the Loa loa
case. Indeed, the second row presents results for the onion density example. The
null hypothesis σ 2

b = 0 corresponds to testing for the semiparametric binary offset
model (two parallel nonparametric functions) against the discrete by continuous in-
teraction model (two nonparametric functions). The value of RLRT = 1.96, is much
closer to the decision boundary. In such cases, it is reasonable to invest computa-
tional effort to obtain the null finite sample distribution. The aU D approximation
to the bootstrap suggests serious differences from the 0.5χ2

0 : 0.5χ2
1 distribution.

In fact, the p-value based on the aU D approximation was 0.048 compared to 0.081
based on the 0.5χ2

0 : 0.5χ2
1 approximation. It could seem strange that the two aU D

approximations for the widely different testing problems are identical. This is due to
the fact that both distributions depend essentially on a very large leading eigenvalue.
The following two examples have different distributions because their eigenvalue
structure is different.

The last two rows in Table 1 are dedicated to results for the coronary sinus potas-
sium data. The third row corresponds to testing for a quadratic population curve
against a general alternative, while the last row corresponds to testing for homo-
geneity of dog responses around the nonparametric population curve. Both testing
procedures suggest strong evidence against the corresponding null hypotheses.

Results in this section were obtained for a fixed number of knots and choice of
knot locations. In simulation studies, Crainiceanu (2003) and Greven et al. (2008)
showed that the null distribution and power properties do not change substantially
by increasing the number of knots as long as the regression design provides an
alternative that is flexible enough to capture the potential complexities of the alter-
native hypothesis. This results are consistent with the results in Ruppert (2002) who
showed that 20 knots are enough to fit most functions that do not exhibit extreme
changes in curvature.

7 Discussion

LMMs are used in a wide range of applications such as longitudinal studies, hierar-
chical models or smoothing. The likelihood ratio testing for zero variance compo-
nents in mixed models has long been a methodological challenge. Research in the
last 20 years combined with recent methodological results and simulation studies
have led to a better understanding of the framework. Most importantly, the applica-
tion of likelihood ratio testing for most LMMs has become possible, if not routine.
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While this paper is not aimed at answering all questions, several points should be
made clear. First, the χ2

1 approximation can be applied with the acknowledgement
that it may provide an excessively conservative approximation to the null distrib-
ution. This is safe when the evidence against the null is overwhelming (see, for
example the Loa loa and the dog response homogeneity examples). Second, the
0.5χ2

0 : 0.5χ2
1 approximation can be applied in many situations, especially when

testing for homogeneity of a large number of clusters (in the dogs example there are
nine dogs). However, this approximation tends to be conservative and lose power
in many applications. Effects are less serious than the ones associated to the use of
the χ2

1 approximation. Thus, a nonsignificant effect using the 0.95 quantile of the
0.5χ2

0 : 0.5χ2
1 distribution, could, in fact, be significant using the correct null distrib-

ution at the same level (see the onion example). Third, in the case of LMMs with one
variance component the finite sample distribution of the RLRT is available and easy
to obtain. Fourth, in the case of LMMs with more than one variance components the
fast finite sample approximation introduced in Sect. 5.1 performs consistently well.
Fifth, the aU D approximation introduced in Sect. 5.2 may reduce simulation times
while preserving accuracy by using much smaller bootstrap samples.

A natural question to ask is “What should I do if I have a testing problem for
a zero variance component in a Linear Mixed Model?” Of course, there are many
answers to this particular question, mainly because there are multiple ways of ap-
proaching the problem. One such alternative is to use score tests, which are null-
based tests, as described in the chapter by Zhang and Lin (2007) in this book.

However, if one decides to use LRTs the following algorithm-like list can provide
guidance:

1. Use Restricted Likelihood Ratio Test (RLRT) instead of Likelihood Ratio Test
(LRT). This is due to the tendency of ML to strongly underestimate the variance
component that ultimately leads to power losses for LRT.

2. If testing for a variance component in an LMM with one variance component use
the exact finite sample distribution in Crainiceanu and Ruppert (2004b). If not
then continue to Step 3.

3. If possible, obtain 10,000 parametric bootstraps from the null distribution of the
RLRT. Compare this distribution with the 0.5χ2

0 : 0.5χ2
1 and aU D approxima-

tions. Report results based on bootstrap, 0.5χ2
0 : 0.5χ2

1 and aU D approxima-
tions.

4. If obtaining 10,000 bootstraps is computationally prohibitive, obtain at least
100–200 bootstrap samples. Then continue as in Step 3.

5. Obtain the finite sample approximation described in Sect. 5.1 and compare it with
the other approximations.

The author’s point of view is that the null finite sample distribution is the relevant
distribution and not its asymptotic approximation. An asymptotic approximation is
relevant when it provides a previously unknown insight, is much easier to use and
closely approximates the null finite distribution. Thus, the asymptotic distribution is
not the right distribution but is one automatic way to approach a testing problem.
Fortunately, the variety of applications and problems continues to raise nonstandard
problems.
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Variance Component Testing
in Generalized Linear Mixed Models
for Longitudinal/Clustered Data
and other Related Topics

Daowen Zhang and Xihong Lin

1 Introduction

Linear mixed models (Laird and Ware, 1982) and generalized linear mixed models
(GLMMs) (Breslow and Clayton, 1993) have been widely used in many research
areas, especially in the area of biomedical research, to analyze longitudinal and
clustered data and multiple outcome data. In a mixed effects model, subject-specific
random effects are used to explicitly model between-subject variation in the data
and often assumed to follow a mean zero parametric distribution, e.g., multivariate
normal, that depends on some unknown variance components. A large literature was
developed in the last two decades for the estimation of regression coefficients and
variance components in mixed effects models. See Diggle et al. (2002) and Verbeke
and Molenberghs (2000, 2005) for an overview.

In many situations, however, we are interested in testing whether some of the
between-subject variations are absent in a mixed effects model. This is equivalent
to testing some variance components equal to zero. However, such a null hypothesis
places some variance components on the boundary of the parameter space. Hence
the commonly used tests, such as the likelihood ratio, Wald and score tests, do not
have the traditional chi-squared distribution. In this chapter, we will review the like-
lihood ratio test and the score test for testing variance components in GLMMs.

A closely related topic is testing whether a covariate effect in a GLMM can be ad-
equately represented by a polynomial of a certain degree. Using a smoothing spline
or penalized spline approach, testing for a polynomial covariate effect is equivalent
to testing a zero variance component in an induced GLMM. We will review the like-
lihood ratio test and the score test for testing a parametric polynomial model versus a
smoothing spline model for longitudinal data within the generalized additive mixed
models framework (Lin and Zhang, 1999).
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This chapter is organized as follows. In Sect. 2, we present the model specifica-
tion of a GLMM and briefly review model estimation and inference procedures. In
Sect. 3, we review the likelihood ratio test for variance components in GLMMs and
illustrate such tests in several common cases of interest. In Sect. 4, we review the
score test for variance components in GLMMs, and compare the performance of
the likelihood ratio test with the score test in a simple GLMM. In Sect. 6, we review
the likelihood ratio test and the score test for testing a polynomial covariate effect
versus a nonparametric smoothing spline model for longitudinal data. We illustrate
these tests in Sect. 7 through the application of data from a study of infectious dis-
ease in Indonesian children. The chapter ends with a discussion in Sect. 8.

2 Generalized Linear Mixed Models for Longitudinal/Clustered
Data

Suppose there are m subjects in the sample. For the i th subject, denote by yi j the
response measured for the j th observation, e.g., the j th time point for longitudi-
nal data or the j th outcome for multiple outcome data. Similarly, denote by xi j a
p × 1 vector of covariates associated with fixed effects and by zi j a q × 1 vector
of covariate values associated with random effects. Given subject-specific random
effects bi , the responses yi j are assumed to be conditionally independent and belong
to an exponential family with the conditional mean E(yi j |bi ) = µi j and conditional
variance var(yi j |bi ) = V (µi j ) = φω−1

i j v(µi j ), where φ is a positive dispersion pa-
rameter, ωi j is a pre-specified weight such as the binomial denominator when yi j
is the proportion of events in binomial sampling, and v(·) is the variance function.
A generalized linear mixed model (GLMM) relates the conditional mean µi j to the
covariates xi j and zi j as follows:

g(µi j ) = xT
i jβ + zT

i j bi , (1)

where g(·) is a strictly increasing link function, β is a p × 1 vector of fixed effects
(regression coefficients) of x , and bi is a q × 1 vector of subject-specific random
effects of z. The model specification is completed by the usual assumption that
bi ∼ N{0, D(ψ)}, where ψ is a c × 1 vector of variance components.

Model (1) includes many popular models for continuous and discrete data as spe-
cial cases. For example, if the yi j are continuous outcome measurements assumed
to have a normal distribution given random effects bi and the link function is the
identity link g(µ) = µ, then model (1) reduces to the following linear mixed model
(Laird and Ware, 1982)

yi j = xT
i jβ + zT

i j bi + εi j , (2)

where εi j
i id∼ N(0, φ) are residual errors. When the yi j are binary responses, a com-

mon choice of the link function is the logit link g(µ) = log{µ/(1 − µ)}. In this
case, model (1) reduces to the following logistic-normal model
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logit{P(yi j = 1|bi )} = xT
i jβ + zT

i j bi . (3)

The log-likelihood function �(β,ψ; y) given outcome y under model (1) is

exp{�(β,ψ; y)} ∝ |D(ψ)|−m/2
m
∏

i=1

∫

exp

⎧

⎨

⎩

ni
∑

j=1

�i j (β, ψ; yi j |bi )

−1
2

bT
i D−1(ψ)bi

⎫

⎬

⎭

dbi , (4)

where

�i j (β, ψ; yi j |bi ) =
∫ µi j

yi j

ωi j (yi j − u)
φv(u)

du

is the conditional log-likelihood of yi j given random effects bi .
Estimation and inference in model (1) are often hampered by the intractable in-

tegrations involved in evaluation of likelihood (4) and have been well developed in
the past two decades. Our main focus in this paper is on variance component testing
in a GLMM. We hence list here some representative work as references. Zeger and
Karim (1991) used a Gibbs sampling approach for model estimation and inference.
Breslow and Clayton (1993) approximated the likelihood (4) using Laplace approx-
imation and conducted model estimation and inference by maximizing a penalized
quasi-likelihood (PQL). Breslow and Lin (1995) and Lin and Breslow (1996) stud-
ied the bias in PQL estimators and developed bias-correction methods. Booth and
Hobert (1999) proposed an automated Monte Carlo EM algorithm to maximize the
integrated likelihood (4).

As usual, throughout this chapter, we will use X for the design matrix of
β and Z the design matrix of b. That is, X = (X T

1 , X T
2 , ..., X T

m)
T where

Xi = (xi1, xi2, . . . , xini )
T , and Z = diag{Z1, Z2, . . . , Zm} where Zi =

(zi1, zi2, . . . , zini )
T .

3 The Likelihood Ratio Test for Variance Components
in GLMMs

The specification of the subject-specific random effects bi in model (1) models
the source of between-subject variation in the covariate effects of z, which also
determines the within-subject correlation. The magnitude of this between-subject
variation/within-subject correlation is captured by the magnitude of the elements
of D(ψ). In practice, investigators may be interested to see if there is no between-
subject variation in some covariate effects of z. Statistically, it is equivalent to testing
some or all of the elements of D(ψ) to be zero.

In a regular hypothesis testing setting, a likelihood ratio test (LRT) is the most
commonly used test due to its desirable theoretical properties and the fact that it is
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easy to construct. Under very general regularity conditions, the LRT statistic asymp-
totically has a χ2 null distribution with the degrees of freedom equal to the number
of independent parameters being tested under the null hypothesis. However, when
the elements of D(ψ) are tested, the null hypothesis usually places some or all of
the components of ψ on the boundary of the model parameter space, in which case
the LRT statistic does not have the usual χ2 null distribution.

Denote by θ = (βT , ψT )T , a combined vector of regression and variance–
covariance parameters in the model. Self and Liang (1987) formulated the asymp-
totic null distribution of the LRT statistic −2lnλm for testing

H0 : θ0 ∈ �0 vs. HA : θ0 ∈ �1 = �\�0,

when the true value θ0 of θ is possibly on the boundary of the model parameter
space �. Assume that the parameter spaces �1 under HA and �0 under H0 can
be approximated at θ0 by cones C�1 and C�0 , respectively, with vertex θ0. Self
and Liang (1987) showed that under some regularity conditions the LRT statistic
−2lnλm asymptotically has the same distribution as

inf
θ∈C�0−θ0

{(U − θ)T I (θ0)(U − θ)} − inf
θ∈C�−θ0

{(U − θ)T I (θ0)(U − θ)}, (5)

where C� is the cone approximating � with vertex at θ0, C� − θ0 and C�0 − θ0
are translated cones of C� and C�0 such that their vertices are the origin, I (θ0)
is the (Fisher) information matrix at θ0, and U is a random vector distributed as
N{0, I −1(θ0)}. Alternatively, Self and Liang (1987) expressed (5) as

inf
θ∈C̃0

‖Ũ − θ‖2 − inf
θ∈C̃

‖Ũ − θ‖2, (6)

where C̃ = {θ̃ : θ̃ = �1/2 QT θ for all θ ∈ C� − θ0}, C̃0 = {θ̃ : θ̃ = �1/2 QT θ
for all θ ∈ C�0 − θ0}, Ũ is a random vector from N(0, I ) and Q�QT is the spectral
decomposition of I (θ0); that is, I (θ0) = Q�QT , Q QT = I and � = diag{λi }.
We can use either (5) or (6) to derive the asymptotic null distribution for the LRT
statistic depending on the structure of I (θ0).

Stram and Lee (1994) applied the above general results of Self and Liang (1987)
to investigate the asymptotic null distribution of LRT statistic −2lnλm for testing
components of D(ψ) for linear mixed model (2). Since the results of Self and Liang
(1987) are for a general parametric model, they are also applicable to GLMM (1) as
long as one can maximize the likelihood (4) under the null and alternative hypothe-
ses of interest. Here, we list some cases one commonly encounters in practice. For
reviews on LRT for variance components in linear mixed models, see the chapter
“Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models”
by Crainiceanu.

Case 1. Assume the dimension q of the random effects is equal to one, that is,
D = d11, and we are testing H0 : d11 = 0 vs. HA : d11 > 0. For example, consider
the random intercept model Zi j bi = bi and bi ∼ N (0, d11) in model (1).
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In this case, θ = (βT , d11)
T and C�0 = R p × {0} and C�1 = R P × (0,∞).

Decompose U and I (θ0) in (5) as U = (U T
1 ,U2)

T and I (θ0) = {I jk} corresponding
to β and d11. Some algebra then shows that

inf
θ∈C�0 −θ0

{(U − θ)T I (θ0)(U − θ)} = Ũ 2
2 ,

where Ũ2 = (I22 − I21 I −1
11 I12)

1/2U2, and

inf
θ∈C�−θ0

{(U − θ)T I (θ0)(U − θ)} = Ũ 2
2 I (Ũ2 ≤ 0).

Therefore, (5) reduces to Ũ 2
2 I (Ũ2 > 0). It is easy to see that Ũ2 ∼ N(0, 1). The

asymptotic null distribution of −2lnλm (as m → ∞) is then a 50:50 mixture of χ2
0

and χ2
1 .

Denote the observed LRT statistic by Tobs. Then, the level α likelihood ratio test
will reject H0 : d11 = 0 if Tobs ≥ χ2

2α,1, where χ2
2α,1 is the (1 − 2α)th quantile

of the χ2 distribution with one degree of freedom. The corresponding p-value is
P[χ2

1 ≥ Tobs]/2, half of the p-value if the regular but incorrect χ2
1 distribution

were used.

Case 2. Assume q = 2 so that D = {di j }2×2, and we test H0 : d11 > 0, d12 =
d22 = 0 vs. HA : D is positive definite. As an example, consider the random inter-
cept and slope model zT

i j bi = b0i + b1i ti j , where ti j is the time and b0i and b1i are
the subject-specific random intercept and slope in longitudinal data assumed to fol-
low (b0i , b1i ) ∼ N {0, D(ψ)}. The foregoing hypothesis tests the random intercept
model (H0) versus the random intercept and slope model (H1).

In this case, θ = (θT
1 , θ2, θ3)

T where θ1 = (βT , d11)
T , θ2 = d12 and θ3 = d22.

Under H0 : d11 > 0, the translated approximating cone at θ0 is C�0 − θ0 = R p+1 ×
{0}×{0}. Under H0 ∪ HA, d11 > 0 and D is positive semidefinite. This is equivalent
to d11 > 0 and d22 − d−1

11 d2
12 ≥ 0. Since the boundary defined by d22 − d−1

11 d2
12 = 0

for any given d11 > 0 is a smooth surface, the translated approximating cone at θ0
under H0 ∪ HA is C� − θ0 = R p+1 × R1 × [0,∞). Similar to Case 1, decompose
U and I −1(θ0) in (5) as U = (U T

1 ,U2,U3)
T and I −1(θ0) = {I jk} corresponding to

θ1, θ2 and θ3. We can then show that

inf
θ∈C�0−θ0

{(U − θ)T I (θ0)(U − θ)} = [U2,U3]
[

I 22 I 23

I 32 I 33

]−1 [U2
U3

]

, (7)

inf
θ∈C�−θ0

{(U − θ)T I (θ0)(U − θ)} = (I 33)−1U 2
3 I (U3 ≤ 0). (8)

Since (U T
1 ,U2,U3)

T ∼ N{0, I −1(θ0)}, the distribution of the difference between
(7) and (8) is a 50:50 mixture of χ2

1 and χ2
2 .

For a given significance level α, the critical value cα for the LRT can be solved
by the following equation using some statistical software:

0.5P[χ2
1 ≥ c] + 0.5P[χ2

2 ≥ c] = α.
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Alternatively, the significance level α can also be compared to the LRT p-value

p-value = 0.5P[χ2
1 ≥ Tobs] + 0.5P[χ2

2 ≥ Tobs],
where Tobs is the observed LRT statistic. This p-value is always smaller than the
usual but incorrect p-value P[χ2

2 ≥ Tobs] in this setting. The decision based on this
classical p-value is hence conservative.

Case 3. Assume q > 2 and we test the presence of the qth element of the random

effects bi in model (1). Denote D =
(

D11 D12
D21 D22

)

, where the dimensions of D11,

D12, and D21 are s ×s, s ×1, and 1×s, respectively (s = q −1), and D22 is a scalar.
Then statistically, we test H0 : D11 is positive definite, D12 = 0, D22 = 0 vs. HA :
D is positive definite.

Denote by θ1 the combined vector of β and the unique elements of D11, θ2 =
D12, and θ3 = D22. Under H0, the translated approximating cone at θ0 is C�0 −
θ0 = R p+s(s+1)/2 × {0}s × {0}. Under H0 ∪ HA, D11 is positive definite and D is
positive semidefinite. This is equivalent to D11 being positive definite and D22 −
DT

12 D−1
11 D12 ≥ 0 (Stram and Lee (1994), mistakenly used q constraints). Again,

since the boundary defined by D22−DT
12 D−1

11 D12 = 0 for any given positive definite
matrix D11 is a smooth surface, the translated approximating cone at θ0 under H0 ∪
HA is C� − θ0 = R p+s(s+1)/2 × Rs × [0,∞). This case is similar to Case 2 except
that U2 is an s ×1 random vector. Therefore, the asymptotic null distribution of LRT
statistic is a 50:50 mixture of χ2

s and χ2
s+1. The p-value of the LRT test for given

observed LRT statistic Tobs is equal to 0.5P[χ2
s ≥ Tobs] + 0.5P[χ2

s+1 ≥ Tobs],
which will be closer to the usual but incorrect p-value P[χ2

s+1 ≥ Tobs] as s becomes
larger.

Case 4. Suppose the random effects part zT
i j bi in model (1) can be decomposed

as zT
i j bi = zT

1i j b1i + zT
2i j b2i , where b1i ∼ N{0, D1(ψ1)}, b2i ∼ N(0, ψ2 I ) and we

test H0 : ψ2 = 0, and D1 is positive definite, versus HA : ψ2 > 0, and D1 is
positive definite. Denote by θ1 the combined vector of β and the unique elements
of D1, and θ2 = ψ2. Since the true values of the nuisance parameters θ1 are interior
points of the corresponding parameter space, we can apply the result of Case 1 to
this case. This implies that the asymptotic null distribution of the LRT statistic is a
50:50 mixture of χ2

0 and χ2
1 .

Case 5. Suppose D1(ψ1) in Case 4 takes the form ψ1 I , and we test H0 : ψ1 =
0, ψ2 = 0 versus HA : either ψ1 > 0 or ψ2 > 0. Denote θ = (βT , ψ1, ψ2) with
θ1 = β, θ2 = ψ1 and θ3 = ψ2. Under H0, the translated approximating cone at θ0
is C�0 − θ0 = R p × {0} × {0}. Under H0 ∪ HA, the translated approximating cone
at θ0 is C� − θ0 = R p × [0,∞)× [0,∞).

Decompose U and I (θ0) in (5) as (U T
1 ,U2,U3)

T and I (θ0) = {Ii j } correspond-
ing to θ1, θ2 and θ3, and define matrix Ĩ as follows:

Ĩ =
[

Ĩ22 Ĩ23
Ĩ32 Ĩ33

]

=
[

I22 I23
I32 I33

]

−
[

I21
I31

]

I −1
11 [I12, I13].
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Then (U2,U3)
T ∼ N(0, Ĩ −1). Given θ2 and θ3, it can be easily shown that

inf
θ1∈R p

(U − θ)T I (θ0)(U − θ) = [U2 − θ2,U3 − θ3] Ĩ
[

U2 − θ2
U3 − θ3

]

= (Ũ2 − θ̃2)
2 + (Ũ3 − θ̃3)

2,

where (Ũ2, Ũ3)
T = �̃1/2 Q̃T (U2,U3)

T , (θ̃2, θ̃3)
T = �̃1/2 Q̃T (θ2, θ3)

T , Q̃�̃Q̃T is
the spectral decomposition of Ĩ . Therefore, under H0, we have

inf
θ∈C�0 −θ0

(U − θ)T I (θ0)(U − θ) = Ũ 2
2 + Ũ 2

3 .

Denote by ϕ the angle in the radiant formed by the vectors �̃1/2 Q̃T (1, 0)T and

�̃1/2 Q̃T (0, 1)T , that is, ϕ = cos−1
(

Ĩ23/

√

Ĩ22 Ĩ33

)

(Self and Liang (1987), who

accidentally used I jk), and set ξ = ϕ/2π , then

inf
θ∈C�−θ0

(U − θ)T I (θ0)(U − θ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Ũ 2
2 + Ũ 2

3 with probability ξ

Ũ 2
2 with probability 0.25

Ũ 2
3 with probability 0.25

0 with probability 0.5 − ξ .

Therefore, the asymptotic null distribution of the LRT statistic is a mixture of χ2
0 ,

χ2
1 , and χ2

2 with mixing probabilities ξ , 0.5, and 0.5 − ξ . Note that since Ĩ is a
positive definite matrix, the probability ξ satisfies 0 < ξ < 0.5. In particular, if Ĩ is
diagonal, the mixing probabilities are 0.25, 0.5, and 0.25.

The asymptotic null distribution of the LRT statistic is relatively easier to study
for the above cases. The structure of the information matrix I (θ0) and the approxi-
mating cones C� − θ0 and C�0 − θ0 play key roles in deriving the asymptotic null
distribution. For more complicated cases of testing variance components, although
the asymptotic null distribution of the LRT is generally still a mixture of some chi-
squared distributions, it may be too difficult to derive the mixing probabilities. In
this case, one may use simulation to calculate the p-value.

4 The Score Test for Variance Components in GLMMs

Conceptually, the LRT test for variance components in GLMMs discussed in
Sect. 3 is easy to apply. However, the LRT involves fitting GLMM (1) under H0
and H0 ∪ HA. For many situations, it is relatively straightforward to fit model (1)
under H0. However, one could often encounter numerical difficulties in fitting the
full model (1) under H0 ∪ HA. First, fitting model (1) under H0 ∪ HA involves
higher dimensional integration, thus increasing computational burden. Second, if
H0 is true or approximately true, it is often unstable to fit a more complicated model
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under H0 ∪ HA as the parameters used to specify H0 are estimated close to the
boundary. For example, although the Laplace approximation used by Breslow and
Clayton (1993) and others is recommended for a GLMM with complex parameter
boundary, such approximation may work poorly in such cases (Hsiao, 1997). In
this section, we discuss score tests for variance components in model (1). One
advantage of using score tests is that we only need to fit model (1) under H0, often
dramatically reducing computational burden. Another advantage is that unlike like-
lihood ratio tests, score tests only require the specification of the first two moments
of random effects and are hence robust to mis-specification of the distribution of
random effects (Lin, 1997).

We first review the score test for Case 1 discussed in Sect. 3, that is, we assume
that there is only one variance component in model (1) for which we would like
to conduct hypothesis testing. A one-sided score test is desirable in this case and
can be found in Lin (1997) and Jacqmin-Gadda and Commenges (1995). Zhang
(1997) discussed a one-sided score test for testing H0 : ψ2 = 0 for Case 5 in
Sect. 3 for a generalized additive mixed model, which includes model (1) as a special
case. Verbeke and Molenberghs (2003) discussed one-sided score tests for linear
mixed model (2). Lin (1997) derived score statistics for testing single or multiple
variance components in GLMMs and considered simpler two-sided tests. Parallel
to likelihood ratio tests, the one-sided score tests follow a mixture of chi-square
distribution whose weights could be difficult to calculate when multiple variance
components are set to be zero under H0 as illustrated in Case 5. The two-sided
score tests assume the score statistics follow a regular chi-square distribution and
hence its p-value can be calculated more easily, especially for multiple variance
component tests. The two-sided score test has the correct size under H0, while its
power might be lower than the one-sided score and likelihood ratio tests. See the
simulation results for more details.

In Case 1, ψ = d11. Assume at the moment that β is known. One can show using
L’Hôpital’s rule or the Taylor expansion (Lin, 1997) that the score for ψ is

Uψ = ∂�(β,ψ; y)
∂ψ

∣

∣

∣

∣

ψ=0
= 1

2

m
∑

i=1

⎡

⎢

⎣

⎧

⎨

⎩

ni
∑

j=1

zi jwi jδi j

(

yi j − µ0
i j

)

⎫

⎬

⎭

2

−
ni
∑

j=1

z2
i j

{

wi j + ei j

(

yi j − µ0
i j

)}

⎤

⎥

⎦
,

(9)

where wi j = [V (µ0
i j ){g′(µ0

i j )}2]−1, δi j = g′(µ0
i j ),

ei j =
V ′

(

µ0
i j

)

g′
(

µ0
i j

)

+ V
(

µ0
i j

)

g′′
(

µ0
i j

)

V 2
(

µ0
i j

) {

g′
(

µ0
i j

)}3 ,
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Fig. 1 Expected score
as a function of variance
component ψ
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which is zero for the canonical link function g(·), and µ0
i j satisfies g(µ0

i j ) = xT
i jβ.

It can be easily shown that the random variable Uψ defined by (9) has zero
mean under H0 : ψ = 0. As argued by Verbeke and Molenberghs (2003), the log-
likelihood �(β,ψ; y) for the linear mixed model (2) on average has a positive slope
at ψ = 0 when in fact ψ > 0. The same argument also applies to GLMM (1). This
is because under HA : ψ > 0, the MLE ̂ψ of ψ will be close to ψ so that ̂ψ > 0
when the sample size m gets large. If the log-likelihood �(β,ψ; y) as a function of
ψ only is smooth and has a unique MLE ̂ψ , which is the case for most GLMMs,
the slope Uψ of �(β,ψ; y) at ψ = 0 will be positive. Indeed, E(Uψ) generally is an
increasing function of ψ . For example, Fig. 1 plots the expected score E(Uψ) vs. ψ
for the logistic-normal GLMM (3) where m = 10, ni = 5, xi j = 1, β = 0.25, and
zi j = 1. It is confirmed that E(Uψ) increases as ψ increases.

The above argument indicates that a large value of Uψ provides evidence against
H0 : ψ = 0 and we should reject H0 only if Uψ is large. Since Uψ is a sum of
independent random variables, classic results show that it will have an asymptotic
normal distribution under H0 : ψ = 0 with zero mean and variance equal to Iψψ =
E(U 2

ψ), where the expectation is taken at H0 : ψ = 0.
Denote by κri j the r th cumulant of yi j under H0. By the properties of the dis-

tributions in an exponential family, κ3i j and κ4i j are related to κ2i j via κ(r+1)i j =
κ2i j∂κri j/∂µi j (r = 2, 3), where κ2i j = φω−1

i j v(µi j ) and µi j = µ0
i j . Specifically,

κ3i j =
(

φω−1
i j

)2
v ′ (µi j

)

v
(

µi j
)

,

κ4i j =
(

φω1
i j

)3 [
v ′′ (µi j

)

v(µi j )+
{

v ′(µi j )
}2
]

v
(

µi j
)

.

Then Iψψ can be shown to be (Lin, 1997)

Iψψ = 1
4

m
∑

i=1

ni
∑

j=1

z2
i j rii ,
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where rii = w4
i jδ

4
i jκ4i j + 2w2

i j + ei jκ2i j − 2w2
i jδ

2
i j ei jκ3i j . Therefore, a level α score

test for testing H0 : ψ = 0 vs. HA : ψ > 0 will reject H0 : ψ = 0 if Uψ ≥ zα I 1/2
ψψ .

In practice, however, β in Uψ and Iψψ is unknown and has to be estimated under
H0. This is straightforward since under H0 : ψ = 0, GLMM (1) reduces to the
standard generalized linear model for independent data g(µi j ) = X T

i jβ and existing
software can be used to easily calculate the MLE ̂β of β under H0 : ψ = 0. In
this case, Lin (1997) considered the bias-corrected score statistic to account for the
estimation of β under H0 as

Uc
ψ = ∂�(β,ψ; y)

∂ψ

∣

∣

∣

∣

ψ=0,β=̂β
= 1

2

m
∑

i=1

⎡

⎢

⎣

⎧

⎨

⎩

ni
∑

j=1

zi jwi j δi j

(

yi j − µ̂0
i j

)

⎫

⎬

⎭

2

−
ni
∑

j=1

z2
i jw0i j

⎤

⎥

⎦
,

(10)

where all quantities are obtained by replacing β by ̂β, w0i j = (1 − hi j )wi j +
ei j (yi j − µ̂0

i j ), and hi j is the corresponding diagonal element of the hat matrix H =
W 1/2 X (X W X)−1 X T W 1/2, W = diag{wi j }, and showed that U c

ψ has variance

Ĩψψ = Iψψ − I T
ψβ I −1

ββ Iψβ, (11)

where

Iψβ = 1
2

m
∑

i=1

ni
∑

j=1

ci j zi j xi j , Iββ = X T W X =
m
∑

i=1

ni
∑

j=1

wi j xi j xT
i j (12)

with ci j = w3
i jδ

3
i jκ3i j − wi jδi j ei jκ2i j . Then the bias-corrected score test at level α

would reject H0 if Ts = U c
ψ ≥ zα Ĩ 1/2

ψψ . The one-sided score test presented above
is asymptotically equivalent to the likelihood ratio test (Verbeke and Molenberghs,
2003). The two-sided score test assumes the score statistic Ts = {U c

ψ }2/ Ĩψψ follows
a χ2 distribution. Unlike the regular likelihood ratio test, such a two-sided score test
has the correct size under H0 but is subject to some loss of power. As shown in
our simulation studies for a single variance component, the loss of power is minor
to moderate for most alternatives. The highest power loss is about 10% when the
magnitude of the variance component is moderate.

When the dimension of ψ is greater than 1, suppose we can partition ψ =
(ψ1, ψ2) where ψ1 is a c1 × 1 vector and ψ2 is a c2 × 1 vector. We are inter-
ested in testing H0 : ψ1 = 0 vs. HA : ψ1 ≥ 0. Here the inequality is in-
terpreted element-wise. Lin (1997) considered a simple two-sided score test for
this multiple variance component test. Specifically, denote by (̂β, ̂ψ2) the MLE
of (β, ψ2) under H0 : ψ1 = 0. We can similarly derive the (corrected) score
Sψ1 = m−1/2∂�(β,ψ1; y)/∂ψ1|ψ1=0,β=̂β,ψ2=̂ψ2

. See Lin (1997) for the special case
where each element of ψ represents a variance of a random effect. Asymptotically,
Sψ1 has a normal distribution with zero mean and variance equal to the efficient
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information matrix Hψ1ψ1 = m−1 Ĩψ1ψ1 under H0, where Ĩψ1ψ1 is defined similarly
to (11) except that Iφβ and Iββ are replaced by Iψ1γ and Iγ γ and γ = (ψ2, β). The
simple two-sided score statistic is defined as

Ts = ST
ψ1

H−1
ψ1ψ1

Sψ1 (13)

and the p-value is calculated by assuming Ts follows a chi-square distribution with
c1 degrees of freedom.

Silvapulle and Silvapulle (1995) proposed a one-sided score test for a gen-
eral parametric model and showed that the one-sided score test is asymptotically
equivalent to the likelihood ratio test. Verbeke and Molenberghs (2003) extended
Silvapulle and Silvapulle (1995) one-sided score test for testing variance compo-
nents H0 : ψ1 = 0 vs. HA : ψ1 ∈ C for linear mixed model (2) and showed similar
asymptotic equivalence between the one-sided score test and the likelihood ratio
test. Hall and Praestgaard (2001) derived a one-sided score test for GLMMs. Then
the one-sided score statistic T ∗

s is defined as

T ∗
s = ST

ψ1
H−1
ψ1ψ1

Sψ1 − inf
ψ1∈C

{(Sψ1 − ψ1)
T H−1

ψ1ψ1
(Sψ1 − ψ1)}. (14)

It is easy to see that T ∗
s as defined in (14) has the same asymptotic null distribu-

tion of the likelihood ratio test for testing H0 : ψ1 = 0 vs. HA : ψ1 ∈ C. Similarly
to the case for the likelihood ratio test, it is critical to determine Hψψ and the shape
of C, and T ∗

s generally follows a mixture of chi-square distributions and we usually
have to study the distribution of T ∗

s case by case. Both the two-sided test Ts and
the one-sided test T ∗

s have the correct size under H0. The two-sided test Ts is much
easier to calculate, but is subject to some loss of power. Hall and Praestgaard (2001)
conducted extensive simulation studies comparing Lin’s (1997) two-sided score test
and their one-sided score test for GLMMs with two-dimensional random effects and
found similar power loss to the case of a single variance component (Table 4 in Hall
and Praestgaard, 2001; the maximum power loss is about 9%).

5 Simulation Study to Compare the Likelihood Ratio Test
and the Score Test for Variance Components

We conducted a small simulation study to compare the size and the power of the
one-sided and two-sided score tests with the likelihood ratio test. We considered the
logistic-normal GLMM (3) by assuming binary responses yi j (i = 1, 2, . . . ,m =
100, j = 1, 2, . . . , ni = 5) were generated from the following logistic-normal
GLMM:

logitP(yi j = 1|bi ) = β + bi , (15)

where β = 0.25 and bi ∼ N(0, ψ), with equal spaced ψ in [0,1] by 0.2. For each
value of ψ , 500 data sets were generated. The likelihood ratio test described in
Sect. 3 and the (corrected) one-sided and two-sided score tests were applied to test
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Table 1 Size and power comparisons of the likelihood ratio tests and score tests for a single vari-
ance component based on 500 simulations under the logistic model (15)

Method Size Power

ψ = 0 ψ = 0.2 ψ = 0.4 ψ = 0.6 ψ = 0.8 ψ = 1.0

LRT 0.034 0.370 0.790 0.922 0.990 1.000
Regular LRT 0.020 0.280 0.672 0.882 0.968 0.992
One-sided score test 0.054 0.416 0.834 0.938 0.996 1.000
Two-sided score test 0.050 0.336 0.736 0.910 0.980 0.998

H0 : ψ = 0. We compare the performance of the regular but conservative LRT, the
appropriate LRT, one-sided and two-sided score test for testing H0 : ψ = 0. The
nominal level of all four tests were set at α = 0.05.

Table 1 presents the simulation results. The results show that the size of the (cor-
rect) likelihood ratio test is little smaller than the nominal level. This is probably
due to the numerical instability caused by numerical difficulties in fitting model
(15) when in fact there is no random effect in the model, or the fact that the sam-
ple size (number of clusters m = 100) may not be large enough for the asymptotic
theory to take effect. As expected, the regular LRT using χ2

1 is conservative and the
size is too small. On the other hand, both one-sided and two-sided score tests have
their sizes very close to the nominal level. The powers of the likelihood ratio test
and the one-sided score test are almost the same, although the one-sided score test
is slightly more powerful than the LRT, which may be due to the numerical inte-
gration required to fit model (15). The two-sided score test has some loss of power
compared to the one-sided score test and the correct LRT. However, the p-value of
the two-sided score test is much easier to calculate especially for testing for multiple
variance components.

6 Polynomial Test in Semiparametric Additive Mixed Models

Lin and Zhang (1999) proposed generalized additive mixed models (GAMMs), an
extension of GLMMs where each parametric covariate effect in model (1) is re-
placed by a smooth but arbitrary nonparametric function, and proposed to estimate
each function by a smoothing spline. Using a mixed model representation for a
smoothing spline, they cast estimation and inference of GAMMs in a unified frame-
work through a working GLMM, where the inverse of a smoothing parameter is
treated as a variance component. A special case of GAMMs is the semiparametric
additive mixed models considered by Zhang and Lin (2003)

g(µi j ) = f (ti j )+ sT
i jα + zT

i j bi , (16)

where f (t) is an unknown smooth function, i.e., the covariate effect of t is as-
sumed to be nonparametric, si j some covariate vector, and bi ∼ N {0, D(ψ)}. For
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independent (normal) data with the identity link, model (16) reduces to a partially
linear model. We are interested in developing a score testing for testing f (t) is a
parametric polynomial function versus a smooth nonparametric function. Specifi-
cally, we set H0: f (t) is a polynomial function of degree K − 1 and H1: f (t) is a
smoothing spline.

Following Zhang and Lin (2003), denote by t0 = (t0
1 , t

0
2 , . . . , t

0
r )

T a vector of
ordered distinct ti j ’s and by f a vector of f (t) evaluated at t0 (without loss of
generality, assume 0 < t0

1 < · · · < t0
r <1). The K th-order (K ≥ 1) smoothing

spline estimator f (t) can be expressed as

f (t) =
K
∑

k=1

δkφk(t)+
r

∑

l=1

al R(t, t0
l ), (17)

where {φk(t) = tk−1/(k − 1)!}K
k=1 is a basis for the space of polynomials of order

K − 1 and R(t, s) is defined as

R(t, s) = 1
{(K − 1)!}2

∫ 1

0
(s − u)K−1+ (t − u)K−1+ du.

Then the smoothing spline estimator of f has the following mixed effect
representation:

f = T δ +�a, (18)

where T is an r × K matrix with the (l, k)th element equal to φk(t0
l ), � is a positive

matrix with the (l, k)th element equal to R(t0
l , t

0
k ), δ = (δ1, . . . , δK )

T is a vector of
fixed effects and a = (a1, a2, . . . , ar )

T ∼ N(0, τ�−1) is a vector of random effects
with τ ≥ 0 being the inverse of the smoothing parameter for the smoothing spline
estimate f (t).

Let n = ∑m
i=1 ni be the total sample size and denote by N the n×r incidence ma-

trix that maps {ti j }’s into t0. Further, denote S = {(si1, . . . , sini )
T }, X = (N T, S),

B = N�, µb = (µb
11, . . . , µ

b
1n1
, . . . , µb

m1, . . . , µ
b
mnm

)T . Then under the mixed
effect representation (18), semiparametric additive mixed model (16) reduces to a
GLMM in matrix notation

g(µ) = Xβ + Ba + Zb, (19)

where β = (δT , αT )T are new fixed effects and a and b = (bT
1 , . . . , b

m
m )

T are
independent new random effects. Therefore, the smoothing spline estimator f (t)
can be estimated using the estimation procedure for a GLMM, such as maximum
penalized quasi-likelihood procedure of Breslow and Clayton (1993).

We are interested in using this spline and mixed model connection to test whether
the smoothing spline f (t) in semiparametric additive mixed model (16) can be ad-
equately modeled by a polynomial of order K − 1, i.e., H0: f (t) is a polynomial
of order K − 1 and HA : f (t) is a smoothing spline. From the smoothing spline
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expression (17), it is clear that f (t) is a polynomial of order K − 1 if and only if
a1 = a2 = · · · = ar = 0. By mixed effect representation (18), this test is equivalent
to the variance component test H0 : τ = 0 vs. HA : τ > 0. It is hence natural to
consider using the variance component likelihood ratio test or score test described
in the earlier sections to test H0 : τ = 0. However, the data do not have independent
cluster structure under the alternative HA : τ > 0. Therefore, the asymptotic null
distribution of the likelihood ratio test statistic for testing H0 : τ = 0 does not
follow a 50:50 mixture of χ2

0 and χ2
1 . In fact, for independent normal data with

the identity link, Crainiceanu et al. (2005) showed that, when f (t) is modeled by
a penalized spline (similar to a smoothing spline), the LRT statistic asymptotically
has approximately 0.95 mass probability at zero. For this special case, Crainiceanu
et al. (2005) derived the exact null distribution of the LRT statistic. Their results,
however, may not be applicable to testing H0 : τ = 0 under a more general mixed
model representation (19). Furthermore, it could be computationally difficult to cal-
culate this LRT statistic by fitting model (19) under the alternative HA : τ > 0 as it
usually requires high-dimensional numerical integrations.

Due to the special structure of the smoothing matrix �, the score statistic of τ
evaluated under H0 : τ = 0 does not have a normal distribution. Zhang and Lin
(2003) showed that the score statistic of τ can usually be expressed as a weighted
sum of chi-squared random variables with positive but rapidly decaying weights,
and its distribution can be adequately approximated by that of a scaled chi-squared
random variable.

Under the mixed model representation (19), the marginal likelihood function
L M (τ, ψ; y) of (τ, ψ) is given by

L M (τ, ψ; y) ∝ |D|−m/2τ−r/2
∫

exp

⎧

⎨

⎩

m
∑

i=1

ni
∑

j=1

�i j (β, ψ, bi ; yi j )

− 1
2

m
∑

i=1

bT
i D−1bi − 1

2τ
aT�a

}

dadbdβ.

(20)

Let �M (τ, ψ; y) = log L M (τ, ψ; y) be the log-marginal likelihood function of
(τ, ψ). Zhang and Lin (2003) showed that the score Uτ = ∂�M (τ, ψ; y)/∂τ |τ=0
can be approximated by

Uτ ≈ 1
2

{

(Y − Xβ)T V −1 N�N T V −1(Y − Xβ)− tr
(

P N�N T
)}

∣

∣

∣

∣

̂β,̂ψ

, (21)

where ̂β is the MLE of β and ̂ψ the REML estimate of ψ from the null GLMM
(22), and Y is the working vector Y = Xβ + Zb +�(y −µ) under the null GLMM

g(µ) = Xβ + Zb, (22)
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where � = diag{g′(µi j )}, P = V −1 − V −1 X (X T V −1 X)−1 X T V −1 and V =
W −1 + Z D̃Z T with D̃ = diag{D, . . . , D} and W is defined similarly as in Sect. 4
except µ0

i j is replaced by µi j . All these matrices are evaluated under the reduced
model (22).

Write Uτ = Uτ − ẽ, where Uτ and ẽ are the first and second terms of Uτ in (21).
Zhang and Lin (2003) showed that the mean of Uτ is approximately equal to ẽ under
H0 : τ = 0. Similar to the score test derived in Sect. 4, the mean of Uτ increases
as τ increases. Therefore, we will reject H0 : τ = 0 when Uτ is large, implying a
one-sided test. The variance of Uτ under H0 can be approximated by

Ĩττ = Iττ − I T
τψ I −1

ψψ Iτψ , (23)

where

Iττ = 1
2

tr
{

(

P N�N T
)2

}

, Iτψ = 1
2

tr
(

P N�N T P
∂V
∂ψ

)

,

Iψψ = 1
2

tr
(

P
∂V
∂ψ

P
∂V
∂ψ

)

. (24)

Define κ = Ĩττ /2ẽ and ν = 2ẽ2/ Ĩττ . Then Sτ = Uτ /κ approximately has a χ2
ν dis-

tribution, and we will reject H0 : τ = 0 at the significance level α if Sτ ≥ χ2
α;ν . The

simulation conducted by Zhang and Lin (2003) indicates that this modified score test
for polynomial covariate effect in the semiparametric additive mixed model (16) has
approximately the right size and is powerful to detect alternatives.

7 Application

In this section, we illustrate the likelihood ratio testing and the score testing for
variance components in GLMMs discussed in Sects. 3 and 4, as well as the score
polynomial covariate effect testing in GAMMs discussed in Sect. 6 through an ap-
plication to the data from Indonesian children infectious disease study (Zeger and
Karim, 1991). Two hundred and seventy-five Indonesian preschool children were
examined for up to six quarters for the sign of respiratory infection (0 = no, 1 = yes).
Totally there are 2,000 observations in the data set. Available covariates include:
age in years, Xerophthelmia status (sign for vitamin A deficiency), gender, height
for age, and the presence of stunning and the seasonal sine and cosine. The primary
interest of the study is to see if vitamin A deficiency has an effect on the respiratory
infection adjusting for other covariates and taking into account the correlation in
the data.

Zeger and Karim (1991) used Gibbs’ sampling approach to fit the following
logistic-normal GLMM

logit(P[yi j = 1|bi ]) = xT
i jβ + bi , (25)
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where yi j is the respiratory infection indicator for the i th child at the j th interview,
xi j is the 7 × 1 vector of the covariates described above with corresponding effects
β, bi ∼ N(0, θ) is the random effect modeling the between-child variation/between-
child correlation. No statistically significant effect of vitamin A deficiency on respi-
ratory infection was found.

We can also conduct a likelihood inference for model (25) by evaluating the
required integrations using Gaussian quadrature technique. The MLE of θ is ̂θ =
0.58 with SE(̂θ) = 0.31, which indicates that there may be between-child variation
in the probability of getting respiratory infection. An interesting question is whether
we can reject H0 : θ = 0. The likelihood ratio statistic for this data set is −2 ln λm =
674.872 − 669.670 = 5.2. The resulting p-value = 0.5P[χ2

1 ≥ 5.2] = 0.011,
indicating strong evidence against H0 using the LRT procedure.

Alternatively, we may apply the score tests to test H0. The (corrected) score
statistic for this data set is 2.678. The p-value from the one-sided score test is 0.0037,
and the two-sided score test is 0.0074. Both the tests provide strong evidence against
H0 : θ = 0.

Motivated by their earlier work, Zhang and Lin (2003) considered testing
whether f (age) in the following semiparametric additive mixed model can be
adequately represented by a quadratic function of age

logit(P[yi j = 1|bi ]) = sT
i jβ + f (agei j )+ bi , (26)

where si j are the remaining covariates. The score test statistic described in Sect. 6
for K = 3 is Sτ = 5.73 with 1.30 degrees of freedom, indicating a strong evidence
against H0 : f (age) is a quadratic function of age (p-value = 0.026). This may imply
that nonparametric modeling of f (age) in model (26) is preferred.

8 Discussion

In this chapter, we have reviewed the likelihood ratio test and the score test for test-
ing variance components in GLMMs. The central issue is that the null hypothesis
usually places some of the variance components on the boundary of the model pa-
rameter space, and therefore the traditional null chi-squared distribution of the LRT
statistic no longer applies and the p-value based on traditional LR chi-square dis-
tribution is often too conservative. Using the theory developed by Self and Liang
(1987), we have reviewed the LRT for some special cases and show the LRT gen-
erally follows a mixture of chi-square distribution. To derive the right null distri-
bution of the LRT statistic, one needs to know the (Fisher) information matrix at
the true parameter value (under the null hypothesis) and the topological behavior
of the neighborhood of the true parameter value. However, as our simulation indi-
cates, the LRT for the variance components in a GLMM may suffer from numerical
instability when the variance component is small and numerical integration is high
dimensional.
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On the other hand, the score statistic only involves parameter estimates under
the null hypothesis and hence can be calculated much more straightforward and
efficiently. We discussed both the one-sided score test and the much simpler two-
sided score test. Both tests have the correct size. The one-sided score test has the
same asymptotic distribution as the correct likelihood ratio test. Hence, similar to
the LRT, the calculation of the one-sided score test requires the knowledge of the
information matrix and the topological behavior of the neighborhood of the true
parameter value and also requires computing a mixture of chi-square distributions.
The two-sided score test is based on the regular chi-square distribution and has
the right size. It is much easier to calculate especially for testing multiple variance
components. The simulation studies presented here and in the statistical literature
show that the two-sided score test may suffer from some power loss compared to
the (correct) likelihood ratio test and the one-sided score test.

We have also reviewed the likelihood ratio test and the score test for testing
whether a nonparametric covariate effect in a GAMM can be adequately modeled
by a polynomial of certain degree compared to a smoothing spline or a penalized
spline function. Although the problem can be reduced to testing a variance com-
ponent equal to zero using the mixed effects representation of the smoothing (pe-
nalized) spline, the GLMM results for likelihood ratio test and the score test for
variance components do not apply because the data under mixed effects represen-
tation of the spline do not have an independent cluster structure any more. Since
the LRT statistic will be prohibitive to calculate for a GLMM with potentially high
dimensional random effects, we have particularly reviewed the score test of Zhang
and Lin (2003) for testing the parametric covariate model versus the nonparametric
covariate model in the presence of a single nonparametric covariate function. Future
research is needed to develop simultaneous tests for multiple covariate effects.
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Bayesian Model Uncertainty in Mixed Effects
Models

Satkartar K. Kinney and David B. Dunson

1 Introduction

1.1 Motivation

Random effects models are widely used in analyzing dependent data, which are col-
lected routinely in a broad variety of application areas. For example, longitudinal
studies collect repeated observations for each study subject, while multi-center stud-
ies collect data for patients nested within study centers. In such settings, it is natural
to suppose that dependence arises due to the impact of important unmeasured pre-
dictors that may interact with measured predictors. This viewpoint naturally leads to
random effects models in which the regression coefficients vary across the different
subjects. In this chapter, we use the term “subject” broadly to refer to the indepen-
dent experimental units. For example, in longitudinal studies, the subjects are the
individuals under study, while in multi-center studies the subjects correspond to the
study centers.

In applications of random effects models, one is typically faced with uncertainty
in the predictors to be included in the fixed and random effects components of the
model. The predictors included in the fixed effects component are correlated with
the population-averaged response, while the predictors included in the random ef-
fects component have varying coefficients for the different subjects. This variability
in the coefficients induces a predictor-dependent correlation structure in the repeated
observations upon marginalizing out the random effects. For fixed effects models,
there is a rich literature on methods for subset selection and inferences from both
frequentist and Bayesian perspectives; however, subset selection for the random ef-
fects component has received limited attention.
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One reason for the limited attention to this problem is the common perspective
that the primary focus of inference is the fixed effects component of the model,
while the dependence structure is merely a “nuisance.” From this viewpoint, a rela-
tively simple model for the random effects component, such as a random intercept
model, is thought to be sufficient to account for within-subject dependence. There
are a few problems with this paradigm. First, it is seldom the case that scientific
interest lies only in the predictor for a hypothetical “typical” subject having average
random effect values. In clinical trials, for example, variability among the subjects
is also important. If the impact of a drug therapy varies considerably among differ-
ent individuals, this suggests that efficacy is higher for certain subgroups, a finding
with considerable clinical implications. Second, one may obtain invalid inferences
on the fixed effect coefficients if the random effects component is misspecified.

The focus of this chapter is on applying Bayesian methods for model uncertainty
to the random effects subset selection problem. Our goal is to provide a practically-
motivated background on the relevant literature, with a focus on the methodology
proposed by Kinney and Dunson (2007). The hope is that this tutorial will motivate
increased use of Bayesian methods in this area, while also stimulating new research.
We begin with a brief overview of the literature on model selection and inferences
on variance components in random effects models.

1.2 Frequentist Literature

One of the difficulties in generalizing methods for subset selection and inferences
in linear regression models (see, for example, Mitchell and Beauchamp, 1988) to
the random effects setting is that the likelihood cannot, in general, be obtained an-
alytically. This is because the likelihood is specified as an integral of a conditional
likelihood given the random effects over the random effects distribution, with this
integral typically not available in closed form. Motivated by this problem, there is a
rich literature on approximations to the marginal likelihood obtained by integrating
out the random effects. Sinharay and Stern (2001) summarize the major approaches,
including marginal maximum likelihood, restricted maximum likelihood, and qua-
silikelihood. The marginal maximum likelihood approach evaluates the likelihood
using quadrature or a Laplace approximation and computes maximum likelihood
estimates of model parameters using traditional numeric optimization approaches.
This approach tends to underestimate variance parameters; hence, Stiratelli et al.
(1984) suggest an approximate E-M algorithm for computing the restricted maxi-
mum likelihood estimate of the variance matrix. An alternative from Breslow and
Clayton (1993) is the quasilikelihood method.

After obtaining an accurate approximation to the likelihood, likelihood ratio test
statistics can be computed to compare nested random effects models; however, when
the nested models differ in the random effects that are included, the typical likeli-
hood ratio test asymptotic theory does not apply since the null hypothesis lies at the
boundary of the parameter space. Specifically, the null hypothesis corresponds to
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setting one or more of the random effects variances equal to zero, with these para-
meters restricted to be positive under the alternative. Potentially, to avoid relying on
knowledge of the exact or asymptotic distribution of the likelihood ratio test statis-
tic (discussed in the chapter by Ciprian Crainiceanu), one could apply a parametric
bootstrap (Sinharay and Stern, 2001). As an alternative to a likelihood ratio test,
one could consider a score test, such as that considered by Lin (1997) for testing
whether all the variance components in a GLMM are zero (see also Verbeke and
Molenberghs, 2003; Hall and Praestgaard, 2001 and the chapter by Daowen Zhang
and Xihong Lin).

Even if one can obtain accurate p-values for likelihood ratio tests or score tests
comparing nested random effects models, it is not clear how to use such methods
to appropriately account for uncertainty in subset selection. Potentially, one can
apply a stepwise procedure, but the model selected may be sensitive to the order in
which predictors are added and the level of p-value cutoff for inclusion or exclusion.
In addition, unless one accounts for uncertainty in the selection process, it is not
appropriate to base inferences on the estimates of the coefficients under the final
selected model. One can potentially address this concern by selecting the model
on a training subset of the data, though it is not clear how to optimally choose the
training and test samples.

As an alternative approach, which addresses some of these concerns, Jiang et al.
(2008) proposed an innovative “fence” method. The fence method gives a single
subset of predictors to include in the random effects component, but does not pro-
vide a measure of uncertainty in the subset selection process or allow inferences on
whether a given predictor has a random coefficient. In addition, if predictions are of
interest, one can obtain more realistic measures of uncertainty and potentially more
accurate predictions by allowing for errors in model selection. This is particularly
important when there are many predictors, because in such cases any single selected
model may not be markedly better than all of the competing models.

1.3 Bayesian Approach

Given the practical difficulties that arise in implementing a frequentist approach to
this problem, we focus on Bayesian methods. Advantages of the Bayesian approach
include (1) lack of reliance on asymptotic approximations to the marginal likelihood
obtained by integrating out the random effects or to the distribution of the likeli-
hood ratio test statistic; (2) ability to fully account for model uncertainty through a
probabilistic framework that assigns each model in the list prior and posterior prob-
abilities; and (3) allowance for the incorporation of prior information. Practical dis-
advantages include ease of implementation given the lack of procedures in standard
software packages, computational intensity, and sensitivity to prior distributions.
These concerns are likely to decrease in the coming years, with new procedures for
implementing Bayesian analyses in SAS in a computationally efficient manner and
with ongoing research in default priors for model selection in hierarchical models.
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We review Bayesian model uncertainty in general in Sect. 2 and in the context of
mixed models in Sect. 3. Section 4 describes a Bayesian approach for linear mixed
models and discusses prior specification. A modification for binary logistic models
is outlined in Sect. 5. Section 6 provides a simulation example and Sect. 7 a data
example. Additional extensions are discussed in Sect. 8 and concluding remarks are
given in Sect. 9.

2 Bayesian Model Uncertainty

2.1 Subset Selection in Linear Regression

Let us first consider a normal linear model y = Xβ + ε, ε ∼ N (0, σ 2) with no
random effects. From the Bayesian perspective, the model parameters are consid-
ered random variables with probability distributions. When fitting the model, prior
distributions are assigned to each parameter, and posterior distributions are ob-
tained by updating the prior with the information in the likelihood. Unless con-
jugate priors are used, the posterior distributions are not available in closed analytic
form; hence, Markov chain Monte Carlo (MCMC) algorithms are typically used to
produce autocorrelated draws from the joint posterior distribution of the parameters.
After convergence of the MCMC chain, the draws can be used to estimate posterior
summaries. When performing posterior computation for a single model with no
model uncertainty, typical posterior summaries include posterior means, standard
deviations, and credible intervals.

In the Bayesian paradigm, model uncertainty can be addressed simultaneously
with parameter uncertainty by placing priors p(Mk) on each possible model
M1, . . . ,MK in addition to the model parameters p(β|Mk, σ

2) and p(σ 2). For
example, in normal linear regression analyses, it is common to have uncertainty
in the subset of predictors to be included in the regression model. If there are p
candidate predictors, then there are 2p possible subsets, with each Mk correspond-
ing to a different subset. In this case, p(Mk) is the prior probability of subset Mk ,
which is commonly chosen to be uniform or based on the size of the model. If
one allows predictors to be included independently with 0.5 prior probability, then
p(Mk) = ( p

#Mk

)

0.5p, where #Mk is the number of predictors included in model Mk .
For normal linear regression models, one can choose a conjugate normal inverse-
gamma prior. For example, g-priors or mixtures of g-priors (Liang et al., 2005) are
commonly-used.

The posterior model probabilities can be calculated using Bayes rule as follows:

p(Mk | y) = p( y|Mk)p(Mk)
∑

k p( y|Mk)p(Mk)
,

where
p( y|Mk) =

∫

p( y|β, σ 2,Mk)p(β|σ 2,Mk)p(σ 2)dβ, dσ 2
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is the marginal likelihood of the data under model Mk . This marginal likelihood is
available analytically for normal linear regression models when conjugate normal
inverse-gamma priors are chosen for (β, σ 2); however, in generalized linear models
and in normal linear models with random effects, the marginal likelihood will not be
available analytically. In such cases, it is common to rely on the Laplace approxima-
tion, or to use simulation-based approaches to approximate the marginal likelihood
and/or posterior model probabilities.

Even in linear regression models in which one can obtain the exact marginal
likelihood for any particular model Mk , calculation of the exact posterior model
probabilities may not be possible when the number of models is very large. For ex-
ample, in the subset selection problem, the number of models in the list is 2p, which
grows very rapidly with p so that one cannot calculate the marginal likelihoods for
all models in the list even for moderate p. This problem has motivated a literature on
stochastic search variable selection (SSVS) algorithms, which use MCMC methods
to explore the high-dimensional model space in an attempt to rapidly identify high
posterior probability models (George and McCulloch, 1993, 1997).

The SSVS algorithm of George and McCulloch (1997) uses a Gibbs sampler
(Gelfand and Smith, 1990) to search for models having high posterior probability
by embedding all the models in the full model. This is accomplished by choos-
ing a prior for the regression coefficients that is a mixture of a continuous density
and a component concentrated at zero. Because predictors having zero or near-zero
coefficients effectively drop out of the model, the component concentrated at zero
allocates probability to models having one or more predictors excluded. Such com-
ponent mixture priors are commonly referred to as variable selection or point mass
mixture priors. They are very convenient computationally, as they allow one to run
a single Gibbs sampler as if doing computation under the full model. By randomly
switching from the component concentrated at zero to the more diffuse component,
the chain effectively moves between models corresponding to different subsets of
the predictors being selected.

After discarding initial burn-in draws, one can estimate the posterior model prob-
abilities using the proportion of MCMC draws spent in each model. In general, all
2p models will not be visited; hence, many or most of the candidate models will be
estimated to have zero posterior probability. Although there is no guarantee that the
model with the highest posterior probability will be visited, when p is large, SSVS
tends to quickly locate good models. Model-averaged estimates may also be ob-
tained for model coefficients by averaging the parameter estimates over all MCMC
draws. Marginal inclusion probabilities for each predictor are estimated by the pro-
portion of draws spent in models containing that predictor.

Because posterior probabilities for any specific model tend to be very small in
large model spaces, it may be unreliable to base inferences on any one selected
model. This problem is not unique to Bayesian model selection, as other model se-
lection criteria (e.g., AIC) may have similar values for many models when the num-
ber of candidate models is large. An advantage of the Bayesian approach is that it
provides a well calibrated and easily interpretable score for each model. Hence, one
can consider a list of the top 10 or 100 models, examining the size of the posterior
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probabilities allocated to each of these models. Such an exercise provides a much
more realistic judge of uncertainty than approaches that seek to identify a single
best model based on some criteria.

Marginal inclusion probabilities provide a measure of the weight of evidence
that a particular predictor should be included in the model, adjusting for uncer-
tainty in the other predictors that are included. For example, suppose the first can-
didate predictor (age) is included with posterior probability of 0.98. Then one has
strong evidence that age is an important predictor. However, if the marginal inclu-
sion probability was instead 0.02, one would have evidence that age does not need
to be included. Posterior inclusion probabilities that are not close to 0 or 1 are less
conclusive.

When the focus is on prediction instead of inferences, one can use Bayesian
model averaging, which is performed by weighting model-specific Bayesian pre-
dictions by the posterior model probabilities. This approach has advantages over
classical methods, which instead rely on a single selected model, ignoring uncer-
tainty in selecting that model. For a detailed review of Bayesian model averaging
and selection, refer to Clyde and George (2004).

2.2 Bayes Factors and Default Priors

Bayes factors provide a standard Bayesian weight of evidence in the data in favor
of one model over another. The Bayes factor in favor of model M1 over model M0
is defined as the posterior odds of M1 divided by the prior odds of M1

BF10 = p(M1 | y)
p(M0 | y)

× p(M0)

p(M1)
= p( y|M1)

p( y|M0)
,

which is simply the ratio of marginal likelihoods under the two different models.
Unlike frequentist testing based on p-values, Bayes factors have the advantage of
treating the two competing models (say, null and alternative) symmetrically, so that
one obtains a measure of support in the data for a model, which is appropriate
regardless of whether the models are nested. Hence, we do not obtain a test for
whether the large model is “significantly” better, but instead rely on the intrinsic
Bayes penalty for model complexity to allow coherent comparisons of non-nested
models of different sizes.

A potential drawback (or advantage in certain settings) is that the Bayes factor
has a well-known sensitivity to the prior, and improper priors cannot be chosen.
This restriction does not hold if one wishes to do inferences under a single model,
as long as the posterior is proper. However, in conducting model comparisons, the
Bayes factor is only defined up to an arbitrary constant that depends on the variance
of the prior. As the prior variance increases, there is an increasing tendency to favor
smaller models. Hence, it is important to either choose an informative prior based
on subject matter knowledge or to choose a proper default prior, chosen to yield
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good Bayesian and/or frequentist properties. In subset selection for normal linear
regression models, the Zellner–Siow prior (Zellner and Siow, 1980) is a commonly-
used default, with recent work proposing alternative mixtures of g-priors (Liang
et al., 2005).

The popular Bayesian information criterion (BIC) was originally derived by
Schwarz (1978) starting with a Laplace approximation to the marginal likelihood,
and making some simplifying assumptions, including the use of a unit information
prior. For normal linear regression models, the unit information prior corresponds
to a special case of the Zellner g-prior in which g = n, so that the amount of in-
formation in the prior is equivalent to one observation. Model selection via the BIC
closely approximates model selection based on Bayes factors under a wide range of
problems for a particular type of default prior (Raftery, 1995). However, for hierar-
chical models and models in which the number of parameters increases with sample
size, the BIC is not justified (Pauler et al., 1999, Berger et al., 2003).

3 Bayesian Subset Selection for Mixed Effects Models

In contrast to the rich literature on Bayesian subset selection for fixed effects, there
is very little work on selection of random effects. Pauler et al. (1999) compare vari-
ance component models using Bayes factors and Sinharay and Stern (2001) consider
the problem of comparing two GLMMs using the Bayes factor. Motivated by sensi-
tivity to the choice of prior, Chung and Dey (2002) develop an intrinsic Bayes factor
approach for balanced variance component models. Chen and Dunson (2003) devel-
oped a stochastic search variable selection (SSVS) (George and McCulloch, 1993;
Geweke, 1996) approach for fixed and random effects selection in the linear mixed
effects model. Relying on Taylor series approximation to intractable integrals, Cai
and Dunson (2006) recently extended this approach to all GLMMs (refer to chapter
by Cai and Dunson for further details).

3.1 Bayes Factor Approximations

The BIC is not appropriate for comparing models with differing numbers of random
effects, as the required regularity conditions are not met when the null hypothesis
corresponds to a parameter falling on the boundary of the parameter space (Pauler
et al., 1999). Several Bayes factor approximations for testing variance components
are reviewed in Sinharay and Stern (2001). Most of these involve estimation of
p( y|M1) and p( y|M0) to obtain the Bayes factor. A modification to the Laplace
approximation which accommodates the boundary case is applied by Pauler et al.
(1999). As calculation of p( y|M) involves solving an integral that is often not avail-
able analytically, one can apply standard approximations such as quadrature and
importance sampling.
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A practical issue with importance sampling is the selection of the target distrib-
ution. Meng and Wong (1996) extend the importance of the sampler idea and sug-
gest a bridge sampling approach for approximating p( y|M). An MCMC algorithm
using Gibbs sampling was developed by Chib (1995). A harmonic estimator, consis-
tent for simulations though otherwise unstable, is proposed by Newton and Raftery
(1994). Lastly, an approach suggested by Green (1995) is described which com-
putes the Bayes factors directly using a reversible-jump MCMC algorithm which
can move between models with parameter spaces of differing dimension. This is
likely to be computationally intensive, and in Sinharay and Stern (2001) it was the
slowest approach, whereas the Laplace approximation was the fastest.

3.2 Stochastic Search Variable Selection

In extending Bayesian model selection procedures for linear models to linear mixed
effects models, the two primary considerations are the prior specification and pos-
terior computation. The structure of the random effects covariance matrix needs to
be considered, and the model parameterizations and prior structure carefully chosen
so that the MCMC algorithm may move between models with both differing fixed
effects and random effects. The efficiency of the posterior computation also needs
to be considered; algorithms that explore the model space efficiently and quickly
locate areas of high posterior probability are needed.

As described in Sect. 2, stochastic search variable selection (SSVS) is a promis-
ing approach for Bayesian model uncertainty using Gibbs sampling. The SSVS ap-
proach has been applied successfully in a wide variety of regression applications,
including challenging gene selection problems. One challenge in developing SSVS
approaches for random effects models is the constraint that the random effects co-
variance matrix � be positive semi-definite. Chen and Dunson (2003) addressed this
problem by using a modified Cholesky decomposition of �

� = ���′�, (1)

where � is a positive diagonal matrix with diagonal elements λ = (λ1, . . . , λq)
′

proportional to the random effects standard deviations, so that setting λl = 0 is
equivalent to dropping the lth random effect from the model, and � is a lower trian-
gular matrix with diagonal elements equal to 1 and free elements that describe the
random effects correlations. In the case of independent random effects, � is simply
the identity matrix I and the diagonal elements λl , l = 1, . . . , q of � equal the
random effects standard deviations.

In the next section, we revisit the SSVS approach of Chen and Dunson (2003)
for linear mixed models, with additional consideration given to the prior struc-
ture and posterior computation. We will then discuss an extension to logistic
models.
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4 Linear Mixed Models

If we have n subjects under study, each with ni observations, i = 1, . . . , n, let yi j
denote the j th response for subject i , X i j a p × 1 vector of predictors, and Zi j a
q ×1 vector of predictors. Then the linear mixed effects (LME) model is denoted as

yi j = X ′
i jβ + Z′

i j ai + εi j , εi j ∼ N (0, σ 2), (2)

where ai ∼ N (0,�). Here β = (β1, . . . , βp)
′ are the fixed effects and ai =

(ai1, . . . , aiq)
′ are the random effects. In practice Zi j is typically chosen to be a

subset of the predictors in X i j believed to have random effects, often only the in-
tercept for simplicity. If we let X i j and Zi j include all candidate predictors, then
the problem of interest is to locate a subset of these predictors to be included in the
model.

With the help of covariance decomposition in (1) we can use SSVS, and write
(2) as

yi j = X ′
i jβ + Z′

i j��bi + εi j , εi j ∼ N (0, σ 2), (3)

where bi ∼ N (0, I). Chen and Dunson (2003) show that by rearranging terms,
the diagonal elements, λl , l = 1, . . . , q, of � can be expressed as linear regression
coefficients, conditional on � and bi . Similarly, the free elements γk, k = 1, . . . ,
q(q − 1)/2, of � can be expressed as linear regression coefficients, conditional
on � and bi . Hence the variance parameters λ and γ have desirable conditional
conjugacy properties for constructing a Gibbs sampling algorithm for sampling the
posterior distribution and we are able to use the SSVS approach.

4.1 Priors

Prior selection is a key step in any Bayesian analysis; however, in this context it is
particularly important as problems can arise when default priors are applied without
caution. In particular, flat or excessively diffuse priors are not recommended for
hierarchical models given the potential for an improper posterior and the difficulty
of verifying propriety due to the intractable nature of the density, even when the
output from a Gibbs chain seems reasonable (Hobert and Casella, 1996). Proper
distributions are also desired for Bayes factors to be well-defined (Pauler et al.,
1999). The arbitrary multiplicative constants from improper priors carry over to
the marginal likelihood p( y|M) resulting in indeterminate model probabilities and
Bayes factors (Berger and Pericchi, 2001).

A mixture of a point mass at zero and a normal or heavier-tailed distribution is a
common choice of prior for fixed effects coefficients, βl , l = 1, . . . , p, in Bayesian
model selection problems. Smith and Kohn (1996) introduce a vector J of indicator
variables, where Jl = 1 indicates that the lth variable is in the model, l = 1, . . . , p,
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and assign a Zellner g-prior (Zellner and Siow, 1980) to βJ , the vector of coeffi-
cients in the current model. As a notational convention, we let β denote the p × 1
vector ({βl : Jl = 1} = βJ , {βl : Jl = 0} = 0). Hence, conditional on the model
index J , the prior for β is induced through the prior for βJ .

Consistency issues can arise when comparing models based on these priors; how-
ever, for linear models, placing a conjugate gamma prior on g induces a t prior on
the coefficients. In the special case where the t distribution has degrees of free-
dom equal 1, the Cauchy distribution is induced, which has been recommended
for Bayesian robustness (Clyde and George, 2004). This can be considered a spe-
cial case of mixtures of g-priors, proposed by Liang et al. (2005) as an attractive
computational solution to the consistency and robustness issues with g-priors, and
an alternative to the Cauchy prior, which does not yield a closed-form expression
for the marginal likelihood. As choosing g can affect model selection, with large
values concentrating the prior on small models with a few large coefficients and
small values of g concentrating the prior on saturated models with small coeffi-
cients, several approaches for handling g have been proposed (Liang et al., 2005).
Recommendations include the unit information prior (Kass and Wasserman, 1995),
which in the normal regression case corresponds to choosing g = n, leading to
Bayes factors that behave like the BIC and the hyper-g prior of Liang et al. (2005).
Foster and George (1994) recommend calibrating the prior based on the risk infla-
tion criterion (RIC) and Fernandez et al. (2001) recommend a combination of the
unit information prior and RIC approach. Another alternative is a local empirical
Bayes approach, which can be viewed as estimating a separate g for each model, or
global empirical Bayes, which assumes a common g but borrows strength from all
models (Liang et al., 2005).

For standard deviation parameters in hierarchical models, Gelman (2005) rec-
ommends a family of folded-t prior distributions over the commonly used inverse
gamma family, due to their flexibility and behavior when random effects are very
small. These priors are induced using a parameter-expansion approach which has
the added benefit of improving computational efficiency by reducing dependence
among the parameters (Liu et al., 1998; Liu and Wu, 1999). This yields a Gibbs
sampler less prone to slow mixing when the standard deviations are near zero. The
Chen and Dunson (2003) approach had the disadvantages of (1) relying on sub-
jective priors that are difficult to elicit, and (2) computational inefficiency due to
slow mixing of the Gibbs sampler; hence we use the parameter-expanded model to
address these two problems.

Extending the parameter expansion approach proposed by Gelman (2005) for
simple variance component models to the LME model, we replace (3) with

yi j = X ′
i jβ + Z′

i j A�ξ i + εi j , εi j ∼ N (0, σ 2), (4)

where ξ i ∼ N (0, D) and A = diag(α1, . . . , αq)
′ and D = diag(d1, . . . , dq)

′ are
diagonal matrices, αl ∼ N (0, 1), l = 1, . . . , q, and dl ∼ I G( 1

2 ,
N
2 ), l = 1, . . . , q,

I G denoting the inverse gamma distribution. Note that the latent random effects
have been multiplied by a redundant multiplicative parameter. In this case, the im-
plied covariance decomposition is � = A� D�′ A.
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The parameters αl , l = 1, . . . , q, are proportional to λl and thus to the random
effects standard deviations, so setting αl = 0 effectively drops out the random ef-
fects for the lth predictor. When random effects are assumed to be uncorrelated,
i.e., � = I and λl , l = 1, . . . , q equal the random effects standard deviations, a
folded t prior on λl = |αl |√dl , l = 1, . . . , q is induced, as described in Gelman
(2005). Generalizing to the case of correlated random effects, a folded-t prior is not
induced; however, improved computational efficiency is still achieved, as illustrated
in Sect. 6.

In our proposed prior structure, we use a Zellner-type prior for the fixed effects
components. Specifically, we let βJ ∼ N

(

0, σ 2(XJ′XJ)−1/g
)

, g ∼ G( 1
2 ,

N
2 ),

σ 2 ∝ 1
σ 2 , and Jl ∼ Be(p0), l = 1, . . . , p, with Be denoting the Bernoulli

distribution and G(a, b) denoting the Gamma distribution with mean a/b and
variance a/b2. We give αl , l = 1, . . . , q, a zero-inflated half-normal prior, Z I −
N+(0, 1, pl0), where pl0 is the prior probability that αl = 0. Lastly, the free
elements of � are treated as a q(q − 1)/2-vector with prior p(γ |α) = N (γ 0, V γ ) ·
1(γ ∈ Rα) where Rα constrains elements of γ to be zero when the correspond-
ing random effects are zero. For simplicity, we do not allow uncertainty in which
random effects are correlated.

4.2 Posterior Computation

The joint posterior distribution for θ = (α,β, γ , σ 2) is given by

p(θ |y) ∝
n
∏

i=1

Np(ξ i ; 0, D)
ni
∏

j=1

{

N (yi j ; X ′
i j β + Z′

i j A�ξ i , σ
2)
}

p(σ 2)p(β, J, g)p(α, γ )p(D).

(5)

This distribution has a complex form, which we cannot sample from directly;
instead, we employ a parameter-expanded Gibbs sampler (Liu et al., 1998; Liu and
Wu, 1999). The Gibbs sampler proceeds by iteratively sampling from the full condi-
tional distributions of all parameters α, γ ,β, σ 2, hyperparameters g and J, and the
diagonal elements dl , l = 1, . . . , q of D. The full conditional posterior distributions
follow from (5) using straightforward algebraic routes.

Let ψ be the N -vector such that ψi j = yi j − Z′
i j A�ξ i . The vector of fixed effects

coefficients, β, and effectively, X , change dimension from iteration to iteration, de-
pending on the value of J , so care needs to be taken to ensure that the dimensions
are consistent. Let XJ

i j denote the subvector of Xi j , {Xi jl : Jl = 1}, βJ the subvec-
tor β, {βl : Jl = 1}. The full conditional posterior p(βJ |J,α, γ , σ 2, ξ , y, X, Z) is
N (β̂J, V J) where

β̂J =
⎛

⎝

n
∑

i=1

ni
∑

j=1

(yi j − Z′
i j A�ξ i )X

J′
i j

⎞

⎠ · V J

σ 2 and V J =
⎛

⎝

n
∑

i=1

ni
∑

j=1

XJ
i j XJ′

i j

(

1
σ 2 + g

)

⎞

⎠

−1

.
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To calculate the posterior for J each Jl needs to be updated individually,
conditional on J−l , the subvector of J excluding Jl . We calculate p(Jl =
1|J−l ,α, γ , σ

2, ξ , y, X, Z) for l = 1, . . . , p, by integrating out β and σ 2 as in
Smith and Kohn (1996) and obtaining p(Jl = 1|J−l ,α, γ ,φ, ξ , y, X, Z) = 1

1+hl
,

where J−l = {Ji : i �= l},

hl = 1 − pl0

pl0
·
(

1 + 1
g

)1/2

· S(Jl = 0)
S(Jl = 1)

and

S(J) =
(

ψ ′ψ − β̂JV−1
J β̂J

)−N/2
.

S(Jl = 0) is equivalent to S(J) but with the element Jl of J set to 0, so ψ , XJ,
β̂J and V J may need to be recomputed to correspond to Jl = 0. Similarly, for
S(Jl = 1).

To complete the fixed effects component updating, the posteriors of g and σ 2

are needed. The gamma and inverse gamma priors used yield conjugate gamma and
inverse gamma posteriors. The full conditional posterior for g is given by

�

(

pJ + 1
2

,
βJ

′XJ′XJβJ/σ
2 + N

2

)

v

where pJ = ∑p
l=1 1(Jl = 1). The full conditional posterior for σ 2 is given by

I G

(

N + pJ

2
,
ψ ′ψ + gβJ

′XJ′XJβJ

2

)

.

For the random effects component, the dimensionality does not change between
iterations. For γ and ξi , the normal priors yield conjugate normal posteriors,
while the zero-inflated half-normal prior for each αl yields a zero-inflated half-
normal posterior. Let ψ be the N -vector such that ψi j = yi j − XJ

i jβ − Z′
i j A�ξ i .

The full conditional posterior p(γ |α,β,λ, ξ , σ 2, y, X, Z) is given by N (γ̂ , V̂ γ ) ·
1(γ ∈ Rλ) where

V̂ γ=
⎛

⎝

n
∑

i=1

ni
∑

j=1

1
σ 2 ui j u′

i j + V−1
γ

⎞

⎠

−1

and γ̂ =
⎛

⎝

n
∑

i=1

ni
∑

j=1

1
σ 2 (yi j − XJ

i j βJ )u′
i j + γ 0V−1

γ

⎞

⎠ · V̂γ .

The q(q − 1)/2 vector ui j is defined as (ξilαm Zi jm : l = 1, . . . , q,m = l +
1, . . . , q)′ so that the random effects term Z′

i j A�ξ i can be written as u′
i jγ .

Each αl must be updated individually. The zero-inflated truncated nor-
mal prior for αl yields a conjugate posterior p(αl |α−l ,β, γ , ξ ,φ, y, X, Z)
= Z I − N+(α̂, Vαl , p̂l) where
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α̂ =
(∑n

i=1
∑ni

j=1 ti jl Ti j

σ 2

)

Vαl , Vαl =
⎛

⎝

n
∑

i=1

ni
∑

j=1

t2
i jl

σ 2 + 1

⎞

⎠

−1

,

p̂l = pal

pal + (1 − pal)
N (0;0,1)

N (0;α̂,Vαl)
· 1−�(0;α̂,Vαl )

1−�(0;0,1)
,

where Ti j = yi j −XJ′
i jβJ −∑

k �=l ti jkαk and N (0; m, v) denotes the normal density
with mean m and variance v evaluated at 0 and�(0; m, v) is the normal cumulative
distribution function with mean m and variance v evaluated at 0. The q vector

t i j =
(

Zi jl

(

ξil +
l−1
∑

m=1

ξimγml

)

: l = 1, . . . , q

)T

is defined so that the random effects term Z′
i j A�ξ i can be written as t ′i jα.

The latent variables ξ i , i = 1, . . . , n have posterior p(ξ i |β,α, γ , σ 2, y, X, Z)
given by N (ξ̂ i , V ξ ) where

ξ̂ i =
ni
∑

j=i

(yi j − XJ′
i j βJ )Z′

i j A�V ξ σ−2 and V ξ =
⎛

⎝

ni
∑

j=1

�′ AZi j Z′
i j A�σ−2 + D−1

⎞

⎠

−1

.

Only the components of ξ i corresponding to αl > 0 are updated. Lastly, the diagonal
elements of D have inverse gamma priors I G( 1

2 ,
N
2 ); hence the posterior is given by

p(dl |α,β, γ , ξ , σ 2, y) = I G

(

1
2

+ n
2
,

N
2

+
∑n

i=1 ξ
2
il

2

)

.

The initial MCMC draws, prior to the convergence of the chain, are discarded,
and the remaining draws used to obtain posterior summaries of model parameters.
Models with high posterior probability can be identified as those appearing most
often in the output and considered for further evaluation. Marginal inclusion proba-
bilities for a given coefficient may also be calculated using the proportion of draws
in which the coefficient is nonzero.

5 Binary Logistic Mixed Models

Logistic mixed models are widely used, flexible models for unbalanced repeated
measures data. Our approach for logistic mixed models is to formulate the model
in such a way that its coefficients are conditionally linear and the SSVS approach
can again be applied. This entails the use of a data augmentation strategy and ap-
proximation of the logistic density, with approximation error corrected for using
importance weights. The covariance decomposition in (1) and parameter expansion
approach described in Sect. 4.1 are again used.
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Defining terms as in (3), the logistic mixed model for a binary response variable
y is written as

logit
(

P(yi j = 1|X i j , Zi j ,β, ai )
) = X ′

i jβ + Z′
i j ai , ai ∼ N (0,�). (6)

We would like to be able to apply the SSVS approach as in the normal case. If we
apply the covariance decomposition in (1) to the logistic mixed model, we have

logit
(

P(yi j = 1|X i j , Zi j ,β,λ, γ , bi )
) = X ′

i jβ + Z′
i j��bi , bi ∼ N (0, I). (7)

In this case, the model is nonlinear and we do not immediately have conditional
linearity for the variance parameters λ and γ as in the normal case. To obtain con-
ditional linearity for the model coefficients, we take advantage of the fact that the
logistic distribution can be closely approximated by the t distribution (Albert and
Chib, 1993; Holmes and Knorr-Held, 2003; O’Brien and Dunson, 2004), and that
the t distribution can be expressed as a scale mixture of normals (West, 1987).

First, note that (7) is equivalent to the specification

yi j =
{

1 wi j > 0
0 wi j ≤ 0 ,

where wi j is a logistically distributed random variable with location parameter
X ′

i jβ + Z′
i j��bi and density function

L(wi j |X i j , Zi j ,β,λ, γ ) = exp{−(wi j − X ′
i jβ − Z′

i j��bi )}
{1 + exp[−(wi j − X ′

i jβ − Z′
i j��bi )]}2 .

Then, as wi j is approximately distributed as a noncentral tν with location parameter
X ′

i jβ + Z′
i j��bi and scale parameter σ̃ 2, we can express it as a scale mixture of

normals and write

wi j = X ′
i jβ + Z′

i j��bi + εi j , εi j ∼ N (0, σ̃ 2/φi j ), (8)

where φi j ∼ G
(

ν
2 ,
ν
2

)

. Setting ν = 7.3 and σ̃ 2 = π2(ν − 2)/3ν makes the ap-
proximation nearly exact. The approximation error, though negligible except in the
extreme tails, may be corrected for by importance weighting when making infer-
ences. Under this model formulation, we have a model in which all coefficients
are conditionally normal, and we are able to apply SSVS to the problem. We also
are able to take advantage of the improved computational efficiency of a parameter
expanded model as in (4). Applying the parameter expansion to (8) we have

wi j = X ′
i jβ + Zi j A�ξ i + εi j , εi j ∼ N (0, σ̃ 2/φi j ),

where terms are defined as in (4) and (8). We will use this model formulation to
propose a prior structure and compute posterior distributions.
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5.1 Priors and Posterior Computation

We use the same priors for the random effects parameters as in the normal
case, and similar priors for the fixed effects parameters. We specify βJ ∼
N

(

0, (XJ′XJ)−1/g
)

, g ∼ G( 1
2 ,

N
2 ), and Jl ∼ Be(p0), l = 1, . . . , p. Using

the t-distribution to approximate the likelihood as previously described, the joint
posterior distribution for θ = (α,β, γ ,φ) is given by

p(θ |y) ∝ p(β, J, g)p(γ ,α)p(D)
( n
∏

i=1

Nq (ξ i ; 0, D)
ni
∏

j=1

[

N
(

wi j ; X i j β + Zi j A�ξ i ,
σ̃ 2

φi j

)

×{1(wi j > 0)yi j + 1(wi j ≤ 0)

(1 − yi j )}p(φi j )

])

. (9)

Again we have a complex posterior from which we cannot directly sample and we
employ a Gibbs sampler. In introducing a latent variable wi j we have applied a data
augmentation strategy related to Albert and Chib (1993) and used for multivariate
logistic models by O’Brien and Dunson (2004). This auxiliary variable is updated
in the Gibbs sampler and its full conditional posterior follows immediately from (9)
as a normal distribution truncated above or below by 0 depending on yi j

p(wi j |θ , yi j ) =
N

(

wi j ; X i j β + Z′
i j A�ξ i ,

σ̃ 2

φi j

)

· 1
(

(−1)yi jwi j < 0
)

�
(

0; X ′
i j β + Z′

i j A�ξ i ,
σ̃ 2

φi j

)1−yi j
{

1 −�
(

0; X ′
i j β + Z′

i j A�ξ i ,
σ̃ 2

φi j

)}yi j
,

(10)

where �(·) indicates the normal cumulative distribution function.
The Gibbs sampler proceeds by iteratively sampling from the full conditional

distributions of w and all parameters α, γ ,β,φ, hyperparameters g and J, as well
as the latent variable ξ i , i = 1, . . . , n and the diagonal elements dl , l = 1, . . . , q
of D. The remaining full conditional posterior distributions follow from (9) and are
similar in form to the normal case. Some differences are that σ 2 is fixed and the
Gibbs sampler additionally updates w and φ.

Let ψ be the N -vector such that ψi j = wi j − Z′
i j A�ξ i . As in the normal case,

the vector of fixed effects coefficients, β, and effectively, X , change dimension
from iteration to iteration, depending on the value of J , so care needs to be taken
to ensure that the dimensions are consistent. Let XJ

i j denote the subvector of Xi j ,
{Xi jl : Jl = 1}, βJ the subvector β, {βl : Jl = 1}. The full conditional posterior
p(βJ |J,α, γ ,φ, ξ , y, X, Z) is N (β̂J, V J) where

β̂J =
⎛

⎝

n
∑

i=1

ni
∑

j=1

φi j

σ̃ 2 ψi j XJ′
i j

⎞

⎠ · V J and V J =
⎛

⎝

n
∑

i=1

ni
∑

j=1

XJ
i j XJ′

i j

(

φi j

σ̃ 2 + g
)

⎞

⎠

−1

.
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To calculate the posterior for J each Jl needs to be updated individually. We
calculate p(Jl = 1|J−l ,α, γ ,φ, ξ , y, X, Z) for l = 1, . . . , p, by integrating out β

as in Smith and Kohn (1996) and obtaining p(Jl = 1|J−l ,α, γ ,φ, ξ , y, X, Z) =
1

1+hl
, where J−l = {Ji : i �= l},

hl = 1 − pl0

pl0
·
(

1
g

)1/2

· S(Jl = 0)
S(Jl = 1)

and

S(J) = |XJ′XJ|1/2 · |V J|1/2 exp

⎧

⎨

⎩

−1
2

⎛

⎝

n
∑

i=1

ni
∑

j=1

φi jψ
2
i j − β̂

′
JV−1

J β̂J

⎞

⎠

⎫

⎬

⎭

.

S(Jl = 0) is equivalent to S(J) but with the element Jl of J set to 0, so ψ , XJ, β̂J
and V J may need to be recomputed to correspond to Jl = 0. Similarly for S(Jl = 1).

To complete the fixed effects component updating, the posteriors of g and φ
are needed. The gamma priors used yield conjugate gamma posteriors. The full
conditional posterior for g is given by

�

(

pJ + 1
2

,
βJ

′XJ′XJβJ + N
2

)

,

where pJ = ∑p
l=1 1(Jl = 1). The components of φ, φi j , are not identically distrib-

uted. Each φi j has a conjugate gamma posterior

G

(

ν + 1
2
,
(wi j − Zi j A�ξ i − X ′

i jβ)
2/σ̃ 2 + ν

2

)

.

For the random effects component, the dimensionality does not change between
iterations. For γ and ξi , the normal priors yield conjugate normal posteriors, while
the zero-inflated half-normal prior for each αl yields a zero-inflated half-normal
posterior. Let ψ be the N -vector such that ψi j = yi j − XJ

i jβ − Z′
i j A�ξ i .

The full conditional posterior p(γ |α,β,λ, ξ ,φ, y, X, Z) is given by N (γ̂ , V̂ γ ) ·
1(γ ∈ Rλ) where

V̂ γ =
⎛

⎝

n
∑

i=1

ni
∑

j=1

φi j

σ̃ 2 ui j u′
i j + V−1

γ

⎞

⎠

−1

and γ̂ =
⎛

⎝

n
∑

i=1

ni
∑

j=1

φi j

σ̃ 2 (wi j −XJ
i j βJ )u′

i j + γ 0V−1
γ

⎞

⎠ · V̂γ .

The q(q − 1)/2 vector ui j is defined as (ξilαm Zi jm : l = 1, . . . , q,m = l +
1, . . . , q)′ so that the random effects term Z′

i j A�ξ i can be written as u′
i jγ .

Each αl must be updated individually. The zero-inflated truncated nor-
mal prior for αl yields a conjugate posterior p(αl |α−l ,β, γ , ξ ,φ, y, X, Z)
= Z I − N+(α̂, Vαl , p̂l) where
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α̂ =
(∑n

i=1
∑ni

j=1 φi j ti jl Ti j

σ̃ 2

)

Vαl , Vαl =
⎛

⎝

n
∑

i=1

ni
∑

j=1

φi j t2
i jl

σ̃ 2 + 1

⎞

⎠

−1

,

p̂l = pal

pal + (1 − pal)
N (0;0,1)

N (0;α̂,Vαl)
· 1−�(0;α̂,Vαl )

1−�(0;0,1)
,

where Ti j = wi j −XJ′
i jβJ −∑

k �=l ti jkαk and N (0; m, v) denotes the normal density
with mean m and variance v evaluated at 0 and�(0; m, v) is the normal cumulative
distribution function with mean m and variance v evaluated at 0. The q vector

t i j =
(

Zi jl

(

ξil +
l−1
∑

m=1

ξimγml

)

: l = 1, . . . , q

)T

is defined so that the random effects term Z′
i j A�ξ i can be written as t ′i jα.

The latent variables ξ i , i = 1, . . . , n have posterior p(ξ i |β,α, γ ,φ, y, X, Z)
given by N (ξ̂ i , V ξ ) where

ξ̂ i =
ni
∑

j=i

φi j (wi j − XJ′
i j βJ )Z′

i j A�V ξ σ̃−2 and V ξ =
⎛

⎝

ni
∑

j=1

φi j �
′ AZi j Z′

i j A�σ̃−2 + D−1

⎞

⎠

−1

.

Only the components of ξ i corresponding to αl > 0 are updated. Lastly, the diagonal
elements of D have inverse gamma priors I G( 1

2 ,
N
2 ); hence the posterior is given

by p(dl |α,β, γ , ξ ,φ, y) = I G
(

1
2 + n

2 ,
N
2 +

∑n
i=1 ξ

2
il

2

)

.

5.2 Importance Weights

This Gibbs sampler generates samples from an approximate posterior as we have
approximated the logistic likelihood in (8). To correct for this, importance weights
(Hastings, 1970) may be applied when computing posterior summaries to obtain
exact inferences. If we have M iterations of our Gibbs sampler, excluding the burn-
in interval, then our importance weights r (t), t = 1, . . . ,M can be computed as

r (t) =
n
∏

i=1

ni
∏

j=1

L(wi j ; X ′
i jβ + Z′

i j A�ξ i )

Tν(wi j ; X ′
i jβ + Z′

i j A�ξ i , σ̃
2)
,

where L(·) is the logistic density function and Tν(·) is the t density function with
degrees of freedom ν.

Posterior means, probabilities, and other summaries of the model parameters can
be estimated from the Gibbs sampler output using an importance-weighted sample
average. For example, the posterior probability for a given model m is the sum of
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the weights corresponding to each occurrence of model m in the posterior sample,
divided by the sum of all M weights. The approximation is very close and hence the
weights are close to one. In our simulation and data examples, we found very little
difference between weighted and unweighted results.

In lieu of approximating the logistic distribution with the t distribution, we
also considered the slice sampler for sampling from the exact posterior distribu-
tion as applied by Gerlach et al. (2002) to variable selection for logistic models.
In this approach, the model is considered linear with response variable vi j =
logit

(

p(yi j = 1)
)

, the vector of log odds, and vi j = logit
(

p(yi j = 1)
) = X ′

i jβ +
Z′

i j��bi + εi j , εi j ∼ N (0, σ 2). The vector vi j is updated in a data-augmented

Gibbs sampler where an auxiliary variable ui j ∼ U
(

0, 1
1+exp(vi j )

)

is introduced
so that the full conditional posterior distribution for vi j is simplified to a truncated
normal distribution as follows:

p(vi j |yi j , X i j , Zi j ,β,α, γ , σ
2) ∝ p(yi j |vi j ) · p(vi j |X i j , Zi j ,β,α, γ , σ

2)

∝
(

evi j yi j

1 + evi j

)

· N (X ′
i j β + Z′

i j A�ξ i , σ
2),

p(vi j |ui j , X i j , Zi j ,β,α, γ , σ
2) ∝ p(ui j |vi j )p(vi j |X i j , Zi j ,β,α, γ , σ

2)

∝ N (X ′
i j β + Z′

i j A�ξ i + σ 2 yi j , σ
2) · 1

(

vi j < log
(

1 − ui j

ui j

))

.

While slice sampling in general has been noted to have appealing theoretical
properties (Neal, 2000; Mira and Tierney, 2002)), it demonstrated unsatisfactory
convergence properties for our purposes due to asymmetries induced by the like-
lihood (Green, 1997). In simulations using the slice sampler approach, the correct
models were quickly located; however, the Gibbs chains for nonzero model coeffi-
cients were extremely slow to converge.

6 Simulation Examples

We evaluate the proposed approach using a simulation example for a binary re-
sponse logistic model. We generate three covariates from U (−2, 2) for 30 observa-
tions on each of 200 subjects, so X i j = (1, Xi j1, Xi j2, Xi j3)

′ and we let Zi j = X i j .
We let β = (1, 0, 1, 1)′ and αi ∼ N (0,�), choosing a range of realistic values for
the random effects variances

� =

⎛

⎜

⎜

⎝

0.90 0.48 0.06 0
0.48 0.40 0.10 0
0.06 0.10 0.10 0

0 0 0 0

⎞

⎟

⎟

⎠

We generate logit
(

P(yi j = 1)
)

according to the model (6) and then yi j from
Be

(

p(yi j )
)

. We follow the prior specification outlined in Sect. 4.1 and induce
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heavy-tailed priors on the fixed effects coefficients and random effects variances.
These default priors do not require subjective choice of hyperparameter values, with
the exception of the prior inclusion probabilities, which can be chosen as p = 0.5 to
give equal probability to inclusion and exclusion, and the prior mean and variance of
γ . Our prior specification does include an informative normal prior for γ ; however,
γ is scaled in the parameter-expanded model and hence an informative prior can
reasonably be chosen. A prior that modestly shrinks the correlations toward zero is
desirable for stable estimation while still allowing the data to inform the relation-
ships between the random effects. As a reasonable choice, we set the prior mean and
variance for γ to be 0 and 0.5I , which can be used as a default in other applications.

We ran the Gibbs sampler for 20,000 iterations, after a burning period of 5,000
iterations. Three chains with dispersed starting values were run and found to con-
verge after a few thousand iterations. The resulting MCMC chains for the random
effects variances are shown in Fig. 1 and the posterior means for the fixed effects
coefficients and random effects variances are given in Table 1, along with the PQL
estimates computed by glmmPQL in R.
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Fig. 1 Gibbs chains for random effects variances

Table 1 Simulation results

Parameter True value PQL 95% CI Post. mean 95% CI Pr (inclusion)

β0 1.0 0.901 (0.753, 1.048) 0.892 (0.759, 1.027) 1.000
β1 0.0 0.031 (−0.062, 0.125) 0.001 (0.000, 0.006) 0.044
β2 1.0 0.900 (0.820, 0.980) 0.929 (0.845, 1.016) 1.000
β3 1.0 0.961 (0.896, 1.025) 0.990 (0.920, 1.061) 1.000
ω1 0.9 0.899 0.958 (0.721, 1.252) 1.000
ω2 0.4 0.298 0.315 (0.221, 0.427) 1.000
ω3 0.1 0.143 0.136 (0.072, 0.215) 1.000
ω4 0.0 0.026 0.000 (0.000, 0.000) 0.008
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We compare our results to the penalized quasilikelihood (PQL) approach
(Breslow and Clayton, 1993), as this approach is widely used for estimating
GLMMs. Although our focus is on selection and inferences in the variance compo-
nents allowing for model uncertainty, which is not addressed by current frequentist
methods, we also obtain model-averaged coefficient estimates. Based on the limited
number of simulations run, our estimates tend to be less biased, or closer to the true
values than the PQL estimates, which are also known to be biased (Breslow, 2003;
Jang and Lim, 2005)). Our algorithm is too computationally intense to run a large
enough simulation to definitively assess the frequentist operating characteristics of
our approach.

We also compute credible intervals for the random effects variances. To our
knowledge, methods for estimating valid frequentist confidence intervals for vari-
ance components remain to be developed. In addition we are able to simultaneously
compute marginal posterior inclusion probabilities for both the fixed effects and
random effects and correctly locate the true model as the one with highest posterior
probability.

To evaluate sensitivity to the prior inclusion probability, we also repeated the
simulation with prior probabilities set to 0.2 and 0.8 and found very little difference
in the posterior means shown in Table 1. Posterior model probabilities were slightly
different when the prior inclusion probabilities were changed; however there was
no difference in parameter estimates, inferences or model ranking. In each case the
true model had the highest posterior probability.

To evaluate the effect of using the priors induced by the parameter expanded
model, we compare simulation results between two Gibbs samplers, one including
and one excluding the redundant multiplicative parameter in the random effects
component. As expected, we do not see any real difference in the point esti-
mates; however, as seen in Fig. 2, the parameter expansion approach resulted in
improved computational efficiency and MCMC chains for the random effects vari-
ances. Table 2 shows the reduction in autocorrelation in the Gibbs chains. Note we
have not directly drawn from the posterior distribution of the variances, rather we
have computed them from the MCMC draws for α, γ ,λ and d. The overparameter-
ization causes the Gibbs chains for these parameters to mix poorly, but in combina-
tion they produce well-behaved chains for the random effects variances.

With parameter expansion
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Fig. 2 Illustration of parameter expansion effect on mixing of the Gibbs sampler
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Table 2 Autocorrelations in Gibbs chains, with and without parameter expansion

Lag: 1 2 3 4 5 6 7 8 9 10

ω1
w/o parameter exp 0.902 0.810 0.726 0.645 0.574 0.511 0.451 0.392 0.342 0.299

w/parameter exp 0.422 0.350 0.288 0.252 0.208 0.177 0.154 0.142 0.132 0.117

ω2
w/o parameter exp 0.783 0.653 0.558 0.484 0.422 0.369 0.324 0.286 0.251 0.225

w/parameter exp 0.563 0.461 0.375 0.326 0.290 0.251 0.222 0.184 0.160 0.148

ω3
w/o parameter exp 0.853 0.756 0.682 0.618 0.572 0.529 0.487 0.450 0.422 0.393

w/parameter exp 0.811 0.711 0.639 0.574 0.520 0.477 0.441 0.417 0.388 0.362

ω4
w/o parameter exp 0.808 0.629 0.439 0.335 0.228 0.162 0.087 0.038 0.008 −0.003

w/parameter exp 0.595 0.399 0.358 0.295 0.198 −0.001 −0.001 −0.001 −0.001 −0.001

7 Epidemiology Application

As a motivating example, we consider data from the Collaborative Perinatal Project
(CPP) conducted between 1959 and 1966. We examine the effect of DDE, a metabo-
lite of DDT, as measured in maternal serum, on pregnancy loss, a binary response
variable. Potential confounding variables include mother’s age, body mass index,
smoking status, and serum levels of cholesterol and triglycerides. Data were col-
lected across 12 different study centers and there is potential for heterogeneity
across centers. We are interested in selecting a logistic mixed effects model relating
DDE levels and pregnancy loss, accounting for heterogeneity among study centers
in those factors that vary in their effects across centers. In addition, inferences on
whether predictors such as DDE vary in their effect is of substantial interest.

We let our binary response variable yi j = 1 indicate pregnancy loss for partici-
pant j in study center i , i = 1, . . . , 12; j = 1, . . . , ni , for 5,389 total participants.
Our covariate vector is X i j = (1, Xi j1, . . . , Xi j5)

′ where Xi j1 is the level of DDE,
and Xi j2, . . . , Xi j5 are the potential confounding variables. All covariates are con-
tinuous and centered at their means, and we let Zi j = X i j , thus considering all
coefficients, including the intercept, for possible heterogeneity among centers.

Priors were chosen as in the simulation example and the Gibbs sampler run for
30,000 iterations after a burning period of 5,000. The Gibbs sampling results in-
dicate that there is no heterogeneity present among study centers and that a fixed
effects model is appropriate. The preferred model, as shown in Table 3, includes
only the intercept, body mass index, and age, as predictors. The posterior means for
all variances are close to zero. A few models with nonzero posterior probability do
contain a random effect. The posterior means for the fixed effect are similar to the
PQL results returned by glmmPQL in R for the full model, shown in Table 4. These
results also show that DDE did not have an appreciable effect on pregancy loss in
the CPP study. The PQL results indicate that DDE had a very small but statistically
significant effect; however, this may be due to bias in the PQL approach. Applying
the BIC criteria to select the best fixed effects model, we obtain the high posterior
probability model shown in Table 3.
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Table 3 Models with highest posterior probability

Prob Model

0.58 X0, Xbmi, Xage
0.16 X0, Xage
0.09 X0, Xbmi, Xage, Xdde
0.05 X0, Xchol, Xbmi, Xage
0.03 X0, Xage, Xdde
0.02 X0, X tg, Xbmi, Xage
0.01 X0, Xbmi, Xage, Zchol
0.01 X0, Xchol, Xage
0.01 X0, Xchol, Xbmi, Xage, Xdde
0.01 X0, Xage, Zbmi

Table 4 Posterior summary of fixed effects in CPP example

PQL 95% CI Mean 95% CI p(βl = 0)

β0 −1.813 (−1.943, −1.700) −1.793 (−1.871, −1.716) 0.000
βtg 0.014 (−0.087, 0.101) 0.000 ( 0.000, 0.000) 0.968
βchol −0.081 (−0.219, −0.001) −0.002 (−0.034, 0.000) 0.932
βbmi −0.138 (−0.229, −0.055) −0.096 (−0.210, 0.000) 0.239
βage 0.295 (0.211, 0.372) 0.279 (0.205, 0.352) 0.000
βdde 0.088 (0.009, 0.189) 0.005 (0.000, 0.067) 0.876

8 Other Models

8.1 Logistic Models for Ordinal Data

This framework can also be adapted to accommodate logistic mixed models with
ordinal response variables yi j ∈ {1, . . . ,C}

logit
(

P(yi j ≤ c|X i j , Zi j ,β, ai , τ )
) = τc − X ′

i jβ − Z′
i j ai , c ∈ {1, . . . ,C},

(11)

where terms in the linear predictor are as defined in (3) and τ = (τ1, . . . , τC−1)
′

where τ1 = 0 for identifiability and −∞ = τ0 < τ1 < · · · < τC = ∞ are
threshold parameters for the ordered categories. Our data augmentation stochas-
tic search Gibbs sampler can be applied to (11) with modifications to truncate wi j
to [τc−1, τc] for yi j = c and to update the threshold parameters τ . Although up-
dating of τ can potentially proceed after augmentation as described in Albert and
Chib (1993), such an approach has a tendency to mix very slowly (Johnson and
Albert, 1999). A modification in which the latent variables {wi j } are integrated
out and a Metropolis-Hastings step is used, yields better results. An alternative,
which allows the baseline parameters τ to be updated jointly from a multivari-
ate normal posterior after augmentation, is to consider a continuation-ratio logit
formulation of the form logit

(

P(yi j = c|yi j ≥ c, X i j , Zi j ,β, ai )
) = X ′

i jβ+Z′
i j ai ,
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instead of (11) (Agresti, 1990). Such formulations characterize the ordinal dis-
tribution in terms of the discrete hazard, so are natural in time to event applica-
tions (Albert and Chib, 2001).

8.2 Probit Models

Logistic models are often preferred over probit models due to the more intuitive
interpretation of their regression coefficients in terms of odds ratios; however, it is
worth noting that our approach for normal models is easily modified to accomplish
model selection for probit mixed models by applying the well-known data aug-
mentation Gibbs sampler described in Albert and Chib (1993). For example, using a
binary response probit model of the form P(yi j = 1) = �(X ′

i jβ+ Z′
i j ai ), we intro-

duce a latent variable vi j such that yi j = 1(vi j > 0) and vi j ∼ N (X ′
i jβ + Z′

i j ai , 1),
yielding a conditional posterior distribution for vi j of N (X ′

i jβ + Z′
i j ai , 1) · {1(vi j >

0)yi j + 1(vi j < 0)(1 − yi j )}. After updating vi j , the MCMC algorithm proceeds as
in the normal case, except that σ 2 = 1. In our simulations this algorithm exhibited
good mixing and convergence properties. This algorithm could also be adapted for
ordinal probit models as described in Sect. 8.1

9 Discussion

The Bayesian framework for model selection with mixed effects models discussed
here is advantageous in that it allows for fixed and random effects to be selected
simultaneously. Additionally, it allows for marginal posterior inclusion probabilities
to be computed for each predictor along with model-averaged coefficient estimates.
Posterior model probabilities can be used to compare models; whereas frequentist
testing for variance components is more limited.

In addition to model selection and averaging, the proposed prior structure and
computational algorithm should be useful for efficient Gibbs sampling for fitting
single mixed effects models. In particular, the prior and computational algorithm
represent a useful alternative to approaches that rely on inverse-Wishart priors for
variance components (e.g. Gilks et al., 1993). There is an increasing realization that
inverse-Wishart priors are a poor choice, particularly when limited prior information
is available. Although, we have focused on LMEs of the Laird and Ware (1982)
type, it is straightforward to adapt our methods for a broader class of linear mixed
models, accommodating varying coefficient models, spatially correlated data, and
other applications (Zhao et al., 2006).

Gibbs sampling chains from random effects model parameters tend to exhibit
slow mixing and convergence. Gelfand et al. (1996) recommend hierarchical cen-
tering for improved convergence and posterior surface behavior. Vines et al. (1994)
also propose a transformation of random effects to improve mixing. A challenge
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in implementing the hierarchically centered model is to efficiently update the cor-
relation matrix in the context of random effects selection where we are interested
in separating out the variances. One solution is proposed by Chib and Greenberg
(1998); however, it is prohibitively slow for more than a couple random effects.
Further work is needed to develop fast approaches that can be easily implemented
and incorporated into software packages.
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Bayesian Variable Selection in Generalized
Linear Mixed Models

Bo Cai and David B. Dunson

1 Introduction

1.1 Background and Motivation

Repeated measures and longitudinal data are commonly collected for analysis in
epidemiology, clinical trials, biology, sociology, and economic sciences. In such
studies, a response is measured repeatedly over time for each subject under study,
and the number and timing of the observations often varies among subjects. In con-
trast to cross-sectional studies that collect a single measurement per subject, lon-
gitudinal studies have the extra complication of within-subject dependence in the
repeated measures. Such dependence can be thought to arise due to the impact of
unmeasured predictors. Main effects of unmeasured predictors lead to variation in
the average level of response among subjects, while interactions with measured pre-
dictors lead to heterogeneity in the regression coefficients. This justification has mo-
tivated random effects models, which allow the intercept and slopes in a regression
model to be subject-specific. Random effects models are broadly useful for mod-
eling of dependence not only for longitudinal data but also in multicenter studies,
meta analysis and functional data analysis.

The chapter by Kinney and Dunson has motivated and described a Bayesian ap-
proach for selecting fixed and random effects in linear and logistic mixed effects
models. The goal of the current chapter is to outline a Bayesian methodology for
solving the same types of problems in the broader class of generalized linear mixed
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models (GLMMs). GLMMs provide an extension of generalized linear models
(GLMs) to accommodate correlation and allow rich classes of distributions through
allowing subject-specific regression coefficients in a GLM (McCulloch and Searle,
2001). Typically these subject-specific coefficients, or random effects, are assumed
to have a multivariate Gaussian distribution a priori, as will be the focus in this
chapter. For a recently proposed approach that allows the random effects distribu-
tion to be unknown, while also allowing fixed and random effects selection, refer to
Cai and Dunson (2007).

Note that GLMMs typically assume that the observations are conditionally
independent given the random effects. However, in marginalizing out the random
effects, a dependence structure is induced in the multiple responses from a subject.
In addition, random effects can be incorporated in GLMs to allow richer classes
of distributions. For example, by incorporating random effects in Poisson or bino-
mial GLMs, one induces over-dispersion. The resulting marginal distributions are
no longer Poisson or binomial, but are instead mixtures of Poisson or binomial
distributions. The form of the link function can also be impacted. For example,
in marginalizing out random effects in a logistic regression model, one induces a
logistic-normal link. Hence, GLMMs are often useful even when there is a single
observation per subject, and modeling of dependence is not of interest. In perform-
ing inferences and variable selection in GLMMs, it is important to keep in mind
the dual role of the random effects in inducing a more flexible class of models for
a single outcome and in accommodating dependence in repeated outcomes. Such a
duality does not occur in normal linear mixed effect models, since one still obtains
a normal linear model in marginalizing out the random effects.

In addition to the complication in interpretation arising from this duality,
GLMMs are certainly more complicated to fit than linear mixed models or GLMs
without random effects. The challenges in fitting GLMMs arise because the mar-
ginal likelihood obtained in integrating out the random effects is not available
analytically except in the normal linear model special case. Hence, one cannot
obtain a simple iterative solution for maximizing the exact marginal likelihood, and
even Bayesian MCMC-based approaches tend to be more difficult to implement
efficiently. There is a vast literature on frequentist and Bayesian methods for ad-
dressing this problem, for example, refer to Schall (1991), Zeger and Karim (1991),
Breslow and Clayton (1993), McGilchrist (1994), and McCulloch (1997).

Such methods allow one to fit a single GLMM and to perform inferences on the
fixed effect regression coefficients. Much of the literature has argued that the fixed
effects are of primary interest, with the random effects incorporated as nuisance pa-
rameters to account for the complication of within-subject dependence. Frequentist
methods for fitting of GLMMs tend to provide only a point estimate for the random
effects covariance, but if this covariance is not of interest, such an estimate is more
than sufficient. However, it is hard to think of a study in which it is only of interest
to assess the effects of the predictors for typical subjects, without having an interest
also in how much they vary in the predictor effects. For example, in assessing the
efficacy of a drug therapy in a clinical trial, is it really the case that interest focuses
only on the average effectiveness of the drug and not on how much this effective-
ness varies among patients? Certainly, clinicians and patients may view a drug very
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differently under the following two scenarios: (A) the drug has no effect or a mild
adverse effect for 50% of the patients and a dramatic beneficial effect for a small
subset of the patients; or (B) the drug has an identical effect for all patients. Scenar-
ios (A) and (B) are distinguished by the magnitude of the random effect variance.

In many applications, the primary interest is in assessing whether the random
effects variance is equal to zero or not. This is often the case in genetic studies in
which one wishes to test whether disease risk varies across families. However, even
beyond such specialized studies, we would argue that the typical scenario faced in
analysis of data with a GLMM is as follows: The study collects data for a number
of different covariates and it is not known with certainty a priori which predictors
should be included in the fixed effects component and which should be included
in the random effects component. Hence, to appropriately allow for uncertainty in
specifying the model, it would be appealing to consider a Bayesian approach for
modeling averaging and selection. In addition, it is typically the case that investi-
gators desire a weight of evidence that a particular predictor is in the fixed and/or
random effects component. Our goal is to describe an approach that simultaneously
searches a potentially large model space for good subsets of predictors to include
in the two components, while also estimating marginal inclusion probabilities and
allowing model-averaged predictions.

1.2 Time to Pregnancy Application

As motivation consider the application to reproductive epidemiology studies of
occupational exposures. To assess the impact of a potentially adverse exposure on
fecundability, the probability of conception in a noncontracepting menstrual cy-
cle, epidemiologists commonly measure time to pregnancy (TTP). In retrospective
studies, TTP is typically defined as the number of menstrual cycles during which
the woman was having intercourse without contraception prior to her most recent
pregnancy.

Because TTP is a discrete event time, one can consider a discrete hazards model
of the form

logit {Pr(Ti = t | Ti ≥ t, xi t , zi t )} = x′
i tβ + z′

i tζ i , (1)

where Ti is the TTP for woman i , xi t and zi t are vectors of predictors that may vary
from cycle to cycle, β are fixed effects regression coefficients, ζ i ∼ N(0,�) are
random effects for woman i , and � is a covariance matrix. Model (1) uses a logistic
mixed effects model to characterize the conditional probability of a pregnancy in the
t th cycle at risk given that the woman did not conceive prior to that cycle. If there
was no unexplained heterogeneity in fecundability after accounting for the measured
predictors, then the random effects could be excluded. In this case, in the absence of
time-varying predictors, TTP is geometrically distributed. Over-dispersion relative
to the geometric distribution allows one to identify the random effects variance even
with a single TTP measurement from a woman.
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Rowland et al. (1992) studied factors related to fecundability in dental assistants.
Study participants completed a demographic and exposure history questionnaire,
while also providing information on the number of menstrual cycles during which
the woman was having noncontracepting sexual intercourse before the most recent
pregnancy. Model (1) could be fitted easily in standard software packages (e.g., SAS
or WinBUGS) if the predictors to be included in the fixed and random effects com-
ponents were known. However, it is of course not known a priori which predictors
should be included, and we would like to investigate which factors vary in their ef-
fects across women. For example, do the effects of aging, recent oral contraceptive
use, and smoking vary?

1.3 Background on Model Selection in GLMMs

If the focus were on selecting the single best GLMM from among the possible can-
didates, one could potentially fit the model for all possible choices of fixed effect
predictors, xi t , and random effects predictors, zi t . One could then apply a standard
criterion, such as the Akaike’s information criterion (AIC) or the Bayesian infor-
mation criterion (BIC). However, it is not clear that these criteria are appropriate in
mixed effects models, as one may need to estimate an effective degrees of freedom
to provide a more appropriate penalty for model complexity. In hierarchical models,
such as GLMMs, the number of parameters is arbitrary, as one can write different
formulations of the same model that have different numbers of parameters.

An additional issue is that one may require a weight of evidence that a particular
predictor is included in the random effects component. This can be addressed by
conducting hypothesis tests of whether the variance of the random effects distribu-
tion is equal to zero. The chapter by Ciprian Crainiceanu considers likelihood ratio
tests in this setting, while the chapter by Daowen Zhang and Xihong Lin consid-
ers score tests. These approaches can be used to obtain p-values for testing whether
variance components are equal to zero.

In the Bayesian literature, Albert and Chib (1997) proposed an approach for
testing whether a random intercept should be included, Sinharay and Stern (2001)
developed a more general approach for calculating Bayes factors for variance com-
ponents testing in GLMMs, and Chen et al. (2003) proposed a class of informa-
tive priors for model selection in GLMMs. These methods focus on comparing two
models at a time, and do not provide a general approach for searching for promising
subsets of candidate predictors.

In the setting of linear mixed models for normal data, Chen et al. (2003) proposed
a Bayesian approach for random effects selection based on using variable selection
priors for the components in a special decomposition of the random effects covari-
ance. Related approaches have been used in graphical (or covariance structure) mod-
eling for multivariate normal data (refer to Wong et al. (2003); Liechty et al. (2004)
for recent references). Bayesian variable selection in conventional GLMs has also
received a lot of interest in the literature. Raftery (1996) proposed an approximate
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Bayes factor approach, Meyer and Laud (2002) considered predictive variable se-
lection, Nott and Leonte (2004) developed an innovative sampling algorithm and
Ntzoufras et al. (2003) developed methods for joint variable and link selection.

Cai and Dunson (2006) described a Bayesian approach to the problem of simul-
taneous selection of fixed and random effects in GLMMs. In this chapter, we sum-
marize this work and provide more details of the approach. We first choose variable
selection-type mixture priors for the fixed effects regression coefficients and the
parameters in a special Cholesky decomposition of the random effects covariance
proposed by Chen and Dunson (2003). These priors allow fixed effects to drop out
of the model by placing probability mass on βl = 0. In addition, following a re-
lated approach to Albert and Chib (1997) and Chen and Dunson (2003) (refer also
to the Kinney and Dunson chapter), we assign positive probability to random effects
having 0 variance to effectively move between the full model with random effects
for every predictor and submodels excluding one or more random effects. This prior
specification has convenient computational properties, which is important, given the
potentially large number of models under consideration.

Outside of simple models, it is typically the case that Bayesian model selec-
tion requires the calculation of normalizing constants, which do not have closed
forms. Unfortunately, typical MCMC algorithms bypass calculation of normalizing
constants, so are not appropriate. In addition, MCMC-based methods for calculat-
ing normalizing constants tend to be highly computationally-intensive, even when
considering a single model instead of a high-dimensional list of models. For these
reasons, many approaches rely on analytic approximations to intractable integrals
using Laplace and other approaches based on Taylor series. The Cai and Dunson
(2006) approach reviewed in this chapter relies on stochastic search variable selec-
tion (SSVS) (George and McCulloch (1993)) implemented with MCMC, combined
with limited analytic approximations. Similar ideas were implemented previously
by Raftery et al. (1996) in the context of model averaging in survival analysis, and
Chipman et al. (2002, 2003) in implementing analyses of treed GLMs.

The remainder of this chapter is organized as follows. Section 2 reviews the
specification of a GLMM, and describes a Bayesian formulation of the model se-
lection problem. Section 3 outlines the SSVS algorithm for posterior computation
and model search. Section 4 considers simulation examples as a proof of concept
and illustration. Section 5 applies the approach to the Rowland et al. (1992) time to
pregnancy application, and Sect. 6 contains a discussion.

2 Bayesian Subset Selection in GLMMs

2.1 Generalized Linear Mixed Models

For observation j ( j = 1, . . . , ni ) from subject i (i = 1, . . . , n), let yi j denote the
response variable, let xi j denote a p × 1 vector of candidate predictors, and let zi j
denote a q ×1 vector of candidate predictors. Note that it is important to distinguish
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candidate predictors from predictors that are included in the model. Here, we will
follow the approach of imbedding all of the models under consideration in a full
model that contains all of the candidate predictors. Then, by choosing a prior that
allows the fixed effect coefficients to have values exactly equal to zero, we allow
each of the fixed effect candidate predictors to potentially drop out of the model. In
addition, by choosing a prior that allows the random effect variances to be exactly
zero, we allow predictors to drop out of the random effect component.

Reviewing the GLMM specification, note that the elements of yi = (yi1, . . . ,
yi,ni )

′ are modeled as conditionally-independent random variables from a simple
exponential family

π(yi j | xi j , zi j , ζ i ) = exp
{

yi jθi j − b(θi j )

ai j (φ)
+ c(yi j , φ)

}

, (2)

where θi j is canonical parameter related to the linear predictor ηi j = x′
i jβ + z′

i jζ i
with a p × 1 vector of fixed effects regression coefficients β, and a q × 1 vector of
subject-specific random effects ζ i ∼ Nq(0,�), φ is a scalar dispersion parameter,
and ai j (·), b(·), c(·) are known functions, with ai j (φ) typically expressed as φ/wi j ,
where wi j is a known weight.

Note that the conditional-independence assumption implies that the dependence
among the different observations from subject i arises entirely from the shared
dependence on the random effects. In marginalizing out the random effects, one
induces a predictor-dependent correlation structure in the multivariate response vec-
tor, yi . For this reason, GLMMs provide a very useful class of models for modeling
of multivariate non-normal data. In addition, in selecting predictors to include in
the random effects component, we are also simultaneously selecting a covariance
structure among the multiple outcomes.

Let y = (y′
1, . . . , y

′
n)

′, yi = (yi1, . . . , yini )
′, X = (X′

1, . . . ,X
′
n)

′, Xi =
(xi1, . . . , xini )

′, Z = diag(Z1, . . . ,Zn), Zi = (zi1, . . . , zini )
′, and ζ =

(ζ ′
1, . . . , ζ

′
n)

′. The joint distribution of responses y and random effects ζ condi-
tionally on the predictors X and Z is of the form

π(y, ζ | β, φ,�,X,Z) = exp
[{

y′h(η)− b′ (h(η)) 1N
}

/a′ + c′(y, φ)1N
]

π(ζ |�),
(3)

where η = Xβ + Zζ and 1N is an N × 1 vector of ones, where N = ∑n
i=1 ni .

In practice, one needs to choose a particular exponential family distribution and
link function to complete an explicit specification of the model. One aspect of
model uncertainty in GLMMs is choice of the distribution and link function. How-
ever, in this chapter, we assume that both these components are known to simplify
exposition.

Our focus is on Bayesian approaches for accounting for uncertainty in the ele-
ments of xi j and zi j to be included in the model, as well as the covariance structure
in the ζ i ’s. As discussed in detail in the chapter by Kinney and Dunson, a Bayesian
specification of the model uncertainty problem requires one to choose a prior on the
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model space, corresponding to prior probabilities for each of the models in the list,
along with priors for the coefficients within each of the models. We let M denote
the list of models corresponding to all possible subsets of xi j and zi j . In addition,
we let M ∈ M be an index for a single model in M.

With this notation in place, we let x(M)i j , z(M)i j , β(M), ζ
(M)
i , and �(M) denote the

terms for model M , which is specified as η(M)i j = x(M)
′

i j β(M) + z(M)
′

i j ζ
(M)
i , with the

dispersion parameter, link function, and distributional form assumed common to the
different models M ∈ M. The predictors x(M)i j consist of a pM ≤ p subset of xi j ,

while z(M)i j is a qM ≤ q subset of zi j . In addition, ζ
(M)
i ∼ N(0,�(M)) is a qM × 1

vector of random effects, with qM × qM covariance matrix �(M), which can have
zero off-diagonal elements corresponding to conditional independence relationships
in the random effects included.

The model space, M, includes all possible combinations of subsets of xi j
and zi j and zero off-diagonal elements of the random effects covariance ma-
trices corresponding to these subsets. Hence, the total number of models is
2p ∑q

k=0
(q

k

)

2
1
2 (q−k)(q−k−1). Clearly, the number of models under consideration

grows extremely fast with p and q, so that it would be infeasible to run a separate
MCMC analysis for each model in the list even for a modest number of candidate
predictors. For example, even with p = q = 5, we have 46,400 models in M.

2.2 Description of Approach

Our goal is to select good models from among the different possibilities for M . To
attempt to identify good models quickly from among the potentially enormous num-
ber of possible models under consideration, we apply a stochastic search variable
selection approach. This algorithm sequentially modifies the variables included in
each component through MCMC sampling. For the fixed effects component, we fol-
low the common convention of choosing mixture priors with point mass at zero. For
the random effects, a more innovative and involved approach is necessary. In partic-
ular, we propose to induce zero variance components and zero correlations between
random effects through zeroing coefficients in a carefully chosen decomposition of
the random effects covariance.

In Bayesian analyses, the standard prior for a covariance matrix is the Wishart
prior. However, it is widely known that the Wishart prior is very inflexible, al-
lowing only a single degrees of freedom for all elements and not allowing zero
off-diagonal elements. Because the constraints on a covariance matrix limit the flex-
ibility with which one can consider direct modifications to the Wishart prior, a com-
mon trick is to induce a prior for a covariance matrix through priors for parameters
in a decomposition. For example, Daniels and Zhao (2003) used a special Cholesky
decomposition to model changes in the random effects covariance over time. A re-
lated decomposition approach was considered by Daniels and Pourahmadi (2002).
Daniels and Kass (1999) instead considered spectral decomposition. Wong et al.
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(2003) proposed a Bayesian method for estimating an inverse covariance matrix
for normal data using a prior that allows the off-diagonal elements of the inverse
covariance matrix to be zero.

Chen and Dunson (2003) proposed an alternative decomposition, which has some
appealing characteristics. For example, the decomposition results in a condition-
ally linear regression model, which allows one to choose a conditionally-conjugate
prior. This conjugacy is important in allowing closed form calculation of conditional
probabilities of including a predictor. Such probabilities are required in implement-
ing SSVS algorithms. Unlike Chen and Dunson (2003) and Kinney and Dunson
(2007), this chapter will allow zero off-diagonal elements in the random effects co-
variance matrix. This is accomplished through variable selection mixture priors for
parameters in the decomposition that control correlations among the random effects.
Effectively, the prior allows movement between models of different dimension, with
the covariance matrix of the random effects in each of these models being positive
semidefinite. The details are given Sect. 2.3.

2.3 Reparameterization and Mixture Prior Specification

The random effects covariance matrix � may be factorized as

� = ���′�,

where � = diag(λ1, . . . , λq) is a diagonal matrix, with diagonal elements λk ≥ 0
for k = 1, . . . , q, and � denotes the lower triangular matrix

⎛

⎜

⎜

⎜

⎝

1
γ21 1
...

...
. . .

γq,1 γq,2 · · · 1

⎞

⎟

⎟

⎟

⎠

.

From straightforward algebra, this decomposition of the random effects covariance
implies that the (k, l) element of the matrix � has the following expression:

σkl = σlk = λkλl

(

γr2,r1 +
r1−1
∑

s=1

γksγls

)

, for k, l = 1, . . . , q, (4)

where r1 = min(k, l), r2 = max(k, l). Hence, the λs are row and column-specific
multipliers, while the γ ’s control the size of the off-diagonal elements of �. For
example, in the special case in which all the lower triangular elements of �’s equal
zero, � is a diagonal matrix with λ2

k , for k = 1, . . . , q the elements along the
diagonal. One obtains a positive semidefinite � when λk > 0 for all k.

Because λk serves as a multiplier on all the elements in the kth row and column
of �, it is clear that one effectively excludes the kth random effect from the model
when λk = 0, as in this case the random effects variance will equal zero. Note
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that once all the rows and columns corresponding to null random effects having
zero variance are excluded, one obtains a positive semidefinite covariance matrix
for those random effects included in the model. In this way, random effects are
allowed to effectively drop out of the model.

Recall that, to complete a Bayesian formulation of the model selection prob-
lem, we need to choose prior probabilities for each M ∈ M, along with prior dis-
tributions for the coefficients within each model. Assuming that a common prior
is assumed for the parameters that belong to every model in the list, such as
the exponential family dispersion parameter, we focus on the choice of prior for
λ = (λ1, . . . , λq)

′ and γ = (γmk : m = k + 1, . . . , q; k = 1, . . . , q − 1)′. Each
model M ∈ M is distinguished by the subsets of λ and γ having zero elements.
Hence, by choosing a single mixture prior for λ and γ that allows for zero elements,
we simultaneously specify a prior over the model space M and for the coefficients
within each model.

To drop out the off-diagonal elements in the covariance matrix when a random ef-
fect is excluded, the support of the prior for γ is defined as Rλ = {γ : γmk = γkl =
0 if λk = 0, for k = 1, . . . , q, 1 ≤ l < k < m ≤ q, l, m ∈ N }. Since the covari-
ance matrix � is a function of λ and γ , the prior density of � is induced through the
priors for λ and γ , π(λ, γ ) = π(γ |λ)π(λ). The prior for λ is

∏q
k=1 π(λk), where

π(λk) is chosen as mixtures of point masses at zero and a truncated normal density

π(λk) = π1,k01(λk = 0)+ (1 − π1,k0)1(λk > 0)
N(λk;µ1,k0, σ

2
1,k0)

F(0;−µ1,k0, σ
2
1,k0)

, (5)

where π1,k0, µ1,k0 and σ 2
1,k0 are hyperparameters specified by investigators, and

F(·) is the normal distribution function. We refer to prior (5) as a zero-inflated posi-
tive normal density, ZI-N+(λk;π1,k0, µ1,k0, σ

2
1,k0). The prior probability of the kth

random effect being excluded is π1,k0 = Pr(H0k : λk = 0). The prior probability
of the global null hypothesis of homogeneity is Pr(H0 : λ1 = · · · = λq = 0) =
∏q

k=1 π1,k0, which implies that all random effects are excluded from the model.
To allow fixed effects predictors to effectively drop out of the model, we also

choose a zero-inflated normal density, ZI-N(βv |π2,v0, µ2,v0, σ
2
2,v0), as the prior for

βv , for v = 1, . . . , p. The prior probability of the vth predictor being excluded
is then π2,v0 = Pr(βv = 0). Similar mixture priors have been widely used in the
Bayesian variable selection literature (cf. Geweke, 1996).

We also allow zero off-diagonal elements in the covariance matrix by choosing
mixture priors with masses at 0 for the γ ’s. We choose a zero-inflated normal den-
sity, ZI-N(γmk;π3,mk,0, µ3,mk,0, σ

2
3,mk,0), with the constraint related to λ, as the

prior for γmk , for m = k + 1, . . . , q and k = 1, . . . , q − 1. This mixture prior fixes
the prior probability of γmk = 0 to be π3,mk,0. In this way, the correlations between
the random effects can be zero or nonzero. Explicitly, from (4), the correlation co-
efficient between the mth and the kth random effects is

ρ(ζim, ζik; γ ) = γmk + ∑k−1
s=1 γksγms

√

(

1 + ∑m−1
s=1 γ

2
ms

) (

1 + ∑k−1
s=1 γ

2
ks

)

.
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So the prior probability that the two random effects are uncorrelated is

Pr {ρ(ζim, ζik) = 0} = Pr(γm1γk1 = · · · = γm,k−1γk,k−1 = γmk = 0)

= π3,mk,0

k−1
∏

s=1

{

π3,ms,0(1 − π3,ks,0)+ π3,ks,0
}

.

Note that the expression for the correlation coefficients, ρ(ζim, ζik), for any two
random effects that have nonzero variance (λm > 0, λk > 0) does not involve λ.

Even though we use the λs and γ s in specifying the prior and in posterior compu-
tation, inferences should be based on the random effect variances and correlations,
which are easily calculated from the λs and γ s. To obtain samples from the prior
distribution of �, one can simply draw from the prior of λ, γ and then calculate the
corresponding values of �. Similarly to obtain samples from the posterior distribu-
tion of �, one can rely on samples from the posterior of λ, γ .

To choose the values for the hyperparameters, we suggest an informative spec-
ification. For example, one could set the point mass probabilities equal to 0.5 to
allow equal probability of inclusion or exclusion, while centering the priors for the
coefficients on zero, and choosing the prior variance to assign high probability to a
wide range of plausible values for the random effects covariance values. However,
it is important to avoid choose very high variance, diffuse but proper priors. Diffuse
priors are not recommended for Bayesian model selection, because the higher the
prior variance the more the null model is favored. Default prior selection in GLMMs
in an interesting area for future research.

2.4 An Approximation

Our goal is to implement a stochastic search variable selection (SSVS) algorithm
for simultaneously exploring the model space, M, while also obtaining draws
from the posterior distributions for the parameters. If we had a linear mixed effects
model, then the steps in the SSVS algorithm, obtained from the specification in
Sects. 2.1–2.3, would all involve sampling from standard distributions. However,
in GLMMs more broadly, this is no longer the case, and we cannot apply standard
MCMC algorithms for updating the parameters in a single GLMM directly. The
problem occurs in calculating the conditional posterior distributions for a single
element of λ or γ . In particular, due to the use of the variable selection mixture
prior, the conditional posterior is also a mixture of a point mass at zero and a con-
tinuous distribution. Calculation of the conditional posterior probability allocated
to the continuous component involves calculating a marginal likelihood, which is
not available in closed form.

In particular, it is necessary to calculate the marginal likelihood of y conditional
on the parameters by integrating out the random effects

L(β, φ,�; y,X,Z) =
∫

�q
π(y|β, φ, ζ ,X,Z)π(ζ |�)dζ . (6)
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Let l(β, φ,�; y) = log L(β, φ,�; y), suppressing the conditioning on X and Z as
shorthand. By far the most commonly-used and successful approach for analytically
approximating marginal likelihoods is the Laplace approximation (Solomon and
Cox, 1992; Breslow and Clayton (1993); Lin, 1997; Chipman et al., 2003, among
others). Recall that � depends on λ, γ through expression (4). In addition, when
λ = 0, we have � = 0, which implies that ζ ≡ 0 so that L(β, φ,�; y,X,Z) =
π(y|β, φ,X), which is the likelihood for a GLM with no random effects.

In the general case, Cai and Dunson (2006) proposed a second-order Taylor series
approximation to (6). In particular, start by approximating the first integrand of (6)
by taking a second-order Taylor series expansion at E(ζ ) = 0, the mean of the
random effects

L(β, φ, ζ ; y) ≈ L(β, φ, ζ = 0; y)+ ∂L(β, φ, ζ ; y)
∂ζ

∣

∣

∣

∣

ζ=0
ζ + 1

2
ζ ′ ∂2L(β, φ, ζ ; y)

∂ζ∂ζ ′
∣

∣

∣

∣

ζ=0
ζ

= L(β, φ, ζ = 0; y)
{

1 + ∂l(β, φ, ζ ; y)
∂η

∣

∣

∣

∣

ζ=0
Zζ

+1
2
(Zζ )′

([

∂l(β, φ, ζ ; y)
∂η

∂l(β, φ, ζ ; y)
∂η′

+DG
{

∂2l(β, φ, ζ ; y)
∂η∂η′

}]∣

∣

∣

∣

ζ=0

)

Zζ

}

,

where η = Xβ + Zζ , and DG(A) denotes a diagonal matrix with diagonal entries
of A. We note that (6) is actually the expectation of L(β, φ, ζ ; y) with respect to ζ .
Thus, the approximation ˜L(β, φ,�; y) can be expressed as

˜L(β, φ,�; y)= L0

{

1+ 1
2

tr
(

Z′
[

∂l(β, φ, ζ ; y)
∂η

∂l(β, φ, ζ ; y)
∂η′ + DG

{

∂2l(β, φ, ζ ; y)
∂η∂η′

}]∣

∣

∣

∣

ζ=0
Z�∗

)}

,

(7)

where L0 = L(β, φ, ζ = 0; y), which denotes the likelihood for the ordinary GLM,
tr(A) denotes the trace of matrix A, and �∗ = In ⊗ �, the Kronecker product of In
and �. The second term in (7) involves the first and second derivative calculations.
Thus, the approximation (7) is tractable, since the first and second derivatives of
l(β, φ, ζ |y) are easily obtained as follows:

∂l(β, φ, ζ |y)
∂η

=
{

y − ∂ψ (h(η))
∂h(η)

}

∂h(η)
φ∂η

,

∂2l(β, φ, ζ |y)
∂η∂η′ =

{

y − ∂ψ (h(η))
∂h(η)

}

∂2h(η)
φ∂η∂η′ − ∂2ψ (h(η))

φ∂h(η)∂h(η′)
∂h(η)
∂η

∂h(η)
∂η′ .

Then, in general, the approximation ˜L(β, φ,�; y) may be expressed as

L0

{

1 + 1
2φ

( q
∑

k=1

σkk

n
∑

i=1

B(1)i,k + 2
q−1
∑

k=1

q
∑

m=k+1

σmk

n
∑

i=1

B(2)i,m,k

)}

, (8)
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where B(1)i,k and B(2)i,m,k are functions of β related to response variable y, fixed effects
predictors X, and the random effects predictors Z, and vary for particular GLMMs.
In detail, the approximation (8) may be shown as

L0

[

1 + 1
2φ

{ q
∑

k=1

λ2
k

(

1 +
k−1
∑

s=1

γ 2
ks

) n
∑

i=1

B(1)i,k + 2
q−1
∑

k=1

q
∑

m=k+1

λkλm

(

γmk +
k−1
∑

s=1

γksγms

) n
∑

i=1

B(2)i,m,k

}]

.

(9)

This form gives a general analytically tractable form for GLMMs which simpli-
fies the subsequent computation. The general result can be applied in a straightfor-
ward manner to any particular special case (e.g., logistic regression, Poisson, log
linear models, etc). The detailed marginal distributions for normal linear, logistic
regression and Poisson models are provided in Appendix.

We can obtain a simpler approximation to (9) under the assumption that the el-
ements of the random effects covariance are small enough so that the assumption
exp(σ ) ≈ 1 + σ is warranted. In this case, the approximation becomes

L0 exp
{

1
2φ

( q
∑

k=1

σkk

n
∑

i=1

B(1)i,k + 2
q−1
∑

k=1

q
∑

m=k+1

σmk

n
∑

i=1

B(2)i,m,k

)}

. (10)

This expression is simpler to calculate rapidly, so may have advantages in certain
cases.

3 Posterior Computation

3.1 General Strategies

Relying on the approximations proposed in Sect. 2.4 only when needed to approxi-
mate marginal likelihoods integrating out random effects, this section describes the
steps involved in the Cai and Dunson (2006) SSVS algorithm. For binomial and
Poisson likelihoods, the scale or dispersion parameter is φ = 1. For normal lin-
ear models, φ is σ 2, and we follow common practice in choosing a gamma prior,
G(c0, d0), for σ−2. The SSVS algorithm iteratively samples from the full conditional
distributions of each of the parameters. For β, λ and γ , these posteriors will have
a mixture structure consisting of point mass at 0 and nonconjugate distributions. In
calculating the point mass probabilities, we rely on the approximation described in
Sect. 2.4. To sample from the nonconjugate distribution, we use adaptive rejection
Metropolis sampling (Gilks et al., 1995, 1997).

In general, if a parameter θ has a mixture prior of form π(θ) = π01(θ = 0) +
(1 − π0)1(θ �= 0)p(θ), and the likelihood is nonconjugate (e.g., the GLMM with
logit link and log link), directly sampling for θ from its full conditional distribution
is rather difficult due to the intractable marginal integral for θ in calculating π̂ . To
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sample θ more efficiently, one could introduce two latent variables δ and θ̃ which
are linked to θ as θ = (1 − δ)θ̃ , where δ ∼ Bernoulli(π0) and θ̃ ∼ p(θ̃). Thus, one
can sample θ through the following steps:

• Update δ from its full conditional distribution Bernoulli(π̃), where

π̃ = π0

π0 + (1 − π0)L(θ = θ̃ , �)/L(θ = 0,�)

with L(·) denoting the likelihood and � the other parameters.
• Update θ̃ for θ from its full conditional distribution L(θ̃ ,�)p(θ̃) if δ = 0, and

let θ = 0 otherwise.

Let δ1,k denote an indicator variable which is one if the kth random effect is excluded
(H0k) and zero if the random effect is included (H1k). Then, it is clear that the
prior specification in (5) can be induced through letting λk = (1 − δ1,k)λ̃k , where

δ1,k
ind∼ Bernoulli(π1,k0) and λ̃k

ind∼ N+(µ1,k0, σ
2
1,k0), with N+(µ, σ 2) denoting the

N (µ, σ 2) distribution truncated to fall within �+. Similarly, the priors for βv and
γmk can be induced through the specifications

βv = (1 − δ2,v )β̃v , δ2,v
ind∼ Bernoulli(π2,v0), β̃v

ind∼ N(µ2,v0, σ
2
2,v0),

γmk = (1 − δ3,mk)γ̃mk, δ3,mk
ind∼ Bernoulli(π3,mk), γ̃mk

ind∼ N(µ3,mk,0, σ
2
3,mk,0).

In each of these cases, we simply induce a mixture prior for the coefficient through
multiplying a latent indicator that the coefficient equal zero by the latent value of
the coefficient if it is nonzero.

3.2 Updating Parameters

Based on the preceding settings, the SSVS algorithm alternates between steps for
updating each of the unknowns as follows:

Step 1: Update λ̃k . We first sample δ1,k from its full conditional posterior distrib-
ution, Bernoulli (π̃1,k), where π̃1,k = π1,k0

π1,k0+(1−π1,k0)C1,k
,

C1,k = ˜L(β, λk = λ̃k,λ(−k), γ , φ; y)
˜L(β, λk = 0,λ(−k), γ , φ; y)

,

and λ(−k) = (λ1, . . . , λk−1, λk+1, . . . , λq)
′. If δ1,k = 1, then let λk = 0

and exclude the kth random effect. Otherwise, we sample λ̃k for λk from
the conditional posterior given inclusion, which is proportional to 1(λ̃k > 0)
˜L(β, λ̃k,λ(−k), γ , φ; y) N(λ̃k;µ1,k0, σ

2
1,k0).

Step 2: Update β̃v . We first sample δ2,v from its full conditional posterior distrib-
ution, Bernoulli (π̃2,v ), where π̃2,v = π2,v0

π2,v0+(1−π2,v0)C2,v
,
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C2,v =
˜L(β̃v ,β(−v),λ, γ , φ; y)

˜L(β̃v = 0,β(−v),λ, γ , φ; y)
,

and β(−v) = (β1, . . . , βv−1, βv+1, . . . , βp)
′. If δ2,v = 1, then let βv = 0. Other-

wise, we sample β̃v for βv from from the conditional posterior given inclusion,
which is proportional to ˜L(β̃v ,β(−v),λ, γ , φ; y)N(β̃v ;µ2,v0, σ 2

2,v0).
Step 3: Update γ̃mk(m > k). We first sample δ3,mk from its full conditional

posterior distribution, Bernoulli (π̃3,mk), where π̃3,mk = π3,mk,0
π3,mk,0+(1−π3,mk,0)C3,mk

,

with C3,mk = ˜L(β,λ, γ̃mk, γ (−mk), φ; y) /˜L(β,λ, γ̃mk = 0, γ (−mk), φ; y),
where γ (−mk) = (γm′k′ : m′ = k′ + 1, . . . , q; k′ = 1, . . . , k − 1, k +
1, . . . , q − 1)′. If δ3,mk = 1, then let γmk = 0. Otherwise, we sample γ̃mk for
γmk from from the conditional posterior given inclusion, which is proportional
to ˜L(β,λ, γ̃mk, γ (−mk), φ; y)N(γ̃mk;µ3,mk,0, σ

2
3,mk,0). However, if λm = 0 or

λk = 0, γmk = 0 according to its constraint related to λ.
Step 4: Update σ−2. In the case of identity link, φ = σ 2. We sample σ−2 from its

full conditional distribution, G(σ−2; c0, d0)˜L(β,λ, γ , σ−2; y).

Samples from the joint posterior distribution of the parameters are generated by
repeating these steps for a large number of iterations after apparent convergence. In
general, there are no explicit forms for the full conditionals of the parameters based
on the proposed approximation. However, when (10) holds, the more explicit full
conditional posterior distributions for λ̃k , γ̃mk and σ−2 can be derived from the joint
posterior distribution as follows:

• Update λ̃k , k = 1, . . . , q from its full conditional distribution, which is propor-
tional to

1(λ̃k > 0)C1,kN(λ̃k;µ1,k0, σ
2
1,k0),

where

C1,k = exp

⎡

⎣

λ̃k

2φ

n
∑

i=1

⎧

⎨

⎩

λ̃k

(

1 +
k−1
∑

s=1

γ 2
ks

)

B(1)i,k + 2
q

∑

t=1,t �=k

λt

(

γw(t,k) +
r−1
∑

s=1

γksγts

)

B(2)i,w(t,k)

⎫

⎬

⎭

⎤

⎦

with r = min(t, k), γw(t,k) equals γkt if t < k and γtk otherwise, and B(2)i,w(t,k)

denotes B(2)i,k,t if t < k and B(2)i,t,k otherwise.
• Update γ̃mk for m > k from its full conditional distribution which is propor-

tional to

exp

⎧

⎨

⎩

λm γ̃mk

φ

n
∑

i=1

⎛

⎝

1
2
λm γ̃mk B(1)i,m +

q
∑

t=k,t �=m

λtγtk B(2)i,w(t,m)

⎞

⎠

⎫

⎬

⎭

N
(

γ̃mk;µ3,mk,0, σ
2
3,mk,0

)

.

• Update σ−2, if φ = σ 2, from the full conditional distribution

G
(

c0, d0 − log
{

˜L(β,λ, γ , σ−2; y)/L0

})

.
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By varying the elements of λ, β and γ that are assigned 0 values, the algorithm
effectively generates samples from the posterior distribution of M . As in SSVS algo-
rithms for linear regression, we do not visit all the possible models in M, since this
number is typically enormous. Instead, by stochastically making local changes to
the model based on (approximated) conditional model probabilities, we tend to visit
models with relatively high posterior probability. However, for very large model
spaces, there is no guarantee that we will visit the best model in M. In addition,
there may be a large number of models which have similar posterior probability.
Hence, inferences are often based on marginal posterior probabilities of excluding
a particular predictor from the fixed and/or random effects components.

3.3 Calculation of Quantities

Posterior model probabilities can be estimated by averaging indicator variables
across iterations collected after apparent convergence. For example, to estimate
the posterior probability of the kth random effect being excluded, one can sim-
ply add up the number of iterations for which λk = 0 and divide by the total
number of iterations. An alternative method is to use a Rao–Blackwell estimator
̂Pr(λk = 0|data) = 1

S
∑S

s=1 π̃
(s)
1,k , where π̃ (s)1,k is the value of π̃1,k at iteration s, for

s = 1, . . . , S. This estimator is potentially more efficient. The same approach can
be used to calculate posterior probabilities of excluding predictors from the fixed
effect component. To estimate the posterior probability that two random effects are
uncorrelated given that they are both in the model (e.g. σmk = 0), one can use the
following estimator:

̂Pr(σmk = 0|λm > 0, λk > 0, data) =
∑

s:λm>0,λk>0 1
{

ρ(ζim, ζik; γ (s)) = 0
}

∑S
s=1 1(λm > 0, λk > 0)

,

so that we calculate the proportion of samples for which the random effects are un-
correlated from among the samples for which both random effects are in the model.

Note that, in allowing the elements of � to have values exactly equal to zero,
we obtain a shrinkage estimator of the random effects covariance. This estimator
should have lower variance than typical estimators for the random effects covari-
ance, particularly when the number of candidate random effects is moderate to large.
However, the theoretical properties of shrinkage estimators of this form remain to
be established.

It is important to note that typical ideas of MCMC convergence cannot be realis-
tically applied when the MCMC algorithm is required to simultaneously search over
a very high-dimensional model space, while also obtaining draws from the posterior
for the parameters within each model. Simply and honestly put, when there are hun-
dreds of thousands or even millions of models under consideration, we have no hope
whatsoever of obtaining proper convergence, so that the MCMC draws can be in-
terpreted as samples from the target distribution corresponding to the joint posterior
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distribution. Typical implementations of SSVS will visit a very small fraction of
the models in the list if the number of models in the list is very large. Hence, we
are attempting to estimate posterior model probabilities for a large number of mod-
els that have not even been visited. Nonetheless, SSVS algorithms tend to rapidly
identify good models, and marginal inclusion probabilities for the predictors tend
to be high for important predictors and robust across multiple chains started from
different locations in M. This warning is just to note that the Bayesian approach is
very useful in this context, but does not magically provide a perfect solution to the
high-dimensional model uncertainty problem.

4 Simulation Examples

4.1 Simulation Setup

As a proof of concept to assess the behavior of the approach, we carried out a sim-
ulation study. Because the SSVS approach is computationally expensive even for a
single data set, it was not feasible to run a full simulation study to assess frequentist
operating characteristics, such as type I error rates, power, bias in parameter esti-
mation, and efficiency. Instead, we ran a small number of simulations under each of
a variety of cases involving different random effects covariance structure from the
GLMM with identity link, logit link, and log link.

We considered 100 subjects, each of which has six observations. The numbers
of candidate predictors in the two components, p and q, are chosen as p = q =
3, 5 or 8. The covariates are xi j = (xi j1, . . . , xi jp)

′, where xi j1 = 1 and xi jk ∼
Bernoulli(0.5), for i = 1, . . . , 100, j = 1, . . . , 6, k = 2, . . . , p. Let zi j = xi j ,
β(−2) ∼ N(0, I), β2 = 0, and ζ i = (ζi1, . . . , ζiq)

′ ∼ N(0,�), where we designed
� = ���′� with three different structures:

(1) λ = (1.2, 0.4, 0.6)′ and γ = (0.4, 0.5, 0.3)′, implying that all three random
effects are included in the model.

(2) λ = (0.2, 0, 0.7, 0, 0.5)′ and γ = (0, 0.4, 0, 0, 0, 0, 0.8, 0, 0.1, 0)′, implying
that the second and the fourth random effects are excluded from the model.

(3) λ = (0.5, 0.8, 0.9, 0.2, 0.1, 0.1, 0.6, 0)′ and γ = (0.3, 0.6, 0.5, 0.4, 0.2, 0.1,
0.2, 0.3, 0.4, 0.3, 0.6, 0.1, 0.2, 0.1, 0.8, 0.3, 0.4, 0.8, 0.6, 0.3, 0.2, 0, 0, 0, 0, 0,
0, 0)′, implying that the last random effect is excluded from the model.

The corresponding covariance matrices for random effects are shown in the first
row in Fig. 1. For the GLMM with identity link, yi j ∼ N(x′

i jβ + z′
i jζ i , σ

−2) with
σ−2 = 2. For the GLMM with logit link, yi j ∼ Bernoulli(πi j ) with logit(πi j ) =
x′

i jβ + z′
i jζ i . For the GLMM with log link, yi j ∼ Poisson(λi j ) with log(λi j ) =

x′
i jβ + z′

i jζ i .
We chose the prior distribution for λk as ZI-N+(λk;π1,k0, 0, 10). The prior distri-

butions for the elements of γ are chosen to be mixture priors, ZI-N(γmk;π3,u0, 0, 1),
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Fig. 1 Image plots of the true and estimated random effects covariance matrices for simulated
data under the identity link, logit link and log link with the number of candidate random effect
predictors being 3, 5 and 8. The darker the color appears, the larger the value of the element is,
with the white color corresponding to zero

with the constraint related to λ. A mixture prior distribution for βv is chosen
as ZI-N(βv ;π2,k0, 0, 10). A diffuse prior for parameter σ−2 is chosen to be
G(0.08, 0.08). To study the effects of the prior probabilities of λk = 0, βv = 0
and γmk = 0 on the estimated posterior probabilities, we consider 0.2, 0.5, 0.8 for
these prior probabilities.

For each simulated data set and choice of prior, we ran the Gibbs sampling algo-
rithm described in Sect. 3 for 20,000 iterations after a 2,000 burn-in. The diagnostic
tests were carried out by using Geweke (1992) and Raftery and Lewis (1992), which
showed rapid convergence and efficient mixing. Note that this apparent good per-
formance in terms of convergence and mixing is somewhat counter to our warning
at the end of Sect. 3. A sample of size 4,000 was obtained by thinning the MCMC
chain by a factor of 5. For each simulated data set, we calculated (a) the poste-
rior probabilities for the possible submodels under each link; and (b) the estimated
posterior means and the 95% credible intervals for each of the parameters.
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We ran five simulations with different seeds for each case. Sensitivity of the
results to the prior specification was assessed by repeating the analyses with the
following different hyperparameters: (a) priors with variance/2; (b) priors with
variance × 2; and (c) priors with moderately different means. Although we do not
show details, inferences for all models are robust to simulated dataset with different
seeds and the prior specification. The ranges in Table 2 illustrate this robustness.

4.2 Results

Figure 1 displays image plots of the true covariance matrices for random effects
corresponding to the simulated data and the estimated covariance matrices under
each link. In particular, the final column contains the true covariance matrix, with
white corresponding to zero or low values of the covariance parameter and darker
shades corresponding to high values. The other columns show the estimated poste-
rior means in the simulation examples under log, logistic and identity link functions
for Poisson, binomial and normal data, respectively. It is clear from these plots that
we obtained an accurate estimate of the covariance matrix in each case. In addition,
the estimates from the sensitivity analyses that varied the prior inclusion proba-
bilities were similar, as were results for each of replicates. These results provide
support for our approach as a method for obtained an accurate shrinkage estimator
of the random effects covariance matrix.

Focusing on the results for the logistic mixed effects regression simulations,
Table 1 presents posterior summaries of the fixed effect regression parameters and

Table 1 Posterior estimates of the parameters for the second simulation with the logit link

Parameter True value Mean SD 95% HPD interval

β1 −0.02 0.010 0.120 (−0.231, 0.273)
β2 0 −0.001 0.025 (−0.002, 0.001)
β3 −0.60 −0.611 0.166 (−0.934, −0.284)
β4 1.48 1.448 0.142 (1.170, 1.725)
β5 −0.81 −0.792 0.167 (−1.120, −0.467)
σ11 0.04 0.037 0.011 (0.013, 0.059)
σ22 0 0.007 0.021 (0, 0)
σ33 0.57 0.578 0.120 (0.348, 0.820)
σ44 0 0.002 0.024 (0, 0.001)
σ55 0.41 0.396 0.097 (0.208, 0.587)
σ21 0 0.006 0.019 (0, 0)
σ31 0.06 0.052 0.016 (0.020, 0.084)
σ32 0 0.002 0.026 (0, 0)
σ41 0 0.001 0.030 (0, 0.001)
σ42 0 0.003 0.022 (0, 0)
σ43 0 0.002 0.027 (0, 0)
σ51 0.08 0.073 0.028 (0.023, 0.122)
σ52 0 0.000 0.024 (0, 0)
σ53 0.15 0.159 0.035 (0.084, 0.223)
σ54 0 0.001 0.033 (0, 0)
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Table 2 Estimated model posterior probabilities in simulation studies under the logit link. Sub-
models with posterior probability less than 0.02 are not displayed

Model π1,k0

0.2 0.5 0.8

Simulation 1

x1, x3, z1, z2, z3
a 0.833b

(0.814,0.865)c 0.796(0.771,0.828) 0.748(0.719,0.782)
x1, x3, z1, z3 0.085(0.054,0.116) 0.098(0.083,0.115) 0.116(0.098,0.141)
x1, x3, z1, z2 0.066(0.045,0.092) 0.070(0.046,0.095) 0.082(0.059,0.106)

Simulation 2

x1, x3, x4, x5, z1, z3, z5
a 0.437(0.421,0.544) 0.519(0.483,0.558) 0.568(0.543,0.591)

x3, x4, x5, z1, . . . , z5 0.106(0.075,0.140) 0.095(0.068,0.131) 0.084(0.048,0.112)
x1, x3, x4, x5, z3, z5 0.103(0.076,0.135) 0.139(0.110,0.180) 0.177(0.138,0.218)
x3, x4, x5, z1, z3, z4, z5 0.024(0.013,0.037) 0.039(0.026,0.054) 0.052(0.037,0.078)
x2, . . . , x5, z1, . . . , z4 0.022(0.010,0.035) 0.037(0.020,0.053) 0.045(0.024,0.066)

Simulation 3

x1, x3, . . . , x8, z1, . . . , z7
a 0.547(0.529,0.577) 0.581(0.550,0.617) 0.633(0.602,0.658)

x1, x3, . . . , x8, z1, . . . , z8 0.090(0.079,0.106) 0.075(0.065,0.089) 0.064(0.053,0.075)
x1, x3, . . . , x7, z1, . . . , z4, z6, z7 0.051(0.043,0.059) 0.074(0.066,0.085) 0.078(0.070,0.089)
x1, x3, . . . , x7, z1, . . . , z5, z7 0.032(0.027,0.041) 0.034(0.024,0.042) 0.037(0.030,0.041)
x1, x3, . . . , x7, z1, . . . , z4, z7 0.025(0.013,0.039) 0.027(0.018,0.037) 0.032(0.023,0.044)
x1, . . . , x7, z1, . . . , z3, z7 0.023(0.011,0.033) 0.025(0.014,0.035) 0.028(0.016,0.040)

aTrue model
bPosterior probability
cRange

random effects covariance parameters in the second simulation case. It is clear that
the posterior mean values are very close to the true values in each case, and that the
true values are included in 95% HPD intervals. Again, we obtained similar results
in sensitivity analyses and other simulation cases.

Table 2 shows the estimated posterior model probabilities for the preferred mod-
els under the three different simulation cases for a range of values for the prior
probability of excluding a predictor. Although the estimated posterior probabili-
ties varied somewhat as the prior exclusion probabilities varied, the rankings in the
models were robust. In each case, the true model was the dominate model, hav-
ing substantially higher estimated posterior probability than the second best model.
The ranges shown in subscripts represent the range in the estimated posterior model
probabilities across the five different simulation replicates and for different choices
of hyperparameters. Figure 2 presents boxplots of the samples of parameters for the
second simulation under each link. The true values of all parameters fall in the 95%
credible intervals.

When the number of models under consideration is large, the posterior probabil-
ity assigned to any one model is typically not close to 1. This property is observed in
Table 2. Although the highest posterior probability is assigned to the correct model
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Fig. 2 Boxplots of the samples of parameters for the second simulation under each link. The solid
horizontal lines indicate the true values

in each case, this probability is never close to one. For example, in simulation case 3,
the probability assigned to the true model is only slightly above 0.5. This does not
suggest that our approach for estimating posterior probabilities is poor, but is instead
a general feature of model selection in large model spaces.

For this reason, in performing inferences on whether a given predictor should be
included in the fixed and/or random effects component, it is more reliable to rely
on marginal inclusion probabilities than on whether that predictor is included in
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Fig. 3 Plots of marginal inclusion probabilities for each of the predictors in terms of fixed and
random effects under the logistic model with different prior probabilities (0.2, 0.5, and 0.8) of
exclusion of each predictor and the different number (3, 5, and 8) of candidate predictors. The short
horizontal lines denote the posterior marginal inclusion probabilities for each of the predictors. The
vertical lines show the ranges of marginal inclusion probabilities on average

the highest posterior probability model. Figure 3 shows plots of posterior marginal
inclusion probabilities of each of the predictors in terms of fixed and random ef-
fects under the logistic model with different prior probabilities (0.2, 0.5, and 0.8)
of exclusion of each predictor and the different number (3, 5, and 8) of candidate
predictors. It is clear that although marginal inclusion probabilities for each of the
predictors change slightly according to the different choices of prior probabilities of
exclusion, the inclusion of the predictors is consistent with the designed models. For
example, the third row presents the marginal inclusion probabilities of eight fixed
and random effects predictors with different prior probabilities of exclusion (0.2,
0.5, and 0.8). Obviously, the predictors for the second fixed effect and for the eighth
random effect are less likely to be included in the model since the corresponding
marginal inclusion probabilities are fairly low. We also calculated marginal inclu-
sion probabilities of predictors for the GLMM with log link and identity link, which
show the consistent results with the true models.



84 B. Cai, D.B. Dunson

4.3 Assessment of Accuracy of the Approximation

Although the proposed approach appears to perform well at model selection and
parameter estimation based on the results in the simulation examples, it is important
to assess the accuracy of the proposed approximation to the marginal likelihood. If
the approximation is not accurate, then it may be the case that our approach is not
producing accurate estimates of the posterior model probabilities. Even if we do a
good job in estimation and model selection, it does not necessarily imply accuracy
in marginal likelihood approximation.

Because it tends to be the case that Taylor series-based approximations to the
marginal likelihood are less accurate for binary response logistic mixed effects mod-
els than for log-linear and linear cases, we focus on the logistic special case in
assessing accuracy. In addition, we focus on the modest sample size of 100 subjects,
each of which has six observations, and we let p = q = 3. We choose different
covariance structures with variance components proportional to λ2 from small to
large, which are (1) (0.01, 0.02, 0.005)′; (2) (1.2, 0.4, 0.6)′; (3) (2.8, 4.3, 3.5)′;
(4) (27.5, 20.6, 35.1)′; (5) (50.6, 30.8, 60.3)′, with γ kept fixed at (0.4, 0.5, 0.3)′.

An essentially exact value for the marginal likelihood can be obtained by brute
force numerical integration, so we use that approach as the reference in comparing
several approximation approaches. In particular, we estimate the marginal likeli-
hoods of the simulated data using the Laplace approximation, importance sampling,
Chib’s marginal likelihood method, and our proposed approach. Table 3 shows
the comparison of log marginal likelihoods calculated by the different methods.
Note that all of the approximations tend to perform better when the random effects
variance is small, with the accuracy decreasing for large random effects variances.
For small variances, the proposed approach was slightly more accurate than any of
the competitors. In addition, the proposed approach was closer to the truth than the
Laplace approximation in all the cases.

Note that the approximation to the marginal likelihood is only used in calculating
the conditional posterior probabilities that a coefficient is equal to zero. Hence, when
there is clear evidence that the predictor should be included, some inaccuracy in the
marginal likelihood approximation has no impact on inferences. Therefore, under
our approach the performance for small values of the random effect variances is
most important. However, given the improvement seen relatively to the widely-used
Laplace approximation for all values of the random effects variance, the proposed
approximation should also be useful in frequentist inferences and other settings.

Table 3 Comparison of approximated log marginal likelihoods for the GLMM with the logit link

λ2 Chib’s Exact I.Sampling Laplace Proposed

(0.01, 0.02, 0.005) −92.47 −89.19 −92.09 −91.74 −91.59
(1.2, 0.4, 0.6) −129.23 −125.35 −128.68 −131.05 −128.15
(2.8, 4.3, 3.5) −147.37 −140.80 −145.01 −148.39 −148.22
(27.5, 20.6, 35.1) −94.83 −88.93 −93.62 −97.92 −96.47
(50.6, 30.8, 60.3) −100.56 −90.97 −98.81 −104.73 −101.86
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5 Time-to-Pregnancy Application

5.1 Data and Model Selection Problem

Returning to the time to pregnancy (TTP) application introduced in Sect. 1.2, we an-
alyze the Rowland et al. (1992) study to illustrate the proposed approach. This was
a retrospective TTP study, with female dental assistants, aged 19–39, contacted and
invited to enrolled after being randomly selected from a registry. Study investiga-
tors enrolled 427 women, who completed a detailed questionnaire on reproductive
history, occupational exposures and other factors that may be related to fecundabil-
ity. As illustration, we focus on the logistic mixed effects discrete hazard model
presented in (1), with the candidate predictors including category indicators for age
(19–24, 25–29, >30), intercourse frequency per week (≤1, 1–3, 3–4, >4), ciga-
rettes smoked per day (nonsmoker, 1–5, 6–10, 11–15, >15), and the use of oral
contraceptives in the cycle prior to beginning the pregnancy attempt (no, yes).

Including all the above indicator variables in the order that they are introduced,
with the first category level being the reference, we have 14 candidate predictors. We
allow each of these predictors to be potentially included in the fixed and/or random
effects component. Hence, we have an enormous list of possible models when also
allowing uncertainty in whether the random effects correlations are equal to zero.

5.2 Prior Specification, Implementation and Results

In choosing a prior, our goal was to assign high probability to a wide range of plau-
sible values for the regression coefficients and induced covariance matrix without
specifying a very high variance prior. Given that all the predictors are indicator
variables within a logistic regression model, a prior variance of 20 (given inclu-
sion in the model) for both λk and βv seemed reasonable. Hence, the prior distri-
bution for λk is chosen as ZI-N+(λk |πk0, 0, 20), and the prior distribution for βv
is chosen as ZI-N(βv |πv0, 0, 20). For the elements of γ , we choose a more infor-
mative prior with a variance of one to favor modest levels of correlation by letting
ZI-N(γmk;π3,u0, 0, 1), with the constraint on λ.

In considering applications with continuous predictors, one should either normal-
ize these predictors prior to analysis, or carefully consider the measurement scale
of the predictors in choosing the prior variance. How informative the prior is for a
particular prior variance is completely dependent on the scale of the measurements.
Note that the tendency is to favor smaller models the larger the prior variance. Our
choice of 20 is really in the upper range of reasonable values for the prior variance
in this context, and our motivation was to favor parsimony.

We ran the MCMC algorithm for 80,000 iterations after a 10,000 iteration burn-
in. This chain was a bit longer than is typical for posterior computation in a single
GLMM. In general, when the MCMC algorithm is being used to simultaneously
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explore a high-dimensional model space, while also estimating posterior model
probabilities and posterior distributions of coefficients, the MCMC chain should be
dramatically longer than that used in analysis of a single model. The chains passed
Geweke (1992) and Raftery and Lewis (1992) convergence diagnostic tests. Multi-
ple chains with different initial settings passed Gelman and Rubin (1992) conver-
gence test. We retained every 20th sample for inferences of interest.

As we discussed in Sect. 4.2, when the number of models in the list is enormous,
the posterior probability assigned to any one model tends to be quite small, even if
that model is the true model. This behavior is expected and provides strong support
for Bayesian methods of model averaging and inferences, which avoid relying on
interpreting any single selected model as being supported by the data. Frequentist
or Bayesian methods for selecting an optimal model tend to ignore the issue that
it is effectively impossible to find clear evidence in favor of the true model in a
very large list unless the amount of data you have available is incredibly massive.
Hence, it is much more reasonable to focus on marginal inclusion probabilities in
gauging importance of predictors when the list of possible models is huge. In the
TTP application, the top models had estimated posterior probabilities close to 0.03,
with several candidates having similar values.

Table 4 presents the marginal posterior probabilities of including each predictor
in the fixed and random effects components under different choices of π1,k0 and
π2,v0. The overall posterior probability of including age in the fixed effects compo-
nent can be calculated as the posterior probability that any of the category indicators
for age are included. Such overall posterior probabilities are calculated separately
for the fixed and random effects components for each of the factors under consider-
ation, including age, intercourse frequency, cigarettes smoked, and recent pill use.
The results are shown in Table 4. The posterior probability of including age in the
fixed effects component ranges from 0.95 to 0.97 (average = 0.96) depending on
the prior. The corresponding ranges for intercourse frequency, cigarettes smoked,
and recent pill use are 0.96–0.97 (average = 0.96), 0.92–0.97 (average = 0.94),
and 0.87–0.98 (average = 0.92), respectively. Hence, as expected, there is some
evidence that age, intercourse frequency, cigarette smoking, and recent pill use are
predictive of fecundability on average, with the most evidence for age and inter-
course frequency. The age effect is most apparent in women 30+. In addition, the
indicators for the highest categories of intercourse frequency (4+ acts/week) and
cigarette smoking (15+/day) had the highest posterior probabilities of inclusion.

For the random effects component, the results were somewhat different. The pos-
terior probability of inclusion for recent pill use ranged between 0.40 and 0.53
(average = 0.47), so there is no evidence of heterogeneity in the effect of recent
pill use. However, there was some evidence of heterogeneity among women in
the effects of each of the other factors. In particular, the posterior probability of
including age in the random effects component ranged between 0.87 and 0.92
(average = 0.90), which is suggestive but not clear evidence. There was slightly
more evidence of heterogeneity in the effects of intercourse frequency and cigarette
smoking with the posterior probabilities of inclusion for these two factors rang-
ing between 0.90 and 0.93 (average = 0.92) and 0.91–0.95 (average = 0.93),
respectively.
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Table 4 Estimated marginal posterior probabilities of including predictors in the fixed and ran-
dom effects components under different prior probabilities of being zero in the time-to-pregnancy
application. Probabilities over 0.9 are written in bold

Predictor Posterior probability of inclusion

Fixed effect Random effect

0.2 0.5 0.8 0.2 0.5 0.8

Intercept 0.90(0.89,0.94)a 0.87(0.85,0.90) 0.83(0.81,0.87) 0.94(0.90,0.96) 0.90(0.86,0.92) 0.85(0.82,0.87)

Age
25–29 0.83(0.80,0.85) 0.75(0.73,0.78) 0.72(0.69,0.75) 0.55(0.52,0.58) 0.50(0.46,0.52) 0.43(0.39,0.46)
30+ 0.93(0.90,0.96) 0.89(0.86,0.92) 0.87(0.84,0.90) 0.88(0.84,0.91) 0.86(0.83,0.90) 0.81(0.76,0.84)
Overall 0.97(0.94,0.99) 0.96(0.94,0.98) 0.95(0.93,0.97) 0.92(0.89,0.95) 0.90(0.87,0.92) 0.87(0.84,0.91)

Intercourse
frequency
1–3 0.63(0.61,0.66) 0.56(0.54,0.59) 0.53(0.49,0.56) 0.61(0.56,0.64) 0.56(0.52,0.59) 0.52(0.49,0.56)
3–4 0.76(0.73,0.79) 0.73(0.71,0.76) 0.68(0.65,0.71) 0.83(0.78,0.87) 0.78(0.75,0.82) 0.74(0.70,0.78)
4+ 0.97(0.93,0.98) 0.94(0.91,0.96) 0.88(0.85,0.91) 0.54(0.49,0.57) 0.50(0.45,0.53) 0.44(0.40,0.48)
Overall 0.97(0.94,0.99) 0.96(0.94,0.98) 0.96(0.93,0.98) 0.93(0.90,0.96) 0.92(0.89,0.94) 0.90(0.86,0.93)

Cigarettes
smoked
1–5 0.70(0.68,0.73) 0.65(0.62,0.67) 0.56(0.52,0.59) 0.61(0.59,0.65) 0.55(0.52,0.59) 0.51(0.47,0.53)
6–10 0.85(0.81,0.88) 0.81(0.77,0.83) 0.74(0.72,0.78) 0.89(0.85,0.92) 0.85(0.82,0.88) 0.82(0.77,0.85)
11–15 0.86(0.82,0.88) 0.79(0.76,0.82) 0.70(0.67,0.74) 0.57(0.53,0.61) 0.52(0.49,0.55) 0.49(0.46,0.54)
15+ 0.95(0.92,0.97) 0.92(0.89,0.94) 0.88(0.84,0.91) 0.69(0.65,0.75) 0.66(0.62,0.70) 0.61(0.58,0.65)
Overall 0.97(0.94,0.99) 0.94(0.91,0.98) 0.92(0.89,0.95) 0.95(0.93,0.98) 0.92(0.89,0.95) 0.91(0.87,0.94)

Recent
pill use 0.98(0.96,0.99) 0.91(0.87,0.95) 0.87(0.85,0.91) 0.53(0.48,0.59) 0.48(0.43,0.51) 0.40(0.37,0.45)

aRange

Table 5 provides the overall posterior summaries of the regression coefficients
from our approach compared with the standard GLM with the logit link fitted to the
full model. It is clear that there are no systematic differences between our model-
averaged Bayesian point and interval estimates for the regression coefficients and
the maximum likelihood estimates. In general, the results can differ substantially,
particularly when the focus is on inferences, and the frequentist analyst selects
the final model based on typical criteria (e.g., using stepwise selection), while the
Bayesian uses model averaging. The results in this case, however, are due to the
fact that most of the candidate predictors have moderate to high probabilities of
being included in the model. We also note that the coefficient for the oldest level
of the age variable is larger than for the younger levels, implying that the proba-
bility of getting pregnant goes up as age goes up which seems counter intuitive.
The counter-intuitive age effect was also apparent in frequentist and more routine
Bayesian analyses. One of the difficulties in time to pregnancy studies is that it is
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Table 5 Overall posterior means and 95% credible intervals of regression coefficients in the time-
to-pregnancy application compared with the results from the GLM with the logit link

Effects Proposed approach Standard GLM

Age
25–29 0.173(−0.043,0.396)a 0.177(−0.068,0.422)b

30+ 0.358(0.003,0.727) 0.354(−0.029,0.719)

Intercourse frequency per week
1–3 0.095(−0.144,0.335) 0.088(−0.151,0.327)
3–4 0.258(−0.120,0.643) 0.265(−0.129,0.659)
4+ 0.877(0.402,1.306) 0.885(0.408,1.361)

Cigarettes smoked per day
1–5 −0.119(−0.570,0.313) −0.126(−0.736,0.482)
6–10 −0.278(−0.694,0.241) −0.285(−0.873,0.303)
11–15 −0.425(−1.239,0.337) −0.433(−1.413,0.547)
15+ −0.686(−1.640,−0.164) −0.681(−1.622,0.260)

Use of oral contraceptives −0.923(−1.544,−0.268) −0.931(−1.619,−0.243)

a95% credible interval
b95% confidence interval

impossible to get a group of women of different ages who are at risk of pregnancy
and representative of the general population of reproductive age women, particularly
in an occupational epidemiology setting. It may be the case that the older dental as-
sistants are representative of a different demographic group having higher fertility,
or that some selection.

We ran extensive sensitivity analyses to evaluate the robustness of the results to
the prior specifications by repeating the analyses with the following different hyper-
parameters: (a) priors with half variance; (b) priors with double variance; (c) priors
with moderately different means within the range of the prior expectation. The
ranges in Table 4 show the results for all of the different priors.

6 Discussion

This chapter has proposed a Bayesian approach for accounting for uncertainty
in selection of fixed and random effects in GLMMs. The approach is very com-
putationally intensive in relying on MCMC to simultaneously explore a very
high-dimensional model space and estimate posterior model probabilities and den-
sities for selected predictors. However, given the great deal of time and expense
involved in collecting the data, it seems that spending a bit of time in implementing
an improved analysis is well worth the effort. A C program is available from the
authors upon request.
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On the topic of Bayesian methods for GLMM variable selection, there are several
areas of substantial interest for future research. The first is default prior selection. It
is appealing to have general software available that produces results with good fre-
quentist and Bayesian properties without need for careful thought in prior choice or
sensitivity to subjectively chosen hyperparameters. There has been some work done
on default prior selection for fitting of a single GLMM, but default prior selection
in model uncertainty contexts is a completely different issue. For linear regression
subset selection, mixtures of g-priors provide a useful default, but there is a lack
of similar priors for GLMMs. In the absence of carefully-justified default priors,
one can use the priors proposed in this chapter after normalizing any continuous
predictors.

Another important area is the development of simpler and more efficient compu-
tational implementations, particularly for cases involving massive numbers of can-
didate predictors. For example, it may be the case that the proposed approximation
to the marginal likelihood can be expanded to marginalize out not only the random
effects, but also all the parameters in a particular GLMM. This will certainly result
in much more efficient computation, and may be quite appealing if the proposed
approximation can be justified as accurate.
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Appendix

The normal linear mixed model of Laird and Ware (1982) is a special case of a
GLMM having g(µi j ) = µi j = ηi j = x′

i jβ + z′
i jζ i , φ = σ 2 and b(θi j ) = η2

i j/2.

In this case, ∂l(β,φ,ζ |y)
∂η

∂l(β,φ,ζ |y)
∂η′ = (y − η)(y − η)′/σ 2 and ∂2l(β,φ,ζ |y)

∂η∂η′ =
−1N 1′

N/σ
2. Therefore we have

B(1)i,k = {

(yi − Xiβ)
′Zik

}2 − Z ′
ik Zik

B(2)i,m,k = (yi − Xiβ)
′Zim Z ′

ik(yi − Xiβ)− Z ′
ik Zim,

where Zik denotes the kth column of Zi , and

L0 = exp

⎧

⎨

⎩

− 1
2σ 2

n
∑

i=1

ni
∑

j=1

(yi j − x′
i jβ)

2

⎫

⎬

⎭

.

When yi j are 0–1 random variables, the logistic regression model can be obtained
by the canonical link function g(πi j ) = log πi j

1−πi j
= ηi j = x′

i jβ + z′
i jζ i , φ= 1,

b(θi j ) = log(1 + eηi j ) = −log(1 − πi j ), hence ∂l(β,φ,ζ |y)
∂η

∂l(β,φ,ζ |y)
∂η′ = (y − π)

(y − π)′ and ∂2l(β,φ,ζ |y)
∂η∂η′ = −π(1N − π)′. Then

B(1)i,k = {

(yi − π i )
′Zik

}2 − π ′
i DG(Zik Z ′

ik)(1ni − π i )

B(2)i,m,k = (yi − π i )
′Zim Z ′

ik(yi − π i )− π ′
i DG(Zim Z ′

ik)(1ni − π i ),

where π i = (πi1, . . . , πini )
′ with πi j = exp(x′

i jβ)/
(

1 + exp(x′
i jβ)

)

, and

L0 = exp
{

yi j log
πi j

1 − πi j
+ log(1 − πi j )

}

.

Similarly, when yi j are counts with mean λi j , the Poisson regression model can
be obtained by the canonical link function g(λi j ) = logλi j = ηi j = x′

i jβ + z′
i jζ i ,

φ = 1, b(θi j ) = eηi j = λi j ,
∂l
(

β,φ,ζ |y)
∂η

∂l
(

β,φ,ζ |y)
∂η′ = (y − λ)(y − λ)′ and

∂2l
(

β,φ,ζ |y)
∂η∂η′ = −λ1′

N . Then we obtain that

B(1)i,k = {

(yi − λi )
′Zik

}2 − λ′
i DG(Zik Z ′

ik)1ni

B(2)i,m,k = (yi − λi )
′Zim Z ′

ik(yi − λi )− λ′
i DG(Zim Z ′

ik)1ni ,

where λi = (λi1, . . . , λini )
′ with λi j = exp(x′

i jβ), and L0 = exp
(

yi j logλi j −λi j −
logyi j !

)

.
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A Unified Approach to Two-Level Structural
Equation Models and Linear Mixed
Effects Models

Peter M. Bentler and Jiajuan Liang

1 Introduction

Two-level structural equation models (two-level SEM for simplicity) are widely
used to analyze correlated clustered data (or two-level data) such as data collected
from students (level-1 units) nested in different schools (level-2 units), or data col-
lected from siblings (level-1 units) nested in different families (level-2 units). These
data are usually collected by two sampling steps: randomly choosing some level-2
units; and then, randomly choosing some level-1 units from each chosen level-2
unit. Data collected in this way can be considered to be affected by two different
random sources or random effects, namely, level-1 effects and level-2 effects. The
substantive goal with such two-level data is to obtain theoretically meaningful and
statistically adequate submodels for both the level-1 and level-2 effects. Realization
of this main task consists of three steps: (1) set up an initial model with both level-1
and level-2 effects; (2) estimate the unknown model parameters; and (3) test the
goodness-of-fit of the given model.

In the context of latent variable structural equation modeling, Step 1 is based on
an initial understanding and substantive knowledge related to possible constructs
or factors that may affect the observed data. Depending on the field, this may in-
volve setting up a measurement model with observed indicators of one or more
latent variables, as in a confirmatory factor analysis model, or possibly also a mul-
tivariate relations model in which some latent variables affect others, as in a typ-
ical structural equations model. Such models may be specified at each of the two
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levels, where the model at both levels can be highly similar or completely differ-
ent. Clearly the more substantive knowledge one can have, the better the chance
to identify a suitable model for characterizing the data. Step 2 requires some esti-
mation machinery, and in two-level SEM, this is typically based on the asymptotic
statistical theory of maximum likelihood (ML) or generalized least squares (GLS),
see, for example, Bentler et al. (2005). Step 3, testing goodness-of-fit in two-level
SEM, uses the standard testing machinery associated with ML and GLS methodol-
ogy, and provides evidence on how well the model proposed in step 1 can represent
the observed data.

Approaches to the estimation of parameters and model evaluation in two-level
SEM are similar to their counterparts in conventional (one-level) SEM. These
methods are well known due to some popular statistical programs such as EQS
(Bentler, 2006), LISREL (du Toit and du Toit, 2001) and Mplus (Muthen and
Muthen, 2004). The basic approach to model evaluation involves the chi-square
statistic which compares a restricted SEM to a more general unrestricted or sat-
urated model. Because a proposed model (the null hypothesis) may fail to be
acceptable in large samples, alternative fit indices and other statistics have been
proposed for model evaluation, see, Yuan and Bentler (2007a,b) for conventional
SEM, and Bentler et al. (2005) and Yuan and Bentler (2003) for two-level SEM.
As in conventional SEM, acceptance of the null hypothesis (i.e., the proposed
model) in two-level SEM by a test statistic does not necessarily imply that the
proposed model is the correct model. When a model fails to fit, it may be desir-
able to improve it using some model modification or selection criteria (see, e.g.,
Bozdogan, 1987; Cudeck and Browne, 1983; Sörbom, 1989).

An important characteristic of two-level data is that the two different types of
factors (i.e., level-1 and level-2 factors) are assumed to be the only factors that af-
fect the data. This characteristic is similar to that of data affected by mixed effects
and random effects. By taking the fixed effects as the effects from level-2 factors
and the random effects as the effects from level-1 factors, we will describe a uni-
fied approach to two-level linear SEM and linear mixed effects models (LMEM
for simplicity) using the same model formulation. Some equivalence between mul-
tilevel SEM and LMEM has been already studied by a number of researchers
such as Rovine and Molenaar (2000), Bauer (2003), Curran (2003), Skrondal and
Rabe-Hesketh (2004), and Mehta and Neale (2005) from different points of view. In
this chapter, we focus on estimating model parameters in view of the same model
formulation.

This chapter is organized as follows. We introduce the general model formulation
for two-level SEM and its relation to LMEM in Sect. 2. An EM algorithm for esti-
mating model parameters for both two-level SEM and LMEM, and some asymptotic
properties of the parameter estimator are given in Sect. 3. Applications of the EM
algorithm are illustrated by examples in Sect. 4. Some discussion and comments are
given in the last section.
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2 Model Formulation

In modeling two-level data, it is usually assumed that both level-1 and level-2
observations, respectively, have the same dimension (e.g., Lee and Poon, 1998;
Bentler and Liang, 2003; Liang and Bentler, 2004). This assumption is violated
when additional measurements are taken from factors or latent variables at level-1.
A typical example of this situation is that students (level-1 units) nested in different
schools (level-2 units) may be given different number of scholastic tests to measure
their ability (e.g., the math ability). Then the data collected from students’ scores in
the tests will have different dimensions across the schools. We will call this situation
one of dimensional heterogeneity. Therefore, it is meaningful to allow both level-1
and level-2 observations to have different dimensions.

Suppose that the observed data are collected from a hierarchical sampling
scheme: (1) randomly choose some level-2 units (such as different schools or
families); and (2) randomly choose some level-1 units (such as students or family
members) from each chosen level-2 unit. Let { ygi : pg × 1, i = 1, . . . , Ng} denote
the observations from level-2 unit g. For example, ygi may denote the observation
from the i th student (level-1 unit) nested in the gth school (level-2 unit), and there
are pg tests given to students in the gth school, say, g = 1, . . . ,G. G is called
the level-2 sample size and {Ng : g = 1, . . . ,G} are called the level-1 sample
sizes. Ng may be different for different g (i.e., an unbalanced sample design). Let
{zg : qg × 1, g = 1, . . . ,G} denote the pure level-2 observations that are only
observed from level-2 units. For example, zg may denote the financial resources
for the gth school, and there are qg financial resources for the gth school. Then
{ ygi : pg × 1, i = 1, . . . , Ng; zg : qg × 1, g = 1, . . . ,G} constitutes a
set of observations from all responses in the population. The level-1 observations
{ ygi : pg × 1, i = 1, . . . , Ng} (for each fixed g) are usually not independent
because different level-1 units nested in the same level-2 unit are affected by some
common level-2 factors. The pure level-2 observation zg is assumed to have the
same effect on all level-1 units nested in the same level-2 unit g. For example, the
financial resources for the gth school can be assumed to have the same effect on
all students (level-1 units) nested in the same school (level-2 unit) g. Based on this
viewpoint, we propose the following general formulation for two-level SEM:

(

zg
ygi

)

=
(

zg
vg

)

+
(

0
vgi

)

, (1)

for ML analysis with the assumptions:

(A1) The level-1 random vectors {vgi : pg×1, i = 1, . . . , Ng} are independent for
each fixed g and vgi ∼ Npg (0,�gW ) for g = 1, . . . ,G, �gW > 0 (positive
definite).

(A2) The level-2 random vectors {vg : pg × 1, g = 1, . . . ,G} are independent
and vg ∼ Npg (µ2g,�gB) with �gB > 0.

(A3) {zg : qg × 1, g = 1, . . . ,G} are independent level-2 observations and zg ∼
Nqg (µ1g,�gzz) with �gzz > 0.
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(A4) The random vector (z′
g, v

′
g)

′ ((pg + qg)× 1
)

has a joint multivariate normal

distribution Npg+qg (µg,
∼
�gB) with

∼
�gB> 0 and

µg =
(

µ1g
µ2g

)

,
∼
�gB = cov

(

zg
vg

)

=
(

�gzz �gzy
�gyz �gB

)

, (2)

where �gzy = �′
gyz = cov(zg, vg).

(A5) {zg, vg} is uncorrelated with {vgi : i = 1, . . . , Ng} for each fixed g.

In formulation (1), within-group (level-1) differences are reflected by a model for
vgi for each given g (i = 1, . . . , Ng) and we call such a model, a level-1 model,
which may contain level-1 latent factors; between-group (level-2) differences are
reflected by a model for vg and a model for zg (g = 1, . . . ,G) and we call such
models, level-2 models, which may contain level-2 latent factors. All latent factors
are assumed to have normal distributions in the following context to derive the uni-
fied algorithm for estimating model parameters.

A nontrivial model under formulation (1) is one that restricts the means and co-
variances in assumptions (A1)–(A4). This implies that the means and covariance
matrices in assumptions (A1)–(A4) depend on a common parameter vector θ (say,
r × 1). θ contains all model parameters from formulation (1) and we can write

µg = µg(θ), �gW = �gW (θ),
∼
�gB = ∼

�gB (θ). (3)

These matrices may be structured in particular ways as motivated by specific struc-
tural models, see Sect. 4. Liang and Bentler (2004) proposed an ML analysis for
the model formulation (1) for the case of pg ≡ p and qg ≡ q and pointed out
that formulation (1) includes the formulations for two-level SEM in McDonald and
Goldstein (1989), Muthén (1989), Raudenbush (1995), Lee (1990), and Lee and
Poon (1998). An analysis of the model defined by (1) consists of two major tasks:

(a) Estimate the model parameter vector θ from the available observations
{ ygi , zg}.

(b) Evaluate the goodness-of-fit after the parameter θ is estimated.

After a model expressed by (1) is set up, it is assumed that the model is identified.
That is, the mean and covariance structures in (3) are uniquely determined by θ and
vice versa. This implies that if there are two parameters θ1 (r × 1) and θ2 (r × 1)
such that

µg(θ1) = µg(θ2), �gW (θ1) = �gW (θ2),
∼
�gB (θ1) = ∼

�gB (θ2)

for g = 1, . . . ,G, then θ1 = θ2. The complexity of a model defined by (1) may
come from complicated level-1 models for the within variable vgi , or from compli-
cated level-2 models for the between variable vg and the observable variable zg , or
from both complicated within and between models. When vgi , vg , and zg are deter-
mined by measurement models such as factor analysis models (1) reduces to a usual
SEM with dimensional heterogeneity.
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The mean and covariance structures in (3) act as the null hypothesis for the model
formulation (1). The common parameter vector θ in (3) is assumed to contain r
distinct individual model parameters. The saturated (or trivial) model associated
with (3) is the case that θ contains the maximum number of distinct individual model
parameters R that is given by

R =
G
∑

g=1

[

pg + qg + pg(pg + 1)/2 + (pg + qg)(pg + qg + 1)/2
]

. (4)

A model-fit statistic for model formulation (1) is a test of the restricted model (3)
with r < R versus the saturated model with r = R.

A noteworthy case of the model in (1) is that it covers the linear mixed effects
models (LMEM). An LMEM can be formulated (Meng, 1998) as

yg = X ′
gβ + Z′

g bg + eg, (5)

where bg ∼ Nq(0, T ) (T > 0) and eg ∼ Nng (0, σ 2 Rg) (Rg > 0) are uncorrelated.
yg (ng × 1) is the response vector from the gth group, Xg (p × ng) is the design
matrix from fixed effects, Zg (q × ng) contains observations from random effects,
bg (q × 1) contains the random effects, and eg (ng × 1) contains the random errors.
In the formulation given by (1), let N1 = N2 = . . . = NG ≡ 1, zg ≡ 0 (no level-2
observations), and

vg = X ′
gβ + Z′

g bg, vgi ≡ eg (i ≡ 1) (6)

then ygi ≡ yg (i ≡ 1) and

ygi = vg + vgi (i ≡ 1). (7)

It is noted that to fit the LMEM (5) within the SEM framework (1), we have to
switch the meaning of dimensions: in formulation (1), for each given g, Ng stands
for the number of individuals within group g; but when taking N1 = N2 = . . . =
NG ≡ 1 in fitting the LMEM (5) into (7), each Ng only stands for an imaginary
level-1 sample size. Taking N1 = N2 = . . . = NG ≡ 1 in (5) does not mean that the
number of individuals within groups are all equal to 1. The number of individuals
within groups in LMEM (5) is actually ng (g = 1, . . . ,G), which is now switched
to the dimension or the number of measured outcomes that is equivalent to pg in
formulation (1), which is the dimension of level-1 observations in a two-level SEM
expressed by (1). A similar switch of the meaning of dimension can be also noticed
in papers that provide a unifying framework for LMEM and multilevel SEM, see, for
example, Muthén (1997), Bauer (2003), Curran (2003), Skrondal and Rabe-Hesketh
(2004). Since an LMEM is essentially a single-level model, there are no second-
level observations except the individual observations. The term zg representing a
level-2 observation in formulation (1) becomes imaginary in an LMEM. Taking
zg ≡ 0 in fitting the LMEM (5) into formulation (1) simply means that there are
no level-2 observations in LMEM and so formulation (1) reduces to (7), which is a
special case of formulation (1) without level-2 observations.
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If we assume ng ≤ q for the full-rank design matrix Zg in (5), then vg = X ′
gβ +

Z′
g bg has a nonsingular multinormal distribution and the assumptions (A1)–(A5)

will be satisfied for the model defined by (7). In the LMEM (5), bg ∼ Nq(0, T )
can be considered as a between (level-2) latent variable and eg ∼ Nng (0, σ 2 Rg)
as a within (level-1) latent variable. ygi ≡ yg (i ≡ 1) is the only one response
(observation) vector from group (level-2 unit) g. Therefore the formulation defined
by (1) covers all LMEM of the type defined by (5) with all ng ≤ q.

Let θ be the model parameter vector in (5) that is composed of all free model
parameters in (5): the regression coefficients in β, the variances and nonduplicated
covariances in cov(bg) = T , and the variances and nonduplicated covariances in
cov(eg) = σ 2 Rg . The mean and covariance structures (the restricted model or null
hypothesis) associated with the LMEM (5) (or (7)) are given by

µg(θ) = E( yg) = X ′
gβ + Z′

g E(bg) = X ′
gβ, �gW (θ) = cov(eg) = σ 2 Rg(θ),

�gB(θ) = cov(X ′
gβ + Z′

g bg) = Z′
gcov(bg)Zg = Z′

gT (θ)Zg. (8)

The saturated model (alternative hypothesis) associated with the LMEM (5) is usu-
ally far more complicated than that associated with the two-level SEM expressed
by formulation (1) because there may be far too many different within-group co-
variance matrices. It has been noted that there is no estimable saturated model for
many LMEM’s (especially for highly imbalanced data). In the following context,
we will only focus on a unified approach to estimating model parameters for both
two-level SEM and LMEM under the structured models (the null hypothesis is true
or the presented structural relationships are assumed to be correct).

3 The EM Algorithm

3.1 Maximum Likelihood Estimation

Because the general linear mixed effects model defined by (5) is a special case of the
model formulation given by (1), in this section we will develop an EM algorithm for
computing the MLE (maximum likelihood estimate) of the model parameter vector
θ specified in the mean and covariance structures in (3). Then the EM algorithm can
be applied to the LMEM (5). Let θ (r × 1) be the parameter vector containing all
model parameters from formulation (1) associated with assumptions (A1)–(A5).

To simplify the derivation of the EM algorithm, let

yg =
⎛

⎜

⎝

yg1
...

ygNg

⎞

⎟

⎠ , Y g0 =
⎛

⎜

⎝

y′
g1
...

y′
gNg

⎞

⎟

⎠ , ug =
(

zg
yg

)

, xg =
(

vg
ug

)

,

X = {x1, . . . , xG}, Z = {z1, . . . , zG}, ȳg = 1
Ng

Ng
∑

i=1

ygi .

(9)
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Then ug
[

(qg + Ng pg)× 1
]

contains all observations from group (level-2 unit) g.
Taking vg as a missing vector value, we construct the “complete observation” vector
xg

[

(qg + pg + Ng pg)× 1
]

. Y g0 in (9) is the observation matrix composed of all
level-1 observations from group g. ȳg is the sample mean from the level-1 obser-
vations in group g. X denotes the set of all complete observations and Z the set of
all level-2 observations. From the assumptions (A1)–(A5) on (1), we can derive the
negative twice the logarithm of the likelihood function from all complete responses
{xg : g = 1, . . . ,G}

l(X, θ∗) =
G
∑

g=1

lg(X, θ∗), (10)

where θ∗ is an arbitrarily specified value of the parameter θ , and

lg(X, θ∗) = log |�∗
gB | + (vg − µ∗

2g)
′�∗−1

gB (vg − µ∗
2g)

+
Ng
∑

i=1

{

log |�∗
gW | + ( ygi − vg)

′�∗−1
gW ( ygi − vg)

}

+ log |�∗
gzz.v | +

[

zg − µ∗
1g − �∗

gzy�
∗−1
gB (vg − µ∗

2g)
]′

×�∗−1
gzz.v

[

zg − µ∗
1g − �∗

gzy�
∗−1
gB (vg − µ∗

2g)
]

, (11)

where

µ∗
1g = µ1g(θ

∗), µ∗
2g = µ2g(θ

∗), �∗
gW = �gW (θ

∗),
�∗

gB = �gB(θ
∗), �∗

gzz = �gzz(θ
∗), �∗

gzy = �gzy(θ
∗),

�∗
gyz = �∗′

gzy, �∗
gzz.v = �∗

gzz − �∗
gzy�

∗−1
gB �∗

gyz .

(12)

According to the principle of the EM algorithm (Dempster et al., 1977), the E-step
function of the EM algorithm for estimating θ is the conditional expectation de-
fined by

M(θ∗|θ) =
G
∑

g=1

E
{

lg(X, θ∗)|zg, yg, θ
}

, (13)

where both θ∗ and θ are two arbitrarily specified values of the same parameter θ .
From assumptions (A1)–(A5) on (1), it can be proved that

E
{

lg(X, θ∗)|zg, yg, θ
} =

{

log |�∗
gB | + tr

(

�∗−1
gB S∗

gB

) }

+Ng

{

log |�∗
gW | + tr

(

�∗−1
gW SgW

) }

+
{

log |�∗
gzz.v | + tr

(

�∗−1
gzz.v S∗

gz

) }

,

(14)
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where

S∗
gB = E

[

(vg − µ∗
2g)(vg − µ∗

2g)
′|zg, yg, θ

]

,

SgW = 1
Ng

Ng
∑

i=1

E
[

( ygi − vg)( ygi − vg)
′|zg, yg, θ

]

,

S∗
gz = E

{ [

zg − µ∗
1g − �∗

gzy�
∗−1
gB (vg − µ∗

2g)
]

×
[

zg − µ∗
1g − �∗

gzy�
∗−1
gB (vg − µ∗

2g)
]′ |zg, yg, θ

}

.

(15)

Under the assumptions (A1)–(A5) on (1), it can be derived that

ag(θ) = ag
def= E(vg|zg, yg, θ) = µ2g + �1g�

−1
g (cg − µg),

Cg(θ) = Cg
def= cov(vg|zg, yg, θ) = �gB − �1g�

−1
g �′

1g,

(16)

where “def= ” means “defined as,” µg is defined in (2), and

�1g = (�gyz,�gB), �g = �gW + Ng�gB,

cg =
(

zg
ȳg

)

, �g =
(

�gzz �gzy
�gyz

1
Ng

�g

)

.
(17)

Then we have

S∗
gB = Cg + ag a′

g − agµ
∗′

2g − (agµ
∗′

2g)
′ + µ∗

2gµ
∗′

2g,

SgW = Sgyy + Cg + ag a′
g − ag ȳ′

g − (ag ȳ′
g)

′,
S∗

gz = (zg − µ∗
1g)(zg − µ∗

1g)
′ − �∗

gzy�
∗−1
gB (ag − µ∗

2g)(zg − µ∗
1g)

′

−
[

�∗
gzy�

∗−1
gB (ag − µ∗

2g)(zg − µ∗
1g)

′]′ + �∗
gzy�

∗−1
gB S∗

gB�∗−1
gB �∗

gyz

(18)

and

Sgyy = 1
Ng

Ng
∑

i=1

ygi y′
gi = 1

Ng
Y ′

g0Y g0. (19)

Employing some properties for block matrices, we can derive

M(θ∗|θ) =
G
∑

g=1

Ng

{

log |�∗
gW | + tr

(

�∗−1
gW SgW

)}

+
G
∑

g=1

{

log | ∼
�

∗
g | + tr

(∼
�

∗−1

g

∼
Sg

)}

,

(20)
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where SgW is given in (16), and

∼
�

∗
g =

( ∼
�

∗
gB +µ∗

gµ
∗′

g µ∗
g

µ∗′
g 1

)

,
∼
Sg =

(∼
SgB +dg d ′

g dg
d ′

g 1

)

, dg =
(

zg
ag

)

,

∼
SgB =

(

0 0
0 Cg

)

, µ∗
g = µg(θ

∗),
∼
�

∗
gB = ∼

�gB (θ
∗)

(21)

with µg and
∼
�gB defined in (2) and ag in (14). Here we express the matrices

∼
�

∗
g

and
∼
Sg as in (19) for programming convenience, since the expression (18) has ex-

actly the same form as the multiple-group likelihood function in covariance structure

analysis. The constant “1” in the matrices
∼
�

∗
g and

∼
Sg in (19) is added to the E-step

function (18) without loss of generality because Mg(θ
∗|θ) and Mg(θ

∗|θ) ± 1 have

the same optimality. The expressions for
∼
�

∗
g and

∼
Sg in (19) with the constant “1”

are the result of re-combination of smaller matrices into bigger matrices by using
the property of block matrices

∼
�

∗−1

g =
( ∼

�
∗
gB +µ∗

gµ
∗′

g µ∗
g

µ∗′
g 1

)−1

=
⎛

⎝

∼
�

∗−1

gB − ∼
�

∗−1

gB µ∗
g

−µ∗′
g

∼
�

∗−1

gB 1 + µ∗′
g

∼
�

∗−1

gB µ∗
g

⎞

⎠ ,

∣

∣

∣

∣

∼
�

∗
g

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∼
�

∗
gB +µ∗

gµ
∗′

g µ∗
g

µ∗′
g 1

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∼
�

∗
gB

∣

∣

∣

∣

,

tr
(

�∗−1
g

∼
Sg

)

= tr
(

�∗−1
gB

∼
SgB

)

+ d ′
g

∼
�

∗−1

gB dg −2µ∗′
g

∼
�

∗−1

gB dg +µ∗′
g

∼
�

∗−1

gB µ∗
g +1.

The M-step of the EM algorithm is to update θ∗ for every given θ in the E-step
function in (18). For example, in the i th step (i = 0 corresponds to the initial step),
given θ = θ i , we need to update θ∗ to θ i+1 such that

M(θ i+1|θ i ) ≤ M(θ i |θ i ) (22)

according to the general idea of the EM-type algorithm (McLachlan and Krishnan,
1997). We will employ Lange’s (1995a,b) EM gradient algorithm to derive the up-
dating formula for θ i+1 in (20) by using the gradient direction. This requires the
first-order derivative of the E-step function (18) and a suitable approximation of the
Fisher information matrix (McLachlan and Krishnan, 1997). The first-order deriva-
tive can be derived as
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d M(θ |θ) = ∂M(θ
∗|θ )

∂θ
∗

∣

∣

∣

θ
∗=θ

=
G
∑

g=1

{

Ng�gW

(

�−1
gW ⊗ �−1

gW

)

vec
(

�gW − SgW
)

}

+∑G
g=1

{∼
�g

(∼
�

−1

g ⊗ ∼
�

−1

g

)

vec
(∼

�g − ∼
Sg

)}

,

(23)

where

�gW = ∂(vec�gW )
′

∂θ
,

∼
�g= ∂(vec

∼
�g)

′

∂θ
,

∼
�g = ∼

�
∗
g

∣

∣

∣

θ
∗=θ

(24)

the sign “vec” in (21) and (22) stands for the vectorization of a matrix by stacking its
columns successively, and the sign “⊗” for the Kronecker product of matrices. By
using a positive definite matrix of first-order derivatives to approximate the Hessian
matrix (see, e.g., (McLachlan and Krishnan, 1997), pp. 5–7, for the use of a positive
definite matrix to approximate the Hessian matrix), we can obtain the following
approximation to the Hessian matrix

I (θ) = E
{

∂2 M(θ
∗|θ )

∂θ
∗
∂θ

∗′

∣

∣

∣

θ
∗=θ

}

≈
G
∑

g=1

Ng�gW

{

2
(

�−1
gW Sgew�−1

gW

)

⊗ �−1
gW − �−1

gW ⊗ �−1
gW

}

�′
gW

+
G
∑

g=1

∼
�g

{

2
(∼

�
−1

g

∼
Sgeb

∼
�

−1

g

)

⊗ ∼
�

−1

g − ∼
�

−1

g ⊗ ∼
�

−1

g

} ∼
� ′

g.

(25)

The two matrices Sgew and
∼
Sgeb are derived by the assumptions (A1)–(A5) on (1)

Segw = E(Sgw) = 2�gB + �gW − Agw − A′
gw,

Agw = �2g�
−1
g �′

1g, �2g = (�gyz,
1

Ng
�g),

(26)

where �1g , �g and �g are defined in (15), and

∼
Sgeb= E(

∼
Sg) =

(

Sgeb + µgµ
′
g µg

µ′
g 1

)

, Sgeb =
(

�gzz Agb
A′

gb �gB

)

,

Agb = (�gzz, �gzy)�
−1
g �′

1g.

(27)
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According to the EM gradient algorithm in Lange (1995a,b), the M-step in the EM
algorithm for estimating the parameter θ can be realized by

θ i+1 = θ i − α I (θ i )
−1d M(θ i |θ i ), (28)

where θ i denotes the value of θ at the i th iteration and 0 < α ≤ 1 is an adjust-
ing constant for controlling the step length during the iteration. α can be chosen
dynamically (it could be different) at each iteration. The Root Mean Square Error
(RMSE) (Lee and Poon, 1998) can be used as a stopping criterion for the iteration
in (26). That is, the iteration stops when the RMSE between two adjacent steps is
small enough

RMSE (θ i+1, θ i ) =
{

1
r
‖θ i+1 − θ i‖2

}1/2

≤ ε (e.g., ε = 10−6), (29)

where the sign “‖·‖” stands for the usual Euclidean distance, and r is the dimension
of θ .

For the linear mixed effects model given by (5)–(7) with mean and covariance
structures (8), we can obtain the first-order derivatives

�gµ = ∂µ′
g

∂θ
= ∂β ′

∂θ
· Xg, �gW = ∂(vec�gW )

′

∂θ
= ∂

[

vec
(

σ 2 Rg
)]′

∂θ
,

�gB = ∂(vec�gB)
′

∂θ
= ∂(vecT )′

∂θ
· (Zg ⊗ Z′

g).

(30)

These derivatives are helpful in computing the term
∼
�g in (21)–(23). Because Ng ≡

1 and zg ≡ 0 in (1) (g = 1, . . . ,G) for the LMEM (5)–(7), we can obtain the
simplified formulas for d M(θ |θ) (see (21)) and I (θ) (see (23)) used in the iteration
process (26)

d M(θ |θ) = 1
σ 4

G
∑

g=1

�gW

(

R−1
g ⊗ R−1

g

)

vec
(

σ 2 Rg − SgW

)

+
G
∑

g=1

∼
�gm

(∼
�

−1

gm ⊗ ∼
�

−1

gm

)

vec
(∼

�gm − ∼
Sgm

)

,

I (θ) =
G
∑

g=1

{

1
σ 4 �gW

(

R−1
g ⊗ R−1

g

)

�′
gW + ∼

�gm

(∼
�

−1

gm ⊗ ∼
�

−1

gm

) ∼
� ′

gm

}

.

(31)

where �gW is given by (28),
∼
�gm is the reduced form of

∼
�g given in (19) without

the covariances related to zg in (1).
∼
�gm= ∂vec(

∼
�gm)

′/∂θ .
∼
Sgm is the reduced form

of
∼
Sg given in (19) without the variate zg . It can be derived that
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∼
�gm =

(

�gB + µgµ
′
g µg

µ′
g 1

)

,
∼
Sgm =

(

Cg + ag a′
g ag

a′
g 1

)

,

Cg = �gB − �gB(�gB + �gW )
−1�gB,

ag = µg + �gB(�gB + �gW )
−1( yg − µg),

SgW = yg y′
g + Cg + ag a′

g − ag y′
g − (ag y′

g)
′,

(32)

where µg , �gW , and �gB are given in (8). yg is the observation from the LMEM

(5). The derivatives in (28) help to compute the derivative
∼
�gm in (29).

3.2 Asymptotic Properties

Because the estimator θ̂ for the model parameter θ in (1) obtained from the EM
algorithm in Sect. 3.1 is an MLE, some general properties such as asymptotic nor-
mality apply to the MLE in Sect. 3.1. We can apply the general result on MLE given
by Hoadley (1971) to the MLE θ̂ . Based on assumptions (A1)–(A5) on (1), the
available observations {ug : g = 1, . . . ,G} defined in (9) are independent but not
identically distributed. The negative twice of the log-likelihood function from {ug}
defined in (9) can be expressed as

f (θ) =
G
∑

g=1

{

(Ng − 1) log |�gW (θ)| + tr
[

�−1
gW (θ)T gW

]}

+
G
∑

g=1

{

log |�g(θ)| + tr
[

�−1
g (θ)T gB

]}

,

(33)

where �g is given in (15) and

T gW = 1
Ng − 1

Y ′
g0

(

I Ng − 1
Ng

J Ng

)

Y g0, T gB = (cg − µg)(cg − µg)
′, (34)

where Y g0 is given in (9), and µg and cg are given in (2) and (15), respectively.
I Ng is the Ng × Ng identity matrix and J Ng the Ng × Ng matrix of ones (all of
its elements are “1”). Because the observation vectors {ug} in (9) are independently
normally distributed, it can be verified that {ug} satisfy the regularity conditions in
Theorem 2 of Hoadley (1971). Then we have the following theorem.

Theorem 1. The MLE θ̂ for the model parameter θ from (1) with assumptions (A1)–
(A5) is asymptotically normally distributed with

G1/2(θ̂ − θ)
D→ N

(

0, 2�−1(θ)
)

, G → ∞, (35)
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where the sign “
D→” means “converge in distribution,” and the matrix �(θ) is

given by

�(θ) = 1
G

⎧

⎨

⎩

G
∑

g=1

(Ng − 1)�gW

(

�−1
gW ⊗ �−1

gW

)

�′
gW

+
G
∑

g=1

[

�g

(

�−1
g ⊗ �−1

g

)

�′
g + 2�gµ�−1

g �′
gµ

]

⎫

⎬

⎭

,

(36)

where �g and �gW are given in (15) and (22), respectively, and

�g = ∂(vec�g)
′

∂θ
, �gµ = ∂µ′

g

∂θ
. (37)

Theorem 3.1 is a direct result from Theorem 2 of Hoadley (1971) applied to the
independently not identically normally distributed observation vectors {ug} in (9).
By Theorem 3.1, the asymptotic standard errors of the components of the MLE θ̂

from the model given by (1) can be approximately computed by the square roots of
the corresponding diagonal elements of the asymptotic covariance matrix of θ̂

cov(θ̂) ≈ 2
G

[

�(θ̂)
]−1
. (38)

The chi-square statistic for testing goodness-of-fit of formulation (1) with mean and
covariance structures (3) is defined as the difference between the model chi-square
at the restricted model ((3) with r < R, R given by (4)), and the model chi-square
at the saturated model (r = R) (see, e.g., Lee and Poon, 1998; Liang and Bentler,
2004)

χ2
SEM = f (θ̂)− f (θ̂ s)

D→ χ2(m), m = R − r, (39)

where f (θ) is the likelihood function given by (31), θ̂ is the MLE of θ from the
restricted model (3) and θ̂ s the MLE of θ s from the saturated model. A smaller
χ2

SEM-value implies a larger p-value for the test or better goodness-of-fit of the
model. The MLE θ̂ s from the saturated model for the case of SEM can be obtained
by using the updating process given by (26), where the derivative matrices �gW and
∼
�g in (21) and (23) are all constant matrices with elements zeros and ones.

For LMEM (5), we have the following simplified expressions:

(a) The likelihood function (31) reduces to

g(θ) =
G
∑

g=1

{

log |�gB(θ)+ �gW (θ)| + tr
[

(

�gB(θ)+ �gW (θ)
)−1 T gB

]}

,

(40)
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where �gB and �gW are given by (8), T gB is given by

TgB = ( yg − X ′
gβ)( yg − X ′

gβ)
′ (41)

with the observation yg and the design matrix X ′
g given in the LMEM (5).

(b) The asymptotic covariance matrix �(θ) in (34) for the MLE θ̂ L (the MLE for θ

in the mean and covariance structures (8)) reduces to

�(θ) =
G
∑

g=1

{

(�gB + �gW )
[

(�gB + �gW )
−1 ⊗ (�gB + �gW )

−1
]

×(�gB + �gW )
′ + 2�gµ(�gB + �gW )

−1�′
gµ

}

,

(42)

where �gµ, �gW and �gB are given in (28). The asymptotic standard error of
θ̂ L can be approximately computed by the square roots of the corresponding
diagonal elements of the asymptotic covariance matrix of θ̂ L

cov(θ̂ L) ≈ 2
G

[

�(θ̂ L)
]−1
. (43)

Due to the doubtably estimable problem of the saturated model associated with
an LMEM, a model fit test for an LMEM based on the chi-square approach can-
not be defined easily and this is beyond the scope of this chapter. The simple
expression (38) is useful for model selection related to the likelihood ratio crite-
rion when a number of candidate structured LMEM’s are to be compared, see,
for example, the AIC and BIC criteria discussed by Kuha (2004).

4 Examples

In this section, we will provide two examples to illustrate the application of the
model formulation (1) with the EM algorithm in Sect. 3.

Example 1. (The case of identical within covariance matrices with two pure level-2
observations, see Liang and Bentler, 2004.) The practical two-level data set contains
the scores of four tests given to high school students in 1988. There are N = 5, 198
students nested in G = 235 schools. The full data set is available upon request from
the authors. We consider the following model (Fig. 1) with only one within covari-
ance matrix. This is a one-factor (FW) model for within student test performance,
and a one-factor (FB) model to describe between school differences in student test
performance, with FB also predicted by school level variables Z1 and Z2. The in-
tercepts of FB, Z1, and Z2 are given by the paths from the constant 1 (called V999
in the figure). The model parameters are

(a) Within factor loadings: th1 (θ1), th2 (θ2), th3 (θ3).
(b) Within unique variances: th5 (θ5), th6 (θ6), th7 (θ7), th8 (θ8).
(c) Between factor loadings: ph1 (φ1), ph2 (φ2), ph3 (φ3).
(d) Between unique variances: ph4 (φ4), ph5 (φ5), ph6 (φ6), ph7 (φ7).
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Fig. 1 EQS diagram for the model in Example 1

(e) Coefficients for the between effects of Z1 and Z2 on FB: ph11 (φ11), ph12 (φ12).
(f) Covariances between residuals: Z1 and Z2, ph9 (φ9), and Z2 and Test 3, ph14

(φ14).
(g) Variance of the residual of factor FB: ph13 (φ13).
(h) Intercepts: mu1 (µ1) for Z1, mu2 (µ2) for Z2, mu3 (µ3) for FB, and mu4 (µ4)

for Test 3.
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Table 1 The ML estimates, standard errors, and chi-square test

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Estimate 1.046 0.682 1.024 0.751 0.341 0.255 1.348 2.482
SE 0.021 0.022 0.031 0.024 0.015 0.015 0.028 0.053

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

Estimate 1.052 0.579 1.177 0.014 0.009 0.033 0.051 4.437
SE 0.006 0.043 0.012 0.005 0.004 0.009 0.017 0.409

φ9 φ10 φ11 φ12 φ13 φ14

Estimate −0.366 0.142 −0.175 −0.025 0.132 −0.023
SE 0.057 0.013 0.015 0.083 0.017 0.007

µ1 µ2 µ3 µ4

Estimate 4.630 1.170 3.262 0.728
SE 0.137 0.025 0.145 0.105

Test Chi-square=12.51, df=11, p-Value=0.33

Therefore, we have a total of 26 (r = 26) model parameters to be estimated under
the null hypothesis that the model specified by Fig. 1 is true.

The EM algorithm for identical within covariance matrices has been coded into
EQS 6.1 (Bentler, 2006). We ran the EQS program and obtained the parameter esti-
mates in Table 1. The p-value=0.33 of the model chi-square indicates a good model
fit. That is, the restricted model given by Fig. 1 is suitable for representing the data.
The EQS program for running the model specified by Fig. 1, the formulae for com-
puting the standard error (SE) and the model chi-square in Table 1 are given in Liang
and Bentler (2004).

Example 2. (The case of nonidentical within covariance matrices with two pure
level-2 observations.) The data set is selected from the full data set in Example 1.
We set up a model with two different within covariance matrices. For the purpose
of illustration, it is assumed that there are 20 schools in which the students are only
given three tests and 215 schools in which the students are given four tests. The
model for the 20 schools with three tests is given by Fig. 2 and the model for the
215 schools with four tests is given by Fig. 3. Some parameter constraints are as-
sumed to hold between the model in Fig. 2 and the model in Fig. 3. For example,
the set of all parameters in Fig. 2 is a subset of the parameters in Fig. 3. That is, all
parameters in Fig. 2 are constrained to be equal to the corresponding parameters in
Fig. 3. The SEM version of the algorithm in Sect. 3 has been coded into the multi-
level option in the current EQS version (EQS 6.1). For readers’ easy application of
the EM algorithm in Sect. 3 in two-level SEM with dimensional heterogeneity, we
provide the EQS setup for running the model specified by Figs. 2 and 3 in Appen-
dix. The EQS output for the parameter estimates, their standard errors and model
chi-square is summarized in Table 2. The p-value=0.15 of the model chi-square in-
dicates that the restricted model specified by Figs. 2 and 3 is suitable for representing
the selected data.
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Fig. 2 EQS diagram for model 1 with 20 schools in Example 2

In the above analysis for Example 2, it could be argued that the model (Fig. 2)
for the first 20 schools with only three tests given can be considered as a missing
data pattern for the model (Fig. 3) for the last 215 schools with four tests given. In
the case of missing data pattern, there is only one saturated model (associated with
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Fig. 3 EQS diagram for model 2 with 215 schools in Example 2

Fig. 3) with the number of saturated model parameters (computed from (4) with
G = 1, p = 4 and q = 2).

R = 4 + 2 + 4(4 + 1)/2 + (4 + 2)(4 + 2 + 1)/2 = 37.

The number of structured model parameters r = 26 from Fig. 3. Then the number
of degrees of freedom is df=37−26=11 instead of df=37 as reported in Table 2. This
can be interpreted by the definition of a saturated model. When using the missing



Two-Level Structural Equation Models and Linear Mixed Effects Models 113

Table 2 The ML estimates, standard errors, and chi-square test

Parameter θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

MLE 1.049 0.683 1.019 0.749 0.343 0.253 1.348 2.478
SE 0.022 0.022 0.032 0.025 0.015 0.015 0.028 0.055

Parameter φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

MLE 1.052 0.579 1.180 0.013 0.010 0.036 0.056 4.437
SE 0.006 0.043 0.013 0.005 0.005 0.009 0.018 0.409

Parameter φ9 φ10 φ11 φ12 φ13 φ14

MLE −0.366 0.143 −0.174 −0.023 0.131 −0.026
SE 0.057 0.013 0.015 0.082 0.016 0.007

Parameter µ1 µ2 µ3 µ4

MLE 4.630 1.170 3.259 0.729
SE 0.137 0.025 0.145 0.107

Model chi-square=46.07, df=37, p-Value=0.15

data pattern, the equal-parameter constraint is imposed on both models for the first
20 schools (Fig. 2) and for the last 215 schools (Fig. 3). So the saturated model un-
der the missing data pattern is not completely saturated. The number of degrees of
freedom df=37 from the EQS output in Table 2 is derived from (4) by taking com-
plete saturated models for the first 20 schools (Fig. 2) and for the last 215 schools
(Fig. 3), respectively. This is actually equivalent to the multiple-group multilevel
analysis. The saturated model associated with this analysis should not include any
parametric constraints across the groups. So the number of degrees of freedom for
the chi-square test should be computed from (4) with G = 2, p1 = 3, q1 = 2,
p2 = 4, q2 = 2, and

R = [3 + 2 + 3(3 + 1)/2 + (3 + 2)(3 + 2 + 1)/2] (44)
+ [4 + 2 + 4(4 + 1)/2 + (4 + 2)(4 + 2 + 1)/2] = 63.

The number of structured model parameters r = 26 from Fig. 3 due to the equality
constraints on the parameters from both Figs. 2 and 3. Therefore the number of
degrees of freedom for the chi-square test is df=R − r = 63 − 26 = 37 as reported
from the EQS output in Table 2.

When there are more than two different within covariance matrices and more
than one between covariance matrix, as for the case of LMEM, optimization of
the E-step function (18) is carried out by the M-step iteration (26). The multilevel
option in the current EQS program can provide the MLE of model parameter for
the SEM version of the algorithm. When the EM algorithm in Sect. 3 is applied to
estimating model parameters from an LMEM, the computation of the derivatives
of the different within and between covariance matrices versus the unknown model
parameter can be greatly simplified by (28)–(30). Then the M-step iteration (26)
for optimizing the E-step function (18) will be much faster than the general case of
many completely different within and between covariance matrices.
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5 Goodness-of-Fit and Related Issues

In the previous sections, we introduced a common model formulation for analysis
of two-level SEM and LMEM and illustrated its applications by practical data sets.
Statistical models are usually set up for specifically collected data sets. It is usually
necessary to test whether a proposed model is suitable for a given data set. This
is an issue of testing goodness-of-fit and model selection. In covariance structure
analysis, testing goodness-of-fit is equivalent to testing a restricted model (the null
hypothesis) versus a more general (less restrictive) model (the alternative hypoth-
esis). In analysis of conventional (one-level) SEM, there are quite a few methods
for testing SEM and related discussions as mentioned in Sect. 1. In analysis of two-
level SEM, only a few existing methods for testing goodness-of-fit are available, see
Bentler et al. (2005) and references therein.

In addition to the usual chi-square statistic and some modified chi-square statis-
tics as summarized in Bentler et al. (2005) for model evaluation in two-level SEM,
there are some other model selection techniques for model assessment, model im-
provement, model modification, and model comparison, see, for example, Akaike
(1987), Bozdogan (1987), Browne and Cudeck (1989), Burnham and Anderson
(2004), Kuha (2004), Sörbom (1989), Yuan (2005), and Yuan et al. (2002). Be-
cause many model selection techniques such as the AIC and BIC (Kuha, 2004)
require computation of the value of the log-likelihood function at the MLE of the
model parameters, a simple expression for the log-likelihood function and an easily-
implemented algorithm for obtaining the MLE of the parameters are essential to
applying various model selection techniques in practice. Formulation (1) with the
assumptions (A1)–(A5) has a simple expression (31) for the log-likelihood func-
tion of two-level SEM. By using the multilevel option in EQS to run an EQS
program under the model formulation (1), we can easily obtain the MLE of the
model parameters under model formulation (1) for two-level SEM. Therefore, the
above-mentioned existing model selection techniques could be applied to model
formulation (1) to help obtain a suitable model for a given two-level data set. The
simplicity of the model formulation (1) may also provide a convenient way to imple-
ment Bayesian model selection if some prior information on the model parameters
is available. Based on the simple log-likelihood function (31) for formulation (1),
under the normal assumption, the Bayesian model selection method in Song and Lee
(2002) could be employed to select a suitable model if there are several candidate
models with the same formulation (1). Further discussions on Bayesian model selec-
tion can be found in Gelman and Rubin (1995), Lee and Song (2003), and Raftery
(1995a,b).

In this chapter, we proposed a unified model formulation for analysis of two-
level SEM and LMEM with the focus on parameter estimation. Due to the difficulty
of specifying the saturated models associated with many LMEM’s, the same chi-
square-type statistic as for two-level SEM is not suitable for testing goodness-of-fit
for an LMEM when its associated saturated model is not estimable. It is usually a
complicated task to verify whether the saturated model associated with a structured
LMEM is estimable. So we were not able to provide an illustration on LMEM with
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practical data for which an estimable saturated model can be set up. By resorting
to the simple likelihood function (38) and the proposed EM algorithm in Sect. 3 to
obtain the MLE’s for a number of candidate structured LMEM’s for a given data
set, one will be able to use some existing criteria related to the likelihood function
(such as the AIC and BIC (Kuha, 2004)) for model selection and model comparison.
Therefore, the unified estimation approach to two-level SEM and LMEM in this
chapter could provide a convenient way to apply existing methodologies in model
selection to the unified model formulation for two-level SEM and LMEM.

It is pointed out that the unified estimation approach to two-level SEM and
LMEM in this chapter is strictly based on the normal assumptions as specified by
(A1)–(A4) in Sect. 2. Some robust procedures against violation of the normality as-
sumption in SEM were discussed by Yuan and Bentler (2007b). Since an LMEM can
be fit into the same formulation (1) as for two-level SEM for parameter estimation,
we could expect some kind of robustness of the estimation method in this chapter,
for example, the asymptotic robustness of standard errors discussed by Yuan and
Bentler (2006). Further research is necessary to bridge the relation between SEM
and LMEM in view of estimation methods, goodness-of-fit statistics, and robust
procedures.

Appendix. EQS Input Program for the Model in Example 2

/TITLE
First set of schools – only 3 variables
WITHIN MODEL FIRST
/SPECIFICATION
data=’school1.dat’; case =447; variable=7; method=ml;
matrix=raw; GROUP=4; analysis=covariance; MULTILEVEL=ML; cluster=V5;
/LABELS
V1 = Y6; V2 = Y7; V3 = Y8; V4 = Y9; V5 = SCHOOL; V6 = X3; V7 = X4;
F1 = FW;
/EQUATIONS
Y6=1FW+E1;
Y7=*FW+E2;
Y8=*FW+E3;
!Y9=*FW+E4;
/VARIANCES
FW=*;
E1-E3=*;
/END
/TITLE
BETWEEN MODEL

(To be continued)
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(Continued)

/LABELS
V1 = Y6; V2 = Y7; V3 = Y8; V4 = Y9; V5 = SCHOOL; V6 = X3; V7 = X4;
F1 = FB;
/EQUATIONS
Y6=1FB+E1;
Y7=*FB+E2;
Y8=*V999+*FB+E3;
!Y9=*FB+E4;
FB=*V999+*X3+*X4+D1;
X3=*V999+E20;
X4=*V999+E21;
/VARIANCES
E1-E3=*;
D1=*;
E20-E21=*;
/COVARIANCES
E20,E21=*;
E3,E21=*;
/END
/TITLE
Second set of schools – all four variables
WITHIN MODEL FIRST
/SPECIFICATION
data=’school2.dat’; case =4751; variable=7; method=ml;
matrix=raw; analysis=covariance; MULTILEVEL=ML; cluster=V5;
/LABELS
V1 = Y6; V2 = Y7; V3 = Y8; V4 = Y9; V5 = SCHOOL; V6 = X3; V7 = X4;
F1 = FW;
/EQUATIONS
Y6=1FW+E1;
Y7=*FW+E2;
Y8=*FW+E3;
Y9=*FW+E4;
/VARIANCES
FW=*;
E1-E4=*;
/END
/TITLE
BETWEEN MODEL
/LABELS

(To be continued)
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(Continued)

V1 = Y6; V2 = Y7; V3 = Y8; V4 = Y9; V5 = SCHOOL; V6 = X3; V7 = X4;
F1 = FB;
/EQUATIONS
Y6=1FB+E1;
Y7=*FB+E2;
Y8=*V999+*FB+E3;
Y9=*FB+E4;
FB=*V999+*X3+*X4+D1;
X3=*V999+E20;
X4=*V999+E21;
/VARIANCES
E1-E4=*;
D1=*;
E20-E21=*;
/COVARIANCES
E20,E21=*;
E3,E21=*;
/CONSTRAINTS
(1,F1,F1)-(3,F1,F1)=0;
(1,E1,E1)-(3,E1,E1)=0;
(2,E1,E1)-(4,E1,E1)=0;
(1,E2,E2)-(3,E2,E2)=0;
(2,E2,E2)-(4,E2,E2)=0;
(1,E3,E3)-(3,E3,E3)=0;
(2,E3,E3)-(4,E3,E3)=0;
(2,E20,E20)-(4,E20,E20)=0;
(2,E21,E3)-(4,E21,E3)=0;
(2,E21,E20)-(4,E21,E20)=0;
(2,E21,E21)-(4,E21,E21)=0;
(2,D1,D1)-(4,D1,D1)=0;
(2,V3,V999)-(4,V3,V999)=0;
(2,V6,V999)-(4,V6,V999)=0;
(2,V7,V999)-(4,V7,V999)=0;
(1,V2,F1)-(3,V2,F1)=0;
(1,V3,F1)-(3,V3,F1)=0;
(2,F1,V999)-(4,F1,V999)=0;
(2,V2,F1)-(4,V2,F1)=0;
(2,V3,F1)-(4,V3,F1)=0;
(2,F1,V6)-(4,F1,V6)=0;
(2,F1,V7)-(4,F1,V7)=0;
/tech
itr=200; con=.000001;
/END
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Bayesian Model Comparison of Structural
Equation Models

Sik-Yum Lee and Xin-Yuan Song

1 Introduction

Structural equation modeling is a multivariate method for establishing meaningful
models to investigate the relationships of some latent (causal) and manifest (control)
variables with other variables. In the past quarter of a century, it has drawn a great
deal of attention in psychometrics and sociometrics, both in terms of theoretical
developments and practical applications (see Bentler and Wu, 2002; Bollen, 1989;
Jöreskog and Sörbom, 1996; Lee, 2007). Although not to the extent that they have
been used in behavioral, educational, and social sciences, structural equation models
(SEMs) have been widely used in public health, biological, and medical research
(see Bentler and Stein, 1992; Liu et al., 2005; Pugesek et al., 2003 and references
therein). A review of the basic SEM with applicants to environmental epidemiology
has been given by Sanchez et al. (2005).

One important statistical inference beyond estimation in SEMs is related to
model comparison or testing various hypotheses about the model. In the field of
structural equation modeling, a classical approach in hypothesis testing is to use the
significance tests on the basis of p-values that are determined by some asymptotic
distributions of the test statistics. It is well-known that the p-value of a significance
test in hypothesis testing is a measure of evidence against the null model, not a mean
of supporting/proving the model. For complex SEMs, the asymptotic distributions
of the test statistics are usually unknown and hard to derive. Moreover, the signifi-
cance tests cannot be applied to test nonnested hypotheses or to compare nonnested
models. Various descriptive fit indices (Bentler and Bonett, 1980; Kim, 2005) have
been proposed for assessing goodness-of-fit of a single hypothesized model. How-
ever, it is not clear how to apply these fit indices for model comparison of complex
SEMs.
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The main objective of this chapter is to introduce a well-known model compari-
son statistic, namely the Bayes factor (see Kass and Raftery, 1995), which does not
have the above mentioned problems. Bayes factor is associated with the Bayesian
approach, which has been widely used in analyzing various statistical models and
data (see, e.g., Austin and Escobar, 2005; Congdon, 2005; Dunson, 2005; Dunson
and Herring, 2005; among others), and SEMs (see, e.g., Lee, 2007; Lee and Song,
2003; Palomo et al., 2007; Song and Lee, 2004; among others). It is well-known that
the Bayesian approach has the following advantages: (a) More precise estimates of
the parameters can be obtained with good prior information. (b) As the sampling-
based Bayesian methods do not rely on asymptotic theory, it gives more reliable
statistical results under situations with small sample sizes (see, Dunson, 2000; Lee
and Song, 2004a). (c) It has the similar optimal asymptotic properties as the maxi-
mum likelihood approach.

The basic idea of the Bayes factor is simple; it is defined as a ratio of the mar-
ginal densities associated with the competing models. In general, as the marginal
densities involve intractable high-dimensional integrals, computation of Bayes fac-
tor is challenging and has received much attention in the literature; see, for example,
the rough approximation of the Bayes factor via the Schwarz criterion (or Bayesian
Information criterion, BIC); the Barlett adjustment of the Laplace approximation
(Diciccio et al., 1997), importance sampling and bridge sampling (see Meng and
Wong, 1996; Diciccio et al., 1997), reciprocal importance sampling (Gelfand and
Dey, 1994), method using MCMC outputs (Chib, 1995; Chib and Jeliazkov, 2001);
and path sampling (Gelman and Meng, 1998). Inspired by its simplicity and its suc-
cessful applications in latent variable models and SEMs (Song and Lee, 2006a,b),
path sampling will be used for computing the Bayes factor in this chapter.

In Sect. 2, we introduce the Bayes factor to compare competing SEMs for a given
data set, and roughly discuss some other alternatives. The computation of the Bayes
factor through path sampling is addressed in Sect. 3. To illustrate the methodology,
model comparisons in the context of nonlinear SEM are given in Sect. 4, with results
of a simulation study. Moreover, Sect. 5 presents an application of Bayes factor to
an integrated SEM, together with a real application in relation to a hierarchical data
set in education. Section 6 presents a discussion.

2 Bayes Factor and other Model Comparison Statistics

2.1 Bayes Factor

Bayes factor (Kass and Raftery, 1995) is a well-known statistic in Bayesian hy-
pothesis testing and model comparison, and it still receives a great deal of attention
in recent Bayesian literature. Suppose that the observed data Y with a sample size
n have arisen under one of the two competing models M1 and M0 according to
probability densities p(Y|M1) and p(Y|M0), respectively. For k = 0, 1, let p(Mk)
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be the prior probability and p(Mk |Y) be the posterior probability. From the Bayes
theorem, we obtain

p(M1|Y)
p(M0|Y) = p(Y|M1)p(M1)

p(Y|M0)p(M0)
.

Assuming p(M1) = p(M0), the Bayes factor for evaluating M1 against M0 is
defined as

B10 = p(Y|M1)

p(Y|M0)
.

Hence, the Bayes factor is a summary of the evidence provided by the data in favor
of M1 as opposed to M0, and it measures how well M1 predicts the data relative to
M0. From Kass and Raftery (1995), it is useful to consider twice the natural loga-
rithm of the Bayes factor and interpret the resulting statistic based on the following
table:

B10 2 log B10 Evidence against M0

<1 <0 Negative (support M0)

1–3 0–2 Not worth more than a bare mention

3–20 2–6 Positive (support M1)

20–150 6–10 Strong

>150 >10 Decisive

(1)

The interpretation given in (1) is a suggestion and it is not necessary to regard it as
a strict rule, and selection depends on one’s preference in the substantive situation.
Similarly in frequentist hypothesis testing, one may take the type I error to be 0.05
or 0.10, and the choice is decided with other factors in the substantive situation.
See Garcia-Donato and Chan (2005) for more technical treatment on calibrating the
Bayes factor.

The prior distributions of the parameters are involved in the Bayes factor, see (2)
below. As pointed out by Kass and Raftery (1995), noninformative priors should
not be used. In most Bayesian analyses of SEMs, the proper conjugate type prior
distributions that involve prior inputs of the hyper-parameter values have been used.
For situations where we have good prior information, for example, from analysis
of closely related data, or knowledge of experts, subjective hyper-parameter values
should be used. In other situations, ideas from data and/or information from various
sources can be used.

In general, the marginal densities p(Y|Mk), k = 0, 1, are obtained by integrating
over the parameter space, that is,

p(Y|Mk) =
∫

p(Y|θk,Mk)p(θk |Mk) dθk, (2)
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where θk is the parameter vector in Mk , p(θk |Mk) is its prior density, and
p(Y|θk,Mk) is the probability density of Y given θk . In this chapter, we use θ

to represent the parameter vector in general, and it may stand for θ0, θ1 or the
parameter vector in the linked model (see the following sections) according to
the context. The dimension of the above integral is equal to the dimension of θk .
Very often, it is very difficult to obtain B10 analytically, and various analytic and
numerical approximations have been proposed in the literature. In the next section,
the procedure based on idea of the path sampling (Gelman and Meng, 1998) is pro-
posed to compute the Bayes factor. The path sampling, which is a generalization of
the importance sampling and bridge sampling (Meng and Wong, 1996), has several
nice features. Its implementation is simple. In general, as pointed out by Gelman
and Meng (1998), we can always construct a continuous path to link two competing
models with the same support. Hence, the method can be applied to a wide variety
of problems. Unlike some methods in estimating the marginal likelihood via poste-
rior simulation, it does not require to estimate the location and/or scale parameters
in the posterior. Distinct from most existing approaches, the prior density is not
directly involved in the evaluation. Finally, the logarithm scale of Bayes factor is
computed, which is generally more stable than the ratio scale.

2.2 Other Alternatives

A simple approximation of 2 log B10 is the following Schwarz criterion S∗(Schwarz,
1978):

2 log B10 ∼= 2S∗ = 2
{

log p(Y|θ̃1,M1)− log p(Y|θ̃0,M0)
}

− (d1 − d0) log n, (3)

where θ̃1 and θ̃0 are maximum likelihood (ML) estimates of θ1 and θ0 under M1 and
M0, respectively; d1 and d0 are the dimensions of θ1 and θ0; and n is the sample size.
Minus 2S∗ is the following Bayesian Information Criterion (BIC) for comparing M1
and M0:

BIC10 = −2S∗ ∼= −2 log B10 = 2 log B01. (4)

The interpretation of BIC10 can be based on (1). For each Mk, k = 0, 1, we define

BICk = −2 log p(Y|θ̃k,Mk)+ dk log n. (5)

Then 2 log B10 = BIC0−BIC1. Hence, it follows that the model Mk with the smaller
BICk value is selected.

As n tends to infinity, it has been shown (Schwarz, 1978) that

S∗ − log B10

log B10
→ 0,
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thus S∗ may be viewed as an approximation to log B10. As this approximation is
of order O(1), S∗ does not give the exact log B10 even for large samples. However,
since the interpretation is on the natural logarithm scale, it provides a reasonable
indication of evidence. As pointed out by Kass and Raftery (1995), it can be used for
scientific reporting as long as the number of degrees of freedom (d1−d0) involved in
the comparison is small relative to the sample size n. The BIC is appealing in that it
is relatively simple and can be applied even when the priors p(θ0|Mk) (k = 1, 2) are
hard to set precisely. The ML estimates of θ1 and θ0 are involved in the computation
of BIC. In practice, since the Bayesian estimates and the ML estimates are close to
each other, it can be used for computing the BIC. The order of approximation is not
changed, and the BIC obtained can be interpreted using the criterion given in (1).
See Raftery (1993) for an application of BIC to the standard LISREL model that is
based on the normal assumption and a linear structural equation. Under this simple
case, the computation of the observed data logarithm likelihood log p(Y|θ̃k,Mk)
is straight forward. However, for some complex SEMs, evaluation of the observed
data logarithm likelihood may be difficult.

The Akaike Information Criterion (AIC) associated with a competing model Mk
is given by

AICk = −2 log p(Y|θ̃k,Mk)+ 2dk, (6)

which does not involve the sample size n. The interpretation of AICk is similar to
BICk . That is, Mk is selected if its AICk is smaller. Comparing (5) with (6), we see
that BIC tends to favor simpler models than those selected by AIC.

Another goodness-of-fit or model comparison statistic that takes into account the
number of unknown parameters in the model is the Deviance Information Criterion
(DIC), see Spiegelhalter et al. (2002). This statistic is intended as a generalization
of AIC. Under a competing model Mk with a vector of unknown parameter θk of
dimension dk , let {θ ( j)

k : j = 1, . . . , J } be a sample of observations simulated from
the posterior distribution. We define

DICk = − 2
J

J
∑

j=1

log p
(

Y|θ ( j)
k ,Mk

)

+ 2dk . (7)

In model comparison, the model with the smaller DIC value is selected.
In analyzing a hypothesized model, WinBUGS (Spiegelhalter et al., 2003) pro-

duces a DIC value that can be used for model comparison. However, as pointed out
in the WinBUGS User Manual (Spiegelhalter et al., 2003), in practical application
of DIC, it is important to note the following: (a) If the difference in DIC is small,
for example, less than five, and the models make very different inferences, then
just reporting the model with the lowest DIC could be misleading. (b) DIC can be
applied to nonnested models. Similar to the Bayes factor, BIC, and AIC, DIC gives
clear conclusion to support the null hypothesis or the alternative hypothesis. (c) DIC
assumes the posterior mean to be a good estimate of the parameter. There are cir-
cumstances, such as mixture models, in which WinBUGS will not give the DIC
values. Because of (c) and because the Bayes factor is the more common statistic
for model comparison, we focus on Bayes factor in this chapter.
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3 Computation of Bayes Factor through Path Sampling

In general, let Y be the matrix of observed data, L be the matrix of latent data, and
� be the matrix of latent variables in the model. Usually, owing to the complex-
ity of the model, direct application of path sampling (Gelman and Meng, 1998) in
evaluating the Bayes factor is difficult. In this chapter, we utilize the idea of data
augmentation (Tanner and Wong, 1987) to solve the problem. Below we use similar
reasonings as in Gelman and Meng (1998) to show briefly that path sampling can
be applied to compute the Bayes factor by augmenting Y with � and L. From the
equality p(�,L, θ |Y) = p(Y,�,L, θ)/p(Y), the marginal density p(Y) can be
treated as the normalizing constant of p(�,L, θ |Y), with the complete-data proba-
bility density p(Y,�,L, θ) taking as the unnormalized density. Now, consider the
following class of densities which are denoted by a continuous parameter t in [0, 1]:

p(�,L, θ |Y, t) = 1
z(t)

p(Y,�,L, θ |t), (8)

where

z(t) = p(Y|t) =
∫

p(Y,�,L, θ |t) d� dL dθ =
∫

p(Y,�,L|θ , t)p(θ) d� dL dθ ,

(9)

with p(θ) being the prior density of θ , which is assumed to be independent of t .
In computing the Bayes factor, we construct a path using the parameter t in [0, 1]

to link two competing models M1 and M0 together, so that B10 = z(1)/z(0). Taking
logarithm and then differentiating (9) with respect to t , and assuming the legitimacy
of interchange of integration with differentiation, we have

d log z(t)
dt

=
∫

1
z(t)

d
dt

p(Y,�,L, θ |t) d� dL dθ

=
∫

d
dt

log p(Y,�,L, θ |t) · p(�,L, θ |Y, t) d� dL dθ

= E�,L ,θ

[

d
dt

log p(Y,�,L, θ |t)
]

,

where E�,L ,θ denotes the expectation with respect to the distribution p(�,L,
θ |Y, t). Let

U (Y,�,L, θ , t) = d
dt

log p(Y,�,L, θ |t) = d
dt

log p(Y,�,L|θ , t), (10)

which does not involve the prior density p(θ), we have

log B10 = log
z(1)
z(0)

=
∫ 1

0
E�,L ,θ [U (Y,�,L, θ , t)] dt.
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We follow the method as in Ogata (1989) to numerically evaluate the integral over
t . Specifically, we first order the unique values of S fixed grids {t(s)}S

s=0 such that
t(0) = 0 < t(1) < t(2) < · · · < t(S) < t(S+1) = 1, and estimate log B10 by

̂log B10 = 1
2

S
∑

s=0

(

t(s+1) − t(s)
) (

Ū(s+1) + Ū(s)
)

, (11)

where U (s) is the average of the values of U (Y,�,L, θ , t) for simulation draws at
t = t(s), that is,

Ū(s) = J−1
J

∑

j=1

U
(

Y,�( j),L( j), θ ( j), t(s)
)

, (12)

in which
{

(�( j),L( j), θ ( j)), j = 1, . . . , J
}

are simulated observations drawn from
p(�,L, θ |Y, t(s)).

In a comprehensive comparative study of various computing methods in com-
puting the Bayes factor, Diciccio et al. (1997) pointed out that the bridge sampling
(Meng and Wong, 1996) is an attractive method. Gelman and Meng (1998) showed
that path sampling is a generalization of bridge sampling and importance sampling.
Hence, it is expected that path sampling can give a more accurate result than bridge
sampling in computing the Bayes factor. See Lee (2007) for applications of path
sampling to various SEMs. In the next two sections, we illustrative path sampling
through its applications to nonlinear SEMs and an integrated SEM.

4 Model Comparison of Nonlinear SEMs

4.1 Model Description

Consider a SEM with a random vector yi (p × 1) that satisfies the following mea-
surement equation:

yi = Acyi + �ωi + εi , i = 1, . . . , n, (13)

where A(p×c1) and �(p×q) are unknown parameter matrices, cyi (c1×1) is a vec-
tor of fixed covariates, ωi (q × 1) is a vector of latent variables, εi (p × 1) is a vector
of error measurements with distribution N (0,�ε),�ε = diag(ψε1, . . . , ψεp),ωi

and εi are independent. The latent vector ωi is partitioned into (ηT
i , ξ

T
i )

T and is
further modeled with an additional vector of fixed covariates ci (c2 × 1) through the
following nonlinear structural equation:

ηi = Bci + �ηi + �F(ξ i )+ δi , i = 1, . . . , n, (14)
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where ηi (q1 × 1) and ξ i (q2 × 1) are latent random vectors; F(ξ i ) = ( f1(ξ i ), . . . ,
fr (ξ i ))

T is a r × 1 vector-valued function with differentiable functions f1, . . . , fr ;
B(q1 × c2),�(q1 × q1), and �(q1 × r) are unknown parameter matrices. Moreover,
it is assumed that �0 = Iq1 −� is nonsingular; |�0| is independent of the elements
in �; ξ and δ are independently distributed as N (0,�) and N (0,�δ), respectively;
and �δ = diag(ψδ1, . . . , ψδq1). In this model, nonlinear effects of the exogenous
latent variables on the endogenous latent variables are included. The fixed covariates
cyi and ci could be discrete, ordered categorical, or continuous measurements.

The above nonlinear SEM may be overparameterized for certain applications. For
example, it does not allow intercepts to exist in both the measurement and structural
equations defined by (13) and (14). Moreover, the choice of F(ξ i ) is not arbitrary.
For example, neither f (ξ) = 0 nor f1(ξ) = f2(ξ) are allowed. Finally, the co-
variance structure is not identified. In this chapter, we follow the common practice
in structural equation modeling by fixing appropriate elements in � at preassigned
values. In most applications of SEMs, the positions and the preassigned values of
the fixed elements in � are available from the subject knowledge or the purpose of
the study. The parameter vector of the model includes all unknown structural para-
meters in A,�,�,�,�ε,�δ , and �. In the following analysis, we assume that the
nonlinear SEM under discussion is identified.

4.2 Model Comparison via Bayes Factor

Model comparison is an important issue in analyzing nonlinear SEMs. For instance,
a fundamental problem is to decide whether a nonlinear structural equation is better
than a linear structural equation in formulating a model to fit a given data set. To
apply the path sampling procedure in computing the Bayes factor for model com-
parison, it is necessary to define a path t in [0, 1] to link the competing models. For
most practical applications, a natural path is usually available.

To give a more specific illustration in applying the procedure to the current
nonlinear SEM, consider the following models M1 and M0 that satisfy the same
measurement equation (13), but with the following different nonlinear structural
equations:

M1 : ηi = Bci + �ηi + �1F1(ξ i )+ δi ,

M0 : ηi = Bci + �ηi + �0F0(ξ i )+ δi ,

where F1 and F0 may involve different numbers of distinct nonlinear functions of ξ ;
and �1 and �0 are the corresponding unknown coefficient matrices. In this illustra-
tion, differences of M1 and M0 are on the nonlinear relationships among the latent
variables. The structural equations of model M1 and M0 are linked up by t in [0, 1]
as follows:

Mt : ηi = Bci + �ηi + (1 − t)�0F0(ξ i )+ t�1F1(ξ i )+ δi = �tωG(ci ,ωi )+ δi ,
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where

�tw = (B,�, (1 − t)�0, t�1) and G(ci ,ωi ) = (cT
i , η

T
i ,F0(ξ i )

T ,F1(ξ i )
T )T .

Clearly, when t = 0,Mt = M0; when t = 1,Mt = M1. Let � = (ω1, . . . ,ωn), we
have

log p(Y,�|θ , t) = −1
2

{

(p + q)n log(2π)+ n log |�ε | + n log |�δ| + n log |�|

+
n

∑

i=1

ξ T
i �−1ξ i +

n
∑

i=1

(yi − Acyi − �ωi )
T �−1

ε

×(yi − Acyi − �ωi )+
n

∑

i=1

(ηi − �tωG(ci ,ωi ))
T �−1

δ

×(ηi − �tωG(ci ,ωi ))

}

.

Here, θ is the parameter vector in the linked model Mt . It contains all the common
and distinct unknown parameters in M0 and M1; that is, unknown parameters in
A,�,�ε,B,�,�0, �1,�, and �δ . By differentiation with respect to t , we have

U (Y,�, θ , t) = d
dt

log p(Y,�|θ , t) =
n

∑

i=1

(ηi −�tωG(ci ,ωi ))
T �−1

δ �0G(ci ,ωi ),

(15)
where �0 = (0, 0,−�0,�1).

Application of this procedure to other special cases of the general model is
similar. The main computation is in generating observations (�( j), θ ( j)) from
p(�, θ |Y, t(s)) for evaluating Ū(s). See Sect. 4.3 for an example with detailed im-
plementation.

Observations (�( j), θ ( j)) from p(�, θ |Y, t(s)) are simulated by the Gibbs sam-
pler (Geman and Geman, 1984) which is implemented as follows: At the j th itera-
tion with a current θ ( j) (a) generate �( j+1) from p(�|θ ( j),Y, t), then (b) generate
�( j+1) from p(θ |�( j+1),Y, t). The conditional distribution p(θ |�,Y, t) depends
on the prior distribution of θ . Inspired by most Bayesian analyses of SEMs, the con-
jugate prior distributions are used. Let �ω = (B,�,�), and let AT

k , �T
k , and �T

ωk
be the kth rows of A, �, and �ω, respectively. The conjugate prior distributions are
given as follows:

p(ψ−1
εk )

D= Gamma[α0εk, β0εk], p(�k |ψεk) D= N [�0k, ψεkH0yk], k = 1, . . . , p,

p(ψ−1
δk )

D= Gamma[α0δk, β0δk], p(�ωk |ψδk) D= N [�0ωk, ψδkH0ωk], k = 1, . . . , q,

p(�−1)
D= W [R0, ρ0], p(Ak)

D= N [A0k,H0k], k = 1, . . . , p, (16)
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where Gamma[α, β] represents the gamma distribution with a shape parameter
α > 0 and an inverse scale parameter β > 0; ψεk and ψδk are the kth diag-
onal elements of �ε and �δ , respectively; W [·, ·] denotes the Wishart distribu-
tion; α0εk, β0εk, α0δk, β0δk,A0k,�0k,�0ωk, ρ0, and positive definite matrices H0k ,
H0yk,H0ωk , and R0 are hyper-parameters, whose values are either subjectively de-
termined if good prior information is available or objectively determined from the
data or other sources. The full conditional distributions under these conjugate prior
distributions can be obtained from Lee and Song (2003); or they can be obtained as
special cases of the full conditional distributions presented in the Appendix.

4.3 A Simulation Study

The objectives of this simulation study are to reveal the performance of the path
sampling procedure for computing Bayes factor and to evaluate the sensitivity
with respect to prior inputs. Random observations were simulated from the non-
linear model defined by (13) and (14) with eight manifest variables, which are re-
lated to two fixed covariates {cyi1, cyi2} and three latent variables {ηi , ξi1, ξi2}. The
first fixed covariate cyi1 is sampled from a multinomial distribution which takes
values 1.0, 2.0, and 3.0 with probabilities �∗(−0.5),�∗(0.5) − �∗(−0.5), and
1.0 − �∗(0.5), respectively, where �∗ is the distribution function of N [0, 1]. The
second covariate cyi2 is sampled from N [0, 1]. The true population values in matri-
ces A,�, and �ε are

AT =
[

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

]

,

�T =
⎡

⎣

1.0∗ 1.5 1.5 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗
0.0∗ 0.0∗ 0.0∗ 1.0∗ 1.5 0.0∗ 0.0∗ 0.0∗
0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 1.0∗ 1.5 1.5

⎤

⎦ , �ε = I8,

where I8 is a 8 by 8 identity matrix, and parameters with an asterisk were treated as
known. The true variances and covariance of ξi1 and ξi2 are φ11 = φ22 = 1.0, and
φ21 = 0.15. These two latent variables are related to ηi by

ηi = 1.0ci + 0.5ξi1 + 0.5ξi2 + 1.0ξ2
i2 + δi ,

where ci is another fixed covariate sampled from a Bernoulli distribution that takes
1.0 with probability 0.7 and 0.0 with probability 0.3; and ψδ = 1.0. On the basis of
these specifications, random samples {yi , i = 1, . . . , n} with n = 300 were gener-
ated for the simulation study. A total of 100 replications were taken for each case.

Attention is devoted to compare models with different formations of the more
interesting structural equation with latent variables. Hence, models with the same
measurement equation and the following structural equations are involved in the
model comparison:
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M0 : ηi = bci + γ1ξi1 + γ2ξi2 + γ22ξ
2
i2 + δi ,

M1 : ηi = bci + γ1ξi1 + γ2ξi2 + δi ,
M2 : ηi = bci + γ1ξi1 + γ2ξi2 + γ12ξi1ξi2 + δi ,
M3 : ηi = bci + γ1ξi1 + γ2ξi2 + γ11ξ

2
i1 + δi ,

M4 : ηi = bci + γ1ξi1 + γ2ξi2 + γ12ξi1ξi2 + γ11ξ
2
i1 + δi ,

M5 : ηi = γ1ξi1 + γ2ξi2 + γ22ξ
2
i2 + δi ,

M6 : ηi = bci + γ1ξi1 + γ2ξi2 + γ12ξi1ξi2 + γ11ξ
2
i1 + γ22ξ

2
i2 + δi .

Here, M0 is the true model; M1 is a linear model; M2, M3, and M4 are nonnested
in M0; and M0 is nested in the most general model M6. To give a more detailed
illustration in applying the procedure to model comparison of nonlinear SEMs, the
implementation of path sampling to estimate log B02 in comparing M0 and M2 is
given here. Let θ = (θ̃ ,�ω) and θ t = (θ̃ ,�tω), where �ω = (b, γ1, γ2, γ12, γ22),
�tω = (b, γ1, γ2, (1 − t)γ12, tγ22), and θ̃ includes all unknown parameters in Mt
except for �ω. The procedure consists of the following steps:
Step 1: Select a Mt to link M0 and M2. Here, Mt is defined with the same measure-
ment model as in M0 and M2, but with the following structural equation:

Mt : ηi = bci + γ1ξi1 + γ2ξi2 + (1 − t)γ12ξi1ξi2 + tγ22ξ
2
i2 + δi .

Clearly, when t = 1, Mt = M0; when t = 0,Mt = M2.
Step 2: At the fixed grid t = t(s), generate observations (�( j), θ ( j)), j = 1, . . . , J
from p(�, θ |Y, t(s)). Specifically, at the j th iteration

1. Generate �( j+1) from p(�|θ ( j)
t ,Y).

2. Generate θ̃
( j+1)

from p(θ̃ |�( j+1),�
( j)
tω ,Y).

3. Generate �
( j+1)
ω from p(�ω|�( j+1), θ̃

( j+1)
,Y).

4. Update θ
( j+1)
t by letting θ

( j+1)
t = (θ̃

( j+1)
,�

( j+1)
tω ), where

�
( j+1)
tω = (1, 1, 1, (1 − t(s)), t(s))�

( j+1)T
ω .

Step 3: Calculate U (Y,�( j), θ ( j), t(s)) by substituting {(�( j), θ ( j)); j = 1, . . . , J }
to (15) as follows:

U (Y,�, θ , t(s)) =
n

∑

i=1

(ηi − bci − γ1ξ1 − γ2ξ2 − (1 − t(s))γ12ξ1ξ2 − t(s)γ22ξ
2
2 )

×(γ12ξ1ξ2 − γ22ξ
2
2 )/ψδ.

Step 4: Calculate Ū(s); see (12).
Step 5: Repeat Step 2 to Step 5 until all Ū(s), s = 0, . . . , S are calculated. Then,
̂log B02 can be estimated by (11).

In the sensitivity analysis concerning about the prior inputs, the less impor-
tant hyper-parameters in the conjugate prior distribution are selected as H0k = I,
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H0yk = I, and H0ωk = I. For the more important hyper-parameters, we fol-
lowed the suggestion of Kass and Raftery (1995) to perturb them as follows. For
α0εk = α0δk = 8, β0εk = β0δk = 10, and ρ0 = 20, we consider the following three
types of prior inputs:

(I) A0k, �0k , and �0ωk are selected to be the true parameter matrices, and R−1
0 =

(ρ0 − q2 − 1)�0, where elements in �0 are the true parameter values.
(II) The hyper-parameters specified in (I) are equal to half of the values given in

(I).
(III) The hyper-parameters specified in (I) are equal to twice of the values given

in (I).
For Type (I) prior inputs as given above, we consider the following prior inputs
on α0εk, α0δk, β0εk, β0δk , and ρ0:

(IV) α0εk = α0δk = 3, β0εk = β0δk = 5, and ρ0 = 12.
(V) α0εk = α0δk = 12, β0εk = β0δk = 15, and ρ0 = 30.

For every case, we took 20 grids in [0, 1] and collected J = 1, 000 iterations after
discarding 500 burn-in iterations at each grid in the computation of Bayes factor. σ 2

was set to be 1.0 in the MH algorithm, which gives an approximate acceptance rate
0.43. Estimates of logB0k, k = 1, . . . , 6 under the three different priors were com-
puted. The mean and standard deviation of ̂logB0k were also computed on the basis
of 100 replications. Results corresponding to ̂logB0k, k = 1, . . . , 5 and ̂B60 are re-
ported in Table 1. Moreover, for each k = 1, . . . , 6, we evaluate

D(I − II) = max
{

| ̂logB0k(I)− ̂logB0k(II)|
}

as well as D(I–III) and D(IV–V) similarly, where ̂logB0k(I) is the estimate under
prior (I) and so on, and “max” is the maximum taken over the 100 replications. The
results are presented in Table 2, for example, the maximum difference of the esti-
mates of log B01 obtained via priors (I) and (II) is 6.55. From the rows of Table 1,
we observe that the means and standard deviations of ̂log B0k obtained under differ-
ent prior inputs are close to each other. This indicates that the estimate of log B0k
is not very sensitive to these prior inputs under a sample size of 300. For prac-
tical applications, we see from Table 2 that even for the worst situation with the

Table 1 Mean and standard errors of the estimated log B0k in the simulation study

Mean (std)

Prior I Prior II Prior III Prior IV Prior V

log B01 106.28 (25.06) 107.58 (25.15) 102.96 (24.81) 103.87 (22.71) 104.61 (23.92)
log B02 102.16 (24.91) 103.45 (25.02) 99.17 (24.54) 99.98 (22.67) 100.49 (23.47)
log B03 109.51 (25.63) 111.23 (25.74) 105.96 (25.19) 107.20 (23.81) 108.24 (24.59)
log B04 105.23 (25.31) 106.61 (25.47) 101.83 (24.90) 103.16 (23.78) 103.69 (24.12)
log B05 17.50 (5.44) 18.02 (5.56) 16.65 (5.21) 18.02 (5.34) 17.85 (5.30)
log B60 0.71 (0.54) 0.71 (0.51) 0.69 (0.55) 0.78 (0.67) 0.75 (0.65)
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Table 2 Maximum absolute differences of log B0k under some different priors

log B01 log B02 log B03 log B04 log B05 log B60

D(I–II) 6.55 5.47 8.22 5.24 2.18 0.27
D(I–III) 7.84 9.33 10.23 10.17 3.07 0.31
D(IV–V) 14.03 17.86 13.65 4.87 1.91 0.25

maximum absolute deviation, the estimated logarithm of Bayes factors under differ-
ent prior inputs give the same conclusion for selecting the model via the criterion
given in (1).

From Table 1, it is clear that M0 is much better than the linear model M1 and the
nonnested models M2,M3,M4, and M5. Thus, the correct model is selected. For
comparison with the encompassing model M6, we found that out of 100 replications
under prior (I), 75 of the ̂logB60 are in the interval (0.0, 1.0), 23 of them are in (1.0,
2.0), and only 2 of them are in (2.0, 3.0). Since M0 is simpler than M6, it should
be selected if ̂logB60 is in (0.0, 1.0). Thus, the true model is selected in 75 out of the
100 replications. Owing to randomness, the remaining ̂logB60 support mildly the
encompassing model. Although the encompassing model is not the true model, it
should not be regarded as an incorrect model for fitting the data. It has been pointed
out by Kass and Raftery (1995) that the effect of the priors is small in estimation.
To give some ideas about the empirical performance of the proposed procedure on
estimation, the means of the Bayesian estimates and the root mean squares (RMS)
between the Bayesian estimates and the true values of M0 over the 100 replications
under some prior inputs are reported in Table 3. It seems that Bayesian estimates are
quite accurate and not very sensitive to the selected prior inputs.

5 Model Comparison of an Integrated SEM

Motivated by the demand of efficient statistical methods for analyzing various kinds
of complex real data in substantive research, the recent growth of SEM has been
rather repaid. Efficient methods have been developed to handle missing data (see
Dolan et al., 2005; Song and Lee, 2006b), dichotomous or ordered categorical data
(Song and Lee, 2004, 2005), and hierarchical or multilevel data (Ansari and Jedidi,
2000; Raykov and Marcoulides, 2006; Lee and Song, 2004b). Although model com-
parison has been separately addressed in some of the above mentioned articles, how-
ever, it is necessary to compute the Bayes factor in the context of an integrated
model for model comparison under some complex situations. To see this point, let
us consider, for example, the problem of comparing a nonlinear SEM (M1) with a
two-level linear SEM (M2). The computational method that was developed based
on M1 for computing the Bayes factor can only be used to compare models under
the model framework of the nonlinear SEM model. As the method developed under
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Table 3 Mean and RMS of Bayesian estimates under M0 with different priors

Para Prior I Prior II Prior III

Mean RMS Mean RMS Mean RMS

λ21 = 1.5 1.495 0.047 1.491 0.048 1.498 0.047
λ31 = 1.5 1.493 0.049 1.490 0.049 1.497 0.049
λ52 = 1.5 1.467 0.127 1.467 0.120 1.465 0.119
λ73 = 1.5 1.525 0.094 1.525 0.098 1.536 0.104
λ83 = 1.5 1.534 0.098 1.533 0.101 1.544 0.104
b = 1.0 1.010 0.139 1.017 0.133 1.004 0.131
γ1 = 0.5 0.518 0.091 0.519 0.092 0.516 0.091
γ2 = 0.5 0.505 0.123 0.494 0.126 0.535 0.133
γ22 = 1.0 1.060 0.141 1.064 0.148 1.065 0.146
a11 = 1.0 1.000 0.064 0.992 0.062 1.015 0.065
a21 = 1.0 1.007 0.094 0.997 0.087 1.026 0.095
a31 = 1.0 1.000 0.093 0.990 0.086 1.019 0.091
a41 = 1.0 0.991 0.037 0.989 0.037 0.996 0.036
a51 = 1.0 0.992 0.046 0.989 0.047 0.999 0.045
a61 = 1.0 1.000 0.031 0.997 0.031 1.006 0.032
a71 = 1.0 0.997 0.045 0.993 0.046 1.006 0.047
a81 = 1.0 0.998 0.040 0.994 0.041 1.007 0.041
a12 = 0.7 0.701 0.095 0.685 0.095 0.726 0.096
a22 = 0.7 0.700 0.123 0.676 0.124 0.735 0.125
a32 = 0.7 0.703 0.108 0.680 0.110 0.739 0.113
a42 = 0.7 0.704 0.086 0.695 0.085 0.718 0.088
a52 = 0.7 0.723 0.102 0.710 0.098 0.741 0.107
a62 = 0.7 0.702 0.054 0.698 0.055 0.711 0.056
a72 = 0.7 0.695 0.068 0.690 0.069 0.707 0.068
a82 = 0.7 0.713 0.080 0.708 0.080 0.725 0.083
ψε1 = 1.0 0.842 0.095 0.841 0.094 0.840 0.094
ψε2 = 1.0 0.839 0.098 0.843 0.100 0.852 0.104
ψε3 = 1.0 0.836 0.093 0.839 0.094 0.847 0.096
ψε4 = 1.0 0.811 0.077 0.813 0.077 0.812 0.079
ψε5 = 1.0 0.948 0.179 0.945 0.176 0.949 0.179
ψε6 = 1.0 0.839 0.082 0.839 0.082 0.841 0.083
ψε7 = 1.0 0.852 0.094 0.851 0.094 0.851 0.094
ψε8 = 1.0 0.846 0.086 0.846 0.087 0.846 0.087
ψδ = 1.0 1.021 0.109 1.028 0.111 1.026 0.112
φ11 = 1.0 0.980 0.140 0.980 0.137 0.981 0.136
φ12 = .15 0.148 0.076 0.148 0.076 0.147 0.076
φ22 = 1.0 0.959 0.126 0.962 0.129 0.948 0.132

M1 cannot be applied to a different two-level SEM, the model comparison prob-
lem cannot be solved. Similarly, even simultaneously given a separate Bayesian
development on the basis of M2, the computational procedure that is developed
under a two-level linear SEM cannot handle a nonlinear SEM model. A solution
to this problem requires the development of an integrated model that subsumes
both M1 and M2, so that model comparison can be done under a comprehensive
framework.
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5.1 The Integrated Model

We consider a two-level nonlinear SEM with missing dichotomous and ordered cat-
egorical variable. In generic sense, the specific relationship of an ordered categorical
variable z and its underlying continuous variable y is given by

z = k if αk−1 ≤ y < αk, for k = 1, . . . ,m, (17)

where {−∞ = α0 < α1 < · · · < αm−1 < αm = ∞} is the set of unknown thresh-
olds that defines m categories. The variance and thresholds corresponding to each
ordered categorical variable are not identifiable. A common method for achieving
identification is to fix the smallest and the largest thresholds, α1 and αm−1, of the
corresponding ordered categorical variable at preassigned values (see, Shi and Lee,
2000), for example, α1 = �∗−1( f ∗

1 ) and αm−1 = �∗−1( f ∗
m−1), where f ∗

k is the ob-
served cumulative marginal proportion of the categories with z < k. Like an ordered
categorical variable, the link between a dichotomous variable, say d, with its under-
lying continuous variable, say w, can be represented by a threshold specification as
follows:

d = 1 if w > α, and d = 0 if w ≤ α, (18)

where α is an unknown threshold parameter. To identify a dichotomous variable, we
use the method suggested by Song and Lee (2005) by fixing the corresponding error
measurement’s variance at a preassigned value, for example, 1.0.

To formulate the integrated model, we consider a collection of p-variate random
vectors ugi for i = 1, . . . , Ng , within groups g = 1, . . . ,G. As the sample sizes
Ng may differ from group to group, the data set is unbalanced. We assume that
conditional on the group mean vg , random observations in each group at the within-
groups (first) level have the following structure:

ugi = vg + A1gcugi + �1gω1gi + ε1gi , g = 1, . . . ,G, i = 1, . . . , Ng, (19)

where cugi is a vector of fixed covariates, A1g is a matrix of coefficients, �1g is a
matrix of factor loadings, ω1gi is a q1×1 vector of latent variables, and ε1gi is a p×1
vector of error measurements. It is assumed that ε1gi is independent of ω1gi and is
distributed as N [0,�1g], where �1g is a diagonal matrix. At the between-groups
(second) level, we assume that vg has the structure

vg = A2cvg + �2ω2g + ε2g, g = 1, . . . ,G, (20)

where cvg is a vector of fixed covariates, A2 is a matrix of coefficients, �2 is a matrix
of factor loadings, ω2g is a q2 ×1 vector of latent variables, and ε2g is a p×1 vector
of error measurements. It is assumed that ε2g is independent of ω2g and is distrib-
uted as N [0,�2], where �2 is a diagonal matrix. Moreover, the first level latent
vectors are assumed to be independent of the second level latent vectors. However,
because of the presence of vg , ugi and ug j are correlated, and the usual assumption
about independence is violated. Equations (19) and (20) define the measurement
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equations for the within-groups and between-groups models. To assess the rela-
tionships among latent variables at both levels, the following nonlinear structural
equations in the between-groups and within-groups models are considered:

η1gi = B1gc1gi + �1gη1gi + �1gF1(ξ1gi )+ δ1gi , and (21)
η2g = B2c2g + �2η2g + �2F2(ξ2g)+ δ2g, (22)

where c1gi and c2g are fixed covariates, B1g , B2, �1g,�2,�1g , and �2 are ma-
trices of coefficients, F1(ξ1gi ) = (

f11(ξ1gi ), . . . , f1a(ξ1gi )
)T and F2(ξ2g) =

(

f21(ξ2g), . . . , f2b(ξ2g)
)T are vector-valued functions with nonzero differentiable

functions. We assume that I1 − �1g and I2 − �2 are nonsingular and their determi-
nants are independent of �1g and �2, respectively; ξ1gi and δ1gi are independently
distributed as N [0,�1g] and N [0,�1δg], respectively, where �1δg is a diagonal
matrix. Similarly, it is assumed that ξ2g and δ2g are independently distributed as
N [0,�2] and N [0,�2δ], respectively, where �2δ is a diagonal matrix. However,
owing to the nonlinear functions in F1 and F2, the distribution of ugi is not normal.

To investigate the model with mixed continuous, dichotomous, and ordered cate-
gorical variables, we suppose without loss of generality that ugi = (xT

gi ,w
T
gi , y

T
gi )

T ,
where xgi = (xgi1, . . . , xgir )

T is an observable continuous random vector, wgi =
(wgi1, . . . , wgis)

T and ygi = (ygi1, . . . , ygit )
T are unobservable continuous ran-

dom vectors that underlie the observable dichotomous and ordered categorical
vectors dgi and zgi , respectively. The links between an ordered categorical vari-
able and a dichotomous variable with their underlying continuous variables are
given by (17) and (18), respectively. Entries of ugi are allowed to be missing
at random. We identify the covariance models by fixing appropriate elements of
�1g,�2,�1g,�1g,�2, and �2 at preassigned values.

5.2 Model Comparison

We first consider the posterior simulation to generate the required observations from
the joint posterior distribution for computing the Bayes factor, see (11) and (12).

Let Xobs, Dobs, and Zobs be the observed data corresponding to the continuous,
dichotomous, and ordered categorical variables, and let Xmis, Dmis, and Zmis be the
missing data corresponding to these types of variables. It is assumed that missing
data are missing at random. Let Wobs and Wmis be the underlying unobservable
continuous measurements corresponding to Dobs and Dmis; and let Yobs and Ymis be
the underlying unobservable continuous measurements corresponding to Zobs and
Zmis, respectively. Let O = (Xobs,Dobs,Zobs) be the observed data set; Moreover,
let �1g = (ω1gi , . . . ,ω1gNg ) and �1 = (�11, . . . ,�1G) be the matrices that con-
tain the within-groups latent vectors and matrices; and let �2 = (ω21, . . . ,ω2G)
and V = (v1, . . . , vG) be the matrices that contain the between-groups latent
vectors. Finally, let α and θ be the vectors that, respectively, contain all unknown
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thresholds and all unknown parameters that are involved in the model defined
by (19)–(22). A sufficiently large number of observations will be simulated from
the following joint posterior distribution p(θ ,α,Yobs,Wobs,Umis,�1,�2,V|O),
where Umis = (Xmis,Ymis,Zmis). The simulation is done by the Gibbs sam-
pler, which iteratively draws samples from the following full conditional dis-
tributions: p(θ |α,Yobs,Wobs,Umis, �1,�2,V,O), p(α,Yobs|θ , Wobs,Umis,
�1,�2,V,O), p(Wobs|θ , α,Yobs,Umis, �1,�2,V, O), p(Umis|θ ,α, Yobs,Wobs,
�1, �2, V,O), p(�1|θ , α, Yobs, Wobs, Umis, �2, V,O), p(�2|θ , α, Yobs, Wobs,
Umis, �1, V,O), and p(V|θ ,α,Yobs,Wobs,Umis,�1,�2,O). Note that p(θ |α,
Yobs,Wobs,Umis,�1,�2,V,O) = p(θ |∗) is further decomposed into the fol-
lowing components: p(A1|θ−A1 , ∗), p(�1|θ−�1 , ∗), . . . , p(�2δ|θ− 2δ , ∗), where
θ−A1 , θ−�1, . . . , θ− 2δ are subvectors of θ without A1,�1, . . . ,�2δ , respec-
tively. The above full conditional distributions required for implementing the
Gibbs sampler are given in the Appendix. Some of the conditional distributions
are standard distributions such as normal, univariate truncated normal, Gamma,
and inverted Wishart, simulating observations from them is straight-forward
and fast. The Metropolis–Hastings (MH) (Metropolis et al., 1953; Hastings,
1970) algorithm will be used to simulate observations from the following more
complicated conditional distributions, p(�1|θ ,α,Yobs,Wobs,Umis,�2,V, O),
p(�2|θ ,α,Yobs,Wmis,Umis,�1,V,O), and p(α,Yobs|θ,Wobs,Umis,�1,�2,
V,O). As the implementation of the MH algorithm is similar to that given in
Song and Lee (2004, 2005), it is not presented.

In the path sampling procedure, we augment the observed data O with the la-
tent quantities (Yobs,Wobs,Umis,�1,�2,V) in the analysis. Consider the following
class of densities defined by a continuous parameter t in [0, 1]:

p(θ ,α,Yobs,Wobs,Umis,�1,�2,V|O, t) = p(θ ,α,Yobs,Wobs,Umis,�1,�2,V,O|t)
z(t)

,

where z(t) = p(O|t). Recall that t is a parameter to link M0 and M1 such that for
a = 0, 1, z(a) = p(O|t = a) = p(O|Ma). Hence, B10 = z(1)/z(0). It follows
from the reasoning in Sect. 3 that

log B10 = 1
2

S
∑

s=0

(t(s+1) − t(s))(�̄(s+1) + �̄(s)), (23)

where t(0) = 0 < t(1) < · · · < t(S) < t(S+1) = 1 are fixed grids in [0, 1], and

�̄(s) = 1
J

J
∑

j=1

�
(

θ ( j),α( j),Y( j)
obs,W

( j)
obs,U

( j)
mis,�

( j)
1 ,�

( j)
2 ,V( j),O, t(s)

)

, (24)

in which
{(

θ ( j),α( j),Y( j)
obs,W

( j)
obs,U

( j)
mis,�

( j)
1 ,�

( j)
2 ,V( j)

)

; j = 1, . . . , J
}

is a
sample of observations that are simulated from p(θ ,α,Yobs,Wobs,Umis,�1,�2,
V|O, t), and
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�(θ ,α,Yobs,Wobs,Umis,�1,�2,V,O, t)

= d
dt

log p(Yobs,Wobs,Umis,�1,�2,V,O|θ ,α, t).

Note that p(Yobs,Wobs,Umis,�1,�2,V,O|θ ,α, t) is the complete data likelihood
that involves no integral.

5.3 An Illustrative Example

To illustrate the methodology, we analyze a small portion of the data set collected in
the “Accelerated Schools for Quality Education (ASQE)” project, which was con-
ducted by the Faculty of Education and the Hong Kong Institute of Educational
Research, the Chinese University of Hong Kong. This project is an adaptation of
the Accelerated Schools Projects initiated by Levin (see Levin, 1998) in the United
States, with focus on a process of helping schools achieve an internal cultural change
in order to be self-reliant in attaining school-based goals in self-improvement.
Among the large number of objectives of this huge project, one particular issue
is related with the “job satisfaction” of the teachers and (a) their “empowerment”
to identify and solve the school’s problems, and (b) the “school values inventory.”
These latent variables are important in the cultivation of their own and their peers’
skills in improving their teaching skills and practice. The primary goal of our analy-
sis is to apply a nonlinear structural equation model to assess the relationships of
the mentioned latent variables. As the whole data set was collected from the princi-
pals, teachers, and students who were in G = 50 administrated schools, a two-level
model is required. The three manifest variables that are served as indicators for the
latent variable, “η, school value inventory” are (1) participation and collaboration,
(2) collegiality, and (3) communication and consensus. These manifest variables are
measured by the averages of seven, six, and ten items in the questionnaire. The cor-
responding Cronback’s alpha on these scales are 0.93, 0.88, and 0.93, respectively.
The three indicators for the latent factor, “ξ1, teachers empowerment” are (1) de-
cision making, (2) self efficacy, and (3) self autonomy, which are measured by the
averages of four, four, and five items in the questionnaire. The Cronback’s alpha are
0.79, 0.85 and 0.80, respectively. These manifest variables are treated as continuous.
Three manifest variables (relating to questions: I proudly introduce my school as a
worth-while working place to my friends; I find that my attitude of value is close
to my school’s attitude of value; and I can fully utilize my potentials in my school
work) that are related with respondents’ job satisfaction are taken as indicators for a
latent factor, ξ2, job satisfaction. These manifest variables are measured via a seven-
point scale. To create dichotomous variables for illustration, data corresponding to
these variables are transformed to {0, 1} by grouping observations less than or equal
to 4–0, and larger than 4–1. The teachers were also asked about their opinions on the
impact of school effects, teacher effects, and student effects on the school improve-
ment outcomes (SIO). These variables are measured by the average of four, seven,
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and four items in the questionnaire. To unify the scale, the continuous observations
are standardized. After deleting a few observations with missing entries for brevity,
the total number N1 + · · · + N50 of observations is 1,555.

To demonstrate the impact of fixed covariates on the within-groups model, we
include school effects on SIO as a fixed covariate cugi in the measurement equation
and teacher effects on SIO as fixed covariates c1gi in the structural equation. A two-
level model with invariant parameters over groups and the following measurement
equations is proposed:

M0 : vg = �2ω2g + ε2g, (25)

ugi = vg + A1cugi + �1ω1gi + ε1gi , (26)

where cugi is defined as above and A1 = (a1(1), . . . , a1(9)). As the number of
groups (G=50) is small, we do not consider a complicated model for the between-
groups model. Thus, a simple factor analysis model with three correlated latent fac-
tors is used. Specifications of this model are

�T
2 =

⎡

⎣

1∗ λ2(2, 1) λ2(3, 1) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
0∗ 0∗ 0∗ 1∗ λ2(5, 2) λ2(6, 2) 0∗ 0∗ 0∗
0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 1∗ λ2(8, 3) λ2(9, 3)

⎤

⎦ ,

and diag(�2) = (ψ2(1), . . . , ψ2(9)), where parameters with an asterisk are
fixed. The unknown parameters in �2 are denoted by

{

φ2(1, 1), φ2(1, 2), φ2(1, 3),
φ2(2, 2), φ2(2, 3), φ2(3, 3)

}

. For the within-groups model, the factor loading matrix
�1 = (λ1(k, h)) corresponding to latent factors (η1gi , ξ1gi1, ξ1gi2) is taken to have
the same form as �2, and diag(�1) = (ψ1(1), . . . , ψ1(9)), where ψ1(7), ψ1(8),
and ψ1(9) that are corresponding to dichotomous manifest variables are fixed at 1.0
for identification purpose. We consider the following nonlinear structural equation
to investigate effects of the fixed covariates c1gi and the interaction and quadratic
terms of ξ1gi1 and ξ1gi2:

η1gi = b1c1gi + γ1(1)ξ1gi1 + γ1(2)ξ1gi2 + γ1(3)ξ2
1gi1 + γ1(4)ξ1gi1ξ1gi2

+γ1(5)ξ2
1gi2 + δ1gi , (27)

where c1gi is defined as above. The unknown parameters in α, �1, and �1 are
denoted by {α1, α2, α3} (that corresponds to the thresholds of the three dichotomous
variables), {γ1(1), γ1(2), γ1(3), γ1(4), γ1(5)}, and {φ1(1, 1), φ1(1, 2) φ1(2, 2)},
respectively.

In this illustrative example, we have little prior information about the data. Thus,
some data-dependent prior inputs were used for the hyper-parameter values in the
conjugate prior distributions. These prior inputs are obtained by conducting an aux-
iliary Bayesian estimation with proper vague conjugate prior distributions, which
gives estimates Ã1k , �̃1k , �̃1ωk , and �̃2k , where A1k,�1k,�1ωk , �2k , and below
hyper-parameters are similarly defined as in (16), see more details in Appendix.
Some less important hyper-parameter values are fixed at some ad hoc prior inputs as
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below: H01yk , H01ωk , H02yk , H01k , and H02k are fixed at identity matrices with ap-
propriate dimensions, R01 and R02 are fixed at 5I. Other kinds of data-dependence
have been proposed in Bayesian model selection (see, for example, Raftery, 1996;
Richardson and Green, 1997, among others). We emphasize that the data-dependent
prior inputs are used for the purpose of illustration only in this example; we are not
routinely recommending this method for substantive practical applications.

To study the sensitivity of the results with respect to different prior informa-
tions, we consider the following three types of prior inputs (see (37) and (39) in
Appendix):

(I) α01εk = α02εk = α01δk = 3, β01εk = β02εk = β01δk = 10, ρ01 = ρ02 = 8,
A01k = Ã1k , �01k = �̃1k , �01ωk = �̃1ωk , and �02k = �̃2k .

(II) α01εk = α02εk = α01δk = 3, β01εk = β02εk = β01δk = 5, ρ01 = ρ02 = 6, the
other specified hyper-parameters are equal to half of those values given in (I).

(III) α01εk = α02εk = α01δk = 3, β01εk = β02εk = β01δk = 15, ρ01 = ρ02 = 10,
the other specified hyper-parameters are equal to twice of those values given
in (I).

Let M0 be the model that is defined by (25), (26), and (27) with the between-
groups factor analysis model. The path sampling procedure is applied to compute
the Bayes factor for comparing the M0 with the following models:

M1 : Between-groups model is defined by (25), with a linear structural equation,

η2g = γ2(1)ξ2g1 + γ2(2)ξ2g2 + δ2g, (28)

rather than the factor model. Within-groups model is defined by (26) and (27).
M2 : Between-groups model is defined by (25). Within-groups model is defined by

(26) and the following linear structural equation:

η1gi = b1c1gi + γ1(1)ξ1gi1 + γ1(2)ξ1gi2 + δ1gi . (29)

M3 : Between-groups model is defined by (25). Within-groups model is defined by
(26) and the following nonlinear structural equation without fixed covariate:

η1gi = γ1(1)ξ1gi1 + γ1(2)ξ1gi2 + γ1(3)ξ2
1gi1 + γ1(4)ξ1gi1ξ1gi2

+γ1(5)ξ2
1gi2 + δ1gi . (30)

M4 : Between-groups model is defined by (25). Within-groups model is defined by
(27) and the following measurement equation in relation to ugi without any
fixed covariate: ugi = vg + �1ω1gi + ε1gi .

The path sampling procedure is applied to compute the Bayes factors for compar-
ing models M0, . . . ,M4, under priors inputs (I), (II), and (III). From (23) and (24),
we see that the integral part in the computation is the simulation of the random sam-
ple

{

(θ ( j),α( j),Y( j)
obs,W

( j)
obs, U( j)

mis,�
( j)
1 ,�

( j)
2 ,V( j)); j = 1, . . . , J

}

by means of
the posterior simulation via the MCMC methods. In the computation of the Bayes
factor, we take S = 10, and further collect J = 3, 000 iterations after convergence
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Table 4 Bayes factor estimates for model comparison: ASQE data set

Logarithm of Bayes Prior I Prior II Prior III

factor

log B01 16.05 9.31 18.11
log B02 3.43 4.02 3.16
log B03 5.82 5.71 4.99
log B04 89.34 91.13 90.89

at each grid. The computed Bayes factors under different prior inputs are reported
in Table 4. We note that the logarithm Bayes factors that are obtained under the dif-
ferent choices of prior informations are close. As all log B01, . . . , log B04 are larger
than 3.0, they suggest the same conclusion that M0 is the best model. To cross vali-
date, we have computed the Bayes factors with larger S and J and obtain the same
conclusion as above. Based on the model comparison result on the nonnested mod-
els M0 and M1, we find that in fitting the between-groups model a factor analysis
model is better than a SEM with a linear structural equation that is defined by (28).
Hence, we conclude that the data give support of evidence to correlated between-
groups level latent factors, rather than the relationships among these latent factors
that are given by (28). Based on the results of model comparison of M0 with M2 and
M3, we conclude that at the within-groups level, the fixed covariate c1gi (teacher ef-
fects on school improvement outcomes) and the nonlinear terms of ξ1gi1 (teacher
empowerment) and ξ1gi2 (teacher’s job satisfaction) have substantial effects on the
endogenous latent variable η1gi (school value inventory). As M0 is better than M4,
we conclude that for the measurement equation of the within-groups model, the ef-
fect of fixed covariate cugi (school effects on SIO) is significant. Based on these
findings, we conclude that at the within-group level, the school effects on school
improvement outcomes are important in relating the manifest variables with their
latent factors. The above results on model comparison and conclusion cannot be
achieved without a comprehensive model that combines the individual multilevel
SEM, NSEM, SEM with fixed covariates, and SEM with dichotomous and ordered
categorical variables together.

Under the three types of prior inputs (I), (II), and (III), Bayesian estimates of
the parameters under M0 are obtained by the algorithm that combines the Gibbs
sampler and the MH algorithm. Here, we collect T = 4, 000 observations after the
burn-in phase of 4,000 observations to produce the Bayesian estimates, their stan-
dard error estimates, and the 95% HPD intervals. Bayesian estimates obtained under
different priors are close. This agrees with the common understanding that Bayesian
estimation is not sensitive to prior inputs. To save space, only results obtained under
prior inputs (I) are reported in Table 5. The PP p-value (Gelman et al., 1996) is
equal to 0.59, which indicates that the proposed model fits the sample data. Most
of the 95% HPD intervals are reasonably short. Comparatively, the standard errors
and HPD intervals are larger for estimates of the between-groups parameters. This
indicates that as G is comparatively small, the variability of the estimates of the
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Table 5 Bayesian estimates, their standard error estimates, and HPD intervals under Prior I: ASQE
data set

PAR EST STD HPD PAR EST STD HPD

λ1(2, 1) 0.957 0.020 [0.916, 0.999] λ2(2, 1) 0.275 0.263 [−0.301, 0.796]
λ1(3, 1) 0.894 0.021 [0.849, 0.938] λ2(3, 1) 0.291 0.269 [−0.299, 0.822]
λ1(5, 2) 1.015 0.046 [0.916, 1.114] λ2(5, 2) 0.051 0.263 [−0.526, 0.587]
λ1(6, 2) 0.723 0.045 [0.622, 0.806] λ2(6, 2) 0.104 0.318 [−0.561, 0.751]
λ1(8, 3) 1.138 0.148 [0.877, 2.043] λ2(8, 3) 0.583 0.351 [−0.078, 1.478]
λ1(9, 3) 0.536 0.067 [0.399, 0.778] λ2(9, 3) 0.242 0.254 [−0.249, 0.829]
φ1(1, 1) 0.392 0.028 [0.338, 0.459] φ2(1, 1) 0.184 0.054 [0.094, 0.298]
φ1(1, 2) 0.568 0.052 [0.386, 0.682] φ2(1, 2) 0.009 0.036 [−0.065, 0.083]
φ1(2, 2) 2.098 0.346 [1.038, 2.921] φ2(1, 3) 0.024 0.051 [0.088, 0.277]
ψ1(1) 0.107 0.006 [0.095, 0.119] φ2(2, 2) 0.172 0.049 [−0.078, 0.138
ψ1(2) 0.156 0.007 [0.141, 0.171] φ2(2, 3) 0.012 0.050 [−0.093, 0.124]
ψ1(3) 0.179 0.008 [0.163, 0.197] φ2(3, 3) 0.300 0.108 [0.119, 0.556]
ψ1(4) 0.442 0.022 [0.363, 0.486] ψ2(1) 0.525 0.113 [0.325, 0.769]
ψ1(5) 0.399 0.022 [0.348, 0.442] ψ2(2) 0.441 0.089 [0.268, 0.624]
ψ1(6) 0.538 0.023 [0.494, 0.588] ψ2(3) 0.443 0.088 [0.291, 0.646]
b1 0.194 0.030 [0.116, 0.270] ψ2(4) 0.516 0.110 [0.331, 0.757]
γ1(1) 0.234 0.058 [0.111, 0.337] ψ2(5) 0.423 0.084 [0.274, 0.605]
γ1(2) 0.148 0.028 [0.096, 0.252] ψ2(6) 0.511 0.101 [0.328, 0.734]
γ1(3) 0.507 0.098 [−0.006, 0.694] ψ2(7) 0.859 0.204 [0.461, 1.257]
γ1(4) −0.394 0.090 [−0.635, 0.023] ψ2(8) 0.780 0.179 [0.448, 1.219]
γ1(5) 0.050 0.025 [−0.060, 0.120] ψ2(9) 0.572 0.120 [0.354, 0.822]
a1(1) 0.412 0.028 [0.330, 0.482] α1 −0.109 0.162 [−0.440, 0.212]
a1(2) 0.418 0.027 [0.334, 0.480] α2 0.841 0.167 [0.518, 1.293]
a1(3) 0.469 0.026 [0.394, 0.531] α3 −0.341 0.119 [−0.579, −0.092]
a1(4) 0.390 0.025 [0.334, 0.438]
a1(5) 0.443 0.024 [0.385, 0.487]
a1(6) 0.412 0.023 [0.360, 0.455]
a1(7) 1.479 0.123 [1.122, 1.724]
a1(8) 1.548 0.163 [1.242, 1.995]
a1(9) 0.785 0.057 [0.653, 0.892]
ψ1δ 0.310 0.017 [0.276, 0.360]

between-groups parameters is larger. We also use the following estimated residuals
to reveal the adequacy of the proposed measurement model and structural equation
for fitting the data: ε̂1gi = ugi − v̂g − Â1cugi − �̂1ω̂1gi , ε̂2g = v̂g − �̂2ω̂2g , and
δ̂1gi = η̂1gi − γ̂1(1)ξ̂1gi1 − γ̂1(2)ξ̂1gi2 − γ̂1(3)ξ̂2

1gi1 − γ̂1(4)ξ̂1gi1ξ̂1gi2 − γ̂1(5)ξ̂2
1gi2.

Plots of the estimated residual ε̂1gi1 vs. ξ̂1gi1, δ̂1gi vs. ξ̂1gi1, and ε̂2g1 vs. ξ̂2g1
are presented in Fig. 1. Other estimated residual plots have similar behaviors. These
plots lie within two parallel horizontal lines that are centered at zero, and no lin-
ear or quadratic trends are detected. This roughly indicates that the proposed first-
level measurement model and structural equation and the second-level measurement
model are adequate in fitting the data.
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Fig. 1 (a) Plot of ξ̂1gi1 vs. ε̂1gi1; (b) Plot of ξ̂1gi1 vs. δ̂1gi ; (c) Plot of ξ̂2g1 vs. ε̂2g1

6 Discussion

In structural equation modeling or covariance structure analysis, an important issue
is goodness-of-fit test of the hypothesized model. The traditional approach is based
on the likelihood ratio test statistic that can be proved to have an asymptotic chi-
square distribution. In certain sense, its emphasis is on comparing the hypothesized
model with a so-called “saturated” model, which is commonly regarded as a model
with an unstructured covariance matrix but under the normality distribution. In prac-
tical applications, it is hoped to have a hypothesized model that is not rejected, so
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that it can be used for supporting some theory, etc. When dealing with some non-
standard SEMs, this traditional approach will encounter the following two difficul-
ties, in addition to those mentioned in Sect. 1: (a) Very often, the basic assumptions
required by the theory of the likelihood ratio test are violated, for example, obser-
vations may not be identically and independently distributed, so that it is difficult
to derive the asymptotic distribution of the likelihood ratio test. (b) It is difficult
to define a saturated model. Rigorously speaking, if the purpose of goodness-of-fit
assessment is to evaluate whether the proposed model fits the observed sample data,
a model with an unrestricted covariance matrix but under the normality assumption
cannot be regarded as a saturated model, because the normality assumption is re-
strictive; rather, a saturated model should be a general nonparametric model with
essentially no model or distributional assumption. However, it is very difficult for
the tradition approach to deal with this sort of saturated model with no distributional
assumption. Moreover, it is not desirable to stop trying to improve the model just
because it is not rejected by some test statistics. Model comparison statistics like
the Bayes factor are useful to search for a better model in fitting the given data in
practical applications.

As we explained in this chapter, implementation of the path sampling procedure
is conceptually simple; it just requires the simulation of observations from the pos-
terior distribution. Thanks for the recent advance of statistical computing, there are
many efficient tools for computing the task. In addition to the examples given in this
chapter, Lee (2007) demonstrated that the Bayes factor and the path sampling can
be applied to other useful SEMs, such as multisample SEMs, nonlinear SEMs with
missing data that are missing with an nonignorable mechanism, nonlinear SEMs
with manifest variables from an exponential family distribution, among others. In
applying path sampling to compute Bayes factor for model comparison of SEMs,
the values of S and J involved in (11) and (12) have to be chosen. For most situa-
tions, the choice of J depends on the complexity of the model, and the nature of the
data. Based on our experience in analyzing dichotomous data, it requires more itera-
tions to achieve convergence in the MCMC algorithm, and requires more simulated
observations to approximate the various statistics. For this kind of data, we suggest
that J should be equal to or larger than 3,000. From the criterion given in (1), the
conclusion based on a value of 2 log B10 that is less than 6 is not strong. Under such
case, it is worthwhile to compute the Bayes factor with larger values of S and J to
make sure the approximation is good; moreover, the result should be cross-validated
by other diagnostic checks, such as estimated residual plots that can be conveniently
obtained through the Bayesian estimates of the parameters and latent variables (see
Lee, 2007).

Gelman and Meng (1998) pointed out that the path sampling can be applied to
any two completing models with the same support. In this chapter, we have shown
that path sampling can be flexibly applied to some complex SEMs. However, for
some models, for instance, robust SEM with stochastic weights in the covariance
matrixes of the latent variables or/error measurements (see Lee and Xia, 2006) or
nonparametric SEMs with general distributional assumptions, it is either difficult to
apply the path sampling, or the results are not satisfactory. Further research to cope
with these complicated situations is necessary.
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Appendix: Full Conditional Distributions

The conditional distributions required by the Gibbs sampler in the posterior
simulation of the integrated model will be presented in this appendix. We use
p(·|·) to denote the conditional distribution if the context is clear, and note that
(Yobs,Wobs,Umis,O) = U.

(i) p(V|θ ,α,Yobs,Wobs,Umis,�1,�2,O) = p(V|θ,U,�1,�2): This condi-
tional distribution is equal to a product of p(vg|θ ,Ug,�1g,ω2g) with g =
1, . . . ,G. For each gth term in this product, its conditional distribution is
N [µ∗

g, �
∗
g], where

µ∗
g = �∗

g

{

�−1
1

Ng
∑

i=1

[ugi − A1cugi − �1ω1gi ] + �−1
2 [A2cvg + �2ω2g]

}

, and

�∗
g = (Ng�

−1
1 + �−1

2 )−1. (31)

(ii) p(�1|θ ,α,Yobs,Wobs,Umis,�2,V,O) = p(�1|θ,U,�2,V) =
G
∏

g=1

Ng
∏

i=1
p(ω1gi |θ, vg, ω2g,ugi ), where p(ω1gi |θ , vg,ω2g,ugi ) is proportional to

exp
[

− 1
2

{

ξT
1gi �

−1
1 ξ1gi + [ugi − vg − A1cugi − �1ω1gi ]T �−1

1

×[ugi −vg −A1cugi −�1ω1gi ] + [η1gi −B1c1gi −�1η1gi − �1F1(ξ1gi )]T

×�−1
1δ

[

η1gi − B1c1gi − �1η1gi − �1F1(ξ1gi )
]

}]

. (32)

(iii) p(�2|θ ,α,Yobs,Wobs,Umis,�1,V,O): This distribution has very similar
form as in p(�1|·) and (32), hence is not presented to save space.

(iv) p(α,Yobs|θ,Wobs,Umis,�1,�2,V,O): To deal with the situation with little
or no information about these parameters, the following noninformation prior
distribution is used: p(αk) = p(αk,2, . . . , αk,bk−1) ∝ C, k = 1, . . . , s, where
C is a constant. As (α,Yg) is independent with (α,Yh) for g �= h, and that
�1 is diagonal, we have

p(α,Y|·) =
G
∏

g=1

p(αh,Yg|·) =
G
∏

g=1

s
∏

k=1

p(αk,Ygk |·), (33)



146 S.-Y. Lee, X.-Y. Song

where Ygk = [ygk1, . . . , ygk Ng ]. Let ψ1k be the kth diagonal element of
�1, vgk be the kth element of vg , and �1k be the kth row of �1, and IA(y) be
an indicator function with value 1 if y is A and zero otherwise, p(α,Y|·) can
be obtained from (33) and

p(αk, ygki |·) ∝
Ng
∏

i=1

�∗
{

ψ
−1/2
1k [ygki − vgk − �T

1kω1gi ]
}

I(αk,zgki ,αk,zgki +1](ygki ).

(34)

(v) p(Wobs|θ,α,Yobs,Umis,�1,�2,V,O) =
s
∏

k=1

G
∏

g=1

ng,k
∏

i=1
p(wgik,obs|θ,ω1gi ,

dgik,obs). Moreover, it follows from the definition of the model that

p(wgik,obs|θ ,ω1gi , dgik,obs) ∼
{

N [�′
1kω1gi , ψ1k ]I(−∞,0)(wgik,obs), if dgik,obs = 0

N [�′
1kω1gi , ψ1k ]I(0,∞)(wgik,obs), if dgik,obs = 1,

(35)

where ng,k is the number of dgki,obs in Dk,obs and Dk,obs is the kth row of Dobs.

(vi) p(Umis|θ ,α,Yobs,Wobs,�1,�2,V,O) =
G
∏

g=1

Ng
∏

i=1
p(ugi,mis|θ ,ω1gi , vg), and

[ugi,mis|θ ,ω1gi ] D= N [vg + A1i,miscugi + �1i,misω1gi ,�1i,mis], (36)

where A1i,mis and �1i,mis are submatrices of A1 and �1 with rows that corre-
spond to observed components deleted, and �1i,mis is a submatrix of �1 with
the appropriate rows and columns deleted.

(vii) p(θ |α,Yobs,Wobs,Umis,�1,�2,V,O) = p(θ |U,�1,�2): Let θ1 be the vec-
tor of unknown parameters in A1,�1, and �1, θ1ω be the vector of unknown
parameters in �1,�1,�1, and �1δ , θ2 be the vector of unknown parameters in
A2,�2, and �2, and θ2ω be the vector of unknown parameters in �2,�2,�2,
and �2δ .

For θ1, the following commonly used conjugate type prior distributions are used:

p(ψ−1
1k )

D= Gamma[α01εk, β01εk], p(�1k |ψ1k)
D= N [�01k, ψ1kH01yk],

p(A1k)
D= N [A01k,H01k], k = 1, . . . , p, (37)

where AT
1k , �T

1k are the row vectors that contain the unknown parameters in the kth
row of A1 and �1, respectively; α01εk, β01εk , A01k , �01k , H01k , and H01yk are given
hyper-parameters values. For k �= h, it is assumed that (ψ1k,�1k) and (ψ1h,�1h)
are independent. Let U∗ = {ugi − vg − A1cugi ; i = 1, . . . , Ng, g = 1, . . . ,G}
and U∗T

k be the kth row of U∗, �1 = {ω1gi ; g = 1, . . . ,G, i = 1, . . . , Ng},
�1k = (H−1

01yk + �1�
T
1 )

−1,m1k = �1k(H−1
01yk�01k + �1U∗

k), and β1εk = β01εk +
1
2 (U

∗T

k U∗
k − mT

1k�
−1
1 m1k + �T

01kH−1
01yk�01k), it can be shown that

p(ψ−1
1k |·) D= Gamma (2−1 Ng + α01εk, β1εk), and p(�1k |ψ1k, ·) D= N [m1k, ψ1k�1k ].

(38)
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Let Cu = {cugi ; i = 1, . . . , Ng, g = 1, . . . ,G}, Ũ = {ugi − vg − �1ω1gi ; i =
1, . . . , Ng, g = 1, . . . ,G}, and ŨT

k be the kth row of Ũ, �̃1k = (H−1
01k +

CuCT
u )

−1, m̃1k = �̃1k(H−1
01kA01k + CuŨk).

For θ1ω, it is assumed that �1 is independent of (�1ω,�1δ), where �1ω =
(BT

1 ,�
T
1 ,�

T
1 )

T . Also, (�1ωk, ψ1δk) and (�1ωh, ψ1δh) are independent, where �1ωk
andψ1δk are the kth row and diagonal element of �1ω and �1δ , respectively. The as-

sociated prior distribution of �1 is p(�−1
1 )

D= W [R01, ρ01, q12], where W [·, ·, q12]
denotes the q12-dimensional Wishart distribution, ρ01 and the positive definite ma-
trix R01 are given hyper-parameters. Moreover, the prior distribution of ψ1δk and
�1ωk are

p(ψ1δk)
D= Gamma [α01δk, β01δk] and p(�1ωk |ψ1δk)

D= N [�01ωk, ψ1δkH01ωk],
(39)

where α01δk, β01δk, �01ωk , and H01ωk are given hyper-parameters. Let E1 =
{(η1g1, . . . , η1gNg ); g = 1, . . . ,G}, ET

1k be the kth row of E1, �1 = {(ξ1g1, . . .,
ξ1gNg ); g = 1, . . . ,G} and F∗

1 = {(F∗
1(ξ1g1), . . . ,F∗

1(ξ1gNg )); g = 1, . . . ,G}, in
which F∗

1 (ξ1gi ) = (ηT
1gi ,F1(ξ1gi )

T )T , i = 1, . . . , Ng , and it can be shown that for
k = 1, . . . , q11,

p(ψ1δk |·) D= Gamma [2−1 Ng + α01δk , β1δk ], p(�1ωk |ψ1δk , ·) D= N [m1ωk , ψ1δk�1ωk ],
(40)

where �1ωk = (H−1
01ωk + F∗

1F∗T

1 )
−1, m1ωk = �1ωk(H−1

01ωk�01ωk + F∗
1E1k), and

β1δk = β01δk + 1
2 (E

T
1kE1k − mT

1ωk�
−1
1ωkm1ωk + �T

01ωkH01ωk�01ωk). Let I W (·, ·, ·)
be the inverted Wishart distribution, the conditional distribution relating to �1 is
given by

p(�1|�1)
D= I W

⎡

⎣(�1�
T
1 + R−1

01 ),

G
∑

g=1

Ng + ρ01, q12

⎤

⎦ . (41)

Conditional distributions involved in θ2 are derived similarly on the basis of the
following independent conjugate type prior distributions: for k = 1, . . . , p, and

p(ψ−1
2εk)

D= Gamma[α02εk, β02εk], p(�2k |ψ2k)
D= N [�02k, ψ2kH02yk],

p(A2k)
D= N [A02k,H02k], k = 1, . . . , p,

where AT
2k and �T

2k are the vectors that contain unknown parameters in the kth rows
of A2 and �2, respectively; α02εk, β02εk, A02k , �02k , H02k , and H02yk are given
hyperparameters.

Similarly, conditional distributions involved in θ2ω are derived on the basis of the
following conjugate type distributions: for k = 1, . . . , q21,

p(ψ−1
2δk)

D= Gamma[α02δk, β02δk], p(�2ωk |ψ2δk)
D= N [�02ωk, ψ2δkH02ωk],

p(�−1
2 )

D= W [R02, ρ02, q22],
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where �2ω = (BT
2 ,Π

T
2 ,�

T
2 )

T and �2ωk is the vector that contains the unknown
parameters in the kth row of �2ω. As these conditional distributions are similar to
those in (38), (40) and (41), they are not presented to save space.
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Bayesian Model Selection in Factor Analytic
Models

Joyee Ghosh and David B. Dunson

1 Introduction

Factor analytic models are widely used in social science applications to study latent
traits, such as intelligence, creativity, stress, and depression, that cannot be accu-
rately measured with a single variable. In recent years, there has been a rise in
the popularity of factor models due to their flexibility in characterizing multivari-
ate data. For example, latent factor regression models have been used as a dimen-
sionality reduction tool for modeling of sparse covariance structures in genomic
applications (West, 2003; Carvalho et al., 2008). In addition, structural equation
models and other generalizations of factor analysis are widely useful in epidemi-
ologic studies involving complex health outcomes and exposures (Sanchez et al.,
2005). Improvements in Bayesian computation permit the routine implementation
of latent factor models via Markov chain Monte Carlo (MCMC) algorithms, and a
very broad class of models can be fitted easily using the freely available software
package WinBUGS. The literature on methods for fitting and inferences in latent
factor models is vast (for recent books, see Loehlin, 2004; Thompson, 2004).

In using a factor analytic model for inferences on a covariance structure, it is
appealing to formally account for uncertainty in selecting the number of factors.
There has been some focus in the frequentist and Bayesian literature on the prob-
lem of selection of the number of factors. Press and Shigemasu (1999) propose
to choose the number of factors having the highest posterior probability, noting
that such an approach improves upon the commonly used AIC (Akaike, 1987) and
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BIC (Schwarz, 1978) criteria. For hierarchical models, such as latent factor models,
the BIC justification as an approximation to the Bayes factor breaks down (Berger
et al., 2003), and one may need a different penalty for model complexity (Zhang
and Kocka, 2004).

Estimation of posterior probabilities of models having different numbers of la-
tent factors poses major challenges such as (a) how to choose priors for the factor
loadings in the list of models corresponding to different numbers of factors; and
(b) how to efficiently and accurately estimate posterior model probabilities. Polasek
(1997) considered approaches for estimating posterior probabilities based on sepa-
rate MCMC analyses of models differing only in the number of factors. Although an
estimate of the marginal likelihood is not automatically available from the MCMC
output, a number of algorithms have been proposed (Chib, 1995; DiCiccio et al.,
1997; Gelfand and Dey, 1994; Meng and Wong, 1996).

Lopes and West (2004) proposed a reversible jump MCMC (RJMCMC) algo-
rithm (Green, 1995) to move between the models with different numbers of factors,
and conducted a thorough comparison with estimators for approximating marginal
likelihoods from separate MCMC analyses under each model. In simulation studies,
they found that a number of the methods perform poorly relative to the RJMCMC
and bridge sampling (Meng and Wong, 1996) in terms of proportions of simula-
tions in which the true number of factors is assigned highest posterior probability.
A computational challenge in implementing RJMCMC for factor model selection
is the difficulty of choosing efficient proposal distributions. Lopes and West (2004)
address this problem by constructing proposals using the results of a preliminary
MCMC run under each model. Such an approach is highly computationally de-
manding, becoming infeasible as the sample size and potential number of factors
increases. Motivated by this problem, Carvalho et al. (2008) proposed an evolution-
ary search algorithm, which provides a useful approach for searching for good factor
models in high dimensions.

Lee and Song (2002) developed a method for estimating Bayes factors for select-
ing the number of factors in a factor analysis model using the idea of path sampling
(Gelman and Meng, 1998). They proposed a procedure that is simple to implement
and tends to have good performance in terms of accuracy. To estimate a single Bayes
factor for comparing two competing models, their method requires running of sep-
arate MCMC algorithms along a grid corresponding to different values for a path
sampling constant. Although such an approach can potentially be implemented in
parallel, computational efficiency is nonetheless a concern, particularly if one has
many different models under consideration. In addition, if the individual Markov
chains exhibit poor mixing, which is a common problem in latent factor models,
one may need to run each chain for a very large number of iterations to obtain accu-
rate results.

An additional issue is that it is well known that Bayes factors are sensitive to
the choice of prior. In latent factor models, it tends to be difficult to elicit the para-
meters, since in typical applications there is substantial uncertainty about the true
values of the factor loadings and error variances a priori. Hence, one would often
prefer to choose a vague prior. However, vague priors lead to problems with MCMC
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convergence, since in the limiting case as the prior variance becomes large, one can
obtain an improper posterior. In addition, even if this was not an issue, high vari-
ance priors tend to systematically favor small models, so that one will tend to select
a one-factor model if the prior variance is extremely large. In implementing their
approach, Lee and Song (2002) used highly informative priors to avoid this prob-
lem. However, if their highly informative values are concentrated around the wrong
values, as would typically be the case if there is substantial uncertainty a priori, then
one would expect poor performance in terms of model selection. For example, one
may tend to discard an important factor inappropriately if the priors for the factor
loadings have small variance around values far from the truth.

Ghosh and Dunson (2007) proposed an approach for simultaneously addressing
the issues of efficient computation and prior specification in latent factor models
through the use of a parameter-expansion approach. This approach conveys a dra-
matic improvement in MCMC efficiency in many cases, while inducing heavy-tailed
priors that can be used for robust model selection via the path sampling approach.
We have observed good performance of such an approach in a number of simulation
studies.

In this chapter, we review the Ghosh and Dunson (2007) approach and pro-
pose a new approach for estimating posterior probabilities of models with different
numbers of factors. The proposed approach relies on development of parameter ex-
panded Gibbs samplers (Liu and Wu, 1999; Gelman et al., 2007; Ghosh and Dunson,
2007) for all models in our list. Based on the MCMC output, we compute estimates
for Bayes factors for models differing by one factor. Using a simple identity, one
can then compute posterior probabilities from these estimates. Clearly, this method
is computationally less demanding than some of the other methods as we need to
run a single MCMC algorithm to estimate a particular Bayes factor. Additionally,
the use of parameter expansion facilitates good mixing. The method provides rea-
sonably accurate results, based on simulation studies.

Section 2 defines the model when the number of factors is known. Section 3 de-
scribes the methodology used for estimating Bayes factors based on MCMC output
when the number of factors is unknown. Section 4 presents the results of a simula-
tion study. Section 5 contains an application to rodent organ weight data, and Sect. 6
discusses the results. The full conditional distributions for the parameter expanded
Gibbs Sampler are given in the Appendix.

2 Specification of the Model

We shall first define a factor model in which the number of factors is known to be k,

yi = �ηi + εi , εi ∼ Np(0,�), (1)

where � is a p × k matrix of factor loadings, ηi = (ηi1, . . . , ηik)
′ ∼ Nk(0, Ik)

a vector of standard normal latent factors, and εi is a residual with diagonal
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covariance matrix � = diag(σ 2
1 , . . . , σ

2
p). Here the underlying latent factors, ηi ,

induce dependence among the components of yi , because integrating out the latent
factors we can write the marginal distribution of yi as Np(0,�), with � = ��′+�.
Thus, this model implies that the sharing of common latent factors explains the de-
pendence in the outcomes, and given the latent factors, the outcome variables are
uncorrelated. For example, the outcomes can be the results of various blood tests of
an individual and the underlying latent factor may be the health score for that indi-
vidual. Usually the number of factors is small, relative to the number of outcomes
(k � p). This leads to sparse models for � containing fewer than p(p + 1)/2
parameters. For this reason, factor models provide a convenient and flexible frame-
work for modeling a covariance matrix, especially in applications with moderate to
large p.

The above factor model (1) without further constraints is not identifiable under
orthogonal rotation. For example, if we post-multiply � by an orthonormal matrix
P, where P is such that PP′ = Ik , we will obtain exactly the same � as in the pre-
vious factor model (1). To avoid this issue of non-identifiability, we impose some
additional restrictions on the factor loadings matrix �. We assume that � has a full-
rank lower triangular structure to ensure identifiability. As the k(k − 1)/2 elements
in the upper triangular part of � are restricted to be zero, the number of free para-
meters in � and � is q = p(k + 1) − k(k − 1)/2. Here, k must be chosen so that
q ≤ p(p + 1)/2. We use this restriction as a default, motivated by applications in
which the latent factors do not have a pre-specified interpretation but are included
primarily to induce a sparse covariance structure in multivariate data. However, our
approach can be easily modified to factor analysis applications in which the dif-
ferent measurements are designed as manifestations of latent traits of interest (e.g.,
intelligence, stress, etc.).

To complete a Bayesian specification of model (1) we would need to specify the
prior distributions for the free elements of � and �. A popular choice is truncated
normal priors for the diagonal elements of �, normal priors for the lower triangular
elements, and inverse-gamma priors for σ 2

1 , . . . , σ
2
p . These choices are convenient,

because they represent conditionally conjugate forms that lead to straightforward
posterior computation by a Gibbs sampler (Arminger, 1998; Rowe, 1998; Song and
Lee, 2001). However, this prior specification suffers from a few major drawbacks.
First, specification of the hyperparameters in the prior may be difficult. Prior elicita-
tion is particularly important in this model, because in the limiting case as the prior
variance for the normal and inverse-gamma components increases the posterior be-
comes improper. To address this problem, often informative priors are chosen. In the
absence of subject-matter knowledge, sometimes the hyperparameters in the prior
are chosen after an initial analysis of the data. Using the data twice in this manner
could lead to an underestimation of uncertainty in model selection. Second, even if
informative priors are used, the Gibbs samplers tend to exhibit extreme slow-mixing.

Ghosh and Dunson (2007) address the above problems by generalizing the idea
of Gelman (2006) to induce a new class of robust priors for the factor loadings.
They use parameter expansion to induce a class of t or folded-t priors depending
on sign constraints on the loadings. In absence of subject-matter expertise, they
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recommend using a Cauchy or half-Cauchy prior as a default. They also demonstrate
good mixing properties of their parameter expanded Gibbs sampler compared to the
traditional Gibbs sampler, using various simulated and real data examples. In this
chapter, we outline a method to select the number of factors using their prior.

3 Bayesian Uncertainty in the Number of Factors

To allow an unknown number of factors k, we choose a multinomial prior distri-
bution, with Pr(k = h) = κh , for h = 1, . . . ,m. We then complete a Bayesian
specification through priors on the coefficients within each of the models in the list
k ∈ {1, . . . ,m}. This is accomplished by choosing a prior for the coefficients in the
m factor model having the form described in Ghosh and Dunson (2007). We first in-
duce a prior on �(m) through parameter expansion. For any smaller model k = h,
the prior for �(h) is obtained by marginalizing out the columns from (h + 1) to
m. In this manner, we place a prior on the coefficients in the largest model, while
inducing priors on the coefficients in each of the smaller models. We induce a prior
on �(m) by defining the following parameter expanded (PX) factor model:

yi = �∗(m)η∗
i + εi , η∗

i ∼ Nk(0,�), εi ∼ Np(0,�), (2)

where �∗(m) is p × m working factor loadings matrix having a lower triangular
structure without constraints on the elements, η∗

i = (η∗
i1, . . . , η

∗
im)

′ is a vector of
working latent variables, � = diag(ψ1, . . . , ψm), and � is a diagonal covariance
matrix defined as in (1). Note that model (2) is clearly over-parameterized having
redundant parameters in the covariance structure. In particular, marginalizing out
the latent variables, η∗

i , we obtain yi ∼ Np(0,�∗(m)��∗(m)′ + �). Clearly, the
diagonal elements of �∗(m) and � are redundant.

To relate the working model parameters in (2) to the inferential model parameters
in (1), we use the following transformation:

λ
(m)
jl = S(λ∗(m)

ll )λ
∗(m)
jl ψ

1/2
l , ηil = S(λ∗(m)

ll )ψ
−1/2
l η∗

il for j = 1, . . . , p,

l = 1, . . . ,m, (3)

where S(x) = −1 for x < 0 and S(x) = 1 for x ≥ 0. Then, instead of specifying a
prior for �(m) directly, we induce a prior on �(m) through a prior for �∗(m),�. In
particular, we let

λ
∗(m)
jl

i id∼ N(0, 1), j = 1, . . . , p, l = 1, . . . ,min( j,m),

λ
(m)
jl ∼ δ0, j = 1, . . . , (m − 1), l = j + 1, . . . ,m, ψl

i id∼ G(al , bl), l = 1, . . . ,m,
(4)
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where δ0 is a measure concentrated at 0, and G(a, b) denotes the gamma distribution
with mean a/b and variance a/b2. This prior is conditionally conjugate, leading to
straightforward Gibbs sampling.

Bayesian selection of the number of factors relies on posterior model
probabilities

Pr(k = h | y) = κh π(y | k = h)
∑m

l=1 κl π(y | k = l)
, (5)

where the marginal likelihood under model k, π(y | k = h), is obtained by inte-
grating the likelihood

∏

i Np(yi ; 0,�(k)�(k)
′ + �) across the prior for the factor

loadings �(k) and residual variances �. We still need to consider the problem of es-
timating Pr(k = h | y) as the marginal likelihood is not available in closed form.
Note that any posterior model probability can be expressed entirely in terms of
the prior odds O[h : j] = {κh/κ j } and Bayes factors B F[h : j] = {π(y | k =
h)/π(y | k = j)} as follows:

Pr(k = h | y) = O[h : j] ∗ B F[h : j]
∑m

l=1 O[l : j] ∗ B F[l : j] . (6)

We choose κh = 1/m, which corresponds to a uniform prior for the number of
factors k. To obtain an estimate of the Bayes factor BF[(h − 1) : h], for comparing
models k = (h − 1) to k = h, we run the PX Gibbs sampler under k = h. Let
{θ (h)i , i = 1, . . . , I } denote the I MCMC samples from the PX Gibbs sampler
under k = h, where θ

(h)
i = (�

(h)
i ,�i ). We can then estimate B F[(h − 1) : h] by

the following estimator:

̂B F[(h − 1) : h] = 1
I

I
∑

i=1

p(y|θ (h)i , k = h − 1)

p(y|θ (h)i , k = h)
. (7)

We do this for h = 2, . . . ,m.
The above estimator is based on the following identity:

∫

p(y|θ (h), k = h − 1)

p(y|θ (h), k = h)
p(θ (h)|y, k = h)dθ (h)

=
∫

p(y|θ (h), k = h − 1)
p(θ (h))

p(y|k = h)
dθ (h),

= p(y|k = h − 1)
p(y|k = h)

(8)

We can obtain the Bayes factor for comparing any two models. For example, the
Bayes factor for comparing the one-factor and the m-factor models is obtained as:
B F[1 : m] = B F[1 : 2] ∗ B F[2 : 3] . . . B F[(m − 1) : m]. Using (6), we can
estimate the posterior model probabilities in (5). We will refer to this approach as
importance sampling with parameter expansion (IS-PX).
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Lee and Song (2002) use the path sampling approach of Gelman and Meng
(1998) for estimating log Bayes factors. They construct a path using a scalar
t ∈ [0, 1] to link two models M0 and M1. They use the same idea as outlined in
an example in Gelman and Meng (1998) to construct their path. To compute the
required integral, they take a fixed set of grid points for t , t ∈ [0, 1] and then use nu-
merical integration to approximate the integration over t. For a detailed description
of using path sampling for computing Bayes factors refer to the chapter Bayesian
Model Comparison of Structural Equation Models in this book. Note that factor
models are a special case of structural equation models.

Although their approach is promising in terms of accuracy, it is quite computa-
tionally intensive, requiring running of separate MCMC algorithms for each value
of t in the grid. In contrast, using IS-PX we avoid the need to run multiple analyses,
though it is not clear that this will necessarily improve efficiency, since we may re-
quire a long chain to obtain accurate estimates of the Bayes factors. Given that the
true Bayes factors are not available and are analytically intractable, our assessment
of the performance of IS-PX will rely on simulations.

In addition to the difficulty of estimating the Bayes factor, an important chal-
lenge in Bayes model comparisons is sensitivity to the prior. It is well known that
Bayes factors tend to be sensitive to the prior, motivating a rich literature on objec-
tive Bayes methods (Berger and Pericchi, 1996, 2001). Lee and Song (2002) rely
on highly informative priors in implementing Bayesian model selection for factor
analysis, an approach which is only reliable when substantial prior knowledge is
available allowing one to concisely guess a narrow range of plausible values for all
of the parameters in the model. Such knowledge is often lacking. This motivated
Ghosh and Dunson (2007) to modify the Lee and Song (2002) path sampling ap-
proach to allow the use of their default PX-induced priors. They refer to this as path
sampling with parameter expansion (PS-PX).

4 Simulation Study

Here we consider two sets of simulation studies and compare our results with those
from the PS-PX approach, as reported in Ghosh and Dunson (2007). Let m denote
the maximum number of factors in our list. We routinely standardize the data prior
to analysis.

4.1 One-Factor Model

In the first simulation, p = 7, n = 100, the true number of factors, k = 1 and

� = (0.995, 0.975, 0.949, 0.922, 0.894, 0.866, 0.837)′,
diag(�) = (0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30).
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we take m to be 3, which is also the maximum number of factors resulting in an
identifiable model. We repeat this simulation for 100 simulated data sets. To specify
the prior for the PX Gibbs sampler, we induce half-Cauchy and Cauchy priors, both
with a scale parameter 1, for the diagonals and lower triangular elements of �,
respectively. For the residual precisions σ−2

j we take G(1, 0.2) priors. This choice
of hyperparameter values provides a modest degree of shrinkage towards a plausible
range of values for the residual precision. For each simulated data set, we run the
Gibbs sampler for 25,000 iterations, discarding the first 5,000 iterations as a burn-
in. We note that for IS-PX we need only the samples from the grid t = 1 of the
PS-PX approach. Here IS-PX chooses the correct model 92/100 times and PS-PX
100/100 times.

4.2 Three-Factor Model

For the second simulation study, p = 10, n = 100, and the true number of factors,
k = 3. This presents a more difficult scenario as some of the loadings are negative
and there is more noise in the data compared to the previous one-factor model.

�′ =
⎛

⎝

0.89 0.00 0.25 0.00 0.80 0.00 0.50 0.00 0.00 0.00
0.00 0.90 0.25 0.40 0.00 0.50 0.00 0.00 −0.30 −0.30
0.00 0.00 0.85 0.80 0.00 0.75 0.75 0.00 0.80 0.80

⎞

⎠ ,

diag(�) = (0.2079, 0.1900, 0.1525, 0.2000, 0.3600, 0.1875, 0.1875, 1.0000,
0.2700, 0.2700).

For this second simulation example the true model has three factors and the max-
imum number of factors resulting in an identifiable model is 6. We take m = 4,
following Ghosh and Dunson (2007). We carry out the simulations exactly as in
the previous simulation study. Here IS-PX chooses the correct model 86/100 times
compared to 100/100 by PS-PX. In these simulations ten gridpoints were considered
for PS-PX, so given that IS-PX takes only 1/10 of the run-time its performance is
reasonably good. Running the MCMC much longer would improve its performance.
A point to be noted here is that in the simulations where the wrong model is chosen,
the bigger model with four factors is selected. For these datasets the parameter esti-
mates under both three- and four-factor models are very similar, with the entries in
the fourth column of the loadings matrix being close to zero. Hence even if the big-
ger model is chosen by IS-PX in some cases, we do not expect much deterioration
in parameter estimates.

5 Application to Rodent Organ Weight Data

We illustrate our method for model selection by using it on a real dataset. We have
organ weight data from a US National Toxicology Program (NTP) 13-week study
of Anthraquinone in female Fischer rats. The goal of such studies is to assess the
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short-term toxicological effects of test agents on a variety of outcomes, including
animal and organ body weights. Studies are routinely conducted with 60 animals
randomized to approximately six dose groups, including a control. In the An-
thraquinone study, doses included 0, 1,875, 3,750, 7,500, 15,000 and 30,000 ppm.

At the end of the study, animals are sacrificed and a necropsy is conducted, with
overall body weight obtained along with weights for the heart, liver, lungs, kidneys
(combined), and thymus. Although body and organ weights are clearly correlated,
a challenge in the analysis of these data is the dimensionality of the covariance
matrix. In particular, even assuming a constant covariance across dose groups, it is
still necessary to estimate p(p + 1)/2 = 21 covariance parameters using data from
only n = 60 animals. Hence, routine analyses rely on univariate approaches applied
separately to body weight and the different organ weights.

We can use a factor model here to reduce dimensionality, but it is not clear
whether it is appropriate to assume a single factor underlying the different weights
or if additional factors need to be introduced. To address this question using the An-
thraquinone data, we repeated the approach described in Sect. 3 in the same manner
as implemented in the simulation examples. Body weights were standardized within
each dose group prior to analysis for the purposes of studying the correlation struc-
ture. Here we ran the algorithm for 100,000 iterations for IS-PX. The maximum
possible number of factors was m = 3.

The estimated probabilities for the one-, two-, and three-factor models under
IS-PX are 0.4417, 0.3464, and 0.2120 and using PS-PX are 0.9209, 0.0714, and
0.0077, respectively, as reported in Ghosh and Dunson (2007). The estimated factor
loadings for the one- and two-factor models are presented in Tables 1 and 2.

Table 1 Posterior summaries under the one-factor model for organ weight data

Weight Parameter Mean 95% CI

Body λ1 0.88 [0.67,1.10]
Heart λ2 0.33 [0.08,0.59]
Liver λ3 0.52 [0.28,0.77]
Lungs λ4 0.33 [0.08,0.59]
Kidneys λ5 0.70 [0.48,0.94]
Thymus λ6 0.42 [0.17,0.68]

Table 2 Posterior summaries under the two-factor model for organ weight data

Weight Parameter Mean 95% CI Parameter Mean 95% CI

Body λ11 0.87 [0.66,1.09] λ12 0 [0,0]
Heart λ21 0.34 [0.08,0.61] λ22 0.24 [0.01,0.73]
Liver λ31 0.52 [0.28,0.78] λ32 −0.15 [−0.63,0.45]
Lungs λ41 0.35 [0.09,0.62] λ42 0.29 [−0.62,0.88]
Kidneys λ51 0.70 [0.48,0.94] λ52 −0.06 [−0.44,0.29]
Thymus λ61 0.42 [0.17,0.68] λ62 −0.14 [−0.66,0.49]
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Body weight and kidney weight are the two outcomes having the highest cor-
relation with the latent factor in the one-factor analysis. The estimated covariance
matrix is similar under the one- and two-factor models, and the loadings on the sec-
ond factor tend to be zero, suggesting that the second factor is not needed. This is
also true for the third model. We also examined the likelihoods at the posterior mean
of �. For the two- and three-factor models the increase in likelihood seems small
compared to the number of additional parameters. In that sense, the factor model
with one factor seems most appropriate. Hence, the estimates of the posterior prob-
abilities from PS-PX seem more realistic. However, given that we obtained similar
estimates of the induced covariance matrix under the one-, two- and three-factor
models using the PX approach, it may be that there is little penalty to be paid for
the additional complexity involved in fitting the multiple factor models given the
regularization implicit in the Bayes approach. However, from the standpoint of ease
in interpretation, the more parsimonious one-factor model is certainly preferred.

6 Discussion

For analyzing high-dimensional, or even moderate-dimensional, multivariate data,
the factor model provides a convenient tool for sparse modeling of the covariance
matrix. This kind of data arises in a wide variety of applications ranging from ge-
nomics, where the outcomes may be highly correlated measurements on multiple
genes, to epidemiology where the goal may be to study the effect of a collection of
nutrients, many of which are highly correlated. Usually in such cases, the number
of factors to be included in the model is unknown and leads to a challenging model
uncertainty problem. A Bayesian solution to this problem proceeds by treating the
number of factors as unknown and then assigning prior probabilities to each model
in the list. After observing the data, the prior probabilities are updated to obtain
posterior probabilities for each model.

In this chapter, we have proposed an easy to implement, fully Bayesian approach
for estimating the posterior model probabilities via Bayes factors. Model selection
based on fully Bayesian approaches tends to be computationally intensive. Gibbs
samplers that exhibit slow-mixing add to the already existing heavy computational
burden of model selection. This is why we choose a default heavy-tailed prior for
factor loadings (Ghosh and Dunson, 2007), that greatly facilitates mixing. Using a
simple identity, we show our estimate is unbiased for estimating Bayes factors.

Comparing our method to the path sampling approach (Ghosh and Dunson, 2007;
Song and Lee, 2002) based on simulated and real data, we find that it is relatively
fast but less accurate. We have found that when it fails to choose the correct model,
it usually prefers a model with more factors than the true model, and most of the
loadings for the extra factors are close to zero. Since the loadings matrix for the true
model can be thought to be nested within a larger factor model, with entries in the
last columns equal to zero, we note that choosing a larger model in this case is more
desirable than choosing a wrong model with less factors. To estimate the Bayes
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factor between two models that differ by one factor, our method currently uses the
samples only from the larger model. Introducing a single bridge density between the
two models may improve results substantially, while adding only a negligible com-
putational cost. This still needs further work and seems to be a promising direction
for future research.
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Appendix: Full Conditional Distributions for the Gibbs Sampler

Suppose we have a model with k factors, conditional distributions for the PX Gibbs
Sampler are presented below:
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′. In addition, we have
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j , for j = 1, . . . , p.
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L’Hôpital’s rule/Taylor expansion, 26
one-and two-sided type, 26–30

semiparametric additive mixed models,
polynomial test

generalized additive mixed models, 30
log-marginal likelihood function, 32
marginal likelihood function, 32
smoothing spline estimator, 31

simulation study
approximated likelihood, 84
data setup, 78–80
results, 80–83

smoothing spline model
mixed model representation, 30
vs. polynomial model, 19

subject-specific random effects, 19–21
subset selection, 67–69
Taylor’s series, 73, 74
variance component testing

likelihood ratio test, 21–25
score test, 25–29

Generalized linear models (GLMs), 64
George, E.I., 41, 42, 46
Geweke, J., 79, 86
Ghosh, J., 153–155, 157–159
Gibbs sampling

factor analytic models, 153–155
importance weights application, 53, 54
logistic normal GLMM, 33
parameter expansion approach, 56, 57



Index 167

posterior distribution, 47, 51
random effects, 55
simulation study for GLMMs, 79

Goldstein, H., 98
Gong, G., 13
Green, P.J., 44
Greenberg, E., 60
Greven, S., 12, 13, 15
Grizzle, J.E., 7

H
Hall, D.B., 29
Hessian matrix, 104
Hoadley, B., 106, 107
Hobert, J.P., 21

I
Importance sampling and parameter expansion

(IS-PX), 156, 157

J
Jacqmin-Gadda, H., 26
Jiang, J., 39

K
Karim, M.R., 21, 33, 64
Kass, R.E., 69, 123, 125, 132, 133
Kinney, S.K., 38, 63, 68, 70
Kohn, R., 45, 48, 52
Kuha, J., 108, 114

L
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The purpose of this book is to discuss whether statistical methods 
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client relationship, but put so boldly it may arouse anger. The many 
books entitled something like Foundations of Statistics avoid  
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This monograph is aimed at developing Doukhan/Louhichi's (1999) 
idea to measure asymptotic independence of a random process. The 
authors propose various examples of models fitting such conditions 
such as stable Markov chains, dynamical systems or more          
complicated models, nonlinear, non-Markovian, and heteroskedastic 
models with infinite memory. Most of the commonly used stationary 
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This book is concerned with the estimation of discrete-time semi-
Markov and hidden semi-Markov processes. Semi-Markov processes 
are much more general and better adapted to applications than the 
Markov ones because sojourn times in any state can be arbitrarily 
distributed, as opposed to the geometrically distributed sojourn time 
in the Markov case. Another unique feature of the book is the use of 
discrete time, especially useful in some specific applications where 
the time scale is intrinsically discrete. The models presented in the 
book are specifically adapted to reliability studies and DNA analysis. 
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