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Sheather 8.3.2

First of all, note that the outcome values are not independent, because exactly 10 jurisdictions produce a top
10 finalist in a given year. Since the data ranges over 9 years, that means that the sum of the Top10 values
must be 9 × 10 = 90. That’s actually a pretty strong constraint; it means, for example, that if we observe 10
jurisdictions with the value 9 for Top10, we automatically know the value for the other 41 jurisdictions (i.e.,
0). Of course, we never expect regression assumptions to hold exactly in practice, but I’d take this model
with a big grain of salt since the samples are so heavily dependent.

That said, let’s go ahead and visualize the data (Figure 1).

Three predictors, LogPopulation, LogContestants, and Latitude have high marginal correlations with
Top10. LogTotalArea and Longitude have pretty small correlations, but of course these are marginal
correlations, so they could still be strongly related to the outcome.

There are some unsurprising correlations between some pairs of predictors. LogPopulation and
LogContestants are positively correlated, which makes sense: larger populations produce more contestants.
Longitude is positively correlated with LogTotalArea: western states are larger on average than eastern ones.

The predictors have reasonably symmetric and unimodal distributions, presumably thanks in part to the log
transformations.

(a): Full model

Here’s the full model, with a summary below. Standardized deviance residuals are plotted against each of the
predictors in Figure 2. Marginal model plots are in Figure 3.

The residuals look essentially patternless, and the nonparametric curves for the fitted and the observed values
in the marginal model plots look roughly the same. Since Longitude is not significant, and the problem
requests a model in which all the predictors are significant, let’s drop Longitude and refit (see below).

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.692 2.63 -2.925 0.003446

LogPopulation 0.6256 0.1845 3.391 0.0006959
LogContestants 1.417 0.4213 3.364 0.0007675
LogTotalArea -0.3701 0.1393 -2.657 0.007892

Latitude -0.06525 0.03028 -2.155 0.03115
Longitude 0.006509 0.009271 0.7021 0.4826

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 118.47 on 50 degrees of freedom
Residual deviance: 50.11 on 45 degrees of freedom
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Figure 1: Pairs plot for Miss America data, excluding abbreviation column.
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Figure 2: Standardized deviance residuals (left) against fitted values for the full model.
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Figure 3: Marginal model plots for the full model
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(a): Reduced model without Longitude

The model summary is below. Residuals are plotted in Figure 2 and the marginal model plots are in Figure 5.

Once again, the residuals look essentially patternless, and the curves in each marginal model plot follow each
other closely. All the predictors are now statistically significant. The AIC for this model (142.79) is also
lower than for the full model (144.3). This model seems reasonable.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.619 2.15 -3.079 0.002075

LogPopulation 0.5888 0.1758 3.35 0.0008074
LogContestants 1.337 0.4104 3.258 0.001123
LogTotalArea -0.3198 0.1204 -2.656 0.007903

Latitude -0.0733 0.029 -2.528 0.01148

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 118.47 on 50 degrees of freedom
Residual deviance: 50.59 on 46 degrees of freedom
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Figure 4: Standardized deviance residuals (left) against fitted values for the reduced model.
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Figure 5: Marginal model plots for the reduced model
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(b)

Recall that a “bad” leverage point was defined as a leverage point that is also an outlier. To detect this, let’s
examine the diagnostic plot that R generates with standardized Pearson residuals on the y-axis and leverage
on the x-axis, in Figure 6.

Point 12 has both high leverage and a high standardized residual value, so it could be considered a bad
leverage point. Let’s refit the model without that point.

Once again, the residual plots (Figure 7) and marginal model plots (Figure 8) look good. From the summary
below, we see that the coefficient for Latitude is no longer significant. Point 12 corresponded to Hawaii, which
has a very low latitude, so it makes sense that that point was responsible for making Latitude statistically
significant. The model without Hawaii is probably a better model of the continental US. (Alaska is still in
the picture, but evidently it’s not a bad leverage point, since it didn’t show up as such on the plot.)
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Figure 6: Residuals vs. leverage for the reduced model

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.741 2.938 -3.315 0.0009168

LogPopulation 0.6171 0.1768 3.489 0.0004839
LogContestants 1.772 0.4994 3.549 0.0003872
LogTotalArea -0.354 0.1286 -2.753 0.005905

Latitude -0.02955 0.03938 -0.7504 0.453

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 117.51 on 49 degrees of freedom
Residual deviance: 48.07 on 45 degrees of freedom
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Figure 7: Standardized deviance residuals (left) against fitted values for the reduced model without point 12.

As described above, a “bad” point is related to high residuals and high leverage (making it influential). In
order to assess this, we need the residuals to meet our expectations (leverage is only related to the dependent
variables, not the model). In Figure 9 we can observe that, only once does a binned grouping have a average
residual beyond the 2 standard deviations, this suggests that the relationship between residuals and fitted
values isn’t too concerning. Moreover, we can’t observe any nonconstant pattern with the residual averages.
Additionally, from the marginal plots we know that only 2 observations have expected values below -4, which
might give us pause to overinterpret the plot. Under the model assumptions, we can simulate potential
outcomes and compare these to the actual values. Figure 10 suggests that the residuals observed compared
to those from the simulations do not suggest significant differences, specifically the ranks for the residuals vs
what ranking would be expected seem to have similar distributions.
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Figure 8: Marginal model plots for the reduced model without point 12.
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Figure 9: Binned residual plot for second model.

0.0 0.4 0.8

0.
2

0.
4

0.
6

0.
8

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.46054
Deviation  n.s.

Outlier test: p= 1
Deviation  n.s.

Dispersion test: p= 0.9246
Deviation  n.s.

Model predictions (rank transformed)

S
ta

nd
ar

di
ze

d 
re

si
du

al

0.0 0.4 0.8

0.
00

0.
25

0.
50

0.
75

1.
00

Residual vs. predicted
No significant problems detected

DHARMa residual diagnostics

Figure 10: Simulation based assessment of residuals.
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(c)

Let’s interpet the coefficients from the model without Hawaii.

Mathematically, the intercept means that when the covariates are all 0, the estimated log odds of producing
a top 10 finalist is -9.741, which corresponds to a probability of 0.000059. Of course, a jurisdiction with 0 for
all covariate values is not realistic or of interest in the model.

Note that the odds are

θ(X)
1 − θ(X)

where θ(X) represents the probability of producing a top 10 finalist (given covariates X) for a single Bernoulli
trial. Since we’re pretending that Yi ∼ Bin(10, θ(Xi)), we have that θ(X) corresponds to the probability of
producing a top 10 finalist in a single year. It does not represent the probability of producing at least one
top 10 finalist over 10 ten years or anything like that.

The coefficient on LogPopulation indicates that, if we observe two jurisdictions that have the same covariate
values except that they differ by 1 in LogPopulation, then the log odds of producing a top 10 finalist for the
more populous jurisdiction are 0.6171 higher than for the less populous jurisdiction. Equivalently, the odds
are exp(0.671) = 1.9 higher.

The interpretation is analogous for the other coefficients.

Problem 2

(a)

It appears that the “bernoulli” dataset is just yearly for each state if their contestant was in the top 10. This
means that the “binimial” dataset was a summary of the “bernoulli” for each state.

(b)

Using this Bernoulli data, we show the model without Longitude below. Because both this model and the
second model in part 1a are trying to to model θ[Xi] - the probability in being in the top 10 contestants
related to state information and they both use the same information we expect the model’s parameters to be
very similar.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.619 2.15 -3.079 0.002074

LogPopulation 0.5888 0.1757 3.35 0.0008067
LogContestants 1.337 0.4104 3.258 0.001123
LogTotalArea -0.3198 0.1204 -2.656 0.007899

Latitude -0.0733 0.029 -2.528 0.01148

(Dispersion parameter for binomial family taken to be 1 )

Null deviance: 454.3 on 458 degrees of freedom
Residual deviance: 386.5 on 454 degrees of freedom
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(c)

We should not expect the AICs of the two models to be the same, nor are they (with the Bernoulli m2 model
having an AIC of 396.46 and the binomial m2 model having an AIC of 142.79). This directly related to the
definition of AIC, which is

−2 · Log likelihood + 2 · p ,

where p is the number of parameters of the model (5 in our models).

The first model has an assumption of the observations being Binomial(9, θ[Xi]) and the second uses the
assumption that the observations are Bernoulli(θ[Xi]). The likelihoods for a state therefore look slightly
different, specifically:

(
9
xi

)
θ[Xi]yi(1 − θ[Xi])9−yi

for the Binomial assumption and

2009∏
z=2000

θ[Xi]yiz (1 − θ[Xi])1−yiz

or θ[Xi]yi(1 − θ[Xi])9−yi ,

for the Bernoulli assumption1. As the log likelihood is over all i, this means that the Log likelihoods for the
model from part 1 (the Binomial assumption) has an additional

51∑
i=1

log
((

9
yi

))

term. THe difference between the two AICs should then be by 2 ∗
∑51

i=1 log
((

9
yi

))
(from the definition of

the AIC). The final 2 lines of code below show that to be true.
binomial_m2_aic - bernoulli_m2_aic

## [1] -254

sapply(dat_original$Top10, function(x) choose(9, x)) %>%
log() %>% sum() %>% "*"(.,-2)

## [1] -254

1This is because we can see yi =
∑2009

z=2000 yiz .
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