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We need to assume throughout this problem that the errors εi are independent of the quantities ηj . (Remember,
εi represents the “unexplainable variation”; see slide 14 of lecture 23.)

(a)

Since, for two random variables A,B, we have that Corr(A,B) = 0 ⇐⇒ Cov(A,B) = 0, let’s just focus on
the covariance. We have:

Cov(yi, yi′) = Cov(αj[i] + εi, αj[i′] + εi′) (1)
= Cov(αj[i], αj[i′]) +Cov(αj[i], εi′) +Cov(εi, αj[i′]) +Cov(εi, εi′) (2)

Recall that if two random variables A and B are independent, then f(A) and g(B) are independent for any
functions f and g1. Since ηj[i] á ηj[i′], and β0 is just a constant, it follows that αj[i] á αj[i′]

Furthermore, we have the errors εi are independent of everything, by assumption.

Hence each pair of variables in (2) is independent, so the covariances are all 0.

(b)

Substituting j[i] for j[i′] in (2), we have

Cov(yi, yi′) = Cov(αj[i], αj[i]) +Cov(αj[i], εi′) +Cov(εi, αj[i]) +Cov(εi, εi′) (3)
= Var(αj[i]) + 0 + 0 + 0 (4)
= τ2 (5)

Now,

Corr(yi, yi′) =
Cov(yi, yi′)√

σ2
yi
σ2

yi′

(6)

Writing the model in variance components form, we have yi = β0 + ηj[i] + εi, which means yi ∼ N(β0, σ
2 + τ2)

(since the sum of two independent normally distributed random variables has variance equal to the sum of
the variances). Substituting this into (6) yields

Corr(yi, yi′) =
Cov(yi, yi′)√

(σ2 + τ2)(σ2 + τ2)
(7)

= τ2

σ2 + τ2 (8)
1Any measurable functions f and g, that is, but you don’t really need to worry about this technicality.
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(c)

1
nj
∑Yi =

1
nj

[∑αj +∑ εi] (9)

= αj +
1
nj
∑ εi (10)

Ô⇒ Var(ȳj) = Var(αj) +
1
n2

j

∑Var(εi) (11)

= τ2 + σ
2

nj
(12)

(d)

Notice that this is equivalent to sampling a group, sampling a bunch of data points from that group, splitting
those data points into two sub-groups, and taking the means of each subgroup. We have:

Cov(ȳj , ȳ
∗

j ) = Cov( 1
nj
∑
i

yi,
1
n∗j
∑
k

y∗k) (13)

= 1
n2

j

∑
i

∑
k

Cov(yi, y
∗

k) (14)

= 1
n2

j

n2
jτ

2 (15)

= τ2 (16)

where in line 2 we assumed that n∗j = nj , and in line 3 we used that Cov(yi, y
∗

k) is equivalent to Cov(yi, yi′)
from part (b) above. Now, using the result from part (c), we have

Cov(ȳj , ȳ
∗

j ) =
τ2

√
σ2

ȳσ
2
ȳ∗

(17)

= τ2

τ2 + σ2/nj
(18)
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(a)

## Linear mixed model fit by REML ['lmerMod']
## Formula: per.cap.income ~ pct.hs.grad + (pct.hs.grad | state)
## Data: dat
##
## REML criterion at convergence: 8293
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.146 -0.583 -0.085 0.454 4.321
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##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## state (Intercept) 7949288 2819.4
## pct.hs.grad 3676 60.6 -1.00
## Residual 8115992 2848.9
## Number of obs: 440, groups: state, 48
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -4920.7 1699.0 -2.9
## pct.hs.grad 297.2 23.1 12.9
##
## Correlation of Fixed Effects:
## (Intr)
## pct.hs.grad -0.984
## convergence code: 0
## boundary (singular) fit: see ?isSingular

## grp var1 var2 vcov sdcor
## 1 state (Intercept) <NA> 7949288 2819
## 2 state pct.hs.grad <NA> 3676 61
## 3 state (Intercept) pct.hs.grad -170937 -1
## 4 Residual <NA> <NA> 8115992 2849

The parameter estimates are as follows.

Random effects estimates

σ̂2 = 8,115,992

τ̂2
0 = 7,949,288

τ̂2
1 = 3,676

Ĉorr(η0, η1) = −0.99999

Fixed effects estimates

β̂0 = −4,921
SE (β̂0) = 1,699

β̂1 = 297.23
SE (β̂1) = 23.05

If we fit the model calling lmer and setting the option within control = lmerControl(optimizer =
'bobyqa') we get a similar but slightly different model.

## Linear mixed model fit by REML ['lmerMod']
## Formula: per.cap.income ~ pct.hs.grad + (pct.hs.grad | state)
## Data: dat
## Control: lmerControl(optimizer = "bobyqa")
##
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## REML criterion at convergence: 8292
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.053 -0.575 -0.096 0.453 4.244
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## state (Intercept) 23008246 4797
## pct.hs.grad 7397 86 -1.00
## Residual 8064024 2840
## Number of obs: 440, groups: state, 48
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -4455.3 1791.2 -2.49
## pct.hs.grad 291.3 24.8 11.73
##
## Correlation of Fixed Effects:
## (Intr)
## pct.hs.grad -0.987
## convergence code: 0
## boundary (singular) fit: see ?isSingular

(b)

See Figure 1.

(c)

Examining Figure 1 we see that the pooled regression and mlm β’s agree almost exactly, which makes sense
given that they are both models considering all of the data. There is a lot more variance in the unpooled
regression lines since they are estimated individually for each state. We also note that for states with only
one observation we are unable to estimate the state level regression. The mlm α’s fall somewhere between
the mlm β’s and the unpooled regression lines. In states with very little data they agree with the mlm β’s
(e.g. HI, DE) while in states with a lot of data (e.g. CT, NJ) they agree more closely with the unpooled
regression line.
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Figure 1: Problem 3b: HS graduation rate vs. county level per capita income with regression lines.
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(d)
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We plot the unsorted variance-covariance matrix in the left panel of Figure ?? and the same matrix with
rows and columns sorted by state in the right panel. The right panel of Figure ?? makes is clear that the
estimated covariance between counties in the same state is high and zero (by assumption) between counties
in different states. Larger squares correspond to states with more observed counties.

(e)

QQ plots are shown in Figure 2 while the marginal residuals, conditional residuals, and random effects are
shown in Figures 3, 4, and 5 respectively. The QQ plots all show a heavy right tail as well as a fewer large (in
absolute value) residuals in the left tail. The marginal residuals generally appear mean zero but suggest that
the deviations from normality may be coming primarily from CA and NJ which do not appear mean zero
when considered individually. It is worth noting that these states both contain a lot of observations and have
relatively large random effects which is what makes them so noticeable. The conditional residuals appear
good for the most part but there may be some trend in PA although it is hard to know how to interpret
this since they are plotted against an index and not a covariate. The random effects appear fine with the
residuals clustered around the state mean in all cases.

Given the deviation from normality observed in the qq plots we should consider a transformation of
per.cap.income, perhaps a log transform, to try to address the heavy tails. The conditional residuals suggest
that we might be able to make some improvements in how the random effects are modeled but that these are
likely to be marginal improvements affecting only a few states.
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Figure 2: Problem 3e: QQ plot of multilevel model residuals.
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Figure 3: Problem 3e: Facet plot of marginal residuals.
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Figure 4: Problem 3e: Facet plot of conditional residuals.
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Figure 5: Problem 3e: Facet plot of random effects. Blue line shows mean state random effect.

10


	2
	(a)
	(b)
	(c)
	(d)

	3
	(a)
	(b)
	(c)
	(d)
	(e)


