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To my family.



Introduction

This is a very nice book on linear regression. It was written to serve the needs of people
who want to be able to apply linear regression techniques in a practical setting. Many of
the results presented are not derived mathematically in great detail but I believe that is a
conscious design decision of Weisberg. Instead of presenting derivations which many students
find uninteresting and a distraction that clouds the application of linear regression Weisberg
has chosen a different approach. He has chosen to present (and derive in an appendix) the
equations for the scalar regression case and then to simply state some of the results in more
complicated cases. He then provides a great number of very practical examples using linear
regression (both successfully and unsuccessfully) and documents cases and situations the
practicing statistical should be aware of before sending out results. This is much more in
line with how a practicing statistician would use linear regression. It is valuable to know
how to derive results but in todays age of easy to come by statistical software it is more
important to know how to use these results. Two interesting applications (among many)
presented by Weisberg are of using linear regression to predict the amount of snow to fall
latter in the season given the amount of snow that has already fallen and predicting the
length of time a visitor must wait at the Old Faithful geyser’s to observe the next eruption.

The use of the R statistical language is felt through and the book provides a very nice
summary set of notes that accompany the book by explicitly describing the R commands
used to duplicate the results presented in the textbook. This is a great way to learn the R

language and to get started solving practical problems very quickly. The code snippets for
various exercises can be found at the following location:

http://www.waxworksmath.com/Authors/N_Z/Weisberg/weisberg.html

I found this book very enjoyable and would recommend it highly. I feel that it is a great way
to develop a deeper understanding of linear regression. I believe that with this knowledge
one will find a great number of applications and extensions in your own work. Included here
are a few problems I had time to write up.

I’ve worked hard to make these notes as good as I can, but I have no illusions that they
are perfect. If you feel that that there is a better way to accomplish or explain an exercise
or derivation presented in these notes; or that one or more of the explanations is unclear,
incomplete, or misleading, please tell me. If you find an error of any kind – technical,
grammatical, typographical, whatever – please tell me that, too. I’ll gladly add to the
acknowledgments in later printings the name of the first person to bring each problem to my
attention.
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Chapter 1 (Scatterplots)

See the R functions chap prob 1.R – chap prob 5.R for some very simple implementations
of the problems from this chapter.

Chapter 2 (Simple Linear Regression)

Notes On The Text

Here we demonstrate how to derive a few of the expression presented in this chapter as well as
how to compute some of the specific numbers presented in the textbook using R commands.
This hopefully will save the student time and explain some of the mystery around how some
of the calculations are performed.

Notes on properties of the least squares estimates

Note that Ê(Y |X = x̄) can be computed easily by using Equation 109 to replace β̂0 in the
expression for Ê(Y |X = x). We find

Ê(Y |X = x̄) = β̂0 + β̂1x̄ = (ȳ − β̂1x̄) + β̂1x̄ = ȳ ,

for the expected fitted value for the mean x̄ and as stated in the text

Notes on confidence intervals and tests

The book defines the expression t(α/2, d) to represent the value that cuts off α/2× 100% of
the probability from the upper tail of the t-distribution with d degrees of freedom. This can
be computed in R by either of

qt(1− α/2, d) ,

or
qt(α/2, d, lower.tail = FALSE) .

Using these facts we can numerically verify some of the results given in the book. For
example, for Forbes’ data since n = 17 when we attempt to compute a 90% confidence
interval on the estimate of β̂0 we would have α = 0.1 and d = n−2 = 15 so the needed value
in the expression of the confidence interval is

t(0.05, 15) = qt(1− 0.1/2, 15) = qt(0.95, 15) = 1.7530 .
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Figure 1: A scatterplot of Wt as a function of Ht for Problem 2.1.

When we compute the t-statistic for the intercept β̂0 we get the value t = 2.137. The p-value
for this numerical quantity can be computed in R as

2 ∗ pt(−2.137, 17− 2) = 2 ∗ 0.02473897 = 0.04947794 .

which is close to the value of 0.05 as claimed in the book.

To compute a 95% confidence interval for the slope estimate of β1 we have α = 0.05 and
d = n− 2 = 15 so the needed expression in the confidence interval is

t(0.025, 15) = qt(1− 0.05/2, 15) = 2.131450 = qt(0.05/2, 15, lower.tail = FALSE) .

In the example using the Ft. Collins data the book computes a t-statistic of t = 1.553 which
will then have a p-value given by

2 ∗ pt(−1.553, 93− 2) = 0.1238942 ,

matching the value given in the book.

Problem Solutions

2.1 (height and weight data)

2.1.1: See the Figure 1 for a scatterplot of this data and a OLS line. A linear fit looks
reasonable but there will certainly be some outliers. In addition, the data set size is very
small n = 10 making decisions on the accuracy of our results that much harder.

2.1.2: These can be computed using the formulas given in this chapter. This is done in the
R script chap 2 prob 1.R.



2.1.3: t-tests for the coefficients β0 and β1 are given by computing (for the null or zero
hypothesis)

t0 =
β̂0

se(β̂0)
and t1 =

β̂1

se(β̂1)
,

when we compute these we get t0 = −0.572 and t1 = 1.496 respectively. These values agree
with the results printed by the R summary command. The R commands to calculate the
p-values associated with these to t-statistics are given by the following R expressions (with
n = 10)

2 * pt(-abs(-0.572),n-2) # gives 0.58305

2 * pt(-abs(1.496),n-2) # gives 0.17310

These p-values agree with the results given by the summary command.

2.1.4: The anova table for this linear model looks like

Analysis of Variance Table

Response: Wt

Df Sum Sq Mean Sq F value Pr(>F)

Ht 1 159.95 159.95 2.237 0.1731

Residuals 8 572.01 71.50

From which we see that the F statistic is given by F = 2.237 and equals t21 = (1.496)2 as it
must.

See the R script chap 2 prob 1.R for the various parts of this problem.

2.2 (more with Forbes’ data)

2.2.1: See the Figure 2 (left) for a scatterplot and the ordinary least squares fit of Lpres as
a function of Temp.

2.2.2: Using the R command lm we can use the summary command where we find a F -
statistic given by 3157 which has a p-value less than 2.2 , 10−16 which is very strong evidence
against rejecting the null hypothesis.

2.2.3: See the Figure 2 (right) for the requested plot.

2.2.4: Using the Hooker data and the R function lm we find a mean function given by

E(Lpres|u1) = 724.9− 215470 u1 .
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Figure 2: Left: A scatterplot and OLS fit of LPres as a function of u1 requested in Prob-
lem 2.2. Right: A plot of Lpres predicted from equation 2.8 as a function of Lpres predicted
from Forbes’ model.

2.2.5: We will use the explicit formula provided in the text to program the standard error
of prediction. This formula is given by

sepred(ỹ∗|x∗) = σ̂

(

1 +
1

n
+

(x∗ − x̄)2

SXX

)1/2

. (1)

When we do this and compute the z values we find the mean and standard deviation given
by −0.00074 and 0.9549 respectively. These two results are rather close to the expected
values of 0 and 1.

2.2.6: For this part of the problem we use the Hooker model to compute predictions on the
Forebe’s data set. The R code to do this is given by

u1_temp <- 1 / ( (5/9) * forbes$Temp + 255.37 )

forbes_hooker_predictions <- predict( m_hooker, newdata=data.frame(u1=u1_temp) )

sepred <- sigma_hat * sqrt( 1 + 1/n + ( u1_temp - mean(u1) )^2/ SXX )

z <- ( forbes$Lpres - forbes_hooker_predictions ) / sepred

where the values for n, mean(u1), and SXX are based on the data used to compute the model
in this case the Hooker data. The mean and standard deviation of the values in z are given
by 0.19529 and 0.98453 respectively. The consequence of this is that the model we are using
to predict the Forbes’ data seems to be biased (has a non-zero mean).

See the R script chap 2 prob 2.R for the various parts of this problem.



2.3 (derivations from the mean)

2.3.1: The parameter α represents the value of y when x is equal to its mean value x̄. This
would be ȳ, see page 5.

2.3.2: The least squares estimates of α and β̂1 can be obtained by creating a new data set
where the dependent variables X has had its mean subtracted. Then using Equation 109 to
compute α we see that α = ȳ. Using Equation 110 to compute β̂1 since SXX and SXY are
the same whether or not the mean is subtracted from the values of X we have β̂1 given by
Equation 110 as we were to show.

2.3.3: Since α̂ is the sample mean it has a variance given by

Var(α̂) = Var(ȳ) = Var(
1

n

∑

yi) =
σ2

n
.

The variance of β̂1 is the same as given in Equation 111, and the covariance of α̂ and β̂1 is
given by

Cov(α̂, β̂1) = Cov(ȳ, β̂1) = 0 ,

as given by Equation 112.

2.4 (heights of mothers and daughters)

2.4.1: Since all of the information requested is provided by the R command summary we will
report that output here. After fitting a linear model on Dheight given Mheight we find the
R summary looks like

Call:

lm(formula = Dheight ~ Mheight)

Residuals:

Min 1Q Median 3Q Max

-7.39740 -1.52866 0.03600 1.49211 9.05250

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.91744 1.62247 18.44 <2e-16 ***

Mheight 0.54175 0.02596 20.87 <2e-16 ***

---

Residual standard error: 2.266 on 1373 degrees of freedom

Multiple R-Squared: 0.2408, Adjusted R-squared: 0.2402

F-statistic: 435.5 on 1 and 1373 DF, p-value: < 2.2e-16



From that output we see have the estimates of coefficients β̂0 and β̂1, their standard er-
rors, the value of the coefficient of determination R2 = 0.2408 and the variance estimate
2.266. The hypothesis test that E(Dheight|Mheight) = β0 versus the alternative that
E(Dheight|Mheight) = β0 + β1Mheight is summarized by the F -statistic which in this
case is given by 435.5 and has a p-value less than 2.2 10−16 or strong evidence against the
hypothesis that E(Dheight|Mheight) = β0 in favor of the other hypothesis.

2.4.2: If yi is written in mean differenced form given by

yi = α + β1(xi − x̄) + ei = E(y) + β1(xi − x̄) + ei ,

then as the variable xi is the mother’s height if β1 = 1 then any amount by which this given
mothers height is greater than the average will directly translate numerically one-to-one
into an amount by which the daughters height is greater than the average E(y). This later
expression is the populations average height. If β1 was greater than one this would imply that
taller mothers (one’s whos heights were greater than the average) would product children
whos heights were greater than the average also. Mothers who’s heights were less that then
average xi < x̄ would on average produce daughters who’s height is less than the population
average i.e. yi < E(y). Taken together this would seem to indicate that taller mothers will
produce taller daughters while shorter mothers would produce shorter daughters. If β1 < 1
then the opposite behavior would be observed in that taller mothers would produce children
who while still taller than the average would not be proportionally taller. In the case when
β1 < 1 the daughters heights seem to be “regressing to the mean E(y)”. It is observations
like this that lead to the term “regression”.

Recall that the standard error of β1 is given by

se(β̂1) =
σ̂√
SXX

, (2)

with which the (1− α)× 100% confidence interval for β1 is given by

β̂1 − t(α/2, n− 2)se(β̂1) ≤ β1 ≤ β̂1 + t(α/2, n− 2)se(β̂1) .

which in this case becomes

0.4747836 < β1 < 0.6087104 ,

both limits of which are considerably less than one.

2.4.3: We can easily do this with the predict command. We find the R prediction given by

fit lwr upr

[1,] 64.58925 58.74045 70.43805

See the R script chap 2 prob 4.R for the various parts of this problem.
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Figure 3: Left: The wblake2 data set with a OLS line. Right: The resulting residuals for
the wblake2 data set. Note the appearance of “curvature” in this plot indicating a linear
model may not be appropriate.

2.5 (smallmouth bass)

2.5.1: We can load the wblake data set and obtain a confidence interval around the mean
length at the various ages with the following R command

predict(m,data.frame(Age=c(2,4,6)), interval="confidence", level=0.95)

fit lwr upr

1 126.1749 122.1643 130.1856

2 186.8227 184.1217 189.5237

3 247.4705 243.8481 251.0929

2.5.2: Using the same call as above we find that the 95% confidence interval for the mean
length at age 9 is given by.

fit lwr upr

[1,] 338.4422 331.4231 345.4612

The age value of 9 is outside of the range of the data we have samples for and therefore will
may have extrapolation errors.

2.5.3: To show that a linear model is not appropriate we will consider a scatterplot of the
residuals yi− ŷi considered as a function of the fitted values ŷi. Under an appropriate model
this scatterplot should be a null-plot. In Figure 3 (left) we show the raw data provided in
the wblake2 data. In Figure 3 (right) we show a plot of the residuals versus the fitted values.
As stated in the text the observed curvature may indicate that the assumed mean function
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Figure 4: The UN data set with a OLS line. The x-axis is the base-10 logarithm of the per
person gross domestic product PPgdp. The y-axis is the base-10 logarithm of the birth rate
per 1000 females in the year 2000.

is inappropriate. This curvature might indicate that a quadratic term should be added to
improve the regression results.

See the R script chap 2 prob 5.R for the various parts of this problem.

2.6 (the united nations data)

2.6.1: We use the anova command in R to find the following analysis of variance table

Analysis of Variance Table

Response: LFertility

Df Sum Sq Mean Sq F value Pr(>F)

LPPgdb 1 4.8004 4.8004 162.15 < 2.2e-16 ***

Residuals 191 5.6546 0.0296

This gives strong evidence against the fact that this data is generated with uniform variance.

2.6.2: See Figure 4 for the plot of the data and the OLS fitted line for the UN data set.

2.6.3: Our alternative (AH) and null hypothesis (NH) for the requested test on the value of
β1 would be given by

NH : β1 = 0

AH : β1 < 0 .



Under the null hypothesis the t-statistic

t =
β̂1 − 0

se(β̂0)
=

−0.22116

0.01737
= −12.73230 .

The t-statistic above should be distributed as a t-distribution with n−2 degrees of freedom.
For the UN data set we have n = 193 samples so the t-distribution will have 191 degrees of
freedom. To compute the one-sided p-value defined as

p = Pr {T < t|NH} = Pr {T < −12.73230|NH} .
For this t-statistic we can use the following R command

pt(−12.73230, 191) = 1.378382 10−27 ,

providing a very strong argument against the null hypothesis.

We cannot use the F -statistic to test the NH against the one sided hypothesis that β1 < 0
since the F -statistic is testing the significance of the model with a non-zero value for β1
against the NH that β1 is in fact zero. Under the null hypothesis the F -statistic defined by

F =
(SYY − RSS)/1

σ̂2
,

will be drawn from an F (1, n − 2) distribution and tests the NH that E(Y |X = x) = β0
against the AH that E(Y |X = x) = β0 + β1x. When we compute this value using the above
formula we get a value of F = 162.1460. Thus we want to compute the p-value for this
statistic

p = Pr{f ≥ F = 162.1460|NH} = 1− Pr{f < F = 162.1460|NH}
= 1− pf(F, 1, n− 2) = 1− pf(162.1460, 1, 191) = 0.0 .

Note also that t2 = 162.1114 = F as it should.

2.6.4: Using the R summary command we find the coefficient of determinism R2 = 0.4591
explains that almost 46% of the variance in the response log10(Fertility) is explained by this
regression.

2.6.6: We can use the R command predict to compute prediction intervals. Computing a
95% prediction interval of log10(Fertility) gives the interval (0.17, 0.51, 0.85). Using these
values as exponents we find a 95% condidence interval and point prediction for Fertility
given by (1.47, 3.23, 7.094).

2.6.7: Looking for the suggested local we find Niger has the largest fertility and Hong Kong
has the smallest fertility.

2.7 (regression through the origin)

2.7.1: The least square estimator for β1 is obtained by finding the value of β̂1 such that
RSS(β1) is minimized. Taking the derivative of the given expression for RSS(β̂1) with respect
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Figure 5: Left: The snake data set with a OLS line. The x-axis is the water content of
snow on April 1st and the y-axis is the water yield from April to July (in inches). Right:
A plot of the residuals ê as a function of the fitted values ŷ for the snake data set.

to β̂1 and setting the resulting expression equal to zero we find

d

dβ̂1
RSS(β̂1) = 2

∑

(yi − β̂1xi)(−xi) = 0 ,

or
−
∑

yixi + β̂1
∑

x2i = 0 .

Solving this expression for β̂1 we find

β̂1 =

∑

xiyi
∑

x2i
. (3)

To study the bias introduced by this estimator of β1 we compute

E(β̂1) =

∑

xiE(yi)
∑

x2i
= β1

∑

x2i
∑

x2i
= β1 ,

showing that this estimator is unbiased. To study the variance of this estimator we compute

Var(β̂1) =
1

(
∑

x2i )
2

∑

i

Var(xiyi) =
1

(
∑

x2i )
2

∑

i

x2iVar(yi)

=
σ2

(
∑

x2i )
2

∑

i

x2i =
σ2

∑

i x
2
i

, (4)

the requested expression. An estimate of σ̂ is given by the usual

σ̂2 =
RSS

n− 1
,

which has n− 1 degrees of freedom.



2.7.3: We can use the R command lm to fit a regression model without an intercept by
using the command m <- lm( Y ~ X - 1 ). A plot of the data and the OLS fit is shown
in Figure 5 (left). The summary command then gives estimates of the coefficient β̂1 and σ̂2.
We find that β̂1 = 0.52039 and σ̂2 = 1.7. The 95% confidence interval for β1 is given by

β̂1 − t(α/2, n− 1)se(β̂1) ≤ β1 ≤ β̂1 + t(α/2, n− 1)se(β̂1) .

Note the n − 1 argument to the quantile of the t distribution that comes because we have
only one free parameter (here the slope value β1). In this case evaluating these we find

0.492451 < β1 < 00.548337 .

The summary command also produces the t-statistic for this value of β̂1 and is given by
39.48. The p-value for such a t-statistic is smaller than machine precision giving very strong
evidence against rejecting the null hypothesis (that β1 = 0).

2.7.4: When we plot the residuals ê as a function of the fitted values ŷ, we obtain the plot
given in Figure 5 (right). This looks reasonably like a null-plot. We also compute that
∑

ê2i = 0.918 6= 0 as expected since we don’t include a intercept in this regression.

2.8 (scale invariance)

2.8.1: Define “primed” variables as the ones that are “scaled” relative to the original vari-
ables. That is x′ = cx. Then from the definitions given in the text we see that

x̄′ = c x̄

SXX′ = c2 SXX

SDx′ = c SDx

SXY′ = c SXY

sx′y = c sxy .

Thus the standard OLS estimate of β̂ ′
0 and β̂ ′

1 become

β̂ ′
1 =

SXY′

SXX′ =
c SXY

c2 SXX
=

1

c

SXY

SXX
=

1

c
β̂1

β̂ ′
0 = ȳ′ − β̂ ′

1x̄
′ = ȳ − 1

c
β̂1(cx̄) = β̂0 .

To determine how σ̂ transforms recall that it is equal to RSS
n−2

so we need to determine how RSS
transforms. This in tern is given by

∑

i ê
2
i and so we need to determine how êi transforms.

We find

ê′i = yi − ŷ′i
= yi − (β̂ ′

0 + β̂ ′
1x

′
i)

= yi − (β̂0 +
(

1

c
β̂1

)

cxi)

= yi − ŷi = êi .



Thus RSS′ = RSS, and σ̂, is unchanged by this transformation. Finally, recalling that
R2 = 1− RSS

SYY
we have that R′2 = R2.

The t-test for statistical significance of the estimates of the individual components β0 and
β1 with the others in the model is based on computing t-statistics. For example for β0 we
would compute

t =
β̂i

se(β̂i)
for i = 0, 1 ,

and comparing this value to the quantiles of the t-distribution with n−2 degrees of freedom.
To answer how these transform when x′ = cx we need to determine how the standard error
of β̂i transforms under this mapping. We find

se(β̂ ′
0) = σ̂′

(

1

n
+

x̄′
2

SXX′

)1/2

= σ̂

(

1

n
+

c2x̄2

c2SXX

)1/2

= se(β̂0)

se(β̂ ′
1) =

σ̂′
√
SXX′ =

σ̂

c
√
SXX

=
1

c
se(β̂1) .

Thus the t-statistic transform as

tβ′

0
=

β̂ ′
0

se(β̂ ′
0)

=
β̂0

se(β̂0)
= tβ0

tβ′

1
=

β̂ ′
1

se(β̂ ′
1)

=
(1/c)β̂1

(1/c)se(β̂1)
= tβ1

that is they don’t change. This is to be expected since by just scaling the variable differently
should not affect the significance of their values.

2.8.2: In this case we see that

ȳ′ = d ȳ

SXX′ = SXX

SYY′ = d2 SYY

SDy′ = d SDy

SXY′ = d SXY .

Thus the standard OLS estimate of β̂ ′
0 and β̂ ′

1 become

β̂ ′
1 =

SXY′

SXX′ =
d SXY

SXX
= dβ̂1

β̂ ′
0 = ȳ′ − β̂ ′

1x̄
′ = dȳ − dβ̂1x̄ = dβ̂0 .

To determine how σ̂ transforms recall that it is equal to RSS
n−2

so we need to determine how RSS
transforms. This in tern is given by

∑

i ê
2
i and so we need to determine how êi transforms.

We find

ê′i = y′i − ŷ′i
= dyi − (β̂ ′

0 + β̂ ′
1x

′
i)

= dyi − d(β̂0 + β̂1xi)

= dyi − dŷi = dêi .



Thus RSS′ = d2RSS, and σ̂′ = dσ̂. Finally, recalling that R2 = 1− RSS
SYY

we have that

R′2 = 1− RSS′

SYY′ = 1− d2RSS

d2SYY
= R2 .

To answer how the t-statics transform when y′ = dy we need to determine how the standard
error of β̂i transforms under this mapping. We find

se(β̂ ′
0) = σ̂′

(

1

n
+

x̄′
2

SXX′

)1/2

= dσ̂

(

1

n
+

x̄2

SXX

)1/2

= d se(β̂0)

se(β̂ ′
1) =

σ̂′
√
SXX′ =

dσ̂√
SXX

= d se(β̂1) .

Thus the t-statistic transform as

tβ′

0
=

β̂ ′
0

se(β̂ ′
0)

=
d β̂0

d se(β̂0)
= tβ0

tβ′

1
=

β̂ ′
1

se(β̂ ′
1)

=
d β̂1

d se(β̂1)
= tβ1

that is they don’t change. Again this is to be expected.

2.9 (verifying an expression for RSS)

We want to show that

RSS = SYY − SXY2

SXX
= SYY − β̂2

1SXX . (5)

To do this consider the definition of RSS

RSS =
∑

ê2i =
∑

(yi − β̂0 − β̂1xi)
2

=
∑

(y2i − 2yi(β̂0 + β̂1xi) + (β̂0 + β̂1xi)
2)

=
∑

y2i − 2β̂0
∑

yi − 2β̂1
∑

xiyi +
∑

(β̂2
0 + 2β̂0β̂1xi + β̂2

1x
2
i )

=
∑

yi − 2β̂0nȳ − 2β̂1
∑

xiyi + nβ̂2
0 + 2β̂0β̂1nx̄+ β̂2

1

∑

x2i .

Now using Equations 104, 105, and 106 we have RSS given by

RSS = SYY + nȳ2 − 2β̂0nȳ − 2β̂1(SXY + nx̄ȳ)

+ nβ̂02β̂0β̂1nx̄+ β̂2
1(SXX + nx̄2) .

When we use Equation 109 the above becomes

RSS = SYY + nȳ2 − 2nȳ(ȳ − β̂1x̄)− 2β̂1(SXY + nx̄ȳ)

+ n(ȳ − β̂1x̄)
2 + 2β̂1(ȳ − β̂1x̄)nx̄+ β̂2

1(SXX + nx̄2)

= SYY − nȳ2 + 2nx̄ȳβ̂1 − 2β̂1SXY − 2β̂1nx̄ȳ

+ nȳ2 − 2nȳx̄β̂1 + nβ̂2
1 x̄

2 + 2β̂1nx̄ȳ − 2β̂1x̄
2n+ β̂2

1SXX + β̂2
1nx̄

2

= SYY + 2β̂1SXY + SXXβ̂2
1 .
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Figure 6: Left: A scatterplot (and ordinary least squares best fit line) of log(fi) (log word
frequency) as a function a function of log(i) (log word rank), when selecting the top 50 words
according to Hamilton. Center: The same but now selecting the top 75 words according to
the writings of Hamilton. Right: The same but now selecting the top 100 words. Note that
as we take more words the linear fit of log(f) to log(i) becomes increasingly worse.

Using Equation 110 twice we can write the expression for RSS as

RSS = SYY − 2
SXY2

SXX
+

SXY2

SXX
= SXY − SXY2

SXX

= SXY −
(

SXY2

SXX

)

SXX (6)

= SXY − β̂1SXX , (7)

the desired expressions.

2.10 (Zipf’s law)

2.10.1: See the plot in Figure 6 (left) where we have used the words such thatHamiltonRank ≤
50 and which results in the following R summary for the linear model

Call:

lm(formula = txt_freq ~ txt_ranks)

Residuals:

Min 1Q Median 3Q Max

-1.63962 -0.03072 0.04052 0.10207 0.26603

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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Figure 7: A scatterplot (and least squares best fit line) of log(fi) (log word frequency) as a
function a function of log(i) (log word rank), when selecting all words in the corpus MWwords.

(Intercept) 4.95697 0.06659 74.44 <2e-16 ***

txt_ranks 1.08290 0.02110 51.32 <2e-16 ***

---

Residual standard error: 0.2407 on 148 degrees of freedom

Multiple R-Squared: 0.9468, Adjusted R-squared: 0.9464

F-statistic: 2634 on 1 and 148 DF, p-value: < 2.2e-16

It certainly appears from this summary that the value b = 1 is a reasonable number.

2.10.2: To test the two sided hypothesis that b = 1, we will consider the t-statistic

t =
b̂− 1

se(b̂)
=

1.08289839− 1

0.02110104
= 0.07655 ,

which is to be compared to the quantiles of a t-distribution with n−2 = 150−2 = 148 degrees
of freedom. We find the probability of interest given by 2 * pt(-0.07655,148) = 0.93.
Which in words states that the probability of obtaining this result purely by chance is around
94%. Thus this data gives almost no evidence supporting the rejection of the null hypothesis
that b = 1. This is somewhat like saying that we should accept the null hypothesis.

2.10.3: See the plots in Figure 6 (center) and (right) where we can graphically see that
when we take more and more words the linear fit performs more and more poorly. If we
take this experiment to its logical extreme by including all terms we get the plot shown in
Figure 7. There we can see that the linear fit is particularly poor.

See the R script chap 2 prob 10.R for the various parts of this problem.
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Figure 8: A scatterplot (and mean value and ordinary least squares best fit line) of the
amount of snowfall observed late in the season as a function of the amount of snowfall
observed early in the season. This plot duplicates Figure 1.6 in the book.

2.11 (snow fall at Ft. Collins)

In Figure 8 we plot the Ft. Collins snow fall data set. Given this scatterplot looks so much
like a null plot we desire to study the statistical significance of the least squared computed
slope coefficient β1. We can test for the significance of any of the terms β0 or β1 by using
t-statistics. When we run the R command summary on the linear model we get a t-statistic for
this parameter of 1.553 which equates to a p-value of 0.124. Thus in greater than 12% of the
time we could get an estimated value of this slope this large or larger by chance when the true
slope is in fact zero. With this value we find the t-value squared given by 1.5532 = 2.4118
which exactly equals the F-statistic of 2.411 presented by the summary command.

See the R script chap 2 prob 11.R for the various parts of this problem.

2.12 (old faithful)

Note to solve this problem, we need to recall the definition (and differences between) two
terms: A Confidence Interval and A Prediction Interval.

• A Confidence Interval, estimates population parameters and is used to report ranges
one can be certain these parameters will fall.

• A Prediction Interval, estimates the future value of a dependent variable based on
a single instance of the independent variables. This interval incorporates two sources
of errors: the natural spread present in our independent variable and errors in our
estimates of model parameter.
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Figure 9: A scatterplot and least squares best fit line of the amount of time (in minutes)
until the next eruption at “old faithful” in Yellowstone national park, as a function of the
duration (in seconds) of the current eruption.

2.12.1: See Figure 9 where we plot a the Old Faithful data and the OLS linear fit, computed
using the R command lm. That function also provides the following approximate pointwise
prediction equation relating duration to interval

E(interval|duration) = 33.9878 + 0.1769 duration .

2.12.2: This part of the problem is asking to compute a 95% confidence interval for the
true mean of the dependent variable interval given the independent variable duration. Note
that the part 2.12.3 aims at computing the corresponding prediction interval. Computing
a confidence interval can be done easily with the R command predict and the interval

option confidence, as follows

predict( m, newdata=data.frame(Duration=250), interval="confidence", level=0.95 )

fit lwr upr

[1,] 78.20354 77.36915 79.03794

2.12.3: This can be done easily with the R command predict and the interval option
prediction. We find

> predict( m, newdata=data.frame(Duration=250), interval="prediction", level=0.95 )

fit lwr upr

[1,] 78.20354 66.35401 90.05307

This states that the next eruption will “most likely” happen sometime after 78 minutes have
pasted and sometime before 90 minutes have passed.
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Figure 10: A scatterplot and an ordinary least squares best fit line of the response CSpd
versus the predictor RSpd.

2.12.4: We are told to assume that the conditional distribution of interval|duration = 250
will be normal with a mean given by 77.36 (extracted from the confidence call in Part 2.12.2
above) and a standard error given by a variance given by

sefit(ŷ|x) = σ̂
(

1

n
+
x− x̄

SXX

)1/2

. (8)

Using this we recall that the confidence region for the mean function is the set of values of
y such that

(β̂0 + β̂1x)− [2F (α, 2, n− 2)]1/2 sefit(ŷ|x) ≤ y ≤ (β̂0 + β̂1x) + [2F (α, 2, n− 2)]1/2 sefit(ŷ|x) ,

where F (α, n1, n2) is defined to represent the value that cuts off α× 100% of the probabilty
from the upper tail of the F -distribution having n1 and n2 degrees of freedom. This can be
computed with the R command

qf(1− α, n1, n2) .

For this problem we find α = 0.1 and n = 270 so F (α, 2, n−2) is given by qf(1-0.1,2,268)=2.32.
Thus we can compute the needed values to compute the various parts of the confidence region
to compute the requested region.

See the R script chap 2 prob 12.R for the various parts of this problem.

2.13 (windmills)

2.13.1: In Figure 10 we see a plot of the response CSpd as a function of RSpd and an
ordinary least squares linear fit to this data. A linear fit appears to perform reasonably well.

2.13.2: We can fit CSpd as a function of RSpd using the R function lm. Doing so and then
using the R function summary gives the following summary of this linear fit



Call:

lm(formula = CSpd ~ RSpd)

Residuals:

Min 1Q Median 3Q Max

-7.7877 -1.5864 -0.1994 1.4403 9.1738

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.14123 0.16958 18.52 <2e-16 ***

RSpd 0.75573 0.01963 38.50 <2e-16 ***

---

Residual standard error: 2.466 on 1114 degrees of freedom

Multiple R-Squared: 0.5709, Adjusted R-squared: 0.5705

F-statistic: 1482 on 1 and 1114 DF, p-value: < 2.2e-16

2.13.3: A 95% prediction interval is given by using the R command predict with the
prediction option. We find

> predict( m, newdata=data.frame(RSpd=7.4285), interval="prediction", level=0.95 )

fit lwr upr

[1,] 8.755197 3.914023 13.59637

which gives the interval (3.91, 13.59).

2.13.4: Each prediction y∗i is given by

y∗i = β̂0 + β̂1x∗i .

Thus the average of the m values of y∗i denoted by ȳ∗ is given by

ȳ∗ =
1

m

m
∑

i=1

y∗i = β̂0 + β̂1
1

m

m
∑

i=1

x∗i = β̂0 + β̂1x̄∗ ,

which shows that the average of m predictions is equal to the prediction taken at the average
value of x̄∗ as claimed. To derive the standard error of the prediction of ȳ∗ we recognize that
the variance of each individual predicted value y∗i has two terms: one due to the noise e∗i
and one due to the errors in the fitted coefficients β̂i. Thus the variance in ȳ∗ is given by

Var[ȳ∗] =
1

m2

m
∑

i=1

Var[y∗i]

=
1

m2

m
∑

i=1

σ2 +Var[β̂0 + β̂1x̄∗]

=
1

m
σ2 +Var[β̂0] + Var[β̂1x̄∗] + 2Cov[β̂0, β̂1x̄∗]

=
1

m
σ2 +Var[β̂0] + x̄2∗Var[β̂1] + 2x̄∗Cov[β̂0, β̂1] .



Now using Equations 114, 111, and 115 from the appendix in the above expression we find

Var[ȳ∗] =
σ2

m
+ σ2

(

1

n
+

x̄2

SXX

)

+
σ2

SXX
x̄2∗ −

2x∗σ
2x̄

SXX

=
σ2

m
+ σ2

(

1

n
+

1

SXX
(x̄2∗ − 2x̄x̄∗ + x̄2)

)

=
σ2

m
+ σ2

(

1

n
+

(x̄∗ − x̄)2

SXX

)

, (9)

which when we take the square root of the above expression gives the desired result.

2.13.5: Since we have the standard error and the predicted value with ȳ∗ = β̂0 + β̂1x̄∗, we
could compute a 95% confidence interval like previously.

See the R script chap 2 prob 13.R for the various parts of this problem.



Chapter 3 (Multiple Regression)

Notes On The Text

The Ordinary Least Squares Estimate

In this subsection of these notes we derive some of the results stated in the book but provided
without proof. This hopefully will remove some of the mystery of where these results come
from and provide further understanding. We begin by deriving the equations for the least
squares coefficient estimates β̂∗ and β̂0 in terms of the mean reduced data matrices X and
Y . We begin by recalling the definition of the data matrix X

X =













1 x11 · · · x1p
1 x21 · · · x2p
...

... · · · ...
1 xn1 · · · xnp













, (10)

and a similar definition for the vector Y . Then since the normal equations require directly
computing

β̂ = (X ′X)−1(X ′Y ) , (11)

or equivalently solving the system

(X ′X)β̂ = X ′Y , (12)

for β̂ we can begin our search for expressions relating β̂0 and β̂∗ by first partitioning β̂ as

β̂ =

[

β̂0
β̂∗

]

.

Using this as motivation, we can conformally partition X into two pieces. We group the
left-most column of all ones in a vector called i and the other variables will be held in the
matrix V such that X now looks like

X =
[

i V
]

.

From this decomposition we have that the matrix V is given by V =













x11 · · · x1p
x21 · · · x2p
... · · · ...
xn1 · · · xnp













.

Using this factorization of X we see that the product X ′X required by the left-hand-side of
Equation 12 is given by

X ′X =

[

i′

V ′

]

[

i V
]

=

[

n i′V
V ′i V ′V

]

. (13)



Since i is a vector of all ones the product of V ′i in the above expression can be explicitly
computed. We find

V ′i =













x11 x21 · · · xn1
x12 x22 · · · xn2
...

...
...

x1p x2p · · · xnp

























1
1
...
1













=













∑

xi1
∑

xi2
...

∑

xip













= n













x̄1
x̄2
...
x̄p













≡ nx̄ .

Where x̄ is a vector where each component is the mean of the corresponding predictor. From
this result we see that the block product in X ′X becomes

X ′X =

[

n nx̄′

nx̄ V ′V

]

. (14)

We next compute the product of X ′Y needed in the right-hand-side of Equation 12. Note
that this product is given by

X ′Y =

[

i′

V ′

]

Y =

[

i′Y
V ′Y

]

=

[

nȳ
V ′Y

]

.

With both of these results our full system required in Equation 12 is
[

n nx̄′

nx̄ V ′V

] [

β̂0
β̂∗

]

=

[

nȳ
V ′Y

]

. (15)

To produce formulas for β̂0 and β̂
∗ we will perform the first step in the Gaussian elimination

procedure on this coefficient matrix above and produce an equivalent system for these two

variables. We begin by multiplying on the left by the block matrix

[

1/n 0
0 I

]

to get

[

1/n 0
0 I

] [

n nx̄′

nx̄ V ′V

] [

β̂0
β̂∗

]

=

[

1/n 0
0 I

] [

nȳ
V ′Y

]

,

or
[

1 x̄′

nx̄ V ′V

] [

β̂0
β̂∗

]

=

[

ȳ
V ′Y

]

. (16)

Note that the first equation can now be solved for β̂0 to give

β̂0 = ȳ − x̄′β̂∗ , (17)

which since x̄′β̂∗ is a scalar product we can transpose it to show that x̄′β̂∗ = β̂∗′x̄ so the
above is equivalent to

β̂0 = ȳ − β̂∗′x̄ , (18)

which is an equation we desired to prove. Putting this expression for β̂0 given by Equation 17
back into the second equation in 16 gives

nx̄(ȳ − x̄′β̂∗) + V ′V β̂∗ = V ′Y ,

or remembering that all y expressions are scalars and so commute with the vector x̄ we have

(V ′V − nx̄x̄′)β̂∗ = V ′Y − nȳx̄ . (19)



Lets introduce the books notation of the mean centered matrices X and Y . Now X is defined
by and can be written as

X ≡













x11 − x̄1 x12 − x̄2 · · · x1p − x̄p
x11 − x̄1 x12 − x̄2 · · · x1p − x̄p

...
...

...
xn1 − x̄1 xn2 − x̄2 · · · xnp − x̄p













(20)

=













x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
...

x1n xn2 · · · xnp













−













x̄1 x̄2 · · · x̄p
x̄1 x̄2 · · · x̄p
...

...
...

x̄1 x̄2 · · · x̄p













= V −













1
1
...
1













[

x̄1 x̄2 · · · x̄p
]

= V − ix̄′ . (21)

In the same way Y is defined by and can be seen to be equivalent to

Y ≡













y1 − ȳ
y2 − ȳ

...
yn − ȳ













= Y − ȳi . (22)

We solve Equations 21 for V and 22 for Y in terms of X and Y respectively and put the
resulting expressions into Equation 19 to get

((X + ix̄′)′(X + ix̄′)− nx̄x̄′)β̂∗ = (X + ix̄′)′(Y + ȳi)− nȳx̄ .

On expanding the products we find

(X ′X + X ′ix̄′ + x̄i′X + x̄i′ix̄′ − nx̄x̄′)β̂∗ = X ′Y + ȳX ′i+ x̄i′Y + ȳx̄i′i− nȳx̄ . (23)

This result can be simplified greatly by observing that many products of X and Y with the
vector i are zero. For example, we have i′X = 0 similarly we have X ′i = 0 (the transpose of
the previous result) and i′Y = 0. To prove these simple observations consider the meaning
of the product i′X . We find

i′X =
[

1 1 · · · 1
]













x11 − x̄1 x12 − x̄2 · · · x1p − x̄p
x11 − x̄1 x12 − x̄2 · · · x1p − x̄p

...
...

...
xn1 − x̄1 xn2 − x̄2 · · · xnp − x̄p













=
[

∑n
i=1(xi1 − x̄1)

∑n
i=1(xi2 − x̄2) · · · ∑n

i=1(xip − x̄p)
]

= 0′ .

A final simplification we can apply to Equation 23 is to note that i′i = n. Using these we
finally arrive at

(X ′X )β̂∗ = X ′Y , (24)

which is the equation for β̂∗ we desired to prove.



It can be useful to derive (and we will use these results later) the componentwise relationships
that are implied by Equation 24. To do this we will first note that the ij-th component of
the demeaned data matrix defined in Equation 21 is given by Xij = xij − x̄j, for 1 ≤ i ≤ n
and 1 ≤ j ≤ p. We can use this representation to write the product on the left-hand-side of
Equation 24 as

(X ′X )jk =
n
∑

i=1

(X ′)jiXik =
n
∑

i=1

XijXik =
n
∑

i=1

(xij − x̄j)(xik − x̄k) . (25)

With this expression we can compute a componentwise expression for (X ′X )β̂∗. We find

((X ′X )β̂∗)i =
p
∑

k=1

(X ′X )ikβ̂
∗
k

=
p
∑

k=1

n
∑

j=1

(xji − x̄i)(xjk − x̄k)β̂
∗
k (26)

=
n
∑

j=1

(xji − x̄i)
p
∑

k=1

(xjk − x̄k)β̂
∗
k . (27)

Where we have written our desired summation expressions in two different forms. Next we
evaluate the componentwise representation for the right-hand-side of Equation 24. We have

(X ′Y)i =
n
∑

j=1

(X ′)ijYj =
n
∑

j=1

XjiYj =
n
∑

j=1

(xji − x̄i)(yj − ȳ) . (28)

These two expressions will be used in later derivations.

Properties of the Estimates

We can derive the variance of our estimated regression coefficients β̂ by considering one of
its equivalent expressions. Using Equation 11 and remembering that the data matrix X is
not random we have

Var(β̂) = (X ′X)−1X ′Var(Y )X(X ′X)−1

= σ2(X ′X)−1 .

Since know that β̂∗ has exactly the equivalent formula (given by Equation 24) or β̂∗ =
(X ′X )−1X ′Y it will have an analogous variance calculation given by

Var(β̂∗) = σ2(X ′X )−1 .

We next derive several equivalent expressions for the residual sum of squares (RSS). We begin
directly using the definition of RSS and the least squares solution for β̂ given by Equation 11.
In matrix notation the RSS in term of the vector of residuals ê is given by

RSS = ê′ê



= (Y −Xβ̂)′(Y −Xβ̂)

= (Y −X(X′X)−1X′Y)′(Y −X(X′X)−1X′Y)

= Y′Y −Y′X(X′X)−1X′Y −Y′X(X′X)−1X′Y +Y′X(X′X)−1X′X(X′X)−1X′Y

= Y′Y −Y′X(X′X)−1X′Y

= Y′Y − β̂ ′X′Y (29)

= Y′Y − β̂ ′X′Xβ̂ , (30)

which is the second equation near in the books equation 3.15 in the list of equivalent expres-
sions for RSS and we have used the fact that X ′Y = (X ′X)β̂ in the second to last equation
to derive the last equation. Now replacing X and Y in this last expression with X and Y
obtained from Equations 21 and 22 we find

Y′Y − β̂ ′X′Y = (Y + ȳi)′(Y + ȳi)−
[

β̂0 β̂∗′
] [

i X + ix̄′
]′
(Y + ȳi)

= Y ′Y + ȳY ′i+ ȳi′Y + ȳ2i′i−
[

β̂0 β̂∗′
]

[

i′

X ′ + x̄i′

]

(Y + ȳi)

= Y ′Y + nȳ2 −
[

β̂0 β̂∗′
]

[

i′Y + ȳi′i
X ′Y + ȳX ′i+ x̄i′Y + ȳx̄i′i

]

= Y ′Y + nȳ2 −
[

β̂0 β̂∗′
]

[

nȳ
X ′Y + nȳx̄

]

= Y ′Y + nȳ2 − nȳβ̂0 − β̂∗′X ′Y − nȳβ̂∗′x̄

= Y ′Y + nȳ2 − nȳ2 + nȳβ̂∗′ x̄− β̂∗′X ′Y − nȳβ̂∗′ x̄

= Y ′Y − β̂∗′X ′Y (31)

= Y ′Y − β̂∗′(X ′X )β̂∗ , (32)

which is the expression presented in equation 3.15 in the book. If we consider Y ′Y presented
above we get

Y ′Y = (Y ′ − ȳi′)(Y − ȳi)

= Y ′Y − ȳY ′i− ȳi′Y + ȳ2i′i

= Y ′Y − ȳnȳ − ȳnȳ + ȳ2n

= Y ′Y − nȳ2 .

Thus solving for Y ′Y gives
Y ′Y = Y ′Y + nȳ2 .

When we put this into Equation 30 we get

RSS = Y ′Y − β̂ ′(X ′X)β̂ + nȳ2 , (33)

which is the last equivalence for RSS we need to derive.
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Figure 11: A scatterplot of Wt as a function of Ht for Problem 2.1.

Problem Solutions

3.1 (the Berkeley Guidance Study)

3.1.1: In Figure 11 we present a scatter plot matrix of the variables WT2, HT2, WT9,
HT9, LG9, ST9, Soma. There we see very strong correlation between the WT2 and HT2
variables, between the WT9 and HT9 variables, and in fact all variables of the same age.
There is a weaker correlation but still some between the variables of one year and later years.

3.1.2: The methods from R that are needed to construct an added variable plot is described
nicely in the RSprimer that comes with this textbook. For notation lets assume that X is a
variable representing the term in the regression you are considering adding. The basic idea
in added-variable plots is to create a regression that contains all variables but the term you
are interested in adding i.e. X . From this model extract the residuals that correspond to the
resulting regression. Next fit a linear model where the dependent variable is X and all other
terms are the predictors and extract this models residual. Finally, plot these two sequence of
residuals on one graph. For this example we do this in Figure 12. The plot in the lower-right
corresponds to the added-variable plot. From the looks of this plot it appears that adding
the variable LG9 will not significantly improve predictability of the value of Soma.

3.1.3: To fit this multiple regression problem we will use the lm function provided by the R
statistical language and display the resulting output from the summary command. When we
do this we find
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Figure 12: Upper Left: A scatter plot of Soma vs. WT9. Upper Right: A scatter plot
of Soma vs. LG9. Lower Left: A scatter plot of WT9 vs. LG9. Note the very strong
correlation between these two variables, implying that knowledge of one is tantamount to
knowing the other. Lower Right: The added-variable plot which closely resembles a null-
plot.

> summary(m)

Call:

lm(formula = Soma ~ HT2 + WT2 + HT9 + WT9 + ST9)

Residuals:

Min 1Q Median 3Q Max

-2.03132 -0.34062 0.01917 0.43939 0.97266

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.8590417 2.3764431 3.728 0.000411 ***

HT2 -0.0792535 0.0354034 -2.239 0.028668 *

WT2 -0.0409358 0.0754343 -0.543 0.589244

HT9 -0.0009613 0.0260735 -0.037 0.970704

WT9 0.1280506 0.0203544 6.291 3.2e-08 ***

ST9 -0.0092629 0.0060130 -1.540 0.128373

---

Residual standard error: 0.5791 on 64 degrees of freedom

Multiple R-Squared: 0.5211, Adjusted R-squared: 0.4837

F-statistic: 13.93 on 5 and 64 DF, p-value: 3.309e-09



From the above summary command we observe that σ̂ = 0.5791 and R2 = 0.5211. The overall
F -test has a statistic given by 13.93 and a p-value of 3.3 10−9. The t-statistics for the null
hypothesis that βi = 0 given all other βj 6= 0 is also presented in this table. From the above
table we can conclude that the variable HT9 (given that all the others are in the model) can
be probably be dropped. In addition, since the variable WT9 as it has the largest t-value it
is probably one of the most important factors at predicting Soma.

We can obtain the F -statistic and obtain the overall analysis of variance table by constructing
a model with only a constant term and then calling the anova command with two arguments:
the model with only the constant term and the model with all terms. When we do this we
find

> anova(m0,m)

Analysis of Variance Table

Model 1: Soma ~ 1

Model 2: Soma ~ HT2 + WT2 + HT9 + WT9 + ST9

Res.Df RSS Df Sum of Sq F Pr(>F)

1 69 44.818

2 64 21.462 5 23.356 13.929 3.309e-09 ***

Note that this table gives the same F -statistic and p-value as we found from the summary

command as it should.

3.1.4/5: We can obtain the sequential analysis of variance table by calling the anova com-
mand on the initial model since the left to right order found in 3.25 was how this model was
constructed. We find

> anova(mLR)

Analysis of Variance Table

Response: Soma

Df Sum Sq Mean Sq F value Pr(>F)

HT2 1 0.0710 0.0710 0.2116 0.6470887

WT2 1 4.6349 4.6349 13.8212 0.0004252 ***

HT9 1 3.7792 3.7792 11.2695 0.0013299 **

WT9 1 14.0746 14.0746 41.9700 1.516e-08 ***

ST9 1 0.7958 0.7958 2.3731 0.1283728

Residuals 64 21.4623 0.3353

If we fit the terms in the opposite order (that is from right-to-left) we find the sequential
anova table given by

> anova(mRL)



Analysis of Variance Table

Response: Soma

Df Sum Sq Mean Sq F value Pr(>F)

ST9 1 0.3524 0.3524 1.0509 0.30916

WT9 1 18.8328 18.8328 56.1587 2.516e-10 ***

HT9 1 1.4375 1.4375 4.2867 0.04245 *

WT2 1 1.0523 1.0523 3.1379 0.08125 .

HT2 1 1.6805 1.6805 5.0112 0.02867 *

Residuals 64 21.4623 0.3353

Some conclusions from these two tables is that the variableWT9 (when inserted in any order)
explains a lot of the variance of Soma. It explains “less” when included in the regression
after other variables like HT2, WT2, HT9. In addition, once WT9 has been included in the
regression the additional variable contribute significantly less to the residual sum of squares.

See the R script chap 3 prob 1.R for the various parts of this problem.

3.2 (added-variable plots)

3.2.1: For this problem we will add the variable log(PPgdp) after the variable Purban,
which is backwards to the example presented in the book where Purban was added after
log(PPgdp). We begin by computing a linear model of log(Fertility) using both log(PPgdp)
and Purban as predictors and find the estimated coefficient β̂1 of log(PPgdp) given by
−0.125475.

To compute the added-variable plot for log(PPgdp) after Purban we compute the residuals

of the following two models (in R notation)

• logFertility ~ Purban

• logPPgdp ~ Purban

In an added-variable plot we are assuming that we have begun our analysis with a subset of
variables (here only one Purban) and are considering adding another one (here log(PPgdp)).
The residuals in the linear regression of log(Fertility) on Purban represents numerically
what we don’t know about log(Fertility) when we are told the value of Purban. In the same
way the residuals of log(PPgdp) on Purban represents what information is in log(PPgdp)
that is not already contained in Purban. Thus these residuals represent the addition infor-
mation we can use to predict values of log(Fertility). When we fit a linear model on the two
residuals above we find that the slope coefficient given by −0.1255 (numerically equivalent
to the above number).

See the R script chap 3 prob 2.R for the various parts of this problem.



3.3 (a specific mean function)

3.3.1: To make an added-variable plot we would compute the residuals from the two re-
gressions Y ~ X1, and X2 ~ X1. Since X2 is deterministically given by X1 this second re-
gression will have no error (or a zero residual). Thus when we plot res( Y ~ X1 ) vs.
res( X2 ~ X1 ) all of the points will have x = 0 and estimating a slope (the added-variable
value) will be difficult/impossible.

3.3.2: As in the previous problem when we make an added-variable plot we would compute
the residuals from the two regressions Y ~ X1, and X2 ~ X1. In this case since Y is deter-
ministically given by 3X1 this first regression will have no error and all residuals will be zero.
Thus when we plot res( Y ~ X1 ) vs. res( X2 ~ X1 ) all of the points will have y = 0
giving an the estimate of the regression coefficient in front of X2 of β̂2 ≈ 0.

3.3.3: If X2 is independent of X1 then the regression X2 ~ X1 will not be able to explain
any of the variation in X2 about its mean and the residuals of this regression will directly
represent the variability in X2. In addition, by the independence of X1 and X2, the residual
of the regression of Y on X1 will have all of the variation of Y itself with respect to the
variable X2. Thus in this independent case the scatter plot of Y versus X2 will have the
same shape as the added-variable plot for X2 after X1.

3.3.4: It depends. In an added-variable plot we plot the residuals of the regression of Y
onto X1, X2, . . .Xn against the residuals of the regression of Xn+1 onto these same variables.
If the first regressions on X1, X2, . . . , Xn has no variance reduction while the variable Xn+1

does, one could have the vertical variation of Y vs. Xn+1 smaller than that in the residual
of Y vs. X1, X2, . . .Xn. Thus to answer this question depends on how much the variables
X1, X2, . . .Xn reduce the variance in Y relative to how much the variable Xn+1 reduces the
variance of Y . The variables X1, X2, . . .Xn can reduce the variance of Y more, an equal
amount, or less than how much Xn+1 does.

3.4 (dependent variables with zero correlation)

3.4.1: We can evaluate the slopes we would obtain in performing each of these simple
regressions using Equation 108. In addition, the constant term is given by Equation 107.
We find that (defining some expressions as we do this)

β̂1(Y ∼ X1) ≡ β̂Y X1 =

∑

(xi1 − x̄1)(yi − ȳ)
∑

(xi1 − x̄1)2

β̂1(Y ∼ X2) ≡ β̂Y X2 =

∑

(xi2 − x̄2)(yi − ȳ)
∑

(xi2 − x̄2)2

β̂1(X2 ∼ X1) ≡ β̂X2X1 =

∑

(xi1 − x̄1)(xi2 − x̄2)
∑

(xi1 − x̄1)2
= 0 .

Where the last expression follows because X1 and X2 are uncorrelated.



3.4.2: The residuals for the regressions of Y on X1 and for X2 on X1 are given by

resi(Y ∼ X1) = yi − (ȳ − β̂Y X1x̄1 + β̂Y X1xi1)

= yi − ȳ − β̂Y X1(xi1 − x̄1)

resi(X2 ∼ X1) = xi2 − (x̄2 − β̂X2X1x̄1 + β̂X2X1xi1)

= xi2 − x̄2 − β̂X2X1(xi1 − x̄1)

= xi2 − x̄2 .

3.4.3: Note that since we included a constant term in these regressions the mean of both
the residuals above is zero. So the coefficient we want to evaluate is given by

β̂1 (res(Y ∼ X1) ∼ res(X2 ∼ X1)) =

∑

i resi(X2 ∼ X1)resi(Y ∼ X1)
∑

i resi(X2 ∼ X1)2
. (34)

The denominator is easy to evaluate and equals SX2X2. Next the numerator becomes (again
using the fact that X1 and X2 are uncorrelated)

∑

i

resi(X2 ∼ X1)resi(Y ∼ X1) =
∑

i

(xi2 − x̄2)(yi − ȳ − β̂Y X1(xi1 − x̄1))

=
∑

i

(xi2 − x̄2)(yi − ȳ)− β̂Y X1

∑

i

(xi2 − x̄2)(xi1 − x̄1)

= SX2Y .

Thus the ratio required by Equation 34 is given by

SX2Y

SX2X2
,

which exactly equals β̂1(Y ∼ X2) as we were to show. The intercept of the added variable
plot is given by an expression like Equation 107 but where the variables X and Y are
redefined to represent the residuals of interest. Since both of the residuals res(Y ∼ X1) and
res(X2 ∼ X1) have zero mean this coefficient as a combination of these two values must also
be zero.

3.5 (predicting BSAAM from OPBPC, OPRC, and OPSLAKE)

3.5.1: See Figure 13 for the requested scatterplot matrix. From that plot we see that the
response BSAAM seems to be positively correlated with every variable. In addition, each of
the predictors OPBPC, OPRC, and OPSLAKE seems to be positively correlated with each
other. Thus we anticipate the added-variable plots for these variables will show that the addi-
tion of alternative variables (after the first one) will not provide much predictability. In sum-
mary, it looks like the correlations among all variables will be large (near one) and positive.
Computing a correlation matrix with the R command round(cor(water[,c(8,5,6,7)]),4)

we obtain

BSAAM OPBPC OPRC OPSLAKE
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Figure 13: A scatter plot matrix that displays the scatter dependence of the variables
BSAAM , OPBPC, OPRC, and OPSLAKE. See the corresponding text for discussion.

BSAAM 1.0000 0.8857 0.9196 0.9384

OPBPC 0.8857 1.0000 0.8647 0.9433

OPRC 0.9196 0.8647 1.0000 0.9191

OPSLAKE 0.9384 0.9433 0.9191 1.0000

which verifies the statements make above. Computing a “summary” of a linear regression of
BSAAM on OPBPC, OPRC, and OPSLAKE we find

Call:

lm(formula = BSAAM ~ OPBPC + OPRC + OPSLAKE)

Residuals:

Min 1Q Median 3Q Max

-15964.1 -6491.8 -404.4 4741.9 19921.2

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 22991.85 3545.32 6.485 1.1e-07 ***

OPBPC 40.61 502.40 0.081 0.93599

OPRC 1867.46 647.04 2.886 0.00633 **

OPSLAKE 2353.96 771.71 3.050 0.00410 **

---

Residual standard error: 8304 on 39 degrees of freedom

Multiple R-Squared: 0.9017, Adjusted R-squared: 0.8941

F-statistic: 119.2 on 3 and 39 DF, p-value: < 2.2e-16



The t-values shown in this output indicate that the intercept is very significant and thus
we can conclude that the mean of BSAAM is very likely (almost certainly) non-zero. The
t-values for the two terms OPSLAKE and OPRC are also relatively large and probably
provide some explanatory power. Notice that these are also the two variable with the highest
correlation with the response BSAAM and the magnitude of their t-values is in the same
order relationship as their correlations.

3.5.2: The F -statistic above represents the result of an overall test that BSAAM is inde-
pendent of the three other terms. The p-value for this statistic is very small, indicating that
there is very little chance that this observed variance reduction is due to chance alone. We
can conclude that BSAAM is not independent of the other three variables.

3.5.3: For this part of the problem we want to compute three different analysis of variance
tables for three different orders possible of the variables OPBPC, OPRC, and OPSLAKE.
The language R performs sequential analysis of variance with the anova command where the
order of the terms removed is determined by the order in which they are specified in the lm
command. See the R script chap 3 prob 5.R for more details. Running this we find (printed
all on one page for clarity)



> m1 <- lm( BSAAM ~ OPBPC + OPRC + OPSLAKE )

> anova(m1)

Analysis of Variance Table

Response: BSAAM

Df Sum Sq Mean Sq F value Pr(>F)

OPBPC 1 2.1458e+10 2.1458e+10 311.1610 < 2.2e-16 ***

OPRC 1 2.5616e+09 2.5616e+09 37.1458 3.825e-07 ***

OPSLAKE 1 6.4165e+08 6.4165e+08 9.3045 0.004097 **

Residuals 39 2.6895e+09 6.8962e+07

---

> m2 <- lm( BSAAM ~ OPBPC + OPSLAKE + OPRC )

> anova(m2)

Analysis of Variance Table

Response: BSAAM

Df Sum Sq Mean Sq F value Pr(>F)

OPBPC 1 2.1458e+10 2.1458e+10 311.1610 < 2.2e-16 ***

OPSLAKE 1 2.6288e+09 2.6288e+09 38.1203 2.967e-07 ***

OPRC 1 5.7444e+08 5.7444e+08 8.3299 0.006326 **

Residuals 39 2.6895e+09 6.8962e+07

---

> m3 <- lm( BSAAM ~ OPSLAKE + OPRC + OPBPC )

> anova(m3)

Analysis of Variance Table

Response: BSAAM

Df Sum Sq Mean Sq F value Pr(>F)

OPSLAKE 1 2.4087e+10 2.4087e+10 349.2806 < 2.2e-16 ***

OPRC 1 5.7405e+08 5.7405e+08 8.3242 0.006342 **

OPBPC 1 4.5057e+05 4.5057e+05 0.0065 0.935990

Residuals 39 2.6895e+09 6.8962e+07

---

Note that the t-statistic squared for each coefficient taken individually will equal the F -
statistics shown in the sequential ANOVA table above which has that same variable added
last. To show this, we can compute the t-statistic squared. We find for each of the three
terms this is given by

(Intercept) OPBPC OPRC OPSLAKE

42.05700100 0.00653367 8.32990239 9.30448873

When we compare this to the corresponding row in the sequential anova tables above we see
that they are equal.



3.5.4: We can test for the significance of the two terms OPRC and OPBPC taken together
against the model where the are absent using the R command anova. The call and results
for this are given by

> mLarger = lm( BSAAM ~ OPSLAKE + OPRC + OPBPC ) # all three inputs

> mSmaller = lm( BSAAM ~ OPSLAKE )

> anova(mSmaller,mLarger)

Analysis of Variance Table

Model 1: BSAAM ~ OPSLAKE

Model 2: BSAAM ~ OPSLAKE + OPRC + OPBPC

Res.Df RSS Df Sum of Sq F Pr(>F)

1 41 3264010454

2 39 2689509185 2 574501270 4.1654 0.02293 *

From the output presented here we see that the F -value for the model with the two additional
terms is 4.165 compared to the model with just the term OPSLAKE has a 0.02 probability
of occurring by chance when in fact these two terms should not be included. Since this
probability is relatively small we can reasonable conclude that these two terms are in fact
significant and do indeed reduce the variance of the residuals over what might be observed
by chance.

See the R script chap 3 prob 5.R for the various parts of this problem.



Chapter 4 (Drawing Conclusions)

Notes On The Text

sampling from a multivariate normal population

Here we will derive the distribution of yi given xi where the vector (xi, yi)
T is distributed as

a joint two-dimensional normal. This result that we derive is simply stated in the book and
is verified in these notes below. We begin with the fact that the distribution of (xi, yi)

T is
jointly Gaussian. This means that the density of this pair of variables is given by

p(xi, yi) =
1

(2π)2/2|Σ|1/2 exp
{

−1

2

([

xi
yi

]

− µ

)′
Σ−1

([

xi
yi

]

− µ

)}

, (35)

where µ is the mean vector which in components is given by µ =

[

µx

µy

]

and Σ is the

covariance matrix given by Σ =

[

σ2
x ρxyσxσy

ρxyσxσy σ2
y

]

. With these expressions we begin

with the definition of conditional probability. Dropping the i subscripts, recall that the
density we would like to evaluate p(y|x) can be expressed as

p(y|x) = p(x, y)

p(x)
. (36)

Lets begin to evaluate this by simplifying the expression above for p(x, y). To simplify the
notation above lets define the exponent of the above expression to be E . Thus E is given by

E = −1

2

([

x
y

]

− µ

)′
Σ−1

([

x
y

]

− µ

)

.

Since this expression requires the inverse of Σ we compute it and find

Σ−1 =
1

σ2
xσ

2
y(1− ρ2xy)

[

σ2
y −ρxyσxσy

−ρxyσxσy σ2
x

]

. (37)

So E becomes (in terms of a new variable we introduce Ê)

E = −1

2

(

1

σ2
xσ

2
y(1− ρ2xy)

)

Ê .

Finally, we compute the value of Ê as

Ê ≡
[

x− µx , y − µy

]

[

σ2
y −ρxyσxσy

−ρxyσxσy σ2
x

] [

x− µx

y − µy

]

=
[

x− µx , y − µy

]

[

σ2
y(x− µx)− ρxyσxσy(y − µy)

−ρxyσxσy(x− µx) + σ2
x(y − µy)

]

= σ2
y(x− µx)

2 − ρxyσxσy(x− µx)(y − µy)− ρxyσxσy(x− µx)(y − µy) + σ2
x(y − µy)

2

= σ2
y(x− µx)

2 − 2ρxyσxσy(x− µx)(y − µy) + σ2
x(y − µy)

2 .



In Equation 36 since x is given and y is variable this observation will motivate the grouping
of the terms and we will write this expression in a special way. We have E given by

E = −1

2

(

1

σ2
y(1− ρ2xy)

)

(

(y − µy)
2 − 2ρxy

σy
σx

(y − µy)(x− µx)
)

− 1

2

(

1

σ2
x(1− ρ2xy)

)

(x− µx)
2 .

We next complete the square of the y expression to obtain

E = −1

2

(

1

σ2
y(1− ρ2xy)

)(

(y − µy)
2 − 2ρxy

σy
σx

(y − µy)(x− µx) + ρxy
2σ

2
y

σ2
x

(x− µx)
2

)

+
1

2

(

1

σ2
y(1− ρ2xy)

)(

ρxy
2σ

2
y

σ2
x

(x− µx)
2

)

− 1

2

(

1

σ2
x(1− ρ2xy)

)

(x− µx)
2

= −1

2

(

1

σ2
y(1− ρ2xy)

)

(

y − µy − ρxy
σy
σx

(x− µx)
)2

+
1

2

(

1

σ2
x(1− ρ2xy)

)

(ρxy
2 − 1)(x− µx)

2

= −1

2

(

1

σ2
y(1− ρ2xy)

)

(

y − µy − ρxy
σy
σx

(x− µx)
)2

− 1

2

(

1

σ2
x

)

(x− µx)
2 . (38)

Now that we have evaluated p(x, y) lets compute p(x) the marginal density of x. Recalling
its definition we have

p(x) =
∫

p(x, y)dy =
1

2π|Σ|1/2 e
− 1

2

(

1

σ2
x

)

(x−µx)2
∫ ∞

−∞
e
− 1

2

(

1

σ2
y(1−ρ2xy)

)

(y−µy−ρxy
σy

σx
(x−µx))

2

dy

=
1

2π|Σ|1/2 e
− 1

2

(
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x

)
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−∞
e
− 1
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(

1

σ2
y(1−ρ2xy)

)

y2

dy .

To evaluate this last integral let v = y

σy

√
1−ρ2xy

, then dy = σy
√

1− ρxy2dv and the above

becomes

p(x) =
σy
√

1− ρxy2

2π|Σ|1/2 e
− 1

2

(

1

σ2
x

)

(x−µx)2
∫ ∞

−∞
e−

1
2
v2dv .

This last integral is
√
2π and from the definition Σ we have that |Σ| = σ2

xσ
2
y(1 − ρ2xy) and

the above simplifies to

p(x) =
1√
2πσx

e
− 1

2

(

1

σ2
x

)

(x−µx)2

,

or another one-dimensional Gaussian. Combining this expression with the previously derived
expression for p(x, y) we find

p(y|x) =
p(x, y)

p(x)

=

(

1
2π

)

(

1

σxσy

√
1−ρ2xy

)

e
− 1

2

(

1

σ2
y(1−ρ2xy)

)

(y−µy−ρxy
σy

σx
(x−µx))

2

e
− 1

2
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x

)

(x−µx)2 .

(

1√
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) (

1
σx

)

e
− 1

2

(

1

σ2
x

)

(x−µx)2 .

=
1√
2π





1

σy
√

1− ρ2xy



 e
− 1

2

(

1

σ2
y(1−ρ2xy)

)

(y−µy−ρxy
σy

σx
(x−µx))

2

.



This later expression is a normal with a mean of

µy + ρxy
σy
σx

(x− µx) , (39)

and a variance given by
σ2
y(1− ρ2xy) , (40)

which is the result we desired to show.

The above result, expresses the density for y given x when x and y are jointly normal. In
the case where the value y (again a scalar) and x (now a vector) are jointly normal the
distribution of y given x can be derived in a similar way. The result of this derivation is
stated in the book but without proof. In this section of the notes we will verify the given
expressions. We begin with the quoted expression for p(x, y) and integrate with respect to y
to obtain the conditional distribution p(x). Then using this in Equation 36 we will produce
an explicit expression for p(y|x) the density of interest.

Since we are to assume that the covariance matrix, Σ, for the vector

[

x
y

]

is given in block

form as

Σ ≡
[

Σxx Σxy

Σ′
xy σ2

y

]

.

Where Σxx is a p × p matrix and Σxy is a p × 1 column vector. Using this we can express
the joint density p(x, y) in block form as

p(x, y) =
1

(2π)
p+1
2 |Σ| 12

exp







−1

2
(x′ − µx

′, y − µy)

[

Σxx Σxy

Σ′
xy σ2

y

]−1 [

x− µx

y − µy

]







. (41)

Thus to further simplify this we need to derive an expression for Σ−1. To compute this
inverse we will multiply Σ on the left by a block matrix with some variable entries which we
hope we can find suitable values for and thus derive the block inverse. As an example of this

lets multiply Σ on the left by the block matrix

[

Σ−1
xx 0
b′ d

]

, where b is a p × 1 dimensional

vector and d is a scalar. Currently, the values of these two variables are unknown. When we
multiply by this matrix we desire to find b and d such that

[

Σ−1
xx 0
b′ d

] [

Σxx Σxy

Σ′
xy σ2

y

]

=

[

I 0
0 1

]

. (42)

Equating the block multiplication result on the left to the components of the block matrix
on the right gives

b′Σxx + dΣ′
xy = 0 .

for the (2, 1) component. This later equation can be solved for b by taking transposes and
inverting Σxx as

b = −Σ−1
xxΣxyd .

If we take d = 1 and b given by the solution above, the product on the left-hand-side given
by Equation 42 does not becomes the identity but is given by

[

Σ−1
xx 0

−Σ′
xyΣ

−1
xx 1

] [

Σxx Σxy

Σ′
xy σ2

y

]

=

[

I Σ−1
xxΣxy

0 σ2
y − Σ′

xyΣ
−1
xxΣxy

]

. (43)



Note what we have just done is the “forward solve” step in Gaussian elimination. Taking
the inverse of both sides of this later equation we find

[

Σxx Σxy

Σ′
xy σ2

y

]−1 [

Σ−1
xx 0

−Σ′
xyΣ

−1
xx 1

]−1

=

[

I Σ−1
xxΣxy

0 σ2
y − Σ′

xyΣ
−1
xxΣxy

]−1

.

or
[

Σxx Σxy

Σ′
xy σ2

y

]−1

=

[

I Σ−1
xxΣxy

0 σ2
y − Σ′

xyΣ
−1
xxΣxy

]−1 [

Σ−1
xx 0

−Σ′
xyΣ

−1
xx 1

]

.

Thus it remains to find the inverse of the block matrix

[

I Σ−1
xxΣxy

0 σ2
y − Σ′

xyΣ
−1
xxΣxy

]

. This inverse

is the well known “backwards solve” in Gaussian elimination. Note that this inverse is given
by

[

I Σ−1
xxΣxy

0 1
α

]−1

=

[

I −αΣ−1
xxΣxy

0 α

]

,

where we have made the definition of the scalar α such that 1
α
≡ σ2

y − Σ′
xyΣ

−1
xxΣxy. Using

this result we have that
[

Σxx Σxy

Σ′
xy σ2

y

]−1

=

[

I −αΣ−1
xxΣxy

0 α

] [

Σ−1
xx 0

−Σ′
xyΣ

−1
xx 1

]

=

[

Σ−1
xx + αΣ−1

xxΣxyΣ
′
xyΣ

−1
xx −αΣ−1

xxΣxy

−αΣ′
xyΣ

−1
xx α

]

. (44)

Using this expression one of the required product in the exponential of p(x, y) is given by

[

Σxx Σxy

Σ′
xy σ2

y

]−1 [

x− µx

y − µy

]

=

[

Σ−1
xx + αΣ−1

xxΣxyΣ
′
xyΣ

−1
xx −αΣ−1

xxΣxy

−αΣ′
xyΣ

−1
xx α

] [

x− µx

y − µy

]

=

[

(Σ−1
xx + αΣ−1

xxΣxyΣ
′
xyΣ

−1
xx )(x− µx)− αΣ−1

xxΣxy(y − µy)
−αΣ′

xyΣ
−1
xx (x− µx) + α(y − µy)

]

=

[

d+ αΣ−1
xxΣxyΣ

′
xyd− αΣ−1

xxΣxy(y − µy)
−αΣ′

xyd+ α(y − µy)

]

.

Where since the product Σ−1
xx (x − µx) appears a great number of times we defined it to be

d, so d ≡ Σ−1
xx (x − µx). The computing the product needed to produce the quadratic term

in the exponential of p(x, y) we get

(x′ − µx
′, y − µy)

[

d+ αΣ−1
xxΣxyΣ

′
xyd− αΣ−1

xxΣxy(y − µy)
−αΣ′

xyd+ α(y − µy)

]

= (x− µx)
′d

+ α(x− µx)
′Σ−1

xxΣxyΣ
′
xyd

− α(x− µx)
′Σ−1

xxΣxy(y − µy)

− α(y − µy)Σ
′
xyd

+ α(y − µy)
2 .

Taking the transpose of either term we see that the third and fourth scalar products in the
above expressions are equal. Combining these we get

(x− µx)
′d+ αd′ΣxyΣ

′
xyd+ α(y − µy)

2 − 2αd′Σxy(y − µy) .



Completing the square of the expression with respect to y−µy we have this expression given
by

α [(y − µy)− d′Σxy]
2−α(d′Σxy)

2+αd′ΣxyΣ
′
xyd+(x−µx)

′d = α [(y − µy)− d′Σxy]
2
+(x−µx)

′d .

Thus using this and the definition of d we see that p(x, y) is given by

p(x, y) =
1

(2π)
p+1
2 |Σ| 12

exp
{

−1

2
(x− µ

x
)′Σ−1

xx (x− µ
x
)
}

exp
{

−α
2
[y − µy − d′Σxy]

2
}

(45)

From this expression we can derive p(x) by integrating out y. This requires evaluating the
following integral

∫

exp
{

−α
2
[y − µy − d′Σxy]

2
}

dy =
∫

exp
{

−α
2
y2
}

dy

=
1√
α

∫

exp
{

−1

2
y2
}

dy =

√
2π√
α
.

Thus p(x) is given by

p(x) =

√
α

(2π)
p

2 |Σ| 12
exp

{

−1

2
(x− µ

x
)′Σ−1

xx (x− µ
x
)
}

.

To simplify this further consider the expression
√
α

|Σ|
1
2
=
√

α
|Σ| . We will use Equation 43 to

simplify this. Taking the determinant of both sides of that equation we find

|Σ−1
xx |

∣

∣

∣

∣

∣

Σxx Σxy

Σ′
xy σ2

y

∣

∣

∣

∣

∣

= σ2
y − Σ′

xyΣ
−1
xxΣxy =

1

α
,

or solving for α
|Σ| we find α

|Σ| =
1

|Σxx| . Thus we finally obtain

p(x) =
1

(2π)
p

2 |Σxx|
1
2

exp
{

−1

2
(x− µ

x
)′Σ−1

xx (x− µ
x
)
}

.

So we see that p(x) is another multidimensional Gaussian this one with a mean of µx and
a covariance matrix Σxx as the density for x. Now that we have an explicit expression for
p(x) and using Equation 45 we can derive an explicit representation for p(y|x). We find

p(y|x) =
p(x, y)

p(x)

=
(2π)

p

2 |Σxx|1/2

(2π)
p+1
2 |Σ|1/2

exp
{

−α
2
[y − µy − d′Σxy]

2
}

=
α

(2π)
1
2

exp
{

−α
2
[y − µy − d′Σxy]

2
}

=
1

(2π)
1
2 (σ2

y − Σ′
xyΣ

−1
xxΣxy)

exp

{

−1

2

[y − µy − (x− µ
x
)′Σ−1

xxΣxy]
2

σ2
y − Σ′

xyΣ
−1
xxΣxy

}

. (46)

The point of Equation 46 is that the distribution of p(y|x) is a multivariate Gaussian with
a mean given by

µy + Σ′
xyΣ

−1
xx (x− µ

x
) = µy − Σ′

xyΣ
−1
xxµx

+ Σ′
xyΣ

−1
xxx ,



which is equivalent to what is given in the book, and a variance given by

σ2
y − Σ′

xyΣ
−1
xxΣxy ,

this later result is somewhat different than what the book has and I believe there is typo in
the book.

Problem Solutions

4.1 (the regression of Soma on AV E, LIN , and QUAD)

Considering the three models given in the text plus the linear model of Soma with predictors
AV E, LIN , and QUAD, we can compare the various methods by computing some summary
statistics such as the coefficient of determinism R2 and the estimated variance of the residuals
σ̂2. In the R script chap 4 prob 1.R we compute these statistics for each of these models.
As expected, all models have identical summary statistics.

4.2 (the regression of y on x)

4.2.1: When we solve for xi we find

xi = µx +
1

ρxy

(

σx
σy

)

(yi − µy) .

4.2.2: The conditional distribution of xi given yi is given by

xi|yi ∼ N

(

µx +
ρxyσx
σy

(yi − µy), σ
2
x(1− ρ2xy)

)

.

Thus equation in 4.2.1 (given by inverting the regression of y on x) will be equivalent to the
mean of the conditional distribution x|y if and only if

ρxy =
1

ρxy
or ρ2xy = 1 or ρxy = ±1 .

This means that for this equivalence to hold x and y must be perfectly correlated, equivalently
they are multiples of each other xi = cyi for all i.

4.3 (linear regression on the transaction data)

4.3.1: The model M4 includes terms that are linearly dependent. The code that performs
linear regression determines this and cannot determine coefficients for A and D. This is



because T1 and T2 are listed first, if they had been listed last the R code would have given
NA values for the coefficients of these variables.

4.3.2/3: Since the coefficient βi in a linear regression represent the amount of increase the
dependent variable experiences when the variableXi increases by one unit (all other variables
held constant) we expect that the coefficients satisfy some relationships. Some simple ones
are given below

β11 =
1

2
β32 + β42

β21 =
1

2
β32 − β42

β32 = β23

β11 = β43 .

From this we see that the values of some coefficients are the same while others are different
between models. The coefficient of T2 is different in M1 and M3 because in M1 it represents
the change in Y holding T1 constant, while in M3 it represents this change holdingD constant.
Since holding D constant actually places a restriction on how T2 can change we don’t expect
the change in Y to be the same in both cases and hence the coefficients must be different.

4.5 (bootstrap confidence intervals of the fuel data)

We can use the provide R function boot.case to compute bootstrap samples from our data
set and their corresponding regression coefficients. This function by default, computes a
“linear model” on each bootstrapped sample determining the coefficients of the linear model.
These coefficients make up the elements of the matrix that corresponds to the output of the
boot.case function call. We can then compute an estimate of the 95% confidence interval of
the coefficients by using the R function quantile. When we run the R script chap 4 prob 5.R

we compute

(Intercept) Tax Dlic Income logMiles

2.5% -160.3563 -10.1112307 0.1031144 -0.009551768 -4.608278

97.5% 770.7148 0.5430165 0.7963736 -0.002627101 32.236726

From this we see that we can be relatively confident about the signs of only two variables:
Dlic and Income.

4.6 (bootstrap confidence intervals of the windmill data)

For this problem we want to use the bootstrap to estimate the long-term average wind
speed at the candidate site. Procedurally to do this we will draw B bootstrap samples from
the provided wm1 dataset, compute the linear regression coefficients corresponding to this



bootstrap sample and then predict the value of the variable CSpd when RSpd = 7.4285
using the standard expression

β̂0 + β̂1RSpd .

The discussion at the end of Problem 2.13.4 shows that the prediction of the average of m
predictors is equal to the average the m predictions and the standard error of this estimate
gets closer and closer to the standard error of the mean of them predictors (a single predictor)
as m → ∞. Since the R function boot.case does not calculate the desired predictions at a
fixed point we implement this prediction as a function. The R code for this function is given
by

wwx_prediction_function <- function(m) {

predict( m,

newdata=data.frame(RSpd=7.4285),

interval="prediction", level=0.95 )[1]

}

With this function defined we can now call the boot.case as

pred.boot <- boot.case( m, B=999, f=wwx_prediction_function ),

to get 999 bootstrapped predicted mean values in the vector pred.boot. The bootstrapped
estimate of the long-term average wind speed is then given by taking the mean of this vector
while the 95% confidence interval can be obtained by a call to the quantiles function. We
find

> mean( pred.boot )

[1] 8.754117

> quantile( pred.boot, c(0.025,0.975) )

2.5% 97.5%

8.613919 8.894611

See the R script chap 4 prob 6.R for the various parts of this problem.

4.7 (the effect of dropping terms in a linear regression)

If the true mean function is given by

E(Y |X1 = x1, X2 = x2) = 3 + 4x1 + 2x2 . (47)

Then the mean function observed just over the variable X1 can be computed from the
conditional expectation theorem

E(Y |X1 = x1) = E (E(Y |X1 = x1, X2 = x2)|X1 = x1) .



This may seem notationally confusing but it basically means that to derive the reduced
expectation function we take the expectation of Equation 47 with respect to X2. For general
coefficients βi this expectation is given by

E(β0 + β1x1 + β2X2|X1 = x1) = β0 + β1x1 + β2E(X2|X1 = x1) .

In this expression we see that the correlation between X1 and X2 expressed by the term
E(X2|X1 = x1) is how the missing X2 term affects our regression. Thus excluding variables
cause more difficulties when they are highly correlated with the ones included in the regres-
sion. For the specific mean function given here, the explicit expression for E(Y |X1 = x1)
is

E(Y |X1 = x1) = 3 + 4x1 + 3E(X2|X1 = x1) .

If we have E(X2|X1 = x1) = γ0 + γ1x1, so the value of X2 depends linearly on the value of
X1 then this becomes

E(Y |X1 = x1) = (3 + γ0) + (4 + γ1)x1 .

The coefficient of x1 will be negative if γ1 < −4.

4.8 (the meaning of the sign of the regression coefficients)

If the true mean function is the one with predictors Sex and Y ears then when we fit to
the reduced mean function we will have a biased estimate. Namely the Sex only predictor
should look like

E(Salary|Sex) = β0 + β1Sex+ β2E(Age|Sex) .
If the predictors Age and Sex are related such that E(Age|Sex) = γ0+ γ1Sex, which would
state that on average the age of a worker is γ0, and the value of γ1 represents is the correction
to this average age experience by women since the average age of women is γ0 + γ1. Thus if
γ1 < 0 women are on average younger than men, while if γ1 > 0 then they are on average
older than men. In this case the estimated mean function would become

E(Salary|Sex) = β0 + β1Sex+ β2(γ0 + γ1Sex)

= β0 + γ0β2 + (β1 + γ1β2)Sex .

So if β1 + γ1β2 < 0, then the reduced model (with only Sex as the predictor) would show a
negative coefficient for the variable Sex. This could happen if we expect β2 to be very large
(relative to β1) due to a strong dependence of Age on salary (older worker earning more)
and γ1 were negative stating that on average women are younger than men. In that case one
might have

β1 + γ1β2 < 0 ,

and the reduced mean function might have a negative coefficient. If this were true it would
mean that women appear to earn a lesser salary than men not because they are women
but because on average they are younger than their male counterparts. A very different
conclusion.
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Figure 14: A scatterplot of the variables in the longley dataset of Problem 4.1. Note that
several of the variables are very highly correlated.

4.9 (missing at random for the sleep data)

4.9.1: Missing at random would be reasonable if there was not a systematic reason why
certain species did not have data.

4.9.2: Missing at random would not be reasonable if there was a systematics reason why
certain species were not represented. For example, often very small or very large species
have not be studied due to the difficult in doing so. If in fact it is these “extreme” species
that are excluded the assumption of missing at random may not hold.

4.9.3: If these 62 species were a sampled in some specific way, this sampling would probably
bias the sample of species away from the population mean and in this case the “missing”
samples would be from the species not sampled in the original set of 62.

4.10 (the longley data)

4.10.1: See Figure 14 for a plot of the requested scatterplot.

4.10.2/3: Fitting a linear model using the default variables provided without modification
in the long dataset we can extract the standard errors from the summary command. In
addition, we implement the suggested simulation and compute the standard deviations of



the estimated coefficients. Displaying the standard errors first and the standard deviations
of the bootstrap samples second we find

> print( s$coefficients[,2], digits=4 )

(Intercept) GNP Unemp Mil Pop Emp

8.187e+01 6.090e-05 8.190e-04 7.800e-04 6.447e-04 7.461e-04

> print( apply(b0,2,std), digits=4 )

(Intercept) GNP Unemp Mil Pop Emp

4.059e+01 2.989e-05 3.261e-04 3.077e-04 3.372e-04 2.919e-04

One would expect that if the regression is a robust one and not sensitive to rounding errors
the standard deviations of the bootstrap samples would be smaller than the standard errors
in the coefficients estimates. When we compare the two tables we see that the bootstrap
samples are on the same order of magnitude as the standard error. This leads one to question
the stability of the initial results.

See the R script chap 4 prob 10.R for implementations of various parts of this problem.



Chapter 5 (Weights, Lack of Fit, and More)

Notes On The Text

Testing for Lack of Fit, Variance Unknown

From the numbers given in the text we can calculate the lack-of-fit (LOF) sum-of-squares
SSlof , and degrees of freedom df lof from the sum-of-squares pure error (PE) as

SSlof = RSS− SSpe = 4.21266− 2.3585 = 1.8581

dof lof = n− p′ − dfpe = 10− 2− 6 = 2 ,

The F -test takes the ratio of the mean-square-error for the lack-of-fit or

SSlof

dof lof
=

1.8581

2
= 0.92905 ,

to the mean-square-error of pure error or

SSpe

dofpe
=

2.3585

6
= 0.3930 .

This ratio is distributed as an F -distribution

SSlof/dof lof
SSpe/dofpe

∼ F (dof lof , dofpe) .

This ratio using the above numbers is given by 2.363, to be compared with the value of the
F -distribution with 2 and 6 degrees of freedom that contains 1− 0.05 = 0.95 percent of the
density. Using the R command qf( 1-0.05, 2, 6 ) we find that the 5% threshold value is
5.143253, which heuristically means that the lack of fit sum-of-squares is small enought and
that the given model should not be rejected because it “does not fit the data”.

Problem Solutions

5.1 (Galton’s sweet peas)

5.1.1: We plot a scatterplot of Progeny vs. Parent in Figure 15.

5.1.2: Often the motivation for using weighted-least-squares (WLS) is based on experimental
setups where we are given mi repeated measurements at a particular value of xi. Then under
the assumption that each measurement is an independent draw from the error distribution
associated with our model we would expect the variance of an average response Y at xi to
be given by

Var(Y |X = xi) =
σ2

mi
. (48)
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Figure 15: A scatterplot of the Progeny and Parent variables in the galtonpeas dataset of
Problem 5.1 with a weighted least square fit line.

Dropping the bar notation and setting this equal to our definition of the regression weights
wi presented in this chapter during the introduction to weighted-least-squares of

Var(Y |X = xi) =
σ2

wi
, (49)

we would have that wi = mi. For this problem we don’t explicitly have values for the number
of measurements mi, but since we know the values for Var(Y |X = xi) for each xi value (we
are given the standard deviation SDi which we can square to get the variance) we can assign
these to σ2

wi
as

Var(Y |X = xi) = SD2
i =

σ2

wi
.

If we assume σ2 = 1 as in the books example on the strong interaction force we see that wi

is given by

wi =
1

SDi
2 . (50)

We use the weights option to the R command lm to derive a least squares line.

5.1.3: To test the hypothesis that β1 = 1 vs. the alternative that β1 < 1 we can compute
the t-statistic for the hypothesis that β1 = 1. For the linear regression computed in this
problem we find

t =
β̂1 − 1

se(β̂1)
= −20.84137 .
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Figure 16: A scatterplot of the ybar and Day variables in the shortshoots dataset of
Problem 5.2 with a weighted least square fit line.

This needs to be compared to the appropriate quantile of the t distribution with n− p′ = 5
degrees of freedom. The p-value is the probability that we observe a t-statistics this negative
or more negative by chance, when the null hypothesis is true and is given by the R call
pt( -20.84, 5 ) = 2.354991e-06. Thus there is only a very small chance that this t-
statistic happens “by chance” when β1 = 1 and is therefore evidence against the hypothesis
that this is the correct value. In fact, the estimated value from this data give β̂1 = 0.20480
with a standard-error of se(β̂1) = 0.0381 indicating heuristically that the value β1 = 1 is not
very likely.

5.2 (apple shoots)

5.2.1: See Figure 16 for a scatter plot of ybar vs. Day and the weighted (using the weights
specified as in Equation 50) least-squares fit line. With or without weights a linear fit would
appear to be a reasonable model for this data.

5.2.2: We fit both a weighted wm and an unweighted ⁀uwm least squares models to this data.
Edited results from the summary command are presented below.



> summary(wm)

Call:

lm(formula = ybar ~ Day, weights = 1/(SD^2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.000e+01 3.805e-04 26283.8 <2e-16 ***

Day 1.803e-01 1.672e-03 107.8 <2e-16 ***

---

Residual standard error: 0.79 on 28 degrees of freedom

Multiple R-Squared: 0.9976, Adjusted R-squared: 0.9975

F-statistic: 1.163e+04 on 1 and 28 DF, p-value: < 2.2e-16

> summary(uwm)

Call:

lm(formula = ybar ~ Day)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.475879 0.200067 47.36 <2e-16 ***

Day 0.187238 0.003202 58.48 <2e-16 ***

---

Residual standard error: 0.5125 on 28 degrees of freedom

Multiple R-Squared: 0.9919, Adjusted R-squared: 0.9916

F-statistic: 3420 on 1 and 28 DF, p-value: < 2.2e-16

Some important points about these results. First the coefficient estimates for β̂ are very
similar between the two models as are the standard errors. There is a significant difference
in the F -statistic however and the weighted least square model seems to be more certain
than the unweighted model.

5.3 (nonparametric lack of fit)

5.3.1: This parametric bootstrap procedure is coded in the R file param bootstrap.R.

5.3.2: The value of G obtained initially from the parametric and loess fit (using the data
provided) has a value given by 15.32286. Whether this value is large or not can be determined
using the parametric bootstrap samples. In the R script chap 5 prob 3.R we call the R

function param bootstrap.R with 10000 bootstrap samples and display the p-value that is
generated. When we do this we find a p-value of 3 × 10−4. This means that if the null
hypothesis was true (that the linear parametric model is appropriate for this data) a value
of G this large or larger would happen by chance only 0.03% of the time. The fact that this
p-value is so small is an indication that the null-hypothesis should be rejected and maybe a
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Figure 17: A scatterplot matrix of the variables photo, obs1, and obs2 in the snowgeese

dataset of Problem 5.5.

regression more general than linear should be applied on this data.

5.5 (snow geese)

5.5.1: See the Figure 17 for an plot of the scatterplot matrix of the requested variables. This
data looks like it could be nicely fit with a linear model but it appears that the variance in
the response Y should increase with the value of the predictor (either obs1 or obs2). This
would indicate the use that the appropriate technique to use is weighted least squares.

5.5.2: If we run the function from Problem 5.4 we obtain a p-value of 1.0, which means that
we cannot reject the null hypothesis that the linear fit is appropriate for this data.

5.5.3: When we repeat the above exercise for
√
photo and

√
obs1 we again get p-value near

one indicating that it is not possible to reject the null hypothesis.

5.5.5: We use the R command lm to fit linear models of photo on both obs1 and obs2 and on
each variable independently. When we do this a simple way to compare the three regressions
is to look at the coefficient of determinism R2 and the residual variance estimate σ̂2. For
these three model (with the average and difference model) we find

obs1 : R2 = 0.7502 σ̂2 = 1971.865

obs2 : R2 = 0.8547 σ̂2 = 1147.269
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Figure 18: Left: A scatterplot of the variablesWeight vs. Age in the jevons coin dataset of
Problem 5.6. As Age increases the average Weight steadily decreases. Right: A scatterplot
of the variables SD vs. Age for the jevons coin dataset of Problem 5.6. As Age increases
so does the observed standard deviation of the weights of the coins at each age.

obs1 + obs2 : R2 = 0.8558 σ̂2 = 1165.103

average+ diff : R2 = 0.8558 σ̂2 = 1165.103 .

From these we see that in combining both prediction obs1 and obs2 to produce a prediction
we obtain a larger R2 and a σ̂2 that is close to the smallest seen. In addition, it looks like
the second observer is better at counting geese than the first.

5.6 (Jevons’ gold coins)

Warning: I’m not entirely sure that this result is correct, since the model lack-of-fit test
when the variance is known seems to indicate that a straight line is not a good fit which
seems counter intuitive for this data. Please email me if you see an error in this analysis.

5.6.1: See the Figure 18 for the two requested scatter plots.

5.6.2: Since the number of coin samples observed at each xi (age) is relativly large we can
assume that we know the standard deviation of the individual weights measurements at each
age value. Since the data we are given represents the average of several individual coin



weights, we know that the variance of this average weight Y is given by

Var(Y |X = xi) =
SD2

i

ni
, (51)

where ni is the number of measurements taken with feature xi (the same age) and SDi is
the sample standard deviation of these coin weights. Since weights, wi, used in a weighted
linear regression are defined as Equation 49 (Var(Y |X = xi) = σ2/wi) we need to relate this
expression to that given in Equation 51 above. To do this we could write

Var(Y |X = xi) =
1
ni

SDi
2

,

and assume that σ2 = 1. By assuming that we know the value of σ2 in this way we can
use the results in the text about testing for lack of fit when the variance is known and the
respective χ2-tests. When we use the lm command with the weights option we get the
following slightly edited summary output

Call:

lm(formula = Weight ~ Age, weights = 1/(n/SD^2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.002701 0.005591 1431.35 7.52e-10 ***

Age -0.026099 0.001292 -20.20 0.000265 ***

---

Residual standard error: 1.738e-05 on 3 degrees of freedom

Multiple R-Squared: 0.9927, Adjusted R-squared: 0.9903

F-statistic: 408.2 on 1 and 3 DF, p-value: 0.0002650

Analysis of Variance Table

Response: Weight

Df Sum Sq Mean Sq F value Pr(>F)

Age 1 1.2334e-07 1.2334e-07 408.23 0.0002650 ***

Residuals 3 9.0600e-10 3.0200e-10

What is a bit troubling is that the residuals sum square field displayed above is so much
smaller than the hypothesized value of one. If we assume that there is nothing incorrect
with these results we can still proceed as in the example in the text aimed at computing a
lack-of-fit test based on the χ2 statistic assuming the variance is known.

5.6.3/4: Since we have several measurements at the same value of xi and we are assuming
that we know the value of σ we can compute

X2 =
RSS

σ2
=

9.0600 10−10

1
= 9.0600 10−10 .



This is to be compared with the χ2 with n−p′ = 5−2 = 3 degrees-of-freedom. We find using
pchisq( 9.0600e-10, 3 ) that the p-value for this test is 9.063702 10−10, which indicates
that the linear fit is not a good one? This seems to be in error.

5.6.5: The variance of a given weight will be given by two terms the first is the variance of
the measurement about the mean and the variance of the mean due to a finite number of
samples that went into its estimation. This means that to predict the weight W we would
have

Var(W |X = x) = SD2
x +

SD2
x

nx

,

and the expectation of W is given from the linear fit. For example when x = 5 (the oldest
coin) to compute the probability that our weight is less than the legal minimum we would
compute

P (W < 7.9379|X = 5) = P









W −E(W |X = 5)
√

Var(W |X = 5)
<

7.9379− β̂0 − 5β̂1
√

SD2
5 +

SD2
5

n5









.

where everything in the inequality in the right-hand-side is known. Since the random variable
on the left-hand-side of this inequality is a standard-normal this expression can be evaluated
with the qnorm command.

See the R script chap 5 prob 6.R for the various parts of this problem.

5.7 (π− data)

For this dataset we can modify the R scripts provided with the book to load and perform
analysis on the physics1 dataset. We can evaluate the two linear models with predictors
given by s1/2 alone and s1/2 with s. When we duplicate the commands presented in the
book for this example we find that there is about a 7.2 % percent chance that the computed
coefficient of s1/2 is in fact zero and the observed value is obtained only by chance. The
F -statistics for the entire model is 4.296 which has a p-value of 0.072 indicating that there
is a 7.2 % chance of getting coefficients this large purly by chance. Fitting a larger power of
s1/2 does not seem to help this situation. When we include the terms s now the F -statistic
falls to 1.918 with a p-value of 0.216 further indicating that there maybe no model of the
form

E(y|s) = β0 + β1s
−1/2 + β2s ,

that explains this data better than the mean of the data itself. When we look at the first and
second order fits to this data with the data itself we obtain the plot in Figure 19. From that
plot we see that there are two points in the interior of the domain that don’t seem to fit the
given curves very well. Heuristically, it is these points that make the linear and quadratic
fits not agree well with the data.

See the R script chap 5 prob 7.R for the various parts of this problem.
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Figure 19: Scatterplot of the strong interaction data for π− as in Problem 5.7.



Chapter 6 (Polynomials and Factors)

Notes On The Text

Notes on polynomials with several predictors

In this section of the book the claim is made that the cake data would not be fit fit with a
model that did not include an interaction term. To verify or refute this claim in the R script
section 6 1 poly w several predictors.R we fit the cake data to a polynomial model
that includes an interaction term

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 , (52)

and then to smaller/simpler model that does not have an interaction term of

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 . (53)

Note we dropped the β12 coefficient in Equation 52 in obtain this later model. We then
compute the F -statistic and p-value for both fits. We find that the p-value for the more
detailed model is given by 5.864 10−5 which states that there is strong evidence that the
null-hypothesis should be rejected and that this model provides sufficient reduction in the
variance. The less specific model given by Equation 53 has a p-value given by 8.913 10−4

which still seems quite strong evidence against the null hypothesis. Now in both cases the
null hypothesis is the constant average response prediction. If we run the anova command
where we find

> anova(m2,m1)

Analysis of Variance Table

Model 1: Y ~ X1 + X2 + I(X1^2) + I(X2^2)

Model 2: Y ~ X1 + X2 + I(X1^2) + I(X2^2) + X1:X2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 4.2430

2 8 1.4707 1 2.7722 15.079 0.004654 **

This result compares the reduction in variance we obtain by using the more complicated
model m1 over the simpler model m2. The large value of the F -statistic and the small value
of the p-value indicate that in fact this interaction term does provide a statistically significant
reduction in uncertainty and thus provides additional information.

Notes using the delta method to estimate an extrema

Under the assumptions that θ̂ ∼ N(θ∗, σ2D) and a linear approximation to g(θ) of

g(θ̂) ≈ g(θ∗) + ġ(θ∗)′(θ̂ − θ∗) ,



we have the variance of g(θ̂) given by

Var(g(θ̂)) = ġ(θ∗)′Var(θ̂)ġ(θ∗)

= ġ(θ∗)′ (σ2D) ġ(θ∗) . (54)

Here ġ(θ) is the gradient of the scalar function g(·). In practice, the factors in the vari-
ance expression above are evaluated at θ̂ (rather than the unknown value of θ∗). As an
example of the delta method recall that the OLS estimate of the location of a univariate

minimum/maximum is given by g(β̂) = − β̂

2β̂2
. From this we compute the gradient as

ġ(θ̂) ≡









∂
∂β̂0
∂

∂β̂1
∂

∂β̂2









(

− β̂

2β̂2

)

=
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



0
− 1

2β̂2

β̂1
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2









.

So that the variance of this function can be computed as

Var

(

− β̂

2β̂2

)

=
[

0 − 1
2β̂2

β̂1

2β̂2
2

]


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

Var(β̂0) Cov(β̂0, β̂1) Cov(β̂0, β̂2)
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, (55)

which is the books Equation 6.13.

Problem Solutions

6.1 (Cake data)

6.1.1: In the R file chap 6 prob 1.R we use the R function lm to estimate the coefficients β
in the cake model Equation 52. We find a linear model summary given by

Call:

lm(formula = Y ~ X1 + X2 + I(X1^2) + I(X2^2) + X1:X2, data = cakes)

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.204e+03 2.416e+02 -9.125 1.67e-05 ***



X1 2.592e+01 4.659e+00 5.563 0.000533 ***

X2 9.918e+00 1.167e+00 8.502 2.81e-05 ***

I(X1^2) -1.569e-01 3.945e-02 -3.977 0.004079 **

I(X2^2) -1.195e-02 1.578e-03 -7.574 6.46e-05 ***

X1:X2 -4.163e-02 1.072e-02 -3.883 0.004654 **

---

Residual standard error: 0.4288 on 8 degrees of freedom

Multiple R-Squared: 0.9487, Adjusted R-squared: 0.9167

F-statistic: 29.6 on 5 and 8 DF, p-value: 5.864e-05

Every coefficient β appears significant. The “weakest” coefficient appears to be that of β12
which has a p-value of 0.004654, still less than the proposed 0.005.

6.2.1: The optimal (X1, X2) combination under a model like Equation 52 will require

∂

∂X1

E(Y |X1, X2) =
∂

∂X2

E(Y |X1, X2) = 0 ,

when evaluated at the point (X̃1, X̃2). From the given expression for the cake data set we
have

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 .

Thus the required equations to solve become

∂

∂X1
E(Y |X1, X2) = β1 + 2β11x1 + β12x2 = 0

∂

∂X2
E(Y |X1, X2) = β2 + 2β22x2 + β12x1 = 0 .

These two equations are equal to the linear system

2β11x1 + β12x2 = −β1
β12x1 + 2β22x2 = −β2 .

We can solve these for x1 and x2 using Crammer’s rule. The determinant, D, of the coefficient
system is given by

D =

∣

∣

∣

∣

∣

2β11 β12
β12 2β22

∣

∣

∣

∣

∣

= 4β11β22 − β2
12 .

So that Crammer’s rule gives for the desired estimates

X̃1 =
1

D
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∣
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∣

=
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12
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1

D

∣
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∣

∣

∣

2β11 −β1
β12 −β2

∣

∣

∣

∣

∣

=
−2β11β2 + β2β12
4β11β22 − β2

12

.

Now estimates of these values would be obtained by evaluating the above expressions at the
ordinary least squares estimates β̂. The standard error of these two expressions will be given
by the delta method since X̃i is a nonlinear function of β. Our estimated coefficients β̂ satisfy

β̂ ∼ N(β, σ2(X ′X)−1) ,



where β is the true regression coefficients. To compute the standard errors of X̃i we need
to first compute the gradient of each of these expression with respect to all of the β’s in our
linear regression. We will do this procedure for X̃1 only since the derivation will be similar
for X̃2. In the R script chap 6 prob 1.R we compute these derivatives “by hand” using the R
command D and then compute the square-root of the required inner product in Equation 54
to determine the standard error of X̃1. We can also very simply do this entire procedure
using the alr3 toolbox function delta.method. When we use either of these methods we
get

X̃1 ∼ N(179.0288, 6502.26) ,

where 6502.26 is the delta method’s estimate of the variance of X̃1.

6.1.3: To incorporate the block factor terms we would want to add a factor, B, (for block)
so that our mean function then becomes

E(Y |X1 = x1, X2 = x2, B = j) = β0j + β1jx1 + β2jx2 + β11jx
2
1 + β22jx

2
2 + β12jx1x2 ,

for j = 1, 2. This would be the most general way of adding a factor an allows for block
by term interactions since each affect linear, quadratic, or interaction is allowed to have its
own coefficient that depends on the block. A difficulty with this procedure is that since
in each block there are only seven samples of the required input/output pairs. Since the
dimensionality is so small one cannot expect to be able to estimate well these parameters.
To hopefully improve on this situation we’ll begin with an even simpler model given by

E(Y |X1 = x1, X2 = x2, B = j) = β0j + β1jx1 + β2jx2 + β11x
2
1 + β22x

2
2 + β12x1x2 ,

Thus we hypothesis that the quadratic terms are not affected by the block while the linear
terms are. This might be approximately true if the quadratic terms are a higher order
approximation to the predominately linear response. An alternative way to write this later
expression is with block dummy variables Uj as

E(Y |X1 = x1, X2 = x2, B = j) =
2
∑

j=1

(β0j + β1jx1 + β2jx2)Uj + β11x
2
1 + β22x

2
2 + β12x1x2 ,

To fit such a model in R we would could use the command

Y ~ -1 + B + B:X1 + B:X2 + I(X1^2) + I(X2^2) + X1:X2

where B has been declared a factor based on the variable cakes$block. Then using this
model and the model computed above without block interactions we can use the anova

command to compare the more specific model for significance. We find

> anova(m1,mg)

Analysis of Variance Table

Model 1: Y ~ X1 + X2 + I(X1^2) + I(X2^2) + X1:X2

Model 2: Y ~ -1 + B + B:X1 + B:X2 + I(X1^2) + I(X2^2) + X1X2
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Figure 20: A scatterplot matrix of “jittered” versions of log(Life), Speed, Feed, and Life
from the lathe1 data set of Problem 6.2.

Res.Df RSS Df Sum of Sq F Pr(>F)

1 8 1.47074

2 5 0.48409 3 0.98666 3.397 0.1106

The F -statistic and the p-test indicate that the additional complexity in moving to the block
estimated model is probably not justified.

6.2 (the lathe data set)

6.2.1: In Figure 20 we plot a scatterplot matrix of the requested variables. From this plot
if we view the Speed and Feed variables we see that the experimental design presented
varied these two variables in a circle. Taking the logarithm seems to make the projected
dependencies of LLife Speed and LLife Feed look more circular.

6.2.2: We fit a model like Equation 52 (with an interaction) to the variable log(Life). When
we look at the summary results from R we obtain

Call:

lm(formula = LLife ~ Speed + Feed + I(Speed^2) + I(Feed^2) +

Speed:Feed, data = lathe1)



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7141 0.1516 11.307 2.00e-08 ***

Speed -2.2925 0.1238 -18.520 3.04e-11 ***

Feed -1.1401 0.1238 -9.210 2.56e-07 ***

I(Speed^2) 0.4156 0.1452 2.863 0.012529 *

I(Feed^2) 0.6038 0.1452 4.159 0.000964 ***

Speed:Feed -0.1051 0.1516 -0.693 0.499426

---

Residual standard error: 0.4288 on 14 degrees of freedom

Multiple R-Squared: 0.9702, Adjusted R-squared: 0.9596

F-statistic: 91.24 on 5 and 14 DF, p-value: 3.551e-10

Notice that the interaction term Speed : Feed does not have a very large t-value is not very
significant (given the other terms). This indicates that perhaps a simpler model could be
used where this interaction term was removed.

6.2.3: We can test whether the interaction term provides benefit by constructing a model
without it and using a F -test to determine if the reduction in RSS is significantly larger
than what we would expect randomly. When we fit this reduced model and compare with
the original we get an anova result of

> anova(m0,m1)

Analysis of Variance Table

Model 1: LLife ~ Speed + Feed + I(Speed^2) + I(Feed^2)

Model 2: LLife ~ Speed + Feed + I(Speed^2) + I(Feed^2) + Speed:Feed

Res.Df RSS Df Sum of Sq F Pr(>F)

1 15 2.66235

2 14 2.57396 1 0.08839 0.4807 0.4994

The p-value above indicates that the addition of the interaction term does not significantly
reduce the residual variance and it should probably be left out. Qualitatively we can test
this by viewing projections of the regression surface. We can fix values of Speed and vary
Feed and then exchange the rolls of the two variables. When do do this for both models
we get Figure 21. Visually there is not much difference in the curves, an indication that the
interaction term does not provide much of an effect.

6.2.4: This part could be done as the example in the book or using the alr3 code delta.method.
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Figure 21: Left: The left panel contains plots of E(log(Life)|Speed, Feed), for three
fixed values of Feed as a function of Speed. The right panel contains plots of
E(log(Life)|Speed, Feed), for three fixed values of Speed as a function of Feed. Both plots
assume an interaction term in the model for computing E(log(Life)|Speed, Feed). Right:
The same thing but assuming that the model does not contain an interaction term.



Expression: E(Y |X = x, F = j) R expression

Model 1: most general η0 + η1x+
∑d

j=2(η0j + η1jx)Uj Y ~ X + F + F:X

Model 2: parallel η0 + η1x+
∑d

j=2 η0jUj Y ~ X + F

Model 3: common intercept η0 + η1x+
∑d

j=2 η1jxUj Y ~ X + F:X

Model 3’: diff β0 +
∑d

j=1 β1jxUj Y ~ +1 + F:X

Model 4: all the same η0 + η1x Y ~ X

Table 1: ANOVA model comparison for the four models for Problem 6.4. Note that most
models (all but Model 3’) are expressed relative to a common linear fit η0 + η1x.

6.4 (the twins data set)

For this problem we want to perform the regression of IQf onto IQb and C, where C is a
factor. The most general model of this type is where we assume that each factor has its own
parameters and is given by

E(IQf |IQb = x, C = j) = η0 + η1x+
3
∑

i=2

(η0i + η1ix)Ui .

Various model simplifications happen if we assume that some of the parameters are common
among factors. This problem is similar to the example in the book that uses the sleep data
where there are a total of four models to consider. To solve this problem we will fit each of
these models using the R command lm and compare the different models using F -statistics
based off the most general model (denoted as model # 1) and using the Fl statistic defined
by

Fl =

(

RSSl −RSS1

(dfl − df1)

)

/

(

RSS1

(dfl − df1)

)

,

as compare to the quantiles of an F (dfl − df1, df1) distribution. If the most general model
with a residual sum of squares RSS1 is not sufficiently smaller than the more restrictive
model with RSSl for l = 2, 3, 4 the value of Fl (defined above) will be small and the more
general model will probability not be needed.

Because the of analysis of a single predictor, X , that maybe affected by several factors,
F , is very common and will be used in the problems in Table 1 we present the explicit
regression expressions for each of four models that are possible. Because of the different
ways to represent the same linear model we will present two forms for the third model. In
addition, next to these expressions, we will present the R argument to the lm command that
will compute the various coefficients in the given model. As notation, we have a predictor
X of a response Y and d distinct factors denoted by F . The variable Uj is defined as in the
book.

When we compute linear regressions on these four model we obtain Table 2. Each F -statistic
compares the most general model with the alternative model in question. We see that there
is a 60% chance that the reduction in RSS from using the more complicated model is due
to chance.



df RSS F P(>F)

Model 1: most general 21 1317.47
Model 2: parallel 23 1318.40 7.42 10−3 9.92 10−1

Model 3: common intercept 23 1326.46 7.16 10−2 9.31 10−1

Model 4: all the same 25 1493.53 0.702 0.6

Table 2: ANOVA model comparison for the four models for Problem 6.4.
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Figure 22: A visual display of the four models from Problem 4. There does not seem to be
much variation among the classes in this data set.



df RSS F P(>F)

Model 1: most general 44 6.004
Model 2: parallel 45 6.055 0.373 0.544
Model 3: common intercept 45 6.058 0.397 0.532
Model 4: all the same 46 6.091 0.320 0.728

Table 3: ANOVA model comparison for the four models for Problem 6.5.

Finally, a quadrant plot like presented in the book for each of the four models is presented in
Figure 22. Visually, this confirms our F -statistics above in that the linear models produced
under all variations don’t seem significantly different.

This problem is worked in the R script chap 6 prob 4.R.

6.5 (model variation with temperature)

For this problem we will fit E(log(Pressure)|Temp) = β0 + β1Temp for two data sources:
Forbes’ data and Hooker’s data. If we lump the data together in one data frame we can
consider the introduction of a factor that corresponds to which data set the source data came
from. Then under this framework we can use hypothesis testing to determine which of the
most general models

E(log(Pressure)|Temp = t, D = j) = β0j + β1jt ,

is most likely. This problem then is equivalent to example in the book where we compare
regression lines within each factor and determine the least general model that explains the
data. In the R script chap 6 prob 5.R we fit the same general models as discussed in Exercise
6.4 on Page 67. When we run that code we produced the anova table shown in Table 3. The
fact that the F -statistics are so small and the p-values are so large indicates that there is no
difference in mean functions.

This is very evident when we graphically visit the four possible mean functions. In Figure 23
we plot these four mean functions.

6.6 (characteristics of HT18 and HT9 on whether the subject is male or female)

For this problem we will determine if the mean function E(HT18|HT9 = x, Sex = j)
depends on in a statistically significant way on the variable Sex. This problem is similar to
Problems 6.4 and 6.5 and is worked in the R script chap 6 prob 6.R.

6.6.1: In Figure 24 we display the scatter plot of HT18 versus HT9 using the character
“m” and “f” for male and female samples. A linear fit seems reasonable.
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Figure 23: A visual display of the four models from Problem 5. There seems to be almost
no variation among the hypothesized two classes in this data set.

m

m

m

m

m

m

m

m

m

m

m
m

m

m
m

m

m
m

m

m

m

m

m

m

m

m

m

m

mm

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

125 130 135 140 145 150

16
0

17
0

18
0

19
0

HT9

HT
18

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f
f

f

f

f f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f
f

f

f

f

f

f

f

f

f

f

f

f

f

f
f

f

f

f

f

f
f

f

f
f

125 130 135 140 145 150

16
0

17
0

18
0

19
0

HT9

HT
18

Figure 24: The scatter plot requested by Problem 6. There is an obvious difference between
the intercept of the two lines. We can use statistical hypothesis testing to determine the
significance of any model slope differences.



df RSS F P(>F)

Model 1: most general 132 1532
Model 2: parallel 133 1567 2.964 8.7 10−2

Model 3: common intercept 133 1542 0.8394 0.3612
Model 4: all the same 134 6191 200.6 9.55 10−41

Table 4: ANOVA model comparison for the four models for Problem 6.6.
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Figure 25: A visual display of the four models from Problem 6.

6.6.2: In Table 4 we produce the ANOVA table that compares the most general model to
each of the three remaining restricted models. Each F -statistic is a comparison between
the most general model one the each less specific model. There is a 36% chance that the
difference in RSS between the most general model and the common intercept model is due
to chance. That is the only model that we should consider as a potential simpler candidate
model.

This is very evident when we graphically visit the four possible mean functions. In Figure 23
we plot these four mean functions.

6.7 (generalizations to linear models with factors and two predictors)

For an expanded mean function like E(HT18|HT2 = x1, HT9 = x2, Sex = j), where we have
two continuous predictors the most general model would allow every level to have a different



slope and intercept. This would be expressed using dummy variables mathematically as

E(HT18|HT2 = x1, HT9 = x2, Sex = j) =
2
∑

j=1

(β0j + β1jx1 + β2jx2)Uj .

Some simplifications of this model would include the pooling (assuming a common value for
all factors) of the coefficients β0, β1, or β2. For example, the common mean (the common
intercept) model would be given by

E(HT18|HT2 = x1, HT9 = x2, Sex = j) = β0 +
2
∑

j=1

(β1jx1 + β2jx2)Uj .

One could also pool samples assuming a common value for β1. This mean function would
look like

E(HT18|HT2 = x1, HT9 = x2, Sex = j) = β1x1 +
2
∑

j=1

(β0j + β2jx2)Uj .

Other variations are also possible.

6.8 (are the regression surfaces parallel for boys and girls)

The suggested hypothesis that we desire to test is to compare the null hypothesis (that there
is no “slope” difference between boys and girls) written mathematically as

E(HT18|HT2 = x1, HT9 = x2, Sex = j) = η0 + η1x1 + η2x2 + η02U2 ,

with the alternative hypothesis that there is a difference. Written mathematically as

E(HT18|HT2 = x1, HT9 = x2, Sex = j) = η0 + η1x1 + η2x2 + (η02 + η12x1 + η22x2)U2 .

This later model does allow the possibility that they have different intercepts. We fit these
two hypothesis using the two R command (where D has been previously declared a factor

NH: HT18 ~ HT2 + HT9 + D

AH: HT18 ~ HT2 + HT9 + D + D:HT2 + D:HT9

We can then determine which is the better model using the anova command. The output
from this is given by

> anova(m0,m1)

Analysis of Variance Table

Model 1: HT18 ~ HT2 + HT9 + D

Model 2: HT18 ~ HT2 + HT9 + D + D:HT2 + D:HT9

Res.Df RSS Df Sum of Sq F Pr(>F)

1 132 1565.6

2 130 1496.9 2 68.7 2.9831 0.05412 .



From which we see that the there is only a 5% chance that this reduction in RSS is due to
chance. This indicates that the reduction in RSS is significant and we should consider the
planes to not be parallel.

This problem is worked in the R script chap 6 prob 8.R.

6.9 (apple shoots)

6.9.1: To calculate the mean-square expression for pure-error, recall that the pure-error sum
of squares is given by

SSpe =
∑

i

(ni − 1)SD2
i , (56)

where ni is the number of repeated experiments with a fixed value of predictor xi, and SDi

is the unbiased sample standard deviation of these repeated experiments. Also recall that
the degrees of freedom of the pure-error is given by

dfpe =
∑

i

(ni − 1) . (57)

Then an estimate of the pure-error is given by the ratio of these two expressions or

σ̂2
pe =

SSpe

dfpe
. (58)

For this problem, we will estimate σ̂2
pe for both the long and short shoots from the given

data set (using the above formula) and compute another F -statistic in this case given by

σ̂2
pe,long−shoots

σ̂2
pe,short−shoots

,

which under the hypothesis that the two distributions have the same variance should be
distributed as a F (dfpe,long−shoots, dfpe,short−shoots) distribution. We can use this F -statistics
to determine if the assumption of equal pure-error between the shoot types is true. When
we compute these two expressions for the short and long shoots we find

σ̂2
pe,long−shoots

σ̂2
pe,short−shoots

= 1.807 ,

which is approximately two. This is to be compared with the value of the F -distribution with
dfpe,long−shoots = 167 and dfpe,short−shoots = 292 degrees of freedom that contains 1 − 0.05 =
0.95 percent of the density. Using the R command qf( 1-0.05, 167, 292) we find that the
5% threshold value is 1.2487, which heuristically means that the lack of fit sum-of-squares
F -statistic is too large and assumes that the given model does not fit and should be rejected
because it “does not fit the data”. Incidentally, we would get a value of this ratio as large or
larger than 1.807 only 1 - pf( F, dfLong, dfShort ) or 5.14 10−6 percent of the time.

Our pooled estimate, under the assumption that the long-shoots will have a standard devi-
ation twice that of the short shoots in terms of the pure-error sum of squares will be given
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Figure 26: The scatter plot requested by Problem 9. There seems to be an obvious difference
between the slopes of the two lines but any differences of intercept are difficult to determine.
We can use statistical hypothesis testing to determine the significance of any model slope
differences.

by

σ̂2
pooled =

SSpe,short−shoots

dfpe,short−shoots
+

1

2

(

SSpe,long−shoots

dfpe,long−shoots

)

≈ 1.61 ,

and should be a better estimate than either of the two individual estimates.

As an aside, to determine if our model does not match the data due to a large model
specific error we can construct an appropriate F -statistic which in this case is the ratio of
the mean square for lack-of-fit to that of the mean-square for pure-error (defined above).
This F -statistic is given by

F =

SSlof

df lof
SSpe

dfpe

=

RSS−SSpe
n−p′−dfpe

SSpe
dfpe

. (59)

This is to be compared to the quantiles of the F (n−p′−dfpe, dfpe) distribution. If the value
of the F -statistic above is “too large” we should reject the null hypothesis that we have the
correct model for the given data.

6.9.2: In Figure 26 we present a scatter plot of ybar versus Day. The long shoots are denoted
with the symbol “l” and the short shoots are denoted by the symbol “s”. Straight-line mean
functions look to be quite plausible.



df WRSS F P(>F)

Model 1: most general 48 60.55
Model 2: parallel 49 89.15 22.67 1.8 10−5

Model 3: common intercept 49 62.54 1.58 0.214
Model 4: all the same 50 291.2 91.50 4.2 10−17

Table 5: ANOVA model comparison for the four models for Problem 6.9. Note that the
weighted residuals are computed as

√
wi(yi − ŷi).

6.9.3: In computing the weighted least squared esimates we are told to assume that

Var(ȳi|Day, short shoots) =
σ2

n
,

and

Var(ȳi|Day, long shoots) =
2σ2

n
.

Thus we will will write both of these expressions as 1
wi

(absorbing σ2 and n into the same
denominator). Under this convention our weights take numerical values given by

1

wi

=

{

n/σ̂2 short shoots
n/2σ̂2 long shoots

.

Where σ̂ is our pooled estimate computed above.

In table 5 we display an anova table that compares the standard four linear models intro-
duced in this chapter. From that table the difference in weighted residual sum of squares
reduction supplied in moving from Model #3 to Model #1 has a twenty-one percent chance
of happening by chance. One might conclude that Model #1 is too general and that we can
get the same performance by using Model #3. Plots of the four models compared are shown
in Figure 27.

This problem is worked in the R script chap 6 prob 9.R.

6.10 (gothic and romanesque cathedrals)

This problem is to compare various models of the form

E(Length|Height = h,D = j) = β0j + β1jh ,

where D is a factor expressing the type of cathedral. This is similar to Problems 6.4, 6.5,
and 6.6 in that Various model simplifications are possible by pooling samples.

6.10.1: In the Figure 28 we present two separate scatter plots of this data set.

6.10.2: In the Table 6 we show the anova table comparing the four candidate models. Since
the F -statistics are so low for models #2 and 3 we conclude that the additional complexity
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Figure 27: A visual display of the four models from Problem 9.
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Figure 28: Left: Scatter plots of Length vs. Height for Romanesque churches. Right: The
same but for Gothic churches. The x and y axis are the same for both plots so we expect a
linear regressions to be quite different for the two different types of churches.



df RSS F P(>F)

Model 1: most general 21 136200
Model 2: parallel 22 137100 0.142 0.71
Model 3: common intercept 22 138500 0.3525 0.559
Model 4: all the same 23 171500 2.719 0.089

Table 6: ANOVA model comparison for the four models for Problem 6.10.
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Figure 29: A visual display of the four models from Problem 10. ANOVA considerations
would select the parallel slope model.

of model #1 is probably not needed. Given the choice between models #2 and #3 we could
take the one with the smaller residual sum of squares, which in this case would be model
#2. In Figure 29 we plot these four mean functions.

This problem is worked in the R script chap 6 prob 10.R.

6.11 (modeling the wind direction in the windmill data)

6.11.1: For this part of the problem we will assume that we should consider the “bin” index
as a factor and asses how well the most general regression function where each bin has its
own set of coefficients as expressed as

E(CSpd|RSpd = x,Bin = j) = β0j + β1jx for 1 ≤ j ≤ 16 ,



df RSS F P(>F)

Model 1: most general 1084 6272.0
Model 2: parallel 1099 6387.7 1.33 0.1763
Model 3: common intercept 1099 6414.0 1.633 5.9 10−2

Model 4: all the same 1114 6776.0 2.900 4.01 10−4

Table 7: ANOVA model comparison for the four models for Problem 6.11.

compares to the simpler mean functions where no bin restrictions are placed on the β co-
efficients. When viewed in this way this problem is very similar to several other from this
chapter. We present the anova comparison table in Table 7. When we look at that table we
see that there is a 17% chance that the difference in RSS between Model #1 and Model #2
is due to chance. This gives reasonable strong evidence that we need the generality provided
by Model #1.

6.11.2: We are told to assume that the most general model is appropriate. Then we are
given the mean x̄∗i of mi samples drawn from the i-th bin. If the standard errors are indeed
independent we can combine the sixteen average estimates by weighting them according to
how many samples went into each average. Let m =

∑16
i=1mi, then our global estimate of

the average wind speed at the candidate site should be taken to be

E(CSpd) =
16
∑

i=1

mi

m
E(CSpd|RSPd = x̄∗i, B = i) .

Then the standard error (again assuming independent errors) is given by

Var(CSpd) =
16
∑

i=1

mi
2

m2
Var(CSpd|RSPd = x̄∗i, B = i) .

These later elements can be computed using the results from Problem 2.13 (see Page 22
Equation 9), where we have

Var(ȳ∗) =
σ2

m
+ σ2

(

1

n
+

(x̄∗ − x̄)

SXX

)

.

Question: Given the amount of time I wanted to spend on this problem I was unable to
determine how to apply the R command predict with so many factors. If anyone knows
how to do this please let me know.

6.12 (land valuation)

Since our goal is to determine if the variable P provides any predictive power over the
variable V alue we will fit two models to the provided data, one model that includes this
variable and another model that does not. We can then use F -statistics to determine if the
more complex model reduces the residual sum of squares more than can be attributed to



chance. Thus we will compare the null-hypothesis that each year county combination has a
different mean value, stated mathematically as

E(V alue|Y ear = y, County = c) = β0y + β1c .

We can write this mean function in terms of two dummy variables Ui and Vi as

E(V alue|Y ear = y, County = c) =
2
∑

i=1

β0iUi +
4
∑

i=1

β1iVi .

where the coefficient β0i represents the effect of the Y ear variable and β1i is the same for
the county variable. This mean function has 2 × 4 = 8 coefficients to be determined. This
mean function would be compared to the alternative hypothesis where we include P as an
explicit variable

E(V alue|Y ear = y, County = c, P = x) = β0y + β1c + βpx . (60)

These two mean functions can be compared for significance using the R function anova. In
the time allowed I was not able to figure out how to encode in R regression models in the forms
specified above. This is not a problem since we can use whatever equivalent representation
R uses by default to compare mean functions. The anova table for each mean function is

> anova(mNH,mAH)

Analysis of Variance Table

Model 1: Value ~ countyFactor + yearFactor

Model 2: Value ~ countyFactor + yearFactor + P

Res.Df RSS Df Sum of Sq F Pr(>F)

1 115 1781801

2 114 1423587 1 358214 28.686 4.477e-07 ***

From this table we see that the fact that the p-value above is so small (equivalently an F -
value so large) is an indication that the addition of the variable P is a relevant variable to
consider in assessing land values. We can also ask if we can simplify Equation 60 by dropping
either the Y ear factor or the County factor. Appropriate anova tests seem to indicate that
the answer is no, these terms do indeed do provide information over that which be measured
randomly.

This problem is worked in the R script chap 6 prob 12.R.

6.13 (sex discrimination)

6.13.1: In Figure 30 we present a scatterplot matrix of the variables Salary, Y Sdeg, and
Y ear. There does appear to be a increase in salary with both of the variables Y Sdeg and
Y ear.
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Figure 30: A scatterplot matrix of Salary, Y Sdeg, and Y ear from the salary data set of
Problem 6.13.

6.13.2: We can take the variable Sex as a factor an compare the more general model where
there are two means (one for each factor) with the simpler model with one only mean. If the
reduction in the residual sum of squares is significant from model with two means a F -test
should determine this. When we compute the anova command on these two mean functions
we obtain

Analysis of Variance Table

Model 1: Salary ~ +1

Model 2: Salary ~ -1 + SF

Res.Df RSS Df Sum of Sq F Pr(>F)

1 51 1785729858

2 50 1671623638 1 114106220 3.413 0.0706 .

When we look at the above table we see that there is only a 7% chance that the this reduction
in sum of squares is by chance. This gives strong indication in favor of the hypothesis that
there is a difference between the two means.

6.13.3: To solve the first part of this problem we generate two models. The first less specific
model is based on regressing Salary on the variables Y ear, Degree, and Y Sdeg, where
Degree is a factor representing the degree. This model is compared with the more general
model where in addition to the above variable we add the addition factor Rank. The anova
command comparing these two models gives



Analysis of Variance Table

Model 1: Salary ~ Year + HDF + YSdeg

Model 2: Salary ~ Year + HDF + YSdeg + RF

Res.Df RSS Df Sum of Sq F Pr(>F)

1 48 672102002

2 46 267993336 2 404108665 34.682 6.544e-10 ***

The F -statistic comparing these two models is sufficiently large that we must conclude that
the factor Rank makes a difference in the determination of Salary.

To solve the second part of this problem we consider the model obtained above which uses
Y ear, Degree, and Y Sdeg to predict Salary and append to this model a factor representing
Sex. This new model is compared to the old one and gives the following anova table

Model 1: Salary ~ Year + HDF + YSdeg + RF

Model 2: Salary ~ Year + HDF + YSdeg + RF + SF

Res.Df RSS Df Sum of Sq F Pr(>F)

1 46 267993336

2 45 258858365 1 9134971 1.588 0.2141

This later table indicates that the difference in residual sum of squares by including this
factor has a 21% chance of happening by chance. This gives some indication that Sex is not
a helpful factor in determing Salary.

This problem is worked in the R script chap 6 prob 13.R.

6.14 (changing the numerical value of a factor)

We are given a fitted regression function

E(Salary|Sex, Y ear) = 18223− 571Sex+ 741Y ear + 169Sex× Y ear (61)

and are asked how this will change when the defining relationship for the factor Sex changes.

6.14.1: In this case we require that the two new definitions of the factor for sex map
from their old definitions to new definitions as (0, 1) → (2, 1). This can be done with the
transformation

Sex′ = −Sex+ 2 .

Solving this for Sex we have Sex = 2 − Sex′. When we put this expression for Sex into
Equation 61 we get

E(Salary|Sex′, Y ear) = 17081 + 571Sex′ + 1079Y ear − 169Sex′ × Y ear .
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Figure 31: A scatterplot of Gain versus amount A for the turk0 data set of Problem 6.15.
In addition, we overlay linear and quadratic fits. The problem explores further which model
is appropriate for the data.

6.14.2: If we require that the two new definitions of the factor for sex map from their old
definitions to new definitions as (0, 1) → (−1, 1). This can be done with the transformation

Sex′ = 2Sex− 1 .

Solving this for Sex we have Sex = 1
2
(Sex′ + 1). When we put this expression for Sex into

Equation 61 we get

E(Salary|Sex′, Y ear) = 18508.5 + 285.5Sex′ + 825.5Y ear + 84.5Sex′ × Y ear .

6.15 (pens of turkeys)

6.15.1: In Figure 31 we present a scatter plot of Gain vs. amount A. Since there are
multiple experiments corresponding to each unique value of the amount variable we can
use the lack-of-fit tests techniques of Chapter 5 under the assumption that the standard
deviation is unknown.

6.15.2: Since in this problem we are given several values of the responce Gain for each of
the possible values of the amount A we can compute the mean of the response along with
the sample standard deviation to determine how well the given models (linear and quadratic
fit the data). See Problem 6.9 for an example. Specifically, we will use Equation 59 for both



the linear and the quadratic models. For each model we find F -statistics given by

Flinear = 18.71063 and Fquadratic = 1.492030 .

The probability that under the null-hypothesis (our model describes the data) we would
obtain F -statistics as large or larger than these is given by

αlinear = 1.062082 10−7 and αquadratic = 0.2374352 .

This gives an indication that the linear fit is not approporiate and that the quadratic fit
should be used.

6.15.3: Based on the result of the previous problem the quadratic polynomial fits the data
better and would be the prefered model. This is visual observable in Figure 31.

This problem is worked in the R script chap 6 prob 15.R.

6.16 (estimating the maximum value)

If our Gain variable is a quadratic function of amount say

E(Gain|Amout = a) = β0 + β1a+ β2a
2 ,

then the extream occurs at aM = − β1

2β2
, we can evaluate the standard error of this using the

delta method using the command delta.method or by using the bootstrap. Using the alr3
command delta.method gives the following:

> delta.method(m2,"-b1/(2*b2)")

Functions of parameters: expression(-b1/(2*b2))

Estimate = 0.3540464 with se = 0.01925134

To use the bootstrap we can use the alr3 R function boot.case to compute bootstrap
samples and then take the mean and the standard deviation as estimate of the estimate and
standard error. When we do that with B = 2000 bootstraped samples we find

> print(mean(maxs))

[1] 0.356541

> print(sqrt(var(maxs)))

[1] 0.01851026

a similar result.

This problem is worked in the R script chap 6 prob 16.R.



6.17 (inverse regression in Jevons’ coin data)

For a model of the form like computed in Problem 5.6

E(Weight|Age = a) = β0 + β1a ,

to derive an estimate of the value of a at which the weight will be the legal minimum of
7.9379 grams we would solve β0 + β1a = 7.9379 for a. When we do this we find an estimate
of a given by

â =
7.9379− β̂0

β̂1
.

We can fit the model for this problem and then use the alr3 function delta.method to
compute an estimate and its standard error. We find

> delta.method(mwa, "(7.9379 - b0)/b1")

Functions of parameters: expression((7.9379 - b0)/b1)

Estimate = 2.482909 with se = 0.09657335

This problem is worked in the R script chap 6 prob 17.R.

6.18 (world record running times)

6.18.1: In Figure 32 we present the requested scatter plot.

6.18.2: We could present a sequence of anova table like previous problems but we will simply
summarize thier content. The anova values are computed in the R script that accompanies
this problem. Each anova comparison of the simpler models to the most general model gives
a p-value O(10−8) which indicates that the simpler models are significantly worse than the
more general one at the reduction of the residual sum of squares that they provide. Based
on this analysis we should consider the most general model. When we fit separate models
we find that the specific coefficients are

E(T ime|Y ear = y, Sex = m) = 953.746− 0.36619y

E(T ime|Y ear = y, Sex = f) = 2309.4247− 1.03370y .

Here “m” stands for male and “f” stands for female. As an intpretation of these number we
see that the mean running time for men is less than that of the women. In addition the rate
at which the women are decreasing their time is greater than that of the men. Both of these
facts are clearly seen in the scatter plot in Figure 32.

6.18.3: To anwser this question requires that we solve for y in the mean regresion function
for females. Thus

E(T ime|Y ear = y, Sex = f) = β0f + β1fy = 240 .
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Figure 32: A scatterplot of T ime versus Y ear for men (in red) and women (in black) for the
world record times for the one mile run from the mile data set of Problem 6.18.

A point estimate of the value for y once we have fit our linear models is given by

ŷ =
240− β̂0f

β̂1f
.

Since this is a nonlinear relationship in terms of the estimated β values we need to use
either the bootstrap or the delta method to evaluate its standard error. Using the alr3 code
delta.method we get

> delta.method(n1, "(240 - b0)/b2")

Functions of parameters: expression((240 - b0)/b2)

Estimate = 2001.966 with se = 2.357027

6.18.4: To anwser this question requires solving for y in

E(T ime|Y ear = y, Sex = f) = E(T ime|Y ear = y, Sex = m) ,

or
β0f + β1fy = β0m + β1my .

A point estimate of this value of y once we have fit our two linear models is given by

ŷ =
β̂0f − β̂0m

β̂1m − β̂1f
.

Using the alr3 code delta.method we get



> delta.method(n1, "(b0 - b1)/(b3 - b2)")

Functions of parameters: expression((b0 - b1)/(b3 - b2))

Estimate = 2030.950 with se = 8.16785

This problem is worked in the R script chap 6 prob 18.R.

6.19 (using the delta method to estimate the variance of β1/β2)

This is an easy exercise to do when we use the alr3 code delta.method. When use use this
we get

> delta.method(m1,"b1/b2")

Functions of parameters: expression(b1/b2)

Estimate = 2.684653 with se = 0.3189858

When we look back at the results from Chapter 4 we find that the point estimates agree and
the delta method would predict a 95% confidence interval for the ratio of β1/β2 of

(2.059620, 3.309686) .

This is a tigher interval than what is reported in section 4.6 from the book.

This problem is worked in the R script chap 6 prob 19.R.

6.23 (using wind to your advantage)

6.23.1: For this problem we choose to fit three linear models to the response Dist using the
provided predictors. These three linear models are then compared using the anova techniques
from this chapter. Specifically, we choose to fit the following models

Dist ∼ V elocity + Angle+BallWt +BallDia + Cond

Dist ∼ V elocity + Angle+BallWt +BallDia

Dist ∼ V elocity + Angle

Dist ∼ V elocity + Angle+ Cond .

Here Cond is a factor that determines the direction of the fans. Since the first model is the
most general we compare all models to that one. In Table 8 we present a comparison of the
four models. In that table we see table we see that there is a statisticlly significant difference
between all of the simpler models. This gives an indication that the placement of the fans
does contribute to the distance a given ball travels.

This problem is worked in the R script chap 6 prob 23.R.



df RSS F P(>F)

Model 1: most general 28 1297
Model 2: all variables no wind factor 29 1750 9.73 4.18 10−3

Model 3: velocity and angle only 31 2040 5.37 4.7 10−3

Model 4: Model 3 + wind factor 30 1730 4.65 1.8 10−2

Table 8: ANOVA model comparison for the four models for Problem 6.23.



Chapter 7 (Transformations)

Notes On The Text

Notes on the scaled power transformation

In this section of these notes we show the limiting assumption on the scaled power transfor-
mation made in the book and given by

lim
λ→0

(

Xλ − 1

λ

)

= log(X) . (62)

To show this recognize that this limit is equal to d
dλ
(Xλ)

∣

∣

∣

λ=0
. To evaluate this derivative let

v be defined as v ≡ Xλ, then we need to evaluate dv
dλ

∣

∣

∣

λ=0
. Taking the derivative with respect

to λ on both sides of the expression

log(v) = λ log(X) ,

gives
1

v

dv

dλ
= log(X) .

Using this and solving for dv
dλ

we find

dv

dλ
= v log(X) = Xλ log(X) .

Finally, evaluating this at λ = 0 gives Equation 62.

Notes on transforming the response only i.e. the inverse fitted value plot

This section of the book indicates that one technique one could use to find a mapping to apply
to Y that hopefully results in a better OLS fit is the following. First perform transformations
on the independent variables X perhaps using the methods discussed in the section on
automatic choice of transformation of parameters using the Box-Cox method. Once this
has been done and the X variables have been specified we then fit a regression model to Y
using these predictors X and compute the predicted values Ŷ using the standard formula
Ŷ = β̂0 + β̂ ′X . We then consider the ordered pairs (Y, Ŷ ) and fit a power transformation to
the Y variables as discussed in the transformation of the section on transforming the input
predictor. That is we look for parameters α0, α1 and λy such that

E[Ŷ |Y ] = α0 + α′
1ΨS(Y, λy) ,

has the smallest value of RSS(α0, α1, λy). This value of λy is what could then used in the
direct regression of ΨS(Y, λy) the predictors X .
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Figure 33: Left: A scatter plot of Tension as a function of Sulfur. Note the
highly non-linear behavior of the variable Tension. Center: Linear fits of the models
E(Tension|Sulfur) = β0 + β1Sulfur

λ for three values of λ, specifically λ ∈ {−1, 0,+1}.
Right: Linear fits of the models E(Ŷ |Y ) = α0 + α1Y

λ, where Y in this case is Tension
and for various values of λ. The x-axis is the pure variable Tension and the y-axis is the
predicted value of Tension using the model found in Part 7.1.2:.

Problem Solutions

7.1 (Tension as a function of Sulfur)

7.1.1: See Figure 33 (left) for a scatter plot of Tension as a function of Sulfur. The
points without any transformation are not very linear, indicating that a transformation if
the dependent variable (here Tension) is needed.

7.1.2: For this part of the problem we will use the alr3 command inv.trans.plot which
produces the inverse transform plot requested when the use specifies the desired values for
λ. See the Figure 33 (middle) for the plot produced. This routine also estimates the optimal
value of λ which in this case comes very close to λ ≈ 0 or a logarithmic transformation.

7.1.3: For this part of the problem, using the results from earlier we transform the variable
Sulfur by taking the logarithm of it. We then look for a model in which to transform Y so
that we can better predict Ŷ . The models we search for are given by

E(Ŷ |Y ) = α0 + α1ψS(Y, λ) ,
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Figure 34: Left: A scatter plot of Distance as a function of Speed for Problem 7.2 with the
OLS linear fit of Distance vs. Speed. Center: Power transforms of the response Distance
for various values of the powers λ ∈ {−1, 0,+1} and the optimal λ. This optimal value of
λ (the red curve) appears to have the value of λ ≈ 0.5. Right: A comparison of the power
transformation fit, determined by using the R command inv.trans.plot and the quadratic
model of Hald. The λ power model is the solid line while the quadratic model is the dashed
line.

where ψS(Y, λ) is the “scaled” power transformation. Not we can use the alr3 command
inverse.responce.plot to plot to display various scaling transformations of Y (in this case
Tension) that might result in a better linear fit. When we run this command we obtain the
plot presented in Figure 33 (right), where an optimal value of λ is estimated to be 0.68608.
One might argue that this optimal value of λ found to close to the value of λ = 1 representing
no transformation. Using the alr3 command inv.tran.estimate we get a standard error
of 0.2842 which indicates that the value of 1 is inside two standard deviations of the estimate
λ̂ = 0.6860. From this and the fact that the two curves for the optimal λ and the estimated
λ shown in Figure 33 (right) look so similar we would decide not to use the transformation
of the variable Y .

See the R function chap 7 prob 1.R for code that implements this problem.

7.2 (stopping times as a function of speed)

7.2.1: See Figure 34 (left) for a scatter plot of Distance as a function of Speed. We also
plot the OLS linear fit of the regression of Distance onto Speed. When we look at this plot



we see that for small and large values of Speed the linear fit is not very good at predicting
Distance.

7.2.2: To find a transformation that will linearize this regression we can use the alr3 code
inv.tran.plot to estimate the parameter to use to scale the response Distance. When we
run this code we see that the optimal value of λ is λ ≈ 0.5. This implies a model given by

Distance1/2 = β0 + β1Speed .

7.2.3: For this part of the problem we need to use weighted least squares to obtain the
coefficients that are suggested by the Hald model. The weights, wi, in weighted least squares
are defined as wi for which

Var(Y |X = xi) =
σ2

wi
,

so in the case of the Hald model where

Var(Distance|Speed) = σ2Speed2 =
σ2

(

1
Speed

)2 ,

we could take the weights wi to be

wi =

(

1

Speed

)2

.

We perform this weighted least squares fit and then compare it to the power model found in
earlier parts of this problem, we obtain Figure 34 (right). The two model are very similar.

See the R function chap 7 prob 2.R for code that implements this problem.

7.3 (predicting water supply from runoff)

7.3.1: See Figure 35 (left) for a scatter plot matrix of the variables involved in the water

data set. We next use the alr3 code bctrans which attempts to automatically transform
the predictors in such a way that the resulting variables are more closely linearly related.
This method works basically as follows. Given a specification of a vector of parameters
λ = (λ1, λ2, . . . , λk) (one λk for each variable) we can map all of the original predictor data
X to new points ψM (X, λ) given by the componentwise mapping

ψM (X, λ) = (ψM (X1, λ1), ψM(X2, λ2), . . . , ψM(Xk, λk)) .

Where ψM(Y, λ) is the modified power family transformation given by

ψM(Y, λ) = ψS(Y, λ)× gm(Y )1−λ

=

{

gm(Y )1−λ × (Y λ − 1)/λ λ 6= 0
gm(Y )× log(Y ) λ = 0

, (63)
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Figure 35: A scatter plot matrix of the variables involved with the water data set, before
any power transformations. Note that the response BSAAM is located in the lower right
corner of this matrix.

and gm(Y ) is the geometric mean of the untransformed variable Y . The vector λ is chosen
to make the resulting transformed variables as close to linearly related as possible. This
means that we select a vector λ such that the transformed sample covariance matrix V(λ)
has the smallest logarithm of its determinant. This is conveniently code in the alr3 function
bctrans. When we run this routine the resulting output for the summary command is

> summary(ans)

box.cox Transformations to Multinormality

Est.Power Std.Err. Wald(Power=0) Wald(Power=1)

APMAM 0.0982 0.2861 0.3434 -3.1522

APSAB 0.3450 0.2032 1.6977 -3.2238

APSLAKE 0.0818 0.2185 0.3741 -4.2020

OPBPC 0.0982 0.1577 0.6227 -5.7180

OPRC 0.2536 0.2445 1.0375 -3.0531

OPSLAKE 0.2534 0.1763 1.4374 -4.2361

LRT df p.value

LR test, all lambda equal 0 5.452999 6 4.871556e-01

LR test, all lambda equal 1 61.203125 6 2.562905e-11

From this output it appears that all of the λk estimated are near zero (with a p-value of
0.48) indicating a logarithmic transformations of the independent variables maybe beneficial.
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Figure 36: A scatter plot matrix of the variables involved with the water data set, after
logarithmic transforms of all variables.

A scatter plot matrix of the resulting transformed variables after we do this are shown in
Figure 36

7.3.2: Once we have specified a transformation of the predictor variables we can consider
possible transformations of the response by considering a inverse fitted value plot. There is a
command in the alr3 code called inverse.responce.plot for performing this transforma-
tion and also viewing the results of several power transformations of the response graphically.
When we use this command we get the plot shown in Figure 37.

7.3.3: We use the standard R command lm to estimating the transformed coefficients β̂.
Doing this and running the summary command we get the following

Call:

lm(formula = logBSAAM ~ logAPMAM + logAPSAB + logAPSLAKE + logOPBPC +

logOPRC + logOPSLAKE, data = waterT)

Residuals:

Min 1Q Median 3Q Max

-0.18671 -0.05264 -0.00693 0.06130 0.17698

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.46675 0.12354 76.626 < 2e-16 ***
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Figure 37: The inverse response plot of BSAAM and the predictions from on a linear model
with predictors found using the bctrans code. The optimal inverse power transformation
resulted in λ̂ = 0.1(0.29) indicating that a logarithm transformation where λ = 0 should be
considered.



logAPMAM -0.02033 0.06596 -0.308 0.75975

logAPSAB -0.10303 0.08939 -1.153 0.25667

logAPSLAKE 0.22060 0.08955 2.463 0.01868 *

logOPBPC 0.11135 0.08169 1.363 0.18134

logOPRC 0.36165 0.10926 3.310 0.00213 **

logOPSLAKE 0.18613 0.13141 1.416 0.16524

---

Residual standard error: 0.1017 on 36 degrees of freedom

Multiple R-Squared: 0.9098, Adjusted R-squared: 0.8948

F-statistic: 60.54 on 6 and 36 DF, p-value: < 2.2e-16

From this we see that the two coefficients that are negative are the values for log(APMAM)
and log(APSAB). I would think that negative coefficients would not make much sense.
When one looks at the coefficient values and their standard error the estimates of these
coefficients are such that their standard error would indicate that these estimates for β are
not very reliable and the negative values are probably spurious. In fact from the t-values
and the corresponding P(>|t|) column we see that we are not certain of their values and
we have a relatively large probability of obtaining these values by chance.

7.3.4: We can use the anova function to compare the two models suggested in the book.
We find that this function call gives

> anova(ms,m)

Analysis of Variance Table

Model 1:

logBSAAM ~ logAPMAM + logAPSAB + logAPSLAKE + I(logOPBPC + logOPRC + logOPSLAKE)

Model 2:

logBSAAM ~ logAPMAM + logAPSAB + logAPSLAKE + logOPBPC + logOPRC + logOPSLAKE

Res.Df RSS Df Sum of Sq F Pr(>F)

1 38 0.40536

2 36 0.37243 2 0.03293 1.5915 0.2176

which indicates that if the simpler model were true there is a 21 percent chance of getting a
reduction in residual sum of squares this large simply by chance. This is a relatively large
percentage value but still probably not enough to justify using the simpler model.

See the R function chap 7 prob 3.R for code that implements this problem.

7.4 (predicting salary’s)

7.4.1: If the variables are given in terms of job class rather than employee one could imagine
a situation where there is a great deal of different skill levels among for the same jobs class.
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Figure 38: Left: The raw scatter plot ofMaxSalary as a function of Score. Not the curved
appearance indicates that a linear model is probably not optimal. Right: Linear regressions
of MaxSalary as a function of a power transformed value of Score. The best fitting line (in
red) corresponds to the model E(MaxSalary|Score) = β0 + β1Score

1.645.



Not having the data broken down in the correct way would make further analysis difficult.

7.4.2: See Figure 38 (left) for a scatter plot of MaxSalary versus Score. The appearance
of this looks like it needs a nonlinear transformation to be well approximated by a linear
model. To consider nonlinear transformations we first try to perform an power (Box-Cox)
transformation of the independent variable Score, using the alr3 function inv.tran.plot.
The estimated value of λ under this procedure is λ̂ ≈ 1.645313. We could then try to find
a power transformation for the response MaxSalary. When we do this we see that the
optimal transformation power λ̂ = 0.74 value seemed close enough to λ = 1 (meaning no
transformation) that it was felt that this was not worth while. The difference between these
two curves seems only to matter at larger values of MaxSalary. This transformation does
appear to give a variance that is constant.

See the R function chap 7 prob 4.R for code that implements this problem.

7.5 (the price of hamburgers in different cities)

We will perform this exercise with the two cities with the largest value of BigMac included.
Modifications needed to exclude these two cities should be obvious.

7.3.1: See Figure 39 (left) for a scatter plot of BigMac as a function of FoodIndex. We first
look for a transformation of FoodIndex. Using the R command inv.tran.plot we obtain
an estimate λ̂ = −0.7751(0.69). Since the standard error of this estimate is so large we will
take λ = 0 and perform a logarithmic transformation of the independent data. We next look
for a transformation of the response BigMac that would be beneficial for linear regression.
To do this we first fit a linear model of BigMac using the predictor log(FoodIndex) and
then call the alr3 function inv.tran.plot. We present the associated inverse response plot
in Figure 39 (right). The optimal power to use to transform the value of BigMac was found
to be −0.34(0.3). Again due to the large standard error we will transform the response with
a logarithm. The scatter plot that results from the

These total transformations do indeed help the prediction accuracy resulting in a significant
increase in the value of R2 from R2 ≈ 0.554 when using the fully transformed model to
R2 ≈ 0.382 when using the model with only FoodIndex transformed to using the original
model with no transformations where R2 ≈ 0.33.

7.3.2: See Figure 40 (left) for a scatter plot matrix of the requested variables. We can use
the alr3 command bctrans to estimate the optimal powers for the two variables Rice and
Bread. We find that the summary command (excluding the likelihood ratio information) for
this command gives

> summary(ans)

box.cox Transformations to Multinormality
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Figure 41: Left: The inverse response plot of the BigMac samples after fitting a linear
model on the variables log(Bread), log(Bus), log(TeachGI), and Apt0.33.

Est.Power Std.Err. Wald(Power=0) Wald(Power=1)

Rice -0.3136 0.1481 -2.1180 -8.8724

Bread -0.1939 0.1543 -1.2568 -7.7382

From this we see that the variable Bread (due to the large standard error) may indicate a
logarithmic transformation for that variable. The variable Rice has a smaller standard error
and perhaps the power −0.31 should be used for a transformation. If we accept the values
predicted by bctrans after transformation the scatter plot matrix looks like Figure 40 (right).

7.3.3: For this part of the problem we will use the command inv.tran.plot to find an
inverse response plot using the suggested transformation suggested for the independent vari-
ables. Note that we have not shown that these hypothesized transformations are optimal.
The plotted result from this command is shown in Figure 41 where the optimal power for
the response BigMac is found to be −0.256(0.17). Without an power transformation of the
variable BigMac the coefficient of determinism for this linear model is R2 ≈ 0.58. When we
do perform this power transformation we obtain an R2 ≈ 0.80.

See the R function chap 7 prob 5.R for code that implements this problem.
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7.6 (transforming the wool data)

7.6.1: See Figure 42 (left) for a scatter plot matrix of the original variables for this problem.

7.6.2: When we make all three predictors Len, Amp, and Load factors we see that fitting
the main effects with interactions second order model of Cycles on each of these factors
using the regression

Cycles ~ lenF + ampF + loadF + lenF:ampF + lenF:loadF + ampF:loadF

where lenF , ampF , and loadF are factors that we get summary statistics of R2 = 0.995 and
several highly significant parameter estimates indicating that the above model describes the
data well.

7.6.3: When we fit the simpler model consisting of only the main effects

Cycles ~ lenF + ampF + loadF

we find that the R2 = 0.769, which given the result above indicates that this simpler model
is lacking. Using the R command anova to directly compare the two models indicates that
there is a statistically significant reduction in variance in using the more complicated model
and that it is to be preferred. We next use the alr3 command bctrans to find an optimal
power transformations for each of the independent variables Len, Amp, and Load. The
optimal powers are approximately 0.5978 for each variable with standard errors that is much
larger than this value. This indicates that a logarithmic transformation maybe appropriate
for each independent variable. When we consider the inverse response plot for this data we
find that a logarithm transformation of the response maybe helpful. Finally, using all of this
information we fit the model

log(Cycles) ~ log(Len) + log(Amp) + log(Load)

and find a coefficient of determinism estimated at R2 = 0.966 with all parameter estimates
(but the intercept) well estimated. This indicates that nonlinear transformations can some-
times remove the need for interactions and the book calls this a removable nonadditivity.

See the R function chap 7 prob 6.R for code that implements this problem.

7.7 (justifying the transformation of Miles in the Fuel data set)

One justification for transforming Miles is provided by the log rule which states that if a
variables range is more than one order of magnitude then replacing the variable by its loga-



rithm is likely to be helpful. For this variable the range of Miles before and transformation
is [1534300767] which satisfies the above criterion.

7.8 (predicting fertility)

7.8.1: For this problem we use the alr3 command bctrans but with the “family” option
set to ”yeo.johnson”, since that will allow for the fact that the variable Change is negative.
When we use this command we get a summary that looks like

> summary(ans)

yeo.johnson Transformations to Multinormality

Est.Power Std.Err. Wald(Power=0) Wald(Power=1)

Change 0.9681 0.1193 8.1147 -0.2676

PPgdp -0.1226 0.0506 -2.4224 -22.1812

Frate 1.1173 0.1776 6.2912 0.6607

Pop 0.0508 0.0346 1.4699 -27.4638

Fertility -0.3099 0.1821 -1.7020 -7.1948

Purban 0.9629 0.1608 5.9896 -0.2309

Based on the estimated values and the standard errors we might consider the following values
for the vector λ

(1, 0, 1, 0, 0, 1) .

For example, the first 1 in the vector above indicates that there should be no transformation
for the variable Change while the second 0 indicates that there should be a “yeo.johnson”
logarithmic transformation of the variable PPgdp etc.

7.8.2: We next look for a nonlinear transformation of the response ModernC. To do that
we fit a linear model of ModernC using the transformed variables found above and use the
inv.tran.plot to determine a possible power transformation. The result from this is an
estimated power of 0.793 with a standard error of 0.194. Given this result we accept this
power and fit a linear model of the form

ModernC0.793 = β0 + β1Change+ β2 log(PPgdp) + β3Frate+ β4 log(Pop)

+ β5 log(Fertility) + β6Purban .

See the R function chap 7 prob 8.R for code that implements this problem.



Chapter 8 (Regression Diagnostics: Residuals)

Notes On The Text

It may help in reading this chapter to realized that much of the practical content of this
chapter is about determining and testing the specific form that a given data set should have
for a variance function. For most of the book we have assumed that

Var(Y |X = x) = σ2 .

This assumption may or may not be true for data set one may consider. The topics of
the “score” test allow one to hypothesis different models for the variance function and to
determine if the given data supports such a model. An example variance model of this type
would be one that depended linearly on one of the predictors

Var(Y |X = x) = σ2x .

The problems 8.3 and 8.4 in this chapter deal with such issues.

Notes on the residuals

In this section of these notes we derive some very simple properties of the residuals. The
residuals ê are defined as ê = (I −H)Y so the variance of ê is given by

Var(ê) = Var(êê′)

= Var((I −H)Y Y ′(I −H)′)

= (I −H)Var(Y Y ′)(I −H) .

Since H ′ = H . To finish this evaluation we next need to compute Var(Y Y ′). Using the
assumed model for Y of Y = Xβ + e we see that

Var(Y Y ′) = Var((Xβ + e)(Xβ + e)′) = Var(ee′) = σ2I .

Which gives that

Var(ê) = σ2(I −H)(I −H) = σ2(I − 2H +H2) .

Next consider H2. We see that

H2 = X(X ′X)−1X ′X(X ′X)−1X ′ = H .

Thus we finally get that
Var(ê) = σ2(I −H) , (64)

as claimed in the books equation 8.5.



Notes on the hat Matrix H

In this subsection we derive some of the results quoted in the book in this section. First
note that HX can be simplified as

HX = X(X ′X)−1X ′X = X .

From this it follows that (I − H)X = 0. Now the covariance between the residuals ê and
the predictions Ŷ or Cov(ê, Ŷ ) can be computed as

Cov(ê, Ŷ ) = Cov((I −H)Y,HY )

= (I −H)Cov(Y,HY )

= (I −H)Cov(Y, Y )H ′

= (I −H)σ2IH ′

= σ2(I −H)H ′ = σ2(I −H)H = 0 ,

verifying the result presented in the book.

Now the expression for hij can be obtained from ei and ej using the inner product e′iHej.
We can compute this expression in other ways by looking at the definition of H . We find

hij = e′iX(X ′X)−1X ′ej

= (X ′ei)
′(X ′X)−1(X ′ej) .

Note that X ′ei is the i-th column of X ′ which is the ith predictors from our data set i.e. xi.
Thus we see that

hij = x′i(X
′X)−1xj = hji , (65)

which is again claimed in the book.

To evaluate the sum
∑n

i=1 hii use the above expression to get

n
∑

i=1

hii =
n
∑

i=1

x′i(X
′X)−1xi

= x′1(X
′X)−1x1 + x′2(X

′X)−1x2 + · · ·+ x′n(X
′X)−1xn

= tr

























x′1
x′2
...
x′n













(X ′X)−1
[

x1 x2 · · · xn
]













= tr(X(X ′X)−1X ′) = tr(X ′X(X ′X)−1) = tr(I) = p′ ,

or equation 8.8. Since when the linear model includes a constant we have that ê′1 = 0, we
can use this relationship to derive an expression involving the components of the hat matrix
H . Using the fact that ê = Y − Ŷ in that expression we get

ê′1 = Y ′(I −H)1 = 0 .



This last expression in tern implies that (I −H)1 = 0, or 1 = H1. The ith equation in this
later system is given by

1 =
n
∑

j=1

hij , (66)

or the books equation 8.9.

When hii gets closer to 1 we can show that the prediction at xi or ŷi limits to yi the measured
value. To see this consider the ith equation from Ŷ = HY which is

ŷi =
n
∑

j=1

hijyj = hiiyi +
∑

j 6=i

hijyj . (67)

Then as hii → 1 we see that since
∑n

i=1 hij = 1 (derived in Equation 66) that the sum of hij
(without the term hii) limits to

∑

i 6=j

hij → 0 . (68)

Then using Equation 67 we have

|ŷi − hiiyi| ≤ |
∑

j 6=i

hijyj| ≤
∑

i 6=j

|hij||yj| =
∑

i 6=j

hij |yj|

≤ max
j

(|yj|)
∑

i 6=j

hij .

This later expression goes to zero by Equation 68 and we have that ŷi → yi. Note that we
can drop the absolute value on hii in the above derivation because hii is positive by the fact
that hii ≥ 1

n
.

Notes on non-constant variance

In the book when considering the possible variance models for the sniffer data set the
comment is made that since the two pressure variables TankPres and GasPres are very
linearly related we might not want to use both of them in the mean function. One of the
reasons for this is that the variance of our estimates of the coefficients in the linear regression,
βk, become much worse as the predictors get more and more correlated. If we desire or require
accurate values for βk then excluding one of the predictors in our linear model might be a
good idea.

Problem Solutions

8.1 (working with the hat matrix H)

8.1.1: For this part of the problem see the results on Page 105.
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Figure 43: Left: A scatter plot of Lab vs. Field for the pipeline data set and the OLS
linear fit. Note that the variance of the scatter points seems to change as Field increases.
Right: The residual plot for the pipeline data set. Again notice the non-constant variance.

8.2 (removing the linear trend in Fuel vs. ŷ)

The plot of the response Fuel as a function of the fitted values when the linear trend is
removed is equivalent to a plot of the residuals vs. the fitted values ŷ, which is Figure 8.5e.

8.3 (defects in the Alaska oil pipeline)

8.3.1: See Figure 43 (left) for a scatter plot of Lab vs. Field. Linear regression looks like it
would work reasonable well but the variance of the fit does not look to be constant.

Df Sum Sq Mean Sq F value Pr(>F)
pipeline$Field 1 59.17 59.17 18.52 0.0000
Residuals 105 335.43 3.19

Table 9: The ANOVA table for the score test for the non-constant variance model
Var(Lab|Field = f) = σ2f for Problem 8.3.2. The large F -value indicates that this is a
better variance model than a constant.

8.3.2: In Figure 43 (right) we have presented a residual plot. A residual plot is a scatterplot
of the Pearson residuals êi vs. the fitted values ŷi. We next consider the score test where



we consider a variance model that is linear in the variable Field. Using Field to predict the
scaled squared residuals has an ANOVA table is given in Table 9. From Table 9 the score test
for non-constant variance computes the value S = (1/2)SSreg = (1/2)59.17 = 29.58, which
is to be compared with the chi-squared distribution with one degree of freedom. This has
a very small p-value indicating that this data almost certainly has a non-constant variance
and that this variance model is better than a constant.

8.3.3: For this subproblem we use weighted least squares to attempt to better predict the
observed variance for the given data and then repeat the score test. We obtain the ANOVA
table for this second test given in Table 10. Again the score tests indicates that there is
strong evidence for a variance different than the one specified.

Df Sum Sq Mean Sq F value Pr(>F)
I(1/Field) 1 49.97 49.97 11.38 0.0010
Residuals 105 461.07 4.39

Table 10: The ANOVA table for the score test corresponding to the non-constant variance
model Var(Lab|Field = f) = σ2/f for Problem 8.3.3.

8.3.4: For this subproblem we use weighted least squares to attempt to better predict the
observed by using a variance model of Var(Lab|Field) = σ2/F ield2. The ANOVA table for
this model is given in Table 11. The score tests in this case gives a p-value of 0.01 the largest
seen under any of the variance models. This is clearly the best model specified.

See the R function chap 8 prob 3.R for code that implements this problem.

Df Sum Sq Mean Sq F value Pr(>F)
I(1/Field^2) 1 12.11 12.11 0.91 0.3431
Residuals 105 1402.26 13.35

Table 11: The ANOVA table for the score test corresponding to the non-constant variance
model Var(Lab|Field = f) = σ2/f 2 for Problem 8.3.4.

8.4 (determining a variance model for the stopping data set)

In Figure 44 we display the residuals of a linear fit of Speed vs. Distance under the assump-
tion of constant variance for various possible predictors. Specifically, we consider possible
models for the variance given by Speed, Speed2, and ŷ. We next use the score test to de-
termine which of the possible predictors given maybe best to use in predicting the variance.
The score tests for the variance residual models is given in Table 12. These results indicate
that the variances for this problem are almost certainly not constant. The book discusses a
test using the χ2 distribution to determine if the nested variance models reduces the variance
significaltly relative to smaller less general models. That would be used here to determine if
the addition of Speed2 was a useful modification. The S values in Table 12 give an indication
that this variable is helpful.
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Figure 44: Three residual plots for the stopping data set. Left: A scatter plot of the
residuals vs. the fitted values. Middle: A scatter plot of the residuals vs. Speed. Right:
A scatter plot of the residuals vs. Speed2.

df S p
˜Speed 1.00 20.49 0.00

˜Speed + I(Speed^2) 2.00 27.44 0.00
˜I(Speed^2) 1.00 25.11 0.00

˜fitted.values 1.00 20.49 0.00

Table 12: The ANOVA table for the score test corresponding to different variance models
for Problem 8.4.

See the R function chap 8 prob 4.R for code that implements this problem.

8.5 (leverages in the simple regression model E[Y |X = x] = β0 + β1x)

8.5.1: As demonstrated in Chapter 3 of this book, when we consider the simple linear
regression in matrix terms we have

(X ′X)−1 =
1

SXX

[

1
n

∑

x2k −x̄
−x̄ 1

]

,



with x̄ = 1
n

∑

xk and SXX given by Equation 104. Using the expression for hij given by
Equation 65 above we see that

hij = x′i(X
′X)−1xj

=
[

1 xi
]

(

1

SXX

[

1
n

∑

x2k −x̄
−x̄ 1

]) [

1
xj

]

=
1

SXX

[

1 xi
]

[

1
n

∑

x2k − xj x̄
−x̄+ xj

]

=
1

SXX

(

1

n

∑

x2k − (xi + xj)x̄+ xixj

)

(69)

Thus the leverage hii is given by

hii =
1

SXX

(

1

n

∑

x2k − 2xix̄+ x2i

)

. (70)

8.5.3: For this we want hii = 1 which using Equation 70 this requires

x2i − 2x̄xi +
1

n

∑

x2k − SXX = 0 .

In this later expression x̄, SXX , and
∑

x2k all have the variable xi in them. One would need
to write the above expression as an expression in xi. For example one would need to express

x̄ =
1

n
xi +

1

n

∑

k;k 6=i

xk ,

and the same for the other expressions. One would then obtain a quadratic equation for the
variable xi that could be solved using the quadratic equation to given the value of xi for
which hii = 1.

8.6 (an expression for hii in terms of the QR factorization of X)

Factoring X using the QR factorization as X = QR the hat matrix H becomes

H = X(X ′X)−1X ′

= QR(R′Q′QR)−1R′Q′

= QR(R′R)−1R′Q′

= QRR−1R′−1
R′Q′

= QQ′ .

Using this expression we can write hij as

hij = e′iHej = (e′iQ)(Q
′ej) = (Q′ei)

′(Q′ej) ,

where ei is a vector of all zeros with a single one at the ith location. Since Q′ei is the ith
column of Q′ it is also the ith row of Q. Defining the ith row of Q as qi we see that

hij = q′iqj .



8.7 (the values of hij for a special regression)

8.7.1: For this particular vector U =













1
0
...
0













the fitted values of the regression of U on X are

given by HU . Since U has a single 1 in the first component we have that Û = HU =













h11
h21
...
hn1













.

Since H is symmetric this is equivalent to a vector with components h1j for j = 1, . . . , n.

8.7.2: The vector of residuals ê is defined as U − Û which by the way that U is defined and
the above result gives

ê1 = 1− h11

êj = 0− h1j = −h1j for j > 1 .

8.8 (orthogonal matrices)

To show that H and I−H are orthogonal see the results on Page 105. To consider the slope
of the regression of ê on Ŷ recall that these two expressions are given by

Ŷ = HY

ê = Y − Ŷ = Y −HY = (I −H)Y .

The slope of the regression of ê onto Ŷ is the estimated slope where the x-variable is Ŷ and
the y-variable is ê. This is given by Equation 110 or

β̂1 =
SŶ ê

SŶ Ŷ
.

Now since an intercept is included in the regression the mean of ê is zero so using Equation 106
to evaluate SŶ ê we see that

SŶ ê =
∑

ŷiêi = Ŷ ′ê

= (HY )′(I −H)Y

= Y ′H ′(I −H)Y

= Y ′H(I −H)Y = 0 ,

since H is symmetric and I −H are orthogonal.

8.9 (the hat matrix with weighted errors)

Let W 1/2 be the n × n diagonal matrix with elements
√
wi and W−1/2 its corresponding

inverse. Then define Ŷ = W 1/2Y . Assuming the suggested model for Y is true that is



Y = Xβ + e, for some value of β we see that Ŷ has the following linear model

Ŷ =W 1/2Y =W 1/2Xβ +W 1/2e .

The error term in the regression of Ŷ onto W 1/2X then has a variance given by

Var(W 1/2e) = W 1/2Var(ee′)W 1/2

= W 1/2(σ2W−1)W 1/2

= σ2I .

Thus we can apply OLS regression on the variable W 1/2X . The hat matrix H for these
variables is given by

H = (W 1/2X)((W 1/2X)′(W 1/2X))−1(W 1/2X)′

= (W 1/2X)(X ′W 1/2W 1/2X)−1X ′W 1/2

= W 1/2X(X ′WX)−1X ′W 1/2 ,

the desired expression.

8.10 (residual plots of the California water data set)

The mean function described in Problem 7.3.3 is given by

E(log(y)|x) = β0 + β1 log(APMAM) + β2 log(APSAB)

+ β3 log(APSLAKE) + β4 log(OPBPC)

+ β5 log(OPRC) + β6 log(OPSLAKE) .

We can use the alr3 command residual.plots to generate the residual plots for the above
model. This command also generates tests for curvature which are given by

> residual.plots( m0 )

Test stat Pr(>|t|)

logAPMAM 0.4499390 0.65552893

logAPSAB -0.4647128 0.64501524

logAPSLAKE -0.8524521 0.39975903

logOPBPC 1.3848392 0.17486642

logOPRC 0.8386546 0.40735461

logOPSLAKE 1.6295066 0.11217455

Tukey test 1.8386288 0.06596981

Based on this result only the “Tukey test” seems to be somewhat (although not overly so)
significant. This means that there is some chance that there is a dependence of the variance
on the value of the response y and perhaps variance stabalization would help. Using the
alr3 command mmps show graphically that the linear fit seems to be a good one.

See the R function chap 8 prob 10.R for code that implements this problem.
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Figure 45: Plots from the mmps command for the transaction data set.

8.11 (marginal model plots of the transaction data)

This data set is discussed on page 102 in Section 4.6 in the book where the following model
for T ime is proposed

E(T ime|T1, T2) = β0 + β1T1 + β2T2 .

We fit this model and then use the alr3 command mmps to assess visually the mean and
variance specifiations. When we run this command we get the results shown in Figure 45.
The loess curves and the linear curves are relativly close indicating that the fit is a good one.

See the R function chap 8 prob 11.R for code that implements this problem.

8.12 (modeling crustacean zooplankton)

For this problem we are given the lakes data set which has a large number of features and
are asked to perform a modeling study of this data. Since there were quite a few variable
as a first step I computed the correlation matrix of all predictors and the single response
Species. To simplify the complexity of the problem I then choose to predict Species based
on the three predictors that are most correlated with it. This resulted in the variables (and
correlations values) of

Dist Elev Area



0.35328247 0.40441612 0.74810087

The range of the variables Dist and Elev span three orders of magintude indicating that a
power (i.e. logarithm) transformation maybe helpful. I choose to use the alr3 command
bctrans to search for optimal power transformations. The edited summary of running that
command is given by

box.cox Transformations to Multinormality

Est.Power Std.Err. Wald(Power=0) Wald(Power=1)

Elev 0.1863 0.0725 2.5689 -11.2229

Dist -0.3597 0.1432 -2.5124 -9.4963

Area -0.0292 0.0328 -0.8910 -31.3975

From this summary power transforamtion of zero (or logarithmic transformation) for all the
independent variables are reasonable approxmations. We also find using the alr3 command
inv.trans.plot that no transformation of the response seems to help the linear regression.
A scatter plot matrix of all three terms and the response is given in Figure 46 (left). From
there we see that the variable log(Elev) does not seem to predict Species vary well. In
addition, when we fit a linear model using these three terms the coefficient of log(Elev)
has a p-value of 0.32 indicating that its value is not well known. Based on this evidence I
decided to drop this term from our model. Next we plotted to study if the assumption of
constant variance is violated. Using the alr3 command plot.residuals we obtain the plot
in Figure 46 (right) with summary statistics given by

Test stat Pr(>|t|)

logDist -1.042883 0.30458247

logArea 1.911697 0.06463105

Tukey test 1.758213 0.07871135

Since these p-values are relativly large (at least they are not zero) we might conclude that
the constant variance specification is reasonably sound. If we were to include a term in the
variance because the log(Area) coefficient has the smallest p-value we should begin with a
variance model like

Var(Species|log(Dist) = d, log(Area) = a) = σ2a .

Finally, using the command mmps command we can visually compare the least squares fit
with the provided loess fits. Unfortunatly, the two do not seem to agree very well for the
mean function we have specified. This indicates that we should revist the choice of predictors
and try to get a better match.

See the R function chap 8 prob 12.R for code that implements this problem.
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Figure 46: Left: A scatter plot matrix of three possible predictors in the lakes data set.
Right: Residual plots corresponding to the model E(Species|log(Dist) = d, log(Aread) =
a) = β0 + β1d+ β2a.



Chapter 9 (Outliers and Influence)

Notes On The Text

Notes on an outlier test

We will derive an alternative expression for t-tests used to determine in the mean shift outlier
model if each given point xi is an outlier. The t-tests for each sample xi involve computing

ti =
yi − ŷi(i)

σ̂(i)
√

1 + x′i(X
′
(i)X(i))−1xi

. (71)

We will write ti in terms of the standardized residuals ri which are given by

ri =
êi

σ̂
√
1− hii

. (72)

To do this recall that ŷi(i) = x′iβ̂(i) so from Problem 9.4

yi − ŷi(i) = yi − x′iβ̂(i) =
êi

1− hii
.

From Equation 121 we have that the inner product of the matrix X ′
(i)x(i) with xi is given by

x′i(X
′
(i)X(i))

−1xi = hii +
1

1− hii
x′i(X

′X)−1xix
′
i(X

′X)−1xi

= hii +
h2ii

1− hii
=

hii
1− hii

.

Using these expressions ti is given by

ti =
êi

σ̂(i)
√

1 + hii

1−hii

(

1

1− hii

)

=
êi

σ̂(i)
√
1− hii

,

which is one of the equations in the books 9.4. Transforming this expression into one involving
the standardized residual ri and using the books A.39 of

σ̂2
(i) = σ̂2

(

n− p′ − 1

n− p′ − r2i

)−1

,

we have

ti =
σ̂

σ̂(i)
ri =

(

n− p′ − 1

n− p′ − r2i

)1/2

ri , (73)

which is the second expression in the books equation 9.4. The benefit of this expression over
that given in Equation 71 is that without any modification this later expression would require
computing (X ′

(i)X(i))
−1 for each of i = 1, · · · , n which could be computationally costly.



Notes on Cook’s distance

Cook’s distance Di is defined as

Di =
(β̂(i) − β̂)′(X ′X)(β̂(i) − β̂)

p′σ̂2
. (74)

By moving the X in the “sandwiched” expression X ′X to each of the beta vectors in the
inner product we can write Di as

Di =
(X(β̂(i) − β̂))′(X(β̂(i) − β̂))

p′σ̂2
=

(Ŷ(i) − Ŷ )′(Ŷ(i) − Ŷ )

p′σ̂2
,

which is the books equation 9.7.

Notes on computing Di

Starting with the definition of Cook’s distance Di given by Equation 74 and using Equa-
tion 125 we can write Di as

Di =
1

p′σ̂2

(

êi(X
′X)−1xi

1− hii

)′
(X ′X)

(

êi(X
′X)−1xi

1− hii

)

=
ê2i

p′σ̂2(1− hii)2
x′i(X

′X)−1(X ′X)(X ′X)−1xi =
ê2ihii

p′σ̂2(1− hii)2
.

Next using the definition of the standardized residual, ri, given in Equation 72 to write the
êi above in terms of ri we get

Di =
r2i hii

p′(1− hii)
, (75)

which is the books equation 9.8.

Problem Solutions

9.1 (examples computing ri, Di, and ti)

To solve this problem we will first compute ri using Equation 72. Next using the values of ri
in Equation 75 we will compute Di. Finally, we will use Equation 73 to compute ti. To test
each case to be an outlier we will compare the values of ti to the quantiles of a t-distribution
with n− p′ − 1 degrees of freedom. When we do this we get the following p-values for each
of the given cases

[1] 0.434861199 0.392019262 0.007963954 0.003330443



Thus the last two points (the ones with the largest êi values) are candidates for outliers.
The influence of each sample on the estimated coefficients is determined by looking at the
Cook distances Di. The values of Di computed for this data are given by

[1] 1.1250000 0.4499736 0.4500000 0.3689939

which make the argument that the most influential point is the first one even though it does
not have a seemingly large value of the residual ê1.

See the R function chap 9 prob 1.R for code that implements this problem.

9.2 (examples computing ri, Di, and ti)

From the given specification of the mean we see that p = 4 so that p′ = 5. Since the degrees
of freedom df of the residuals is given by df = n − p′ since we are told df = 46 we find
n = df + p′ = 51. We will follow the same specifications as in Problem 9.1 and find that the
values we find for ti are given by

[1] -3.1927822 -2.4376317 -1.8147106 3.2465847 -0.9962917

indicating that the first (Alaska) and the second from the last (Wyoming) are candidates for
outliers. The values we find for Cooks distance Di are given by

[1] 0.5846591 0.2074525 0.1627659 0.1601094 0.1408527

Indicating that the most influential measurement is the first (Alaska again). Depending on
the use of this model maybe the data point represented by Alaska should be removed.

See the R function chap 9 prob 2.R for code that implements this problem.

9.3 (proving the case deletion matrix inverse lemma)

This problem is worked in the Appendix on Page 161.

9.4 (deriving the PRESS or predicted residual)

Using Equation 125 we can write the predicted residual or PRESS as

yi − x′iβ̂(i) = yi − x′i

(

β̂ − (X ′X)−1xiêi
1− hii

)



= êi +
hiiêi
1− hii

=
êi

1− hii
,

the requested expression. Note we have used the fact that êi ≡ yi − x′iβ.

9.5 (deriving the expression for Di)

See the notes in this text given on Page 117 for this derivation.

9.6 (deriving the expression for D∗
i )

Warning: There seems to be an error in the following derivation, since it does not match
the final result from the text. I’m not sure where the error in this derivation might be. If
anyone finds anything incorrect with this argument please contact me.

We will define D∗
i as

D∗
i =

1

pσ̂2
(β̂∗

(i) − β∗)′(X ′X )(β̂∗
(i) − β∗) . (76)

To simplify this we will start with Equation 125 for the full vector β̂ but written as

(X ′X)(β̂∗
(i) − β∗) = − êi

1− hii
xi .

Using this expression we will follow the steps we performed on Page 25 of these notes. To
do that we define ∆β̂ as

∆β̂ = β̂(i) − β ,

with two parts ∆β̂0 and ∆β̂∗ just as we had done before when we split β into two pieces.
We get

[

n nx̄′

nx̄ V ′V

] [

∆β̂0
∆β̂∗

]

= − êi
1− hii

[

1
x∗i

]

.

We will multiply the first equation above by 1/n, write out explicitly the first equation in
terms of ∆β̂0 and ∆β̂∗ and then solve for ∆β̂0, which is then put into the second equation.
This gives a single equation for ∆β̂∗ which is

(V ′V − nx̄x̄′)∆β̂∗ = (x̄− x∗i )
1

1− hii
êi .

as in Equation 19 we find that the coefficient of ∆β̂∗ simplifies to X ′X . We finally get

∆β̂∗ = (X ′X )−1(x̄− x∗i )
êi

1− hii
.

Using this expression we can evaluate D∗
i to get

D∗
i =

1

pσ̂2

(

(X ′X )−1(x̄− x∗i )
êi

1− hii

)′
(X ′X )

(

(X ′X )−1(x̄− x∗i )
êi

1− hii

)

=
ê2i

(1− hii)2
1

pσ̂2
(x̄− x∗i )

′(X ′X )−1(x̄− x∗i ) .



Using the fact that ri and êi are related by

ri =
êi

σ̂
√
1− hii

⇒ ê2i = σ̂2(1− hii)r
2
i ,

we can write D∗
i as

, D∗
i =

ri
2

p(1− hii)
(x̄− x∗i )

′(X ′X )−1(x̄− x∗i ) .

To finish this derivation recall the books equation 8.11 or

hii =
1

n
+ (x∗i − x̄)′(X ′X )−1(x∗i − x̄) . (77)

Using this we can replace the expression (x∗i − x̄)′(X ′X )−1(x∗i − x̄) with hii − 1
n
to get

D∗
i =

ri
2

p

(

hii − 1/n

1− hii

)

.

This is different than the books result in that the denominator does not have the 1/n term.
If anyone sees an error in this calculation please email me.

9.8 (elections in Florida)

In Figure 47 (left) we display the scatter plot of the number of votes for Buchanan vs. Bush
found in the florida data set. Notice the potential outlier at the top of this graph. We
next compute the values of ti for each sample and find that the largest one is located at the
50-th location with values

> florida[spot,]

County Gore Bush Buchanan

50 PALM BEACH 268945 152846 3407

The p-value for this element using the Bonferroni bound is zero indicating that there is “no”
chance that this residual is this large by chance. We thus conclude that this point is an
outlier. If we next look for the next largest value of ti (in search for another outliers) we find
its value is given by −3.280 at the spot containing the data

> florida[spot,]

County Gore Bush Buchanan

13 DADE 328702 289456 561

The Bonferroni p-value expression computed with n*2*(1-pt(t,n-pprime-1)) has a value
greater than one indicating that we should truncate its value to 1. Thus we conclude that
this point is not a candidate for an outlier.
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Figure 47: Left: A scatter plot of Buchanan and Bush votes (unmodified) from the florida
data set and the corresponding ordinary least squares fit. Right: A scatter plot of the
transformed Buchanan and Bush data and the corresponding ordinary least squares fit.

We next try to transform the independent and dependent variables using the techniques
from this book. When we use the alr3 command inv.tran.estimate we find a possible
scaled power transformation for the Bush variable. This command gives

lambda se RSS

7.016553e-01 2.556051e-01 7.934565e+06

and visually the fitted mean function using the power 0.7 looks very similar to the same
thing under no transformation (using the value of 1.0). In addition, the standard error of
the above estimate indicates that the value of 0.7 may not be sufficiently different than
1.0. In any case we will accept the value of 0.7 as valid and perform this power transform
on the raw Bush vote data. Next we look for a transformation of the dependent variable
Buchanan. The scaled power transformation 0.23 seems to be a good fit. When we perform
these transformation we get the plot shown in Figure 47 (right). We can run the same tests
as performed earlier. We find the same two points are possibly outliers and again find that
“Palm Beach” is very likely an outlier but that “Dade” is most likely not. This is the same
conclusion reached earlier.

See the R function chap 9 prob 8.R for code that implements this problem.
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Figure 48: An added variable plot for the UN3 data set from the avp command in the car

package. Note that the slope of the line in the added variable plot for the variable Pop seems
to be heavily determined by the two points to the far right of that plot.

9.9 (outliers in the united nations data set)

9.9.1: In Figure 48 we present the added variable plots (AVP) for the regression suggested.
We see several things from these plots, from the added variable plot corresponding to the
variable Pop, we see that the two points with the largest value of Pop

Locality ModernC Change PPgdp Frate Pop Fertility Purban

25 China 83 0.73 918 73 1304196 1.83 37

50 India 43 1.51 467 34 1065462 3.01 28

seem to have a large influence on their β coefficient since the slope of the linear fit presented
there is strongly dependent on their two values. Without these two points the added variable
plot would resemble a null plot indicating no dependence on the variable Pop. The second
thing to notice is that the AVP for the variable Purban is a null plot indicating that this
variable gives no information (when we have already included the others). This information
is also present in the p-value for this coefficient when we fit a linear model to ModernC
using all the coefficients (its p-value turns out to be 0.87 indicating no rejection of the
null-hypothesis).

9.9.2: We can use the command rstudent to look for outliers and the Bonferroni inequity
to get significance levels for each point to be an outlier. This test gives that none of the
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Figure 49: A scatter plot matrix for all variables in Problem 9.10.

points in this data set should be classified as an outlier.

See the R function chap 9 prob 9.R for code that implements this problem.

9.10 (land/rent agricultural data)

For this problem we are asked to determine a linear model for Y , the average rent per acre
planted to alfalfa in counties in Minnesota in terms of the variables Xi for i = 1, . . . , 4. If all
independent variables were deemed equally important one might initially attempt a model
of the form

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 .

There are some problems with this initial model however. The first is that the variable X4

represents whether or not the field was required to be “limed” (the compound lime applied
to the field) in order to grow alfalfa. This variable is necessarily Boolean and should be
properly represented as a factor. Using X4 as a factor, the most general of linear model is

E(Y |X1 = x1, X2 = x2, X3 = x3, X4 = j) = β0j + β1jx1 + β2jx2 + β3jx3 , (78)

for j = 0, 1 indicating the liming requirement. In this model depending on the value of X4,
the mean function for Y can be entirely different. One might expect that the presence or
absence of a requirement for liming would not materially affect the average price of land Y
and because of that the above model is too general and a simpler model ignoring the feature
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Figure 50: The added variable plot for the variables under the full model in Problem 9.10.

X4 would be preferred. Dropping the term X4 one such model would be

E(Y |X1 = x1, X2 = x2, X3 = x3) = β0 + β1x1 + β2x2 + β3x3 . (79)

We can test that this model is not sufficiently different in predictive power than the more
general model in Equation 78 using the anova function. As a second observation we would
expect that the variables X2 and X3 would be highly correlated since X2 is the density of
dairy cows and X3 is the proportion of farmland used for pasture (which would include land
used for cows). Thus the added variable plot of either X2 or X3 in the full model should show
an almost horizontal line indicating that given all but either of these two variables the other
is determined. All possible added variable plots for the model 78 are shown in Figure 50.
There we see that the line in the X3 added variable plot is indeed nearly horizontal with
the exception caused by the two potential outliers at the far right of the plot. Where these
outliers found to be incorrect in some way the slope of this line would change dramatically.
In addition, the added variable plot of X4 is basically a null plot adding argument to our
hypothesis that X4 is not an important variable for predicting Y .

When we compute the models given by Equation 78 and 79 the anova command gives

> anova(m1,m0)

Analysis of Variance Table

Model 1: Y ~ X1 + X2 + X3 + x4Factor + X1:x4Factor + X2:x4Factor + X3:x4Factor

Model 2: Y ~ X1 + X2 + X3



Res.Df RSS Df Sum of Sq F Pr(>F)

1 59 4941.0

2 63 5385.7 -4 -444.8 1.3278 0.2702

This indicates that there is a 27% chance that the reduction in RSS due to the addition
complexity in model 78 is due to chance. This is not small enough to warrant the complexity
and we drop X4 from.

The question as to whether the process of liming results in an increase in the value of Y
might be answered by considering the model

E(Y |X1 = x1, X2 = x2, X3 = x3, X4 = j) = β0j + β1x1 + β2x2 + β3x3 , (80)

where now only the intercept β0j depends on the factor X4. When we compare this model
to that of model 79 we get an anova table given by

> anova(m2,m0)

Analysis of Variance Table

Model 1: Y ~ X1 + X2 + X3 + x4Factor

Model 2: Y ~ X1 + X2 + X3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 62 5374.8

2 63 5385.7 -1 -10.9 0.1261 0.7237

The large value of Pr(>F) indicates that we should not consider this model further.

We are left considering model 79. The added variable plot for this model is shown in
Figure 51 (left). We note that there appear to be two possible outliers with vary large
values of X3 that contribute to the non-zero estimate of the coefficient β3. When we look at
possible outliers we find that the “most likely” candidate for an outlier is not one of the two
points suggested in the above added variable plots. The point with the largest value of ti
has a probability of begin an outlier given by the Bonferroni inequality of 0.08 which is not
overwhelming evidence. We conclude that we don’t need to remove these points and refit.
We can still determine if the value of X3 significantly helps predict the value of Y . Again
using the anova command we find that including the term X3 is not needed and we come to
the model

E(Y |X1 = x1, X2 = x) = β0 + β1x1 + β2x2 . (81)

Note this is like deleting the feature X2 or X3 that has the smaller t-test value when we
fit the linear model in Equation 79. The added variable plot for the model 81 is shown in
Figure 51 (right).

To determine if rent is higher in areas where there is a high density of dairy cows means we
would like to determine if β2 > 0. Since the R summary command gives the following for this
two term (and an intercept model)
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Figure 51: Left: The added variable plot (AVP) for the variables under the full model in
Problem 9.10 but without the factor variable X4. The almost horizontal line in the AVP
for X3 indicates that perhaps the value of X3 is not needed given the others. Right: The
added variable plot for the model given by Equation 81.



Call:

lm(formula = Y ~ X1 + X2)

Residuals:

Min 1Q Median 3Q Max

-21.4827 -5.8720 0.3321 4.3855 28.6007

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.11433 2.96123 -2.065 0.043 *

X1 0.92137 0.05382 17.121 < 2e-16 ***

X2 0.39255 0.07422 5.289 1.59e-06 ***

---

Residual standard error: 9.236 on 64 degrees of freedom

Multiple R-Squared: 0.8379, Adjusted R-squared: 0.8328

F-statistic: 165.3 on 2 and 64 DF, p-value: < 2.2e-16

we can be reasonably sure that the value of β2 ≈ 0.39(0.07) is positive. This could be tested
with a statistical test and a p-value computed.

See the R function chap 9 prob 10.R for code that implements this problem.

9.11 (cloud seeding)

In Figure 52 we present a scatter plot matrix for the cloud data set. At the outset we can
ignore the variable D since the days index of the experiment should not be an input to this
model. The correlation matrix for this data set shows that we expect that S (suitability
of seeding), E (echo motion or type of cloud category), C (percent of cloud cover), and P
(prewetness) are the variable that are most correlated with Rain (in that order). Note that
at the outset the variables A and Rain do not seem very correlated.

We begin this problem by trying to predict whether the value ofA, a factor variable indicating
whether seeding was performed had any type of effect on the response variable Rain. We
expect that whether or not seeding was performed the amount of rain would depend on the
other explanatory variables: S, E, C and P . A very general model would be

E(Rain|S = s, E = i, C = c, P = p, A = j) = β0ij + β1ijs+ β3ijc+ β4ijp ,

where in the above E and A are taken to be factors. The above model does not include
any direct interaction terms between E and A. This seems to be reasonable as A (whether
to seed or not) was chosen randomly by flipping a coin and the type of cloud E would be
independent of the flip obtained. Rather than deal with the complexity of two factors that
would be required to work with the above model lets instead consider a simpler model where
E is not taken as a factor but is instead taken to be a continuous variable. We are then led
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Figure 52: The scatter plot matrix for the variables in the cloud data set.

to consider the model

E(Rain|S = s, E = e, C = c, P = p, A = j) = β0j + β1js + β2je + β3jc+ β4jp .

Starting with this larger model we effectively perform “backwards selection” by hand re-
moving terms that when removed don’t result in a “statistically significant” increse in RSS.
After this is done the model that seems approporiate is

E(Rain|S = s, C = c, A = j) = β0j + β1js+ β3jc . (82)

Thus we have dropped the features P (prewetness) and E echo motion from consideration.
The added variable plot for the model above is presented in Figure 53. As an addition
reference we note that this problem is also discussed in detail in the book [1].

See the R function chap 9 prob 11.R for code that implements this problem.

9.12 (health plans)

For this problem we want to predict COST based on possible predictors GS (percentage
of generic substituions), RI (restrictiveness index), F (percentage female members), AGE
(average members age), RXPM (average number of predictions per year), COPAY (average
member copay), and MM (member months). In Figure 54 we present a scatter plot matrix
of the variables for this problem. As an additional piece of information from the correlation



−0.2 0.0 0.2 0.4

−2
0

2
4

Added−Variable Plot

aF0 | others

Ra
in  

| o
the

rs

−0.2 0.0 0.1 0.2 0.3 0.4

−4
−2

0
2

4
6

8

Added−Variable Plot

aF1 | others

Ra
in  

| o
the

rs

−1.5 −0.5 0.5 1.0 1.5

−4
−2

0
2

4

Added−Variable Plot

aF0:S | others

Ra
in  

| o
the

rs

−1.0 −0.5 0.0 0.5 1.0

−4
−2

0
2

4
6

Added−Variable Plot

aF1:S | others

Ra
in  

| o
the

rs

−4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

Added−Variable Plot

aF0:C | others

Ra
in  

| o
the

rs

−5 0 5 10 15 20 25

−2
0

2
4

Added−Variable Plot

aF1:C | others

Ra
in  

| o
the

rs
Figure 53: The added variable plot for the model given by Equation 82.
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Figure 55: The added variable plot for the full model.

matrix we expect that the variables GS, AGE, and F are the most predictive of the value
of COST .

We want to stastically test if the coefficients of GS and RI are negative indicating that using
more GS and RI will reduce drug costs. The main question to ask is from the two factors
GS and RI which is more important at lowering the value of COST . When we look at the
various models we can drop several of the terms because their inclusion does not result in a
significant reduction in RSS. After performing the “backwards selction” by hand we finally
end with a model

E(COST |RXPM = r, GS = g, AGE = a) = β0 + β1r + β2g + β3a . (83)

The fact that the variable RI can be dropped without affecting the predictive power of the
model too much indicated that this parameter in fact does not affect COST very much. The
added variable plot for the full model is given in Figure 55. In that plot we see that the
variable RI has an almost horizontal line indicating that its coefficient is not very informative
given the other variables. Finally, when we look at the summary command for the model
Equation 83 we get that

Call:

lm(formula = COST ~ RXPM + GS + AGE)

Residuals:

Min 1Q Median 3Q Max



-0.14956 -0.04003 0.00120 0.05936 0.12197

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.52905 0.36930 6.848 3.54e-07 ***

RXPM 0.01813 0.01003 1.807 0.082749 .

GS -0.01159 0.00277 -4.185 0.000307 ***

AGE -0.03263 0.01262 -2.586 0.015940 *

---

Residual standard error: 0.0831 on 25 degrees of freedom

Multiple R-Squared: 0.4908, Adjusted R-squared: 0.4297

F-statistic: 8.032 on 3 and 25 DF, p-value: 0.0006474

This indicates that the coefficient of the term GS is β2 = −0.011(0.002) indicating that if
one were to increase the value of GS this would result in a decrease in the value of COST .
This model also paradoxily indicates that if we increase the value of AGE the plans cost
also goes down.

See the R function chap 9 prob 12.R for code that implements this problem.



Chapter 10 (Variable Selection)

Notes On The Text

Notes on approximate collinearity when p > 2

After defining the term approximate collinearity of the predictors Xj in the case when p > 2
it can be helpful to have an computational definition to use in searching for it. To determine
if a set of predictors is approximate collinear we can perform p regressions by regressing Xi

on the set of all X ’s excluding Xi. That is we regress

Xi ∼ X \ {Xi} ,

for i = 1, 2, . . . , p. For each regression we compute the coefficient of determination, R2, and
since this depends on the ith predictor Xi that is the target of the regression these values
can be indexed with i as R2

i . Then consider the largest of all these R2
i values

R2
max = max

i
(R2

i ) ,

if R2
max is close to 1 then we declare that the variable Xi are approximately collinear.

Notes on Computationally Intensive Criteria

In this section the book mentions two cross-validation the procedures. The first is where the
total data set is split into two parts: a construction set and a validation set. The second was
denoted as computing predicted residuals. This second procedure might be better understood
in that it appears to be a form of leave-one-out cross validation, where we hold out a single
sample xCi, fit the regression coefficients using all of the other data points to get β̂C(i) and
then determine how well this linear model predicts the response of xCi via computing the
square error (yi − x′Ciβ̂C(i))

2. How well this candidate set C does at predicting y can be
estimated adding up the above square error when we hold out each sample one at a time or

n
∑

i=1

(yi − x′Ciβ̂C(i))
2 .

The above expression is defined as the predicted residuals or PRESS. Up to this point this
procedure could be applied to any model selection procedure, but we may have a significant
amount of computation to do to obtain the leave-one-out models. What makes this cross-
validation procedure different is that it can be shown that when we are considering linear

regression the above expression for PRESS can be determined from expressions that we can
compute when we do a global fit to calculate β̂C keeping all samples (i.e. not holding out
any samples). The expression for PRESS above then becomes

PRESS =
n
∑

i=1

(

êCi
1− hCii

)2

,



where êCi and hCii are the residual and the leverage for the ith case. Thus by doing a fit over
all samples we can evaluate the PRESS and not have to refit our model n times as would
need to be done with a very simple implementation of hold-one-out cross validation. Some
modeling techniques don’t have this refitting problem. For example selecting the k to use in
k nearest neighbor regression does not suffer from this since it is relatively easy to evaluate
each model (change k) when one point is “held out”.

Notes on Computational Methods

We note that stepwise methods like forward selection and backwards selection, using the
information criteria suggested in the book, are not really equivalent when one of the variable
is a factor (or equivalently a group of variables). The reason for this is that when a factor
enters or exits a fit we must also change the value of pC in addition to the value of RSSC.
The different coefficients of the term pC in the different information criterion i.e. AIC, BIC
or Mallow’s Cp can result in different predictions for the subset to use in minimizing the
information criterion. Thus when factors are not considered the three information criterion
AIC, BIC, and Mallow’s Cp will all select the equivalent subsets. When one of the variables
is a factor this may no longer be true.

Problem Solutions

10.1 (correlated features make feature selection more difficult)

In this problem we duplicate the example in the book that demonstrates that in linear
regressions on correlated variables is can be difficult to determine which variables are active
and which are inactive when the sample size is small and the variables are correlated. To
implement this problem we change the random seed and rerun the R code that was used to
generate the example from the book. We see the same behavior discussed in the book. The
most interesting result being that when we consider strongly correlated variables the variance
of the estimate of β̂i are so much larger than in the uncorrelated case. This results in smaller
t-values that would be expected and more conclusions on the significance of coefficients β̂i.
As an example, when on runs the R script below one see that if we have a small sample size
and strongly correlated variables (represented by the model m2) the predictions of the linear
models y ~ x1 + x4 and y ~ x3 + x4 both have statistically significant estimates for their
β coefficients even though the data as generated did not explicitly involve these variables.
This is not much of an practical issue since in either case the variables x3 and x4 could be
used to predict y.

See the R file chap 10 prob 1.R for an implementation of the problem.



10.2 (backwards elimination (BE) and forward selection (FS))

Warning: The code for this problem seemed to produce different results depending on the
version of R on which it is run. The results shown here are for R version 2.6.0 (2007-10-03),
where backwards selection results in keeping all three terms. If the code is run on the R ver-
sion R version 2.10.0 (2009-10-26) the AIC for the full three term model was estimated
at −285.77 and backwards selection removed the variable X3 before finishing. The general
conclusion that backwards elimination and forward selection can yield different subsets is
still a valid conclusion however.

For this problem we first perform backwards elimination (BE) on the mantel data set and
then second perform forward selection (FE) on the same data set. When we perform back-
ward elimination starting with the regression of Y on all of the other variables the R function
step quickly tells us that the optimal subset (under any of the subset selection criterion AIC,
BIC, or Cp) is the one containing all of the terms. This set has an AIC of −315.23 and the
estimated coefficients are given by

Call:

lm(formula = Y ~ X1 + X2 + X3, data = mantel)

Coefficients:

(Intercept) X1 X2 X3

-1.000e+03 1.000e+00 1.000e+00 4.404e-15

From which we notice that the coefficient of X3 is effectively zero when compared to the
magnitude of the others.

When one runs forward selection on the the other hand all three criterion function select a
regression with only one (the X3) term. This model has an AIC given by −0.31 and has
coefficients given by

Call:

lm(formula = Y ~ X3, data = mantel)

Coefficients:

(Intercept) X3

0.7975 0.6947

This is another example where determining the true active set is difficult and the two model
selection techniques give different answers. We can tell that this is the case where the
sample size is very small (only five measurement) and where the input variables are strongly
correlated. Displaying the correlation matrix we see that it is given by

> cor(as.matrix(mantel)[,c(2,3,4)])



X1 X2 X3

X1 1.0000000 -0.9999887 0.6858141

X2 -0.9999887 1.0000000 -0.6826107

X3 0.6858141 -0.6826107 1.0000000

from which we see that indeed the input variables are very strongly correlated and we expect
that determining the active variables will be difficult. The fact that several of the variables
like X1 and X2 are so correlated means the variance of their estimates will be particularly poor.
See Problem 10.6 on page 137 and Equations 89 and 92 that demonstrate how correlation
among factors affects the variance of the estimate for β.

See the R file chap 10 prob 2.R for an implementation of the problem.

10.3 (backwards elimination (BE) on the highway data)

For this problem we perform backwards elimination (BE) on the highway data set. To do
this we use the R command step. The results of this study can be found by running the
R script file chap 10 prob 3.R. When we run that command we start with a “full” model
and sequentially remove measurements taking the measurement to remove that results in
the smallest AIC. This procedure continues to remove features until the smallest model is
obtained (in this case that is a model with only the feature logLen). The routine stops when
there is no reduction in AIC by removing a feature. The final model produced by backward
selection in this case is given by

logRate ~ logLen + logADT + logSigs1 + Slim + Hwy

and has an AIC value of −74.71. When we look at the books result from forward selection
gives the model

logRate ~ logLen + Slim + logTrks + Hwy + logSigs1

with an AIC of −73.03. These two models are the same in the number of terms 5 but differ
in that the first has the variable logADT while the second has the variable logTrks.

10.4 (optimal subset selection for HT18 as a function of younger measurements)

For this problem we will apply subset selection to theHT18 data from the Berkeley Guidance
Study using variables produced during for younger ages. To save time we don’t perform
transformations of the variables but consider them in their raw form. We consider all possible
variables that we could use to predict the value of HT18 and then fit a linear model on all



Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.3997 16.2947 2.72 0.0085

WT2 0.5303 0.3228 1.64 0.1057
HT2 -0.3030 0.1764 -1.72 0.0910
WT9 -0.0533 0.1996 -0.27 0.7903
HT9 1.2510 0.1145 10.92 0.0000
LG9 -0.6149 0.4746 -1.30 0.2002
ST9 0.0396 0.0338 1.17 0.2449

Table 13: The fitted coefficients β̂ from the largest model for predicting the variable HT18
in Problem 10.4.

of this data. When we do that and using the xtable command we obtain Table 13. In that
table we see that the only variable that is know with a very strong certainty is HT9. We
expect that this will be used the optimal subset from the set of variables

WT2, HT2, WT9, HT9, LG9, ST9

Next we use forward selection (starting at the constant model) to derive the optimal model
subset using the R command step. When we do that we see that the first variable added
is HT9 which was to be predicted from the t-value found for this variable from the full
model. Only one more variable is added LG9 to form the optimal (under forward selection)
regression HT18~HT9+LG9, a model which has an AIC given by 149.76.

When we use backwards selection we find the model HT18~WT2+HT2+HT9+LG9 with a AIC of
149.87. Note that the two variables HT9 and LG9 found under forward selection are also
found to be informative under backwards selection.

See the R file chap 10 prob 4.R for an implementation of the problem.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.9683 2.1096 -2.36 0.0336

BOD -0.0000 0.0012 -0.04 0.9719
TKN 0.0030 0.0029 1.03 0.3188
TS 0.0003 0.0002 1.67 0.1179

TVS 0.0183 0.0323 0.56 0.5814
COD 0.0003 0.0002 1.92 0.0751

Table 14: The fitted coefficients β̂ from the largest model for predicting the variable logO2UP
in Problem 10.5.



10.5 (subset selection of the predictors of O2UP )

For this problem we will try to predict the response O2UP given the variables suggested in
this problem: BOD, TKN, TS, TV S, COD. We begin by plotting a scatter plot matrix of
all the variables without any transformations. We see that the range of the O2UP variable
covers three orders of magnitude from 0.3 to 36.0 and does not appear to be linearly cor-
related with any of the variables very strongly. Because the range of O2UP spans several
orders of magnitude this might suggest a logarithmic transformation. When we perform that
transformation we see that several of the variables (like BOD, TS, TV S, and COD) appear
to be linearly related.

If we consider the linear model with a response logO2UP that uses all possible predictors
we find a Table 14. This table indicates that none of the beta coefficients (given all of the
others) are known with great certainty. This and the fact that the sample size is so small 20
points we expect to get considerable benefit from performing subset selection.

We begin with forward selection on this problem. The R function step predicts a model with
two predictors given by logO2UP~TS+COD and having an AIC given by −18.92. Backwards
selection in this case gives exactly the same model and AIC value. The estimated parameters
from this model are given in Table 15. From their t-values and associated probabilities we
see that these variable are much more accurately known.

See the R file chap 10 prob 4.R for an implementation of the problem.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.1547 0.4533 -6.96 0.0000

TS 0.0003 0.0001 2.72 0.0146
COD 0.0003 0.0001 2.66 0.0165

Table 15: The fitted coefficients β̂ from the model fit on TS and COD that predicts the
variable logO2UP (see Problem 10.5).

10.6 (deriving the variance inflation factor)

For this problem we will first derive the requested result in the situation when we are
considering adding a single additional predictor (say X2) to the simple linear regression
E(Y |X1) = β0 + β1X1, since this derivation is easier to follow and shorter. In a second
part of this problem we present the derivation in the general case where we regress Y on k
predictors X1, X2, · · · , Xk and then add another predictor Xk+1. This second derivation is
very similar to the first derivation which is simpler to understand and follow. This second
derivation can be skipped on first reading since it is more involved and is somewhat more
complicated

The Simple Case: Recall that in an added variable plot for simple linear regression we



begin with a linear regression of Y on the single predictor X1

E(Y |X1 = x1) = β̂0 + β̂1x1 , (84)

and the corresponding residuals for this model. We then proceed to add the 2nd predictor
X2. The added variable plot is obtained by first performing a linear regression of X2 onto
the previous X1 predictor obtaining a linear model

E(X2|X1 = x1) = β̃0 + β̃1x1 , (85)

and the corresponding residuals for this model. We then plot the residuals of Equation 84 as
a function of the residuals for the model Equation 85. This gives an indication of the infor-
mation that the variable X2 contains (and that is not already contained in the variable X1)
that can be used to predict the residuals of the model Equation 84 (the missing information
needed in explaining Y and not contained in the variable X1). In addition, the estimated
slope in the added variable plot is the slope that will enter Equation 84 as β̂2 when we add
the variable X2.

With this background we will use our one-dimensional regression formulas from the appendix
corresponding to simple linear regression applied to the variables from in the added variable
plots. To do this we will let the variable V denote the residuals of the regression of X2 onto
X1, and let the variable U denote the residuals of the regression of Y onto X1. For notational
simplicity in what follows we will also denote the variable X2 by W . In this notation, the
added variable plot is a plot of V versus U and the estimated slope coefficient β̂1 in a simple
linear regression formulation is equivalent to the coefficient β̂2 that would enter the model
in Equation 84 if we added add the variable X2. From the appendix the estimate of β1 is
given by

β̂1 =
SUV

SUU
,

which has a variance given by

Var(β̂1) =
σ2

SUU
.

To evaluate this later variance we need to evaluate SUU . From the definition of SUU we
have that

SUU =
n
∑

j=1

(uj − u)2 =
n
∑

j=1

uj
2 ,

in which we have used the fact that u = 0 since the regression of X2 (orW ) onto X1 includes
a constant term (see Equation 85). Recalling that u are the residuals of the model given by
Equation 85 we have that

uj = wj − β̃0 − β̃1xj1 .

So the expression for SUU becomes

SUU =
n
∑

j=1

(

wj − β̃0 − β̃1xj1
)2
.

Recalling Equation 109 of β̃0 = w − β̃1x̄1 by replacing the value of β̃0 in the above we can
write SUU as

SUU =
n
∑

j=1

(

wj − w + β̃1x̄1 − β̃1xj1
)2



=
n
∑

j=1

(

wj − w − β̃1(xj1 − x̄1)
)2

=
n
∑

j=1

[

(wj − w)2 − 2β̃1(wj − w)(xj1 − x̄1) + β̃2
1(xj1 − x̄1)

2
]

= SWW − 2β̃1
n
∑

j=1

(wj − w)(xj1 − x̄1) + β̃2
1

n
∑

j=1

(xj1 − x̄1)
2

= SWW − 2β̃1SX1W + β̃2
1SX1X1 . (86)

Since β̃1 =
SX1W
SX1X1

the above simplifies and we get

SUU = SWW − 2SX1W
(

SX1W

SX1X1

)

+
(

SX1W

SX1X1

)2

SX1X1

= SWW − (SX1W )2

SX1X1
= SWW

(

1− (SX1W )2

(SWW )(SX1X1)

)

= SWW (1− r212) ,

which is the books equation 10.4 and ends the derivation of the simple case.

The General Case: Recall that in an added variable plot we begin with a linear regression
of Y on k predictors X1, X2, · · · , Xk as

E(Y |X1 = x1, X2 = x2, · · · , Xk = xk) = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂kxk , (87)

and the corresponding residuals for this model. We then proceed to add the k+1st predictor
Xk+1. The added variable plot is obtained by first performing a linear regression of Xk+1

onto the previous k predictors obtaining a linear model

E(Xk+1|X1 = x1, X2 = x2, · · · , Xk = xk) = β̃0 + β̃1x1 + β̃2x2 + · · ·+ β̃kxk , (88)

and the corresponding residuals for this model. We then plot the residuals of Equation 87 as
a function of the residuals for the model Equation 88. This gives an indication of the infor-
mation that the variable Xk+1 contains (and that is not already contained in the variables
X1, X2, · · · , Xk) that can be used to predict the residuals of the model Equation 87 (the miss-
ing information needed in explaining Y and not contained in the variables X1, X2, · · · , Xk).
In addition, the estimated slope in the added variable plot is the slope that will enter Equa-
tion 87 as β̂k+1 when we add the variable Xk+1.

With this background we will use our one-dimensional regression formulas from the appendix
corresponding to simple linear regression applied to the variables from in the added variable
plots. To do this we will let the variable V denote the residuals of the regression of Xk+1

onto X1, X2, · · · , Xk, and let the variable U denote the residuals of the regression of Y onto
X1, X2, · · · , Xk. For notational simplicity in what follows we will also denote the variable
Xk+1 by W . In this notation, the added variable plot is a plot of V versus U and the
estimated slope coefficient β̂1 in a simple linear regression formulation is equivalent to the
coefficient β̂k+1 that would enter the model in Equation 87 if we added add the variable
Xk+1. From the appendix the estimate of β1 is given by

β̂1 =
SUV

SUU
,



which has a variance given by

Var(β̂1) =
σ2

SUU
. (89)

To evaluate this later variance we need to evaluate SUU . From the definition of SUU we
have that

SUU =
n
∑

j=1

(uj − u)2 =
n
∑

j=1

uj
2 ,

in which we have used the fact that u = 0 since the regression of Xk+1 (or W ) onto
X1, X2, · · · , Xk includes a constant term (see Equation 88). Recalling that u are the residuals
of the model given by Equation 88 we have that

uj = wj − β̃0 −
k
∑

l=1

β̃lxjl .

So the expression for SUU becomes

SUU =
n
∑

j=1

(

wj − β̃0 −
k
∑

l=1

β̃lxjl

)2

.

Recalling Equation 18 or

β̃0 = w − β̃ ′x̄ = w −
k
∑

l=1

β̃lx̄l ,

where x̄ is a vector containing the means of the predictors Xl. Using this expression for β̃0
we can write SUU as

SUU =
n
∑

j=1

(

wj − w +
k
∑

l=1

β̃lx̄l −
k
∑

l=1

β̃lxjl

)2

=
n
∑

j=1

(

wj − w −
k
∑

l=1

β̃l(xjl − x̄l)

)2

=
n
∑

j=1



(wj − w)2 − 2(wj − w)

(

k
∑

l=1

β̃l(xjl − x̄l)

)

+

(

k
∑

l=1

β̃l(xjl − x̄l)

)2




= SWW − 2
n
∑

j=1

(wj − w)

(

k
∑

l=1

β̃l(xjl − x̄l)

)

+
n
∑

j=1

(

k
∑

l=1

β̃l(xjl − x̄l)

)2

. (90)

We will now simplify the last sum in the above. Expanding the square of the sum over β̃l
we can write it as

n
∑

j=1

k
∑

l=1

k
∑

m=1

β̃lβ̃m(xjl − x̄l)(xjm − x̄m) =
k
∑

l=1

β̃l





k
∑

m=1

n
∑

j=1

β̃m(xjl − x̄l)(xjm − x̄m)



 . (91)

To this last expression we will apply some of the results derived earlier. Recalling Equation 26
we see that the expression in parenthesis above is equal to ((X ′X )β̃)l, which is equal to the
l-th component of X ′Y and can be written as the sum in Equation 28. In this case this inner
sum is specifically given by

n
∑

j=1

(xjl − x̄l)(wj − w̄) .



Using this result, the above triple sum in Equation 91 becomes a double sum given by

k
∑

l=1

β̃l
n
∑

j=1

(xjl − x̄l)(wj − w̄) ,

which can then be combined with the second term in Equation 90. Combining these two
terms we get for SUU the following

SUU = SWW −
k
∑

l=1



β̃l
n
∑

j=1

(xjl − x̄l)(wj − w̄)





= SWW



1−
∑n

j=1

∑k
l=1 β̃l(xjl − x̄l)(wj − w̄)

SWW



 .

A few more transformations and we will have the result we seek. Considering the inner
summation in the fraction above we can write this as two parts and using ideas like on
Page 5 of these notes we see that

k
∑

l=1

β̃l(xjl − x̄l) = (ŵj − β̃0)−
k
∑

l=1

β̃lx̄l = (ŵj − β̃0)− (w̄ − β̃0) = ŵj − w̄ .

Using this we then have that the expression for SUU becomes

SUU = SWW

(

1−
∑n

j=1(ŵj − w̄)(wj − w̄)

SWW

)

= SWW
(

1− R2
w

)

, (92)

where Rw is the multiple correlation coefficient or the correlation of the fitted values ŵj and
the true values wj . This is the desired expression.

10.7 (feature selection on the Galapagos Island)

For this problem we want to predict some measure of the given islands diversity. To solve
the problem I choose to consider the ratio of the number of endemic species to the total
number of species or ES/NS. Then to use such a model for a given novel island we would
simple count up the number of species found on that island and then multiply by the result
of the regression model to get the number of endemic species on that island.

We begin our analysis by a scatter plot matrix of ES/NS considered with all of the variables:
Area, Anear, Dist, DistSC, and Elevation. Several of these variable we might expect to be
irrelevant (like DistSC) but lets see if features selection demonstrates this fact. This scatter
plot matrix is plotted in Figure 56 (left). From that plot we see that several of the variables
(like Area, Anear, and Elevation) have relatively large dynamic ranges. These can perhaps
be better modeled by taking logarithms of their values in the given data set. In addition,
by experimentation it appears that if we take the logarithm of the fraction ES/NS we get
more “linear” looking data in the subsequent scatter plots. These variables are plotted in a
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Figure 56: Left: A scatter plot matrix of the variables ES/NS, Area, Anear, Dist, DistSC,
and Elevation. Right:A scatter plot matrix of the variables log(ES/NS), log(Area),
log(Anear), Dist, DistSC, and Elevation.

scatter plot matrix in Figure 56 (right) and these will be used to derive a linear model to
help predict diversity.

Next we will use forward and backwards selection to determine which variable are the most
helpful in predicting this function of NE/NS. When we run forward selection we find the
first variable added is logArea and the second variable select is DistSC. Giving a final
model of

E(log(NE/NS)|logArea = a,DistSC = b) = β0 + β1a+ β2b ,

which has an AIC value of −65.44. When we do backwards elimination we find the same
final model. It is a bit surprising that the value of DistSC was found to be so predictive.
This maybe an example of a lurking variable that is unknown but that is strongly correlated
with the variable DistSC.

See the R file chap 10 prob 7.R for an implementation of the problem.

10.8 (conditions under which E(Y |XC) will be linear)

We are told to assume that XC will not include all of the active terms in XA. Lets break
down XA into two sets of terms X1 ≡ XC the terms we do include in our set of predictors
and X2 ≡ X¬C the terms we do not include in our set of predictors but that are in XA. Then



we are told
E(Y |X1 = x1, X2 = x2) = β0 + β ′

1x1 + β ′
2x2 , (93)

We want to determine conditions such that E(Y |X1 = x1) is also a pure linear function of x1.
To do this first recall the conditional expectation formula from the appendix which states

E(Y ) = E[E[Y |X = x]] . (94)

In the above context, we want to use this expression as

E[Y |X1 = x1] = EX2 [E[Y |X1 = x1, X2 = x2]|X1 = x1] , (95)

where we have conditioned on X1 = x1 in all expectations and the outer expectation is taken
with respect to the variables in X2. Now our hypothesis given in Equation 93 means that
the expectation we should be considering in Equation 95 is given by

E[Y |X1 = x1] = EX2 [β0 + β ′
1x1 + β ′

2x2|X1 = x1]

= β0 + β ′
1x1 + β ′

2E[X2|X1 = x1] .

Thus if the expectation E[X2|X1 = x1] is linear i.e. can be expressed as

E[X2|X1 = x1] = β̃0 + β̃ ′
1x1 ,

then our regression E[Y |X1 = x1] will also be linear.



Chapter 11 (Nonlinear Regression)

Notes On The Text

Notes on estimation for nonlinear mean functions

The book describes the score vector ui(θ
∗), and gives a formula for it but it can sometimes be

helpful when performing the Gauss-Newton iterates to visualize this as a new measurement
vector similar to how xi is defined. Its definition has it going into the design matrix in
exactly the same way that the vector xi does. The ith score vector ui(θ

∗) in vector form is
defined as

ui(θ
∗) =















∂m
∂θ1

(xi, θ)
∂m
∂θ2

(xi, θ)
...

∂m
∂θk

(xi, θ)















. (96)

On each iteration of the Gauss-Newton iterates these vectors is stacked horizontally into a
matrix U(θ∗) and ordinary least squares performed using this design matrix. If our mean
function m(x, θ) is actually linear (as opposed to nonlinear) then m(x, θ) = x′θ and

∂m(xi, θ)

∂θk
= xik ,

of the kth component of the ith vector. This gives a score vector ui(θ
∗) = xi and the design

matrices U(θ∗) is then the same as earlier matrix X . Note that this is an iterative way
to obtain a sequence of coefficients β̂i that should converge to the ordinary least squares
solution β̂ = (XTX)−1XTY .

If we perform a linearization about the true solution θ∗ then we have that in the large sample
case that our approximate estimate θ̂ can be expressed in terms of θ∗ as

θ̂ = θ∗ + (U(θ∗)′WU(θ∗))−1U(θ∗)′We . (97)

The only random factor in this expression is e and so the variance of our estimate θ̂, can be
computed using the fact that if y = Az then the variance of y in terms of the variance of z
is given by

Var(y) = AVar(z)A′ . (98)

Using this we can compute the large sample variance of θ̂ as

Var(θ̂) = (U(θ∗)′WU(θ∗))−1U(θ∗)′WVar(e)WU(θ∗)(U(θ∗)′WU(θ∗))−1 .

Where we have used the fact that W ′ =W as the weight matrix is diagonal. Since Var(e) =
σ2W−1 the above simplifies to

Var(θ̂) = σ2(U(θ∗)′WU(θ∗))−1 , (99)

which is the books equation 11.14 when σ2 is approximated with σ̂2 = RSS(θ̂)
n−k

.



Problem Solutions

11.1 (a nonlinear model for the sleep data)

11.1.1: The suggested mean function

E(Y |X = x,G = j) = β0 + β1j(x− γ) ,

is nonlinear because of the terms β1jγ in the above. This mean function has all intercept
values (β0) the same when x = γ. The model for each group can have a different slope out
of this point (β1j).

11.1.2: To fit the given model to the sleep data set we need to create indicator variables to
denote the factor/class membership for each of the data points. We can introduce decision
variables Di for i = 1, 2, · · · , 5 to construct the mean function

E(TS| log2(BodyWt) = x,D = j) = β0 +
5
∑

j=1

Djβ1j(x− γ)

= β0 +





5
∑

j=1

Diβ1j



 (x− γ) .

This model can be fit much in the same way in which the “source of methionine” example
was done in the text. To use the R function nls we need a starting value to begin the search
for the parameters. For this problem the parameter vector θ in terms of its component
unknown is

θ′ =
[

β0 β11 β12 β13 β14 β15 γ
]

.

To get initial values for the unknowns in θ we will take γ = 0 and fit the linear model

E(TS| log2(BodyWt) = x,D = j) = β0 +





5
∑

j=1

Diβ1j



x .

When we do this using the R command lm we obtain values of θ given by

> coefficients(m1)

(Intercept) lB:D1 lB:D2 lB:D3 lB:D4 lB:D5

11.6258529 -0.2004724 -0.4110485 -0.6463494 -0.4446115 -1.1495892

Using these parameters as the starting point in the full nonlinear model in the call to nls

we find that the summary command to the results of the model gives

> summary(m2)

Formula:



TS ~ beta0

+ (D1 * beta11 + D2 * beta12 + D3 * beta13 +

D4 * beta14 + D5 * beta15) * (lB + gamma)

Parameters:

Estimate Std. Error t value Pr(>|t|)

beta0 49.3719 192.6534 0.256 0.798771

beta11 -0.4091 0.1785 -2.291 0.026099 *

beta12 -0.4365 0.1160 -3.762 0.000436 ***

beta13 -0.4504 0.1331 -3.383 0.001385 **

beta14 -0.4518 0.1326 -3.408 0.001285 **

beta15 -0.4890 0.2689 -1.818 0.074916 .

gamma 86.7476 440.1284 0.197 0.844536

---

Residual standard error: 3.375 on 51 degrees of freedom

A potential difficulty with this fit is that the estimated values for γ ≈ 86.7 and β0 ≈ 49.3
are significantly outside of the supplied range of log2(BodyWt) and TS respectively.

See the R file chap 11 prob 1.R for an implementation of this problem.

11.2 (a nonlinear model for fish growth)

11.2.1: See Figure 57 (left) for a scatter plot of this data.

11.2.2: For this part of this problem we want to fit the von Bertalanffy model to this data.
From the scatter plot we take L∞ = 1.05 ∗max(Length) = 197.4. Given the data samples
of L and the assumed nonlinear model

E(Length|Age = t) = L∞(1− exp(−K(t− t0))) , (100)

we solve for the expression −K(t− t0) and find

−K(t− t0) = log
(

1− L

L∞

)

. (101)

We next fit a linear model in t to the right hand side of the above. That is we look for
a model involving t of the form log

(

1− L
L∞

)

= β0 + β1t. If we can fit such a model and
determine estimates of β0 and β1 then we see that from Equation 101 this would mean that

β1 = −K and β0 = +Kt0 .

Solving these two equations for K and t0, which are needed for the nonlinear least squares
fit we see that

K = −β0 and t0 =
β0
K

= −β0
β1
.

See Figure 57 (left) for the nonlinear model plotted onto the data points.
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Figure 57: Left: A scatter plot of the variables Length vs. Age and the nonlinear von
Bertalanffy model fit to the given data in problem 11.2. Right: A scatter plot matrix of
various parameters L∞, K, and t0 that are be obtained from nonlinear regression on 999
bootstrap samples.
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Figure 58: A scatter plot of the variables length vs. age for the walleye data set. Also
plotted are the most general nonlinear von Bertalanffy model fit to the given data (one curve
for every period).

11.2.3: See Figure 57 (right) for the scatterplot matrix of the parameter estimates found
when fitting 999 bootstrap nonlinear models. Notice that the parameter t0 seems reasonably
Gaussian while the distribution of the other two parameters L∞ andK appear to be skewed to
the right. The large sample least squared parameter estimates compared to the bootstrapped
samples are shown in in the following table:

> round(cbind(n1.ls.summary,n1.boot.summary),2)

LInfinity K t0 LInfinity K t0

Mean 192.81 0.41 0.08 193.69 0.43 0.12

SD 13.08 0.09 0.24 15.50 0.11 0.26

2.5% 167.17 0.23 -0.39 171.25 0.25 -0.30

97.5% 218.45 0.58 0.55 232.93 0.75 0.82

This table shows the hypothesis above that the parameters L∞ and K appear to be skewed
to the right

See the R file chap 11 prob 2.R for an implementation of this problem.



11.3 (fitting a growth model to the walleye data set)

See the Figure 58 for a scatter plot of the walleye data set. If we consider the assumption
that there are three different models (one for each period) then the most general model will
have

E(Length|Age = t, P1, P2, P3)

given by

P1L1(1− exp(−K1(t− t01))) +P2L2(1− exp(−K2(t− t02))) + P3L3(1− exp(−K3(t− t03))) .

In addition to this model there are several simplifications that are less general but may fit the
data just as well. We will consider some of the possible models, like the common intercept

model where all periods share the same value of L∞ and our expectation is equal to

L [1− P1 exp(−K1(t− t01))− P2 exp(−K2(t− t02))− P3 exp(−K3(t− t03))] ,

the common intercept-rate model where our expectation is equal to

L [1− exp(−K(t− P1t01 − P2t02 − P3t03))] ,

the common intercept-origin model where our expectation is equal to

L [1− P1 exp(−K1(t− t0))− P2 exp(−K2(t− t0))− P3 exp(−K3(t− t0))] ,

and finally the model where there is no difference in parameters among the periods or
Equation 100. We can compare these models using the R function anova. We find that when
we compare the most general model to the most specific model that the ANOVA summary
statistics are

> anova(m0,m1)

Analysis of Variance Table

Model 1: length ~ L * (1 - exp(-K * (age - t0)))

Model 2: length ~ (P1 * (L1 * (1 - exp(-K1 * (age - t01)))) +

P2 * (L2 * (1 - exp(-K2 * (age - t02)))) +

P3 * (L3 * (1 - exp(-K3 * (age - t03)))))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 3195 2211448

2 3189 1963513 6 247935 67.113 < 2.2e-16 ***

indicating that the more specific model does result in a significant decrease in RSS.

See the R file chap 11 prob 3.R for an implementation of this problem.
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Figure 59: A scatter plot of the variables LCPUE vs. Day for the swan96 data set and the
fitted curve for the estimated quadratic model.

11.4 (a quadratic polynomial as a nonlinear model)

11.4.1: See Figure 59 for the requested plots.

11.4.2: When the model for LCPUE is given by

E(LPUE|Day = x) = β0 + β1x+ β2x
2 ,

the x location where the maximum is obtained is given by xm = −β1/(2β2) and we can use
the delta method to compute the variance of this statistic. When we do that with the alr3
command delta.method we find

> delta.method(m0,"-b1/(2*b2)")

Functions of parameters: expression(-b1/(2*b2))

Estimate = 183.1104 with se = 5.961452

We can check this result by using the bootstrap and find similar results.

11.4.3: When the model for LCPUE is parameterized by the nonlinear regression

E(LPUE|Day = x) = θ1 − 2θ2θ3x+ θ3x
2 ,

then the x location where the maximum is obtained is given by xm = −(−2θ2θ3)/(2θ3) = θ2.
Thus we can use the command nls to try and fit this nonlinear model and observe the



estimate and large sample variance of the parameter θ2 from that procedure. We use the
estimates from the linear model above to compute starting values for the parameters in θ.
We find the estimate and variance of the parameter θ̂2 given by the corresponding row in
the summary call or

Parameters:

Estimate Std. Error t value Pr(>|t|)

th2 1.831e+02 5.961e+00 30.716 < 2e-16 ***

These results are very similar to the ones we obtained earlier.

See the R file chap 11 prob 4.R for an implementation of this problem.

11.5 (selecting the transformation using nonlinear regression)

I think the mean function for this problem is supposed to read

E(log(Rate)|X1 = x1, X2 = x2,Λ1 = λ1,Λ2 = λ2) = β0 + β1ψS(x1, λ1) + β2ψS(x2, λ2)

= β0 + β1

(

xλ1
1 − 1

λ1

)

+ β2

(

xλ2
1 − 1

λ2

)

,

from which we need to compute starting values for the parameters we need to estimate. To
do this we set λi = 1 and then estimate the following model

E(log(Rate)|X1 = x1, X2 = x2,Λ1 = λ1,Λ2 = λ2) = β0 + β1(x1 − 1) + β2(x2 − 1) ,

using least squares. When we do that we get the following starting value for βi

> c(b00,b10,b20)

[1] 2.477882358 -0.046937134 -0.005468399

We then use these estimated coefficients βi in the nonlinear mean function and obtain the
following

Parameters:

Estimate Std. Error t value Pr(>|t|)

b0 5.0927 1.7023 2.992 0.00514 **

b1 -1.6723 1.9696 -0.849 0.40180

b2 -0.5655 0.6918 -0.817 0.41935

lam1 -0.3524 0.5444 -0.647 0.52176

lam2 -0.6927 0.8793 -0.788 0.43626



One thing to note that that the sign of the two estimates of λi above are negative and the
values are different from what is estimated using the bctrans function. One could perhaps
get different values for λi by using different starting values. One could even use the output
from bctran as a starting value for the parameters in the nls command.

See the R file chap 11 prob 5.R for an implementation of this problem.

11.6 (fitting partial one-dimensional models (POD))

11.6.1: Recall that a POD model has the following functional form

E(Y |X = x, F = j) = η0j + η1j(x
′β) ,

for vector predictors X and a factor F . When we expand the expression above we see that it
is a nonlinear model because of the products terms ηβ. In the case of the Australian athletes
data where our model is given by

E(LBM |Sex,Ht,Wt, RCC) = β0 + β1Sex+ β2Ht+ β3Wt+ β4RCC

+ η0Sex+ η1Sex× (β2Ht+ β3Wt+ β4RCC) ,

one very simple method one could use to get starting values needed when fitting this with
nonlinear least squares is to take η0 = η1 = 0 and then fit the model

E(LBM |Sex,Ht,Wt, RCC) = β0 + β1Sex+ β2Ht+ β3Wt+ β4RCC .

using ordinary least squares.



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Myopathy

O
u

tc
o

m
e

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

Intensity
fr

a
ct

io
n

logistic regression fit

Figure 60: Left: A scatter plot of the jittered variablesMyopathy vs. Outcome for the data
given in problem 12.1. All records with a NA have been removed. Right: A scatter plot of
the variables Intensity vs. fraction = Y/m for the data given in problem 12.3.

Chapter 12 (Logistic Regression)

Problem Solutions

12.1 (Downer data)

12.1.1: See Figure 60 (left) for a scatter plot of the two variables Myopathy and Outcome.
This plot seems to indicate that when Myopathy ≈ 1 few cows survive (most values of
Outcome are near 0) but when Myopathy ≈ 0 fewer cows . The fraction of cows that
survive under the two cases are given by

E(Surviving|Myopathy = 0) = 0.238 and E(Surviving|Myopathy = 1) = 0.0158 .

12.1.2: We next fit a logistic regression model to this data. The R summary command gives

glm(formula = Outcome ~ Myopathy, family = binomial(link = "logit"),

data = downer)

Coefficients:

Estimate Std. Error z value Pr(>|z|)



(Intercept) -0.5500 0.3242 -1.696 0.0898 .

Myopathy -2.4945 1.0736 -2.324 0.0201 *

To compute a 95% confidence interval for the β coefficient of Myopathy, as noted in the
book we should use the quantiles of the standard normal distribution rather than the t-
distribution. Using the above estimate and standard errors we find the required confidence
interval given by

−0.390 ≤ β̂1 ≤ −4.598 .

This is a rather wide range but indicates that β1 < 0 indicating that the more Myopathy
present in a cow results in an increased chance of death (lower chance that Outcome = 1).
To determine the estimated probability of survival under the two values of the variable
Myopathy we use the R function predict and the previously determined logistic regression
model. When we do this for Myopathy = 0 we obtain (we also display the sample estimate
derived from the data directly)

E(Y |Myopathy = 0) = 0.3658 vs. 0.2380 ,

for the observed survival fraction. When Myopathy = 1 in the same way we obtain

E(Y |Myopathy = 1) = 0.0454 vs. 0.0158 .

12.1.3: For some reason that I don’t understand I was not able to get R to download the
sm package in the same way in which I was for the alr3 package. The package was stated
as not found in the CRAN archive. A search on the CRAN web site seem to have reference
to this package however.

12.1.4: When we fit a logistic model using the R function glm we find estimated coefficients
now given by

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.9099 1.6961 1.716 0.0862 .

logCK -0.5222 0.2260 -2.311 0.0209 *

From which we see that the sign of the β coefficient of log(CK) is negative indicating that
larger values of CK indicate less chance of survival.

See the R file chap 12 prob 1.R for an implementation of this problem.

12.3 (electric shocks)

In Figure 60 (right) we see the requested scatter plot of Intensity vs. fraction = Y/m. We
see that as Intensity increases we have a steady rise in the value of fraction. When we fit
a logistic regression model to this data we find fitted coefficients β̂ given by
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Figure 61: A scatter plot of the variables Outcome vs. Age for the data given in problem 12.4
along with a logistic regression fit.

glm(formula = lRT ~ Intensity, family = binomial(), data = shocks)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.3010 0.3238 -10.20 <2e-16 ***

Intensity 1.2459 0.1119 11.13 <2e-16 ***

The fact that the z value of the coefficient for Intensity is so small means that the found co-
efficient is significant and unlikely to be zero. This indicates that the probability of response
is not independent of intensity. This is consistent with the observed scatter plot. The fact
that the sign of the Intensity coefficient is positive indicates that as we increase Intensity
we increase the probability of “mouth movement” increases.

See the R file chap 12 prob 3.R for an implementation of this problem.

12.4 (the Donner party)

12.4.1: From the given data we have NM = 53 males and NF = 35 in the Donner party and
the sample survival rates of each party is given by sM = 0.452 and sF = 0.714.

12.4.2: In Figure 61 we present a scatter plot of Outcome vs. Age (along with some other



curves). From the scatter plot we see that in general Age seems to increase the probability
of death. We can verify this conjecture by fitting a logistic regression model to the variable
Outcome. We find coefficients of the logistic regression fit given by

glm(formula = Outcome ~ Age, family = binomial(), data = donner)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.97917 0.37460 2.614 0.00895 **

Age -0.03689 0.01493 -2.471 0.01346 *

The fact that the estimated coefficient for Age is negative adds evidence to the argument
above.

12.4.3: In Figure 61 we overlay on the scatterplot of the raw data a loess smooth and the
logistic regression fits given by

log

(

θ(x)

1− θ(x)

)

= β0 + β1Age ,

and

log

(

θ(x)

1− θ(x)

)

= β0 + β1Age+ β2
2Age

2 .

In comparing the linear model with the loess fit we see that for values of Age > 50 the loess
fit and the logistic regression line don’t match well. In addition, for small values of Age
(near zero) and for values of Age ≈ 15 the logistic fit does not match the data well. This
mismatch of the logistic regression fit and the data may indicate that adolescents may have
been more likely to survive. When we compare the quadratic model with the data we see
that it fits better for Age ≈ 15 but performs much poorly for Age35 where the quadratic
model predicts a zero probability of survival.

See the R file chap 12 prob 4.R for an implementation of this problem.

12.5 (counterfeit banknotes)

12.5.1: In Figure 62 we present a scatter plot matrix for the variables represented in this
problem. Several variables look attractive for this classification problem, but there seems
to be a great deal of correlation among the variables that makes using all of them problem-
atic. When we fit a logistic model over all terms we get very uncertain estimates of the β
parameters.

See the R file chap 12 prob 5.R for an implementation of this problem.
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Appendix

Notes Least Squares for Simple Regression (A.3):

Here we derive many of the expressions given in this section of the appendix and some that
are only stated but not proven. To begin we recall, equations A.7 for simple regression given
by

β0n+ β1
∑

xi =
∑

yi (102)

β0
∑

xi + β1
∑

x2i =
∑

xiyi . (103)

Using the facts that
∑

xi = nx̄,
∑

yi = nȳ with

SXX =
∑

(xi − x̄)2 =
∑

xi(xi − x̄) =
∑

x2i − nx̄2 (104)

SYY =
∑

(yi − ȳ)2 =
∑

yi(yi − ȳ) =
∑

y2i − nȳ2 (105)

SXY =
∑

(xi − x̄)(yi − ȳ) =
∑

xi(yi − ȳ) =
∑

yi(xi − x̄) =
∑

xiyi − nx̄ȳ , (106)

the solutions of Equations 102 and 103 would then be solved for β0 and β1. These solutions
are denoted β̂0 and β̂1 where the “hat” notation reminds us that they are estimates of
the true population parameters, which are written without hats. When we perform the
substitution of the summations of

∑

xi,
∑

yi and
∑

xiyi from Equations 104, 105 and 106
into Equations 102 and 103 we get the system

β̂0 + β̂1x̄ = ȳ (107)

β̂0x̄+ β̂1
1

n
(SXX + nx̄2) =

1

n
SXY + x̄ȳ . (108)

Solving for β̂0 in Equation 107 we find

β̂0 = ȳ − β̂1x̄ . (109)

When we put this value into Equation 108 we find

β̂1 =
SXY

SXX
, (110)

which are the books equations A.9.

Notes on Means and Variances of Least Squares Estimates (A.4)

We next would like to derive expressions for the expected values and variances of the esti-
mators derived above. Since we will be computing expectations conditional on knowing the
values of X we will write many of expressions we derive in terms of only the yi variables
since if we know X then these are the only variables that are random (under the assumed



model yi = β0+β1xi+ ei) and this simplifies notation some. With this motivation note that
β̂1 can be written as

β̂1 =
SXY

SXX
=

1

SXX

∑

(xi − x̄)(yi − ȳ)

=
1

SXX

(

∑

yi(xi − x̄)− x̄
∑

(xi − x̄)
)

=
∑

(

xi − x̄

SXX

)

yi =
∑

ciyi ,

if we introduce the definition ci =
xi−x̄
SXX

. Note we have used the fact that
∑

(xi − x̄) = 0.
Here we have lumped all of the x dependence into the variables ci which makes computing
expectations holding x constant easier. We can now compute the bias of the estimator more
easily since the ci’s are then constant. We find

E(β̂1|X) = E
(

∑

ciyi|X = xi
)

=
∑

ciE(yi|X = xi)

=
∑

ci(β0 + β1xi) = β0
∑

ci + β1
∑

cixi .

To finish this calculation we need to compute the above two sums. We find

∑

ci =
1

SXX

∑

(xi − x̄) = 0

∑

cixi =
1

SXX

(

∑

x2i − x̄
∑

xi
)

=
1

SXX

(

∑

x2i − nx̄2
)

= 1 ,

so that when we use these results we find that E(β̂1|X) = β1, showing that the estimate for
β1 is unbiased. To compute the variance of the estimator β̂1 we have

Var(β̂1|X) = Var(
∑

cixi|X = xi)

=
∑

c2iVar(yi|X = xi) =
∑

c2iσ
2 = σ2

∑

c2i

=
σ2

SXX2

∑

(xi − x̄)2

=
σ2

SXX2
SXX =

σ2

SXX
. (111)

For the estimate β̂0 we can compute its bias as

E(β̂0|X) = E(ȳ − β̂1x̄|X) = E
(

1

n

∑

yi − β̂1x̄|X
)

=
1

n

∑

E(yi|X)− E(β̂1|X)x̄

=
1

n

∑

(β0 + β1xi)− β1x̄

= β0 + β1x̄− β1x̄ = β0 ,

showing that as claimed in the book the estimate β̂0 is also unbiased. The variance of this
estimate is given by

Var(β̂0) = Var(ȳ − β̂1x̄|X)

= Var(ȳ|X) + x̄2Var(β̂1|X)− 2x̄Cov(ȳ, β̂1|X) .



So we need to compute several things to evaluate this. We begin with the covariance calcu-
lation

Cov(ȳ, β̂1|X) = Cov(
1

n

∑

yi,
∑

ciyi|X)

=
1

n

∑

i

∑

j

cjCov(yi, yj|X)

=
1

n

∑

i

cjVar(yi|X) ,

since Cov(yi, yj) = 0 if i 6= j under the assumption that each yi is independent (given x).
Continuing our calculation above we have

Cov(ȳ, β̂1|X) =
1

n
σ2
∑

ci = 0 . (112)

Next we evaluate the two variances Var(ȳ|X) and Var(β̂1|X) to get

Var(ȳ|X) =
1

n2

∑

Var(yi|X) =
σ2

n2
n =

σ2

n

Var(β̂1|X) = Var(
∑

ciyi|X)

= σ2
∑

c2i = σ2 1

SXX2

∑

(xi − x̄)2 =
σ2

SXX
. (113)

Thus combining these expressions we find

Var(β̂0) =
σ2

n
+

x̄2

SXX
σ2 = σ2

(

1

n
+

x̄2

SXX

)

. (114)

Computing next the covariance between β̂0 and β̂1 we find

Cov(β̂0, β̂1|X) = Cov(ȳ − β̂1x̄, β̂1|X)

= Cov(ȳ, β̂1|X)− x̄Cov(β̂1, β̂1|X)

= 0− x̄Var(β̂1|X)

= − x̄σ2

SXX
. (115)

For the variances of a fitted value ŷ = β̂0 + β̂1x, using many of the results above we have

Var(ŷ|X) = Var(β̂0 + β̂1x|X)

= Var(β̂0|X) + x2Var(β̂1|X) + 2xCov(β̂0, β̂1|X)

= σ2

(

1

n
+

x̄2

SXX

)

+ x2
(

σ2

SXX

)

− 2xx̄σ2

SXX

= σ2
(

1

n
+

1

SXX
(x̄2 − 2xx̄+ x2)

)

= σ2

(

1

n
+

(x− x̄)2

SXX

)

, (116)



which is equation A.11 in the book. Now ŷ is called a fitted value since it is computed
based/using the fitted values β̂0 and β̂1. That is β̂0 and β̂1 are determined (or fit) from the
give data.

The variance of a predicted value ỹ will depend on both the errors in the estimated coefficients
β̂0 and β̂1 and the natural unexplainable variation present in our model. What we mean by
that last statement is that for a linear model of the type

yi = β0 + β1xi + ei , (117)

the error component ei has a variance of σ2. Note this last variance is missing when we are
talking about the variance of fitted values (see above). Thus for predicted values we need to
add another σ2 to Equation 116 to get

Var(ỹ|X) = σ2

(

1 +
1

n
+

(x− x̄)2

SXX

)

. (118)

Notes on Least Squares Using Matrices (A.8)

In this section of the appendix the book shows that

β̂ ′X′Xβ̂ = Y′Xβ̂ . (119)

Using this we can derive an expression for RSS(·) evaluated at the least squares estimate β̂.
Using some of the results from the book in this section we have

RSS ≡ RSS(β̂) = Y′Y + β̂ ′X′Xβ̂ − 2Y′Xβ̂

= Y′Y +Y′Xβ̂ − 2Y′Xβ̂

= Y′Y −Y′Xβ̂

= Y′Y − β̂ ′X′Xβ̂ ,

where the last equation is obtained from the one before it by using Equation 119. We can
also write β̂ ′X′Xβ̂ as

β̂ ′X′Xβ̂ = (Xβ̂)′(Xβ̂) = Ŷ′Ŷ .

This last result show that we can write RSS(β̂) as

RSS = Y′Y − Ŷ′Ŷ . (120)

Notes on Case Deletion in Linear Regression (A.12)

In this subsection of these notes we will derive many of the results presented in this section
of the appendix. Our first goal will be to prove the case deletion inverse identity which is
given by

(X′
(i)X(i))

−1 = (X′X)−1 +
(X′X)−1x′

ixi(X
′X)−1

1− hii
. (121)



To do this we will begin by proving two related identities that we will use in this proof. The
first is

X′
(i)X(i) = X′X− xix

′
i . (122)

To do this lets the left-hand-side of Equation 122 in terms of the sample vectors xi

X′
(i)X(i) =
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which is the desired expression. The second identity we will show is the analogous expression
for X′

(i)Y(i) and is given by

X′
(i)Y(i) = X′Y − xiyi . (123)

The proof of this is done in exactly the same way as in the proof of Equation 122, but is
somewhat easier to understand since Y(i) is vector and not a matrix. Again consider the
left-hand-side of Equation 123 in terms of the sample vectors xi and response yi. We have

X′
(i)Y(i) =
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completing this derivation. Next we will derive Equation 121. From Equation 122 we have

(X′
(i)X(i))

−1 = (X′X− xix
′
i)
−1 .

To evaluate the right-hand-side of the above we will use the Sherman-Morrison-Woodbury

formula
(A+ UV ′)−1 = A−1 −A−1U(I + V ′A−1U)−1V ′A−1 , (124)

with U = −xi, and V = xi. This then gives

(A− xix
′
i)
−1 = A−1 +A−1xi(1 + x′

iA
−1xi)

−1x′
iA

−1 = A−1 +
A−1xix

′
iA

−1

1 + x′
iA

−1xi

.

If we take A = X′X and recognize that x′
i(X

′X)−1xi ≡ hii we have

(X′
(i)X(i))

−1 = (X′X)−1 +
(X′X)−1x′

ixi(X
′X)−1

1− hii
,



or Equation 121 the books equation A.37. Next consider how we can use Equation 121 to
derive an expression for β̂(i) the estimated least squares regression coefficients excluding the

sample xi. Since we can write β̂(i) as

β̂(i) = (X′
(i)X(i))

−1X′
(i)Y(i) ,

we can post multiply (X′
(i)X(i))

−1 by X′
(i)Y(i) and use Equation 121 to get

(X′
(i)X(i))

−1X′
(i)Y(i) = (X′X)−1X′

(i)Y(i) +
1

1 + hii
(X′X)−1xix

′
i(X

′X)−1X′
(i)Y(i)

= (X′X)−1X′Y − (X′X)−1X′Y + (X′X)−1X′
(i)Y(i)

+
1

1 + hii
(X′X)−1xix

′
i(X

′X)−1X′
(i)Y(i)

= β̂ + (X′X)−1
[

−X′Y +X′
(i)Y(i) +

1

1 + hii
xix

′
i(X

′X)−1X′
(i)Y(i)

]

.

Next using Equation 123 to replace X′
(i)Y(i) in terms of X′Y the above becomes

(X′
(i)X(i))

−1X′
(i)Y(i) = β̂ + (X′X)−1

[

−xiyi +
1

1 + hii
xix

′
i(X

′X)−1(X′Y − xiyi)
]

= β̂ + (X′X)−1xi

[

−yi +
1

1 + hii
x′
i(β̂ − (X′X)−1xiyi)

]

= β̂ + (X′X)−1xi

[

−yi +
1

1 + hii
ŷi −

1

1− hii
hiiyi

]

,

when we recall that hii ≡ xi(X
′X)−1xi and ŷi = x′

iβ̂. Combining the first and third terms
above and using êi = yi − ŷi we get

β̂(i) = β̂ − (X′X)−1xiêi
1− hii

, (125)

which is the book’s equation A.38.
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