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2 (a)

We first fit a model regression Sales on all of the covariates except Advert and Lag1Advert.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 350.4 25.98 13.48 2.69e-22

Time 0.4298 0.2381 1.805 0.07485
Month_2 -18.4 31.81 -0.5785 0.5645
Month_3 77.54 31.8 2.438 0.01698
Month_4 101.9 31.8 3.203 0.001951
Month_5 93.43 31.79 2.939 0.004306
Month_6 89.75 31.79 2.823 0.005999
Month_7 24.82 31.79 0.7808 0.4372
Month_8 89.02 31.79 2.8 0.006403
Month_9 166.8 31.79 5.247 1.236e-06

Month_10 199.7 31.8 6.279 1.658e-08
Month_11 374.3 32.84 11.4 1.954e-18
Month_12 1151 32.83 35.05 2.62e-50

Table 2: Problem 2a: Summary of ordinary linear model.

Observations Residual Std. Error R2 Adjusted R2

93 61.43 0.9634 0.9579

The diagnostic plots for our first model are shown in Figure 1. Our standard set of diagnostic plots, the first
four plots, don’t look too bad although there are some deviations from normality in the QQ plot and maybe
an upward trend in the Scale-Location plot. We see in the ACF plot that there is, statistically significant,
auto-correlation in the lag1 term for the residuals. We also plot the residuals against the Time variable,
which could conceivably be used to address the auto correlation but we do not observe any trends in this
plot. We could estimate a model to account for the observed auto correlation but we will defer that until the
next part since it is hypothesize that advertising in both the current and previous month may be important
variables, and could conceivably account for the auto correlation. We do note that the current model explains
a large portion of the observed variation and is straight forward to interpret relying only on the month of the
year and the Time (cumulative count of months).

2 (b)

We try adding the Advert and Lag1Advert

Estimate Std. Error t value Pr(>|t|)
(Intercept) 392.4 40.81 9.614 6.994e-15

Advert 2.3 2.574 0.8934 0.3744
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Estimate Std. Error t value Pr(>|t|)
Lag1Advert -4.517 2.663 -1.697 0.09374

Time 0.4322 0.2377 1.818 0.07285
Month_2 -45.88 37.83 -1.213 0.2288
Month_3 26.69 40.59 0.6576 0.5127
Month_4 81.05 33.55 2.416 0.01803
Month_5 59.33 36.74 1.615 0.1104
Month_6 59.36 36.42 1.63 0.1072
Month_7 -12.4 37.42 -0.3314 0.7412
Month_8 60.02 35.91 1.671 0.09865
Month_9 129 37.24 3.464 0.0008671

Month_10 165.7 35.43 4.677 0.000012
Month_11 324.8 43.59 7.451 1.081e-10
Month_12 1149 39.48 29.11 1.209e-43

Table 4: Problem 2b: Summary of ordinary linear model.

Observations Residual Std. Error R2 Adjusted R2

93 60.55 0.9653 0.9591

We can see from the model outputs that neither Advert or Lag1Advert is statistically significant. Conducting
an ANOVA test (results below) we see that we fail to reject the null hypothesis that the model without either
Advert or Lag1Advert performs as well as the larger model. Examining the diagnostic plots for the larger
model in Figure 2 we also the same issues as with the smaller model, namely: autocorrelation in the residuals
and a slight trend in the scale-location plot. Given the diagnostics we would prefer the model from part a)
but might choose several methods for improving it. We could try fitting a more general model to allow for
the autocorrelation in the residuals. Alternatively, we could remove or transform the Time variable yielding a
smaller. Since this variable is a just a linear trend it is possible that this could address the autocorrelation in
the residuals observed in both models.

## Analysis of Variance Table
##
## Model 1: Sales ~ (Advert + Lag1Advert + Time + Month_2 + Month_3 + Month_4 +
## Month_5 + Month_6 + Month_7 + Month_8 + Month_9 + Month_10 +
## Month_11 + Month_12) - Advert - Lag1Advert
## Model 2: Sales ~ Advert + Lag1Advert + Time + Month_2 + Month_3 + Month_4 +
## Month_5 + Month_6 + Month_7 + Month_8 + Month_9 + Month_10 +
## Month_11 + Month_12
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 80 301843
## 2 78 285962 2 15881 2.17 0.12

3 (a)

A summary of the model is below. Diagnostic plots are in Figure 3, and the estimated autocorrelation
between the residuals is plotted in Figure 4.

The residuals are very roughly normally distributed, but they appear to show an increasing trend relative
to the fitted values. The scale-location plot also appears to show that the variance is increasing with fitted

2



400 800 1200

−
30

0
−

10
0

10
0

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

33

32

11

−2 −1 0 1 2

−
4

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

33

32

11

400 800 1200

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
33

32
11

0.00 0.05 0.10 0.15

−
4

−
2

0
2

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

Residuals vs Leverage

33

32

11

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Auto Correlation in Residuals

0 20 40 60 80

−
4

−
2

0
2

Time

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Figure 1: Problem 2a: Diagnostic plots for ordinary linear model.
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Figure 2: Problem 2b: Diagnostic plots for ordinary linear model.
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Figure 3: Problem 3a: Diagnostic plots for ordinary linear model.

values, and the autocorrelation plot shows large autocorrelations, all of which suggest that the linear model
with assumed independence between the residuals is not appropriate.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4421 1235 3.58 0.00336

Temp 78.18 33.89 2.307 0.03817
Sun 2.585 1.556 1.661 0.1206
Q2 -879.7 1121 -0.7845 0.4468
Q3 -1552 1541 -1.007 0.3323
Q4 715.4 474.3 1.508 0.1554

Table 6: Problem 3a: Summary of ordinary linear model.

Observations Residual Std. Error R2 Adjusted R2

19 287.2 0.9537 0.9359

3 (b)

Note that the model can be estimated with either Maximum Likelihood (ML) or Restricted Maximum
Likelihood (REML). I have used the default, which is REML, but either one is fine. They will produce
different estimates. The code should look like one of the following:
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Figure 4: Problem 3a: acf plot for ordinary linear model residuals.

model <- gls(Sales ~ . -Case - Time, data=carlsen, correlation=corAR1())
model <- gls(Sales ~ . -Case - Time, data=carlsen, correlation=corAR1(),

method = "ML")

i. A summary of this model is below. From this summary, the estimated value of ρ, the lag-1 autocorrelation
parameter, is 0.87. (If you use ML for estimation, the estimate is 0.79).

ii. The coefficient values have changed in magnitude, though not in sign. The estimated standard errors
in the AR1 model are much smaller than in the ordinary linear model, which is to be expected if the
model is properly accounting for correlation among the residuals. As a result, both Sun and Q4 are
significant in the AR1 model but not in the ordinary linear model at conventional thresholds.

## Problem 3b: Summary of AR1 model:

## Generalized least squares fit by REML
## Model: Sales ~ . - Case - Time
## Data: carlsen
## AIC BIC logLik
## 213 217 -98
##
## Correlation Structure: AR(1)
## Formula: ~1
## Parameter estimate(s):
## Phi
## 0.87
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 5215 747 7.0 0.0000
## Temp 56 23 2.4 0.0300
## Sun 2 1 2.8 0.0148
## Q2 -36 663 -0.1 0.9572
## Q3 -371 942 -0.4 0.6999
## Q4 946 295 3.2 0.0069
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##
## Correlation:
## (Intr) Temp Sun Q2 Q3
## Temp -0.870
## Sun 0.005 -0.357
## Q2 0.914 -0.938 0.033
## Q3 0.912 -0.960 0.100 0.992
## Q4 0.747 -0.937 0.485 0.840 0.876
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -1.18 -0.29 0.50 0.57 1.13
##
## Residual standard error: 409
## Degrees of freedom: 19 total; 13 residual

3 (c)

The log likelihoods are -131 for the ordinary linear model and -98 for the AR1 mode. The difference in
degrees of freedom is 1, so we compare the statistic −2(−131 − (−98)) = 66 to a χ2

(1) distribution. The pvalue
is 8.08 × 10−16, so we reject the null hypothesis and conclude that the autocorrelation is not 0.

3 (d)

A summary of the model is below. Diagnostic plots are in Figure 5, and the autocorrelation plot of the
residuals is in Figure 6.

The diagnostic plots suggest problems with the fit. The residuals are not very close to normally distributed,
and the scale-location plot appears to show a relationship between the fitted values and the variance. The
autocorrelation plot, however, shows much reduced autocorrelation among the residuals, as hoped for.

The likelihood of the model is -130, as compared to -98 for the model in 3c. It appears to be more effective
to estimate the autocorrelation simultaneously with estimating the model, as in 3c, rather than following a
two-stage estimation procedure.

Estimate Std. Error t value Pr(>|t|)
Xstar(Intercept) 5090 793.5 6.415 0.0000229

XstarTemp 61.01 24.64 2.476 0.02781
XstarSun 2.196 0.8827 2.488 0.02722
XstarQ2 -214.5 725.8 -0.2956 0.7722
XstarQ3 -631.1 1026 -0.6148 0.5493
XstarQ4 879.1 322.7 2.724 0.01738

Table 8: Problem 3d: Summary of ordinary linear model with
transformed variables.

Observations Residual Std. Error R2 Adjusted R2

19 277.7 0.9979 0.9969
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Figure 5: Problem 3d: diagnostic plots.
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Figure 6: Problem 3d: acf plot for ordinary linear model residuals.
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4 (a)

We see in Figure 7 that plotting the mean for each state is helpful in summarizing the overall income
level within each stage but does not give an indication of the relationship between income and high school
graduation rates. Relative to the other plots Figure 7 is easy to interpret but is probably not the best way to
convey the information it is displaying.

4 (b)

Figure 8 allows us to examine if the relationship between high school graduation rate and income are similar
to what is observed at a national level but it is hard to see what the state level trends are. Relative to the
others plots Figure 8 is best suited the answering the question of “Does state X look like nation as a whole?”
instead of conveying state level results or tends.

4 (c)

Figure 9 allows us to examine if the relationship between high school graduation rate and income are similar
to what is observed at a national level while adjusting for mean income in the state but makes it harder to
see how the overall state income level compares to the nation as a whole. Relative to the others plots Figure
8 is best suited the answering the question of “Does the relationship between high gradation and income in
state X look like nation as a whole?” but does not convey much about the mean income level as done in
Figure 7 and Figure 8.

4 (d)

We see in Figure 10 that the state level regression lines match the observed data, as closely as possible, but
we are unable to fit them for all states since some states contain only a single county. In contrast to the other
plots there is much greater variance in the fitted regression lines perhaps better describing each state but
Figure 10 fails to convey any country level trends.

8



WA WI WV

TN TX UT VA VT

OR PA RI SC SD

NM NV NY OH OK

NC ND NE NH NJ

MI MN MO MS MT

KY LA MA MD ME

HI ID IL IN KS

CT DC DE FL GA

AL AR AZ CA CO

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90

50 60 70 80 90 50 60 70 80 90

10,000
20,000
30,000

10,000
20,000
30,000

10,000
20,000
30,000

10,000
20,000
30,000

10,000
20,000
30,000

10,000
20,000
30,000

10,000
20,000
30,000

10,000
20,000
30,000

10,000
20,000
30,000

10,000
20,000
30,000

Percentage High School Graduates

P
er

 C
ap

itc
a 

In
co

m
e 

($
)

Figure 7: Problem 4a: HS graduation rate vs. county level per capita income with state level mean per capita
income line.
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Figure 8: Problem 4b: HS graduation rate vs. county level per capita income with national level regression
line.
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Figure 9: Problem 4c: HS graduation rate vs. county level per capita income with state level intercept and
national slope line.
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Figure 10: Problem 4d: HS graduation rate vs. county level per capita income with state level regression line.
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