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Summary

The thesis addresses model estimation, model choice and subsequent inference for regression coeffi-

cients in additive and functional regression models. The presented methods describe a framework

for statistical modelling in practical relevant model classes, including efficient estimation of complex

function-on-function regression models, commonly used model selection criteria in linear, mixed and

additive models as well as valid inference procedures following model selection.

The first part of this thesis focuses on model selection and valid inference after model selection. After

introducing the Akaike Information Criterion (AIC) as a commonly used model selection criterion, the

conditional AIC (cAIC) as one possible extension of the AIC to the class of mixed and additive models

is presented. In this context, the R package cAIC4, which provides an efficient implementation of the

cAIC, is explained in detail. Due to invalidity of classical statistical inference after model selection,

analytical expressions for inference after likelihood- or test-based model selection including AIC-based

model selection are derived for linear models. Afterwards, this inference framework is also extended

to models obtained after the selection process induced by L2-boosting.

The second part of this thesis is concerned with model estimation, model choice and uncertainty

quantification in function-on-function regression models. Motivated by research questions in the

field of cognitive affective neuroscience, function-on-function regression models are extended to mod-

els including random historical effects, factor-specific historical effects, and factor-specific random

historical effects. The estimation and model selection is conducted by a component-wise gradient

boosting algorithm, which is implemented in the R add-on package FDboost. An introduction into

the implementation in R concludes the first part of this thesis.





Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Modellschätzung, Modellwahl sowie anschließender In-

ferenz für Regressionskoeffizienten in additiven und funktionalen Regressionsmodellen. Die vorgestell-

ten Methoden beschreiben Ansätze für die statistische Modellierung in praxisrelevanten Modellk-

lassen, einschließlich der effizienten Schätzung komplexer funktionaler Regressionsmodelle, Beschrei-

bung und Implementierung häufig verwendeter Modellwahlkriterien in linearen, gemischten und ad-

ditiven Modellen sowie Ansätze für gültige Inferenzverfahren nach Modellselektion.

Der Schwerpunkt des ersten Teils dieser Arbeit liegt auf der Modellwahl sowie gültigen Inferenz

nach Modellselektion. Ein häufig in der Praxis eingesetztes Modellwahlkriterium stellt das Akaike

Informationskriteriums (AIC) dar, das zunächst eingeführt wird. Auf dieser Basis wird das kon-

ditionale AIC (cAIC) als eine mögliche Erweiterung der AICs auf die Klasse der gemischten und

additiven Modelle vorgestellt. In diesem Zusammenhang wird das R-Paket cAIC4, das eine effiziente

Implementierung des cAIC bereitstellt, näher erläutert. Aufgrund der Ungültigkeit klassischer statis-

tischer Inferenz nach Modellselektion werden analytische Ausdrücke für die Inferenz nach Likelihood-

oder testbasierter Modellwahl einschließlich der AIC-basierten Modellauswahl für lineare Modelle

hergeleitet. Anschließend wird das vorgestellte Inferenzkonzept auf Modelle erweitert, die mithilfe

des L2 -Boosting Algorithmus selektiert wurden.

Der zweite Teil dieser Arbeit beschäftigt sich mit Modellschätzung, Modellwahl und Unsicherheit-

squantifizierung in funktionalen Regressionsmodellen. Motiviert durch Forschungsfragen auf dem Ge-

biet der kognitiven affektiven Neurowissenschaft werden Funktions-auf-Funktions-Regressionsmodelle

auf Modelle mit zufälligen historischen Effekten, faktorspezifischen historischen Effekten und faktor-

spezifischen zufälligen historischen Effekten erweitert. Die Schätzung und Modellauswahl erfolgt

mithilfe eines komponentenweisen Gradientenabstiegsverfahren im Funktionsraum, welches im R

Paket FDboost implementiert ist. Eine Einführung in die Implementierung schließt den zweiten

Teil dieser Arbeit ab.
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Chapter 1

Introduction

1.1 Overview

As it is the case for many research questions in the field of statistics nowadays, this thesis is concerned

with challenges stemming from the ever larger and more complex data collections, which are available

due to the continuously progressing digitalization and new technological innovations. Whereas some

of these challenges can be solved without new statistical methodology, others motivate refinements

and further development of existing methods, in particular, to adapt for the unprecedented nature of

data collections and the increasingly data-driven use of statistics in practice. This thesis is concerned

with additive and functional regression models and addresses the three topics estimation, model choice

and subsequent inference in the light of complex data structures and the data-driven use of statistics.

Whereas both parts of the thesis deal with all three topics, the first part of this thesis focuses on

methods for additive regression models and is mainly concerned with model choice as well as valid

inference after model selection. The second part of this thesis describes the estimation of functional

regression models as well as challenges accompanied with complex data collections and hypotheses.

The following sections constitute a methodological preface for the contributing articles in this thesis,

introducing different regression models, briefly summarizing the idea and development of statistical

boosting and giving additional background information on post-selection inference. In all of these

sections, an overview of the existing literature as well as scientific context is given and it is described,

how the reprinted articles can be embedded in this context.

1.2 Generalized Additive and Mixed Models

In the following, an introduction into different regression models that are used in the contributing

articles is given with special focus on additive models (AMs) as well as mixed models (MMs). Part I

of this thesis is concerned with model choice and subsequent inference in additive and mixed models.

A brief introduction in model selection is given in the Subsections 1.2.5 and 1.3. The following
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subsection describes basic concepts of representation and estimation of AMs and MMs. Although

strongly related, functional regression models (FRMs) are described separately in Section 1.5.

The general regression setup is first described and extended to different model classes. Practical

examples as well as further details can, e.g., be found in Ruppert et al. (2003), Fahrmeir et al. (2013)

and Wood (2017).

1.2.1 Regression Model Setup

In the following regression models, the response or dependent variable is denoted by Y =

(Y1, . . . , Yn)> ∈ Rn with realizations y = (y1, . . . , yn)> and p fixed covariates or independent vari-

ables are denoted by xj = (x1,j , . . . , xn,j)
>, j = 1, . . . , p, usually summarized in a design matrix

X = (x1, . . . ,xp) with rows denoted by Xi, i = 1, . . . , n. The ulterior motive is to build a model

for the conditional response distribution Y |X ∼ F . To this end, the expectation of F is assumed

to have some structural or parametric form, which can be modeled on the basis of X. In a classical

linear regression, one primary goal is to estimate the true expectation µ = (µ1, . . . , µn)> of Y using

the assumption µ = Xβ with full column rank matrix X. When observing an erroneous version of

Y , the classical normal regression is given by

Y = Xβ + ε, ε ∼ Nn(0, σ2In), (1.1)

where In is the n-dimensional identity matrix, σ2 > 0 is an error variance of the independent and

identically distributed (i.i.d.) errors ε = (ε1, . . . , εn)>. When minimizing the expected squared error

EF ||ε||2 with quadratic L2-norm || · ||2, the regression coefficients β can be derived by

β = arg min
γ∈Rp

EF ||Y −Xγ||2
(1.1)
= (X>X)−1X>µ

and the least-squares (LS) estimator β̂ of β is given by β̂ = (X>X)−1X>Y =: η>Y with pseudo-

inverse η ∈ Rn×p of X. This also corresponds to the solution of a maximum-likelihood (ML) esti-

mation, i.e., finding the maximizer of the (log-)likelihood under the normality assumption (1.1).

For “first-order wrong models”, µ does not coincide with Xβ (see, e.g., Berk et al., 2013) and

β = η>µ can be considered as the coefficients of the best linear approximation Xη>µ of µ with

design matrix X. Following the agenda of Berk et al. (2013) and other recent publications, this

linear approximation is the target of inference as first-order correctness of the linear model is usually

not realistic in practice. Section 1.4 will describe this in more detail in the context of post-selection

inference.

In all of the contributing articles, variable or model selection is utilized to obtain a better inter-

pretable and potentially more predictive model or to simply facilitate the estimation of some form

of best linear approximation of the true expectation when X is not of full-rank. Model or variable
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selection methods considered in this thesis potentially determine the structural form of the model

assumption of µ as well as select a set of covariates, which are used to model µ. Given the linear

regression model assumption and selected columns A ⊂ {1, . . . , p} of X determined by some variable

selection method, the target of inference changes to βA = η>Aµ. It is noteworthy that in the case of

variable selection within a class of models, e.g., linear models, some conventions with respect to the

meaning of the full and submodel (for example, with structural assumption µ = Xβ and µ = XAβA,

respectively) are useful in order to clearly define the role and meaning of corresponding parameters.

Following Berk et al. (2013), for methods involving a variable selection by subsetting the full design

matrix in linear models, the model associated with X (the full model) has no special status, such as

“the true underlying model”, and X itself constitutes only a repository of available predictors. The

coefficients of covariates, which are not selected by the variable selection procedure are not zero but

are simply not defined. Furthermore, coefficients have different interpretation across different selected

subsets A, as they represent coefficients of best linear approximations based on different covariate

sets XA.

1.2.2 Linear Mixed Models

The linear model can be extended when incorporating so-called random effects b ∈ Rr, which, in

contrast to the fixed regression coefficients β, are assumed to be random variables following a mean

zero normal distribution. Random effects can be motivated from various angles. In statistical appli-

cations, incorporating random effects into a regression model is done to appropriately model a given

correlation structure, often induced by dependent observations. Random effects can also be seen as a

regularization technique, which allows to “borrow strength” of more similar observations to improve

or facilitate model estimation.

Let Z ∈ Rn×r be a design matrix for the random effects and let G and R be two positive

semi-definite covariance matrices. The linear mixed model is given by the structural assumption

Y = Xβ +Zb+ ε

and the distributional assumption

b ∼ Nr(0,G), ε ∼ Nn(0,R), b⊥ε.

For the linear mixed model two different perspectives exist, which stem from the conditional distri-

bution Y |b ∼ Nn(Xβ + Zb,R) and the marginal distribution Y ∼ Nn(Xβ,V := ZGZ> +R) of

the response, where the marginal formulation can be derived from the conditional distribution, but

not vice versa (see, e.g., Fahrmeir et al., 2013).

Moreover, both the marginal and the conditional distribution assumption are used in the esti-

mation of linear mixed models. For known covariance matrices G and R and existence of V −1, the
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fixed effects vector can be estimated using the marginal formulation by minimizing the weighted or

generalized least-squares (GLS) criterion

(y −Xβ)>V −1(y −Xβ)→ min
β
,

which is equivalent to maximizing the likelihood L(β) given by the marginal distribution assumption

of Y . For the prediction of random effects, the joint distribution

(
Y

b

)
∼ Nn+r

((
Xβ

0

)
,

(
V ZG

GZ> G

))

can be used. The corresponding log-likelihood `(Y , b) can be considered as penalized log-likelihood

`(Y , b) = −1

2
(Y −Xβ −Zb)>R−1(Y −Xβ −Zb)− 1

2
b>G−1b

with penalty term b>G−1b and its maximization is equivalent to the minimization of the so-called

penalized least-squares (PLS) criterion

(Y −Xβ −Zb)>R−1(Y −Xβ −Zb) + b>G−1b.

This, in turn, is an extension of the GLS criterion as it additionally incorporates a penalization for

deviations of b from the zero mean assumption E(b) = 0. The resulting estimator is given by

(
β̂

b̂

)
= (C>R−1C +A)−1C>R−1Y

with composed matrix C = (X,Z) and block-diagonal matrix A = blockdiag(0p×p,G−1).

When G or R involve unknown parameters, denoted as vector τ ∈ Rι, an estimator τ̂ML for

unknown parameters is given as maximizer of the profile-log-likelihood

`P (τ ) = −1

2

{
log |V (τ )|+ (Y −Xβ̂(τ ))>V (τ )−1(Y −Xβ̂(τ ))

}
.

This estimator, however, tends to underestimate variance components (see, e.g., Fahrmeir et al., 2013).

An alternative estimator is the restricted maximum-likelihood (REML) estimator τ̂REML, which is less

biased downwards towards zero. By integrating out β in the joint log-likelihood log
∫
L(β, τ )dβ =:

`R(τ ) and maximizing the marginal or restricted log-likelihood `R with respect to τ , which can be

done with a Newton-Raphson(-type) algorithm in practice, the estimator τ̂REML is obtained.

More details on linear mixed models, their estimation and extensions can be found in Fahrmeir

et al. (2013, Section 7), Wood (2017, Section 2 and 3.4).
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1.2.3 Additive Models

Another extension of the class of linear models is given by the class of additive models, which extends

the linear model by incorporating non-parametric additive terms in the linear predictor:

Y = Xβ +
J∑

j=1

fj(zj) + ε, ε ∼ Nn(0,R) (1.2)

with residual covariance R as defined in the previous subsection. The smooth functions fj(zj) of

observed covariates zj ∈ Rn, j = 1, . . . , J , are infinite dimensional smooth effects, which can be

approximated by a finite number of basis functions. This allows to embedded the representation and

estimation of additive models in the class of linear models. As this basis representation is used in most

of the contributing articles, the idea of basis function approaches is briefly sketched in the following.

Basis Representation

The fundamental principle of the basis representation is to approximate an infinite-dimensional func-

tion f ∈ L2(T ) from the squared-integrable space of functions on a domain T by the linear combi-

nation of a finite number of basis functions B1, . . . , BK ∈ L2(T ) and coefficients ϑ1, . . . , ϑK ∈ R:

f ≈ ∑K
k=1Bkϑk. For a given covariate z = (z1, . . . , zn)>, for which a smooth effect f is as-

sumed, the basis functions are evaluated at the observed values zi, yielding a (n × K)-matrix

B = [Bk(zi)]k=1,...,K,i=1,...,n, where the evaluation of the kth basis function at the ith observation

zi corresponds to the kth column and ith row of B. If K ≤ n, an L2-loss-optimal representation of f

for the given data points and specified basis functions can then be found by estimating the coefficient

vector ϑ = (ϑ1, . . . , ϑK)> via the least squares criterion:

(f(z)−Bϑ)>(f(z)−Bϑ)→ min
ϑ
. (1.3)

Under the assumption of a negligible approximation error when using only a finite number of basis

functions, additive terms fj in (1.2) can be estimated using the LS criterion. This can be done

by first computing the evaluated basis functions Bj and then estimating regression coefficients β

of linear terms together with basis coefficients ϑj of functions fj using a composed design matrix

(X,B1, . . . ,BJ) in a corresponding linear model (see, e.g., Ruppert et al., 2003; Fahrmeir et al.,

2013).

In this thesis and in many statistical applications, a commonly used basis representation is the

B-spline basis, introduced by Schoenberg (1946a) and Schoenberg (1946b). Given a partition of the

covariate domain T by so-called knots κ1, . . . , κd, the function f(z) is represented by K = d+ q − 1

B-spline basis functions of degree q, which are q + 1 piecewise, continuously differentiable connected

polynomial functions of degree q. For observations zi, i = 1, . . . , n, the kth B-spline of degree 0 is
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calculated as an indicator function based on adjacent knots: B0
k(zi) = I(κk ≤ zi ≤ κk+1). Similarly,

B-splines of higher degree can be defined recursively

Bq
k(zi) =

zi − κk−1

κk − κk−1
Bq−1
k−1(zi) +

κk+1 − zi
κk+1 − κk+1−q

Bq−1
k (zi).

For sufficiently high degree q, resulting splines are continuous and differentiable functions, which can

be evaluated efficiently (de Boor, 1972), provide directly accessible (higher-order) derivatives and

yield other numerically and mathematically desirable properties (see, e.g., Eilers and Marx, 1996;

de Boor, 2001).

Whereas the location of knots can, e.g., be defined on an equidistant grid or on the basis of

quantiles of the observed covariate z, the smoothness of the function also depends on d, the number

of knots, and different choices can have a crucial influence on the quality of f̂(z) = Bϑ̂. Eilers and

Marx (1996) proposed a penalized version of B-splines, known as P-splines, which exhibits useful

properties and, in particular, circumvents the problem of having to define an appropriate number

d. By estimating coefficients for a generous number of B-spline basis functions with an appropriate

penalty, P-splines allow for a flexible definition of f while preventing too rough estimates through a

penalty term. As for the estimation of regression coefficients in linear mixed models, the least squares

criterion in (1.3) is therefore extended by a quadratic penalty

(f(z)−Bϑ)>(f(z)−Bϑ) + λϑ>Pϑ→ min
ϑ
,

with P ∈ RK×K penalty matrix and λ a smoothing parameter controlling the influence of the penalty

and thus the smoothness of the resulting function estimator f̂ . Eilers and Marx (1996) propose

a quadratic penalization of coefficients of adjacent B-splines by defining P such that ϑ>Pϑ =∑K
k=r+1(∆rϑk)

2 with recursively defined rth-order differences ∆r of coefficients ϑk, k = 1, . . . ,K

and r ∈ N (e.g., ∆1ϑk = ϑk − ϑk−1; ∆2ϑk = ∆1(∆1ϑk)). In practice, an optimal λ can be found via

different approaches, including (generalized) cross-validation, using the Akaike Information Criterion

or by utilizing the connection of the penalized least squares criterion and REML estimation in linear

mixed models. Further details can, e.g., be found in Wood (2017).

Another way to estimate generalized additive (mixed) models is given by boosting, which from a

statistical point of view can also be seen as regularization technique. In the Chapters 4 to 6 a special

boosting routine is used for model estimation and regularization. A short introduction to statistical

boosting based on its historical development is therefore given in Section 1.3.

1.2.4 Beyond Normality

Linear (mixed) and additive models can be extended to generalized linear (mixed) and additive models

(GL(M)Ms and GAMs) for a vector Y of independent response variables Yi, i = 1, . . . , n, which follow
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a distribution Fi from the exponential family conditional on the observed covariates Xi (McCullagh,

1984; Wood, 2017). The structural assumption in GL(M)Ms and GAMs is

µi = E(Yi|Xi) = g−1(ζi),

where g is a link function determining the relationship of the conditional expectation of Yi and the

linear predictor ζi, which includes additive terms for linear, random and/or additive effects. When

parameterizing the conditional distribution of Yi in terms of µi, the Likelihood L(β) can be set up

with respect to regression coefficients by, e.g., defining µi = g−1(Xiβ) and (asymptotic) theory on

likelihood-based estimation and inference becomes available.

For generalized models a closed form solution for estimators of regression coefficients does not

exist in general. Estimation of regression coefficients in GL(M)Ms and GAMs is therefore usually

done using iterative optimization techniques such as Fisher-Scoring for GLMs or the penalized

iterative reweighted least squares algorithm for GLMMs (see, e.g., Wood, 2017). For more complex

models or in high-dimensional settings, where the number of columns p in the design matrix X

exceeds n, the component-wise functional gradient descent (CFGD) algorithm provides a possible

alternative (see, e.g., Fahrmeir et al., 2013; Mayr et al., 2017). Also referred to as component-wise

boosting, this algorithm iteratively adjusts the model fit based on (a function proportional to)

the negative log-likelihood until a pre-specified criterion for convergence is met. A more detailed

procedure of the CFGD algorithm will be given in Subsection 1.3, embedded in the historical

development of boosting algorithms for statistical regression analysis.

As mentioned in the previous subsections, practical applications of regression models may require

some sort of variable or model selection. In the contributing articles, two of the primary tools to

achieve this are the CFGD algorithm and the Akaike Information Criterion (AIC; Akaike, 1973).

The basic idea of the AIC is introduced in the following subsection for the class of GLMs. Extensions

of the AIC to other model classes are described in the contributing article in Chapter 2 and, e.g., in

Wood (2017, Chapter 6.11) for GAMs.

1.2.5 Akaike Information Criterion

The theoretical derivation of the AIC is based on the Kullback-Leibler distance (KLD; Kullback and

Leibler, 1951), which is a measure of distance between two distributions. Let Fθ = {f(Y |θ),θ ∈ Θ} be

a family of distributions defined by the corresponding set of parametric density functions f(·|θ) =: fθ,

where the parameter space Θ = Rp, except for a change of coordinates. This family of distributions

results from an assumed statistical model such as (1.1), which can be seen as an approximation of

the true but unknown distribution G with density g. To measure the goodness of fit of Fθ the KLD

D(fθ, g) can be used
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D(fθ, g) = EGY

[
log

g(Y )

fθ(Y )

]
=

∫
log

g(Y )

f(Y |θ)
g(Y ) dY , (1.4)

where EGY is the expectation with respect to the true distribution of Y . A smaller distance D(fθ, g)

then corresponds to a better model fit with special case D(fθ, g) = 0 ⇔ fθ = g. As minimization

of (1.4) is equal to the minimization of −2EGY [log f(Y |θ)] for a fixed true density function g, the

Akaike Information (see, e.g., Greven and Kneib, 2010)

AI = −2EGY
{
EGỸ

[
log f(Ỹ |θ̂(Y ))

]}
(1.5)

serves as a measure of expected quality of f approximating g for an independent sample Ỹ ∼ G when

θ is estimated by θ̂ := θ̂(Y ) using Y . From Akaike’s perspective, the problem of model selection

can be regarded as choosing a model fθ̂k approximating the true model g as good as possible by

minimizing (1.5) with respect to θk, where θk lies in the k-parametric subspace Θk ⊂ Θp given by the

restriction θk+1 = θk+2 = . . . = θp = 0 for Θp = Rp after a change of coordinates (Bozdogan, 1987;

deLeeuw, 1992).

When using the maximized log-likelihood `θ̂k(Y ) := log fθ̂k(Y ) to estimate (1.5), a bias correction

must be used to correct for the dependence of `θ̂k(Y ) on the given realization Y (see, e.g., Greven and

Kneib, 2010). For this purpose, Akaike proposed an adjustment constant 2 Ψ := AI− EGY [2 `θ̂k(Y )],

which can be estimated by twice the dimension of θ under certain assumptions. The Akaike Infor-

mation Criterion as an asymptotic unbiased estimator of the AI is then defined by

AIC(θ̂k) := −2 `θ̂k(Y ) + 2k. (1.6)

In this context, the bias correction term is also referred to as degrees of freedom (see e.g. Vaida and

Blanchard, 2005).

The derivation of the AIC in (1.6) is based on certain regularity conditions, such as i.i.d. obser-

vations Y1, . . . , Yn and the assumption that the parameter space is a transformation of Rp. These

conditions are not fulfilled in certain modeling approaches, in particular, for repeated measurements

and the linear mixed model. In this light, Greven and Kneib (2010) proposed an extension of the

AIC for LMMs, which is presented in the first contributing article.

1.3 The History of Statistical Boosting

This section gives background information on the use of boosting algorithms in statistical applications

and, especially, introduces the component-wise functional gradient descent algorithm, which is em-

ployed and studied in various ways in the Chapters 4, 5 and 6 as model selection as well as estimation

technique.
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1.3.1 AdaBoost

The idea of boosting was originally proposed for binary classification problems by Schapire (1990),

Freund (1995) and Freund and Schapire (1997) under the name AdaBoost with the purpose of “con-

verting a ’weak’ [...] learning algorithm that performs just slightly better than random guessing into

one with arbitrarily high accuracy” (Freund and Schapire, 1997). The basic principle is to repeatedly

apply the “weak” learner or base learner

g(y,X, · ) : Rn −→ Rn

w[m] 7−→ g(y,X,w[m]) =: ĝ[m]

to the (reweighted) dataset (y,X) with weights w[m] for m = 1, . . . ,M iterations. In each iteration

larger weights w
[m]
i , i = 1, . . . , n, are given to observations yi that had been predicted poorly in the

previous iteration m− 1 with w
[1]
i ≡ n−1 ∀ i ∈ {1, . . . , n}. The boosted learner f̂ [M ] is finally given as

a majority vote f̂ [M ] = sign(
∑M

m=1 ĝ
[m]) over all model fits ĝ[m] of all iterations m = 1, . . . ,M .

1.3.2 Boosting from a Statistical Point of View

Although the idea of combining or “mixing” models was not completely new at the time of AdaBoost’s

invention, a theoretical justification for the good prediction performance from a statistical point of

view was only given later by Friedman et al. (2000), who showed that AdaBoost is actually an

optimization method to minimize a particular exponential loss (Ridgeway, 1999). The relevance of

this new concept was soon accepted in the statistical community and on the basis of the initial idea

to reweight observations Ridgeway (1999) and Friedman (2001) proposed to iteratively update the

final model in a gradient descent manner using a small step-length ν ∈ (0, 1): f̂ [m] = f̂ [m−1] + νĝ[m].

Therefore, the base procedure

g(X, · ) : u[m] 7→ g(X,u[m]) = ĝ[m]

is iteratively fitted to the negative functional gradient

u[m] := − ∂

∂f
v(y,f)

∣∣∣∣
f=f̂ [m−1](X)

,

which can be seen as a measure of missing adjustment of the current model fit f̂ [m−1] to the data with

respect to a specified loss function v(·, ·). Hence, instead of fitting g(·) to a weighted dataset, their

proposal is to fit the base procedure to the working response or pseudo residuals u[m] and update the

model incrementally in the direction of the negative functional gradient, thereby heralding the era of

functional gradient descent (FGD) algorithms1.

1However, literature does not fully agree on who should be given credit for pointing out the idea of performing
“gradient descent in the function space” in the first place (see Bühlmann and Hothorn, 2007; Buja et al., 2007).
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In the context of statistical boosting with squared error loss, Bühlmann and Yu (2003) first

recognized the necessity to employ some kind of variable selection when boosting is applied to high-

dimensional data sets. Inspired by tree base learners, they proposed component-wise smoothing

splines as learners, where only one smoothing spline base learner gj(xj) corresponding to one explana-

tory variable xj is selected in each iteration, entitling the resulting algorithm L2Boost. Bühlmann

(2006) adopted this idea and proposed an extension under the name L2Boosting, which was a gen-

eral framework for boosting linear models for squared error loss in high dimensions, equipped with

component-wise linear least squares base learners. In addition, a justification for L2Boosting was given

by proofing asymptotic consistency of the procedure in high dimensions. By fitting the base learner

gj(·), j = 1, . . . , J, separately, this concept allows to (a) fit regression models for p > n-settings, i.e.,

when the number of covariates exceeds the number of observations, (b) include correlated covariates

into the regression setup without any further adjustment and (c) leads to a computationally desirable

scaling with respect to the number of covariates, as calculations involved in least squares minimiza-

tion typically imply costs, which are quadratic and cubic in p (see, e.g., Wood, 2017). Additionally,

the algorithm potentially performs variable or model selection – depending on the definition of base

learners – when stopped before convergence.

1.3.3 Implementation and Extensions

A wrap-up of past discoveries together with a proposal of a comprehensive framework for statistical

boosting accompanied with a modular open-source R package mboost (Hothorn et al., 2017) was

given by Bühlmann and Hothorn (2007). The authors’ implementation of the component-wise

functional gradient descent algorithm allows for a flexible definition of the loss function as well as

arbitrary and potentially different base learners, such as a combination of linear and smoothing spline

base learners. Schmid and Hothorn (2008) proposed to use P-spline instead of smoothing spline base

learners when boosting additive models, which was particularly motivated from a computational

point of view. Having similar prediction performance in practice, P-spline base learners reduce

computational effort notably in contrast to smoothing spline base learners and represent a standard

choice in more recent literature as well as in the software package mboost.

In the last ten years, boosting has been applied in various forms, from machine learning and data min-

ing challenges, where especially tree-based boosting methods such as XGBoost (Chen and Guestrin,

2016) are very successful, to statistical boosting applications covering a great variety of model classes,

including models for regression with functions, survival regression or generalized additive models for

location, scale and shape (GAMLSS, Rigby and Stasinopoulos, 2005). A more detailed overview on

the application of statistical boosting can be found in Mayr et al. (2017).
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1.4 Post-Selection Inference

This section of the methodological introduction is concerned with post-selection inference (PoSI),

which plays an important role in the contributing articles in Chapter 3 and Chapter 4. First, the idea

behind PoSI is explained by reviewing the recent criticism of scientific publications and some of the

misconceptions therein. After a brief summary of the historical evolution of PoSI, a more extensive

overview of the current literature is given, including some detailed reviews of proposed PoSI concepts.

The general idea of the problems underlying the PoSI framework is exemplarily illustrated on the

basis of model selection in the class of linear models.

1.4.1 The Problem with Classical Statistical Inference after Model Selection

In recent years the replicability of published research findings has been subject to substantial criticism.

One of the driving publications raising awareness of this “crisis” is Ioannidis (2005), who bluntly

questions the correctness of publications, claiming that “most research findings are false”. Besides

other more intangible problems he relates this incorrectness to a prevailing lack of study power,

different types of (publication) biases and greater flexibility in study definitions. A somewhat related

problem to the greater flexibility in study definitions comes from misconceptions in the use of classical

statistical theory after data-driven model selection. Whereas classical inference concepts grant validity

if the model of interest as well as hypothesis are known a priori, the data-driven selection of a model

and corresponding hypotheses produces an additional stochastic aspect in the analysis, which classical

theory does not account for. This is not only the case if inference statements and hypothesis are

generated as a result of a formally specified model selection procedure, but is also problematic for

ill-defined ways of model selection, such as visual inspection or retrospective adaption of models.

In the last century, many authors have noticed problems associated with inference after model

selection, dating at least back to Buehler and Feddersen (1963). Although many theoretical results

have been discovered in the 90’s as well as in the beginning of this century, e.g., by Pötscher (1991)

and Leeb and Pötscher (2003) deriving the (asymptotic) conditional and unconditional finite-sample

distribution of the post-model-selection estimator, the literature indicates only minor interest in this

topic until 2013. After the proposal by Berk et al. (2013) to “devise statistical inference that is valid

following any type of variable selection”, research on this topic flourished and a rising interest in

the statistical community for methods correcting for the data-driven or adaptive nature of statistical

methodology in practice can be derived from literature.

Berk et al. (2013) stipulated an inference that is simultaneously valid for all hypotheses potentially

coming into question. Simultaneity in this case refers to the validity of the concept for all possible

selected models. Whereas simultaneous inference can be seen as a protection against all risks of

data exploitation, the principle is often very idealistic and may be difficult to translate in practice.

Although Berk et al. (2013) describe their framework as an inference tool, which is valid after any

kind of model selection, the statements are only valid for all models within the class of linear models

considered and do, e.g., not cover the case, in which additive models have been considered in the

model building process. In addition, the premise for a protection against all “risks” can result in a
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rather conservative inference framework, for instance a lack of power in hypothesis tests following the

model selection.

Another approach, which is related to the proposal by Berk et al. (2013), is given by performing

inference conditional on the selected model. Rather than providing validity for any model selection

procedure in a class of models, the idea is to build a valid inference framework for specific model

selection procedures conditional on the finally selected model, which is also referred to as selective

inference. As can be seen in the contributing article in Chapter 3 and 4, this approach allows for the

combination of different selection procedures as long as each of the selection mechanisms is accounted

for and thus also facilitates a model search through different model classes. The contributing articles

in Chapter 3 and 4 are based on this concept. Therefore the conditional or selective inference is

first described in Subsection 1.4.2 in more detail, followed by a short introduction into simultaneous

inference and alternative concepts in Subsection 1.4.3. The idea of conditional inference is exemplified

in the following example.

Example: Inference after AIC-based model selection

As described in the first section of this methodological introduction, the AIC can be used as a

measure of prediction performance of candidate models in GLMs. Specifically, if the goal is to

decide whether a covariate of interest xj with coefficient βj should be added to an existing model

M0, the decision can be based on the comparison of AICs for the model M0 and for the model

M1, which is the same model as M0 but additionally includes the covariate xj . Since model

M1 is chosen if and only if

AIC(M0) > AIC(M1) ⇔ −2`(M0) > −2`(M1) + 2 (1.7)

for the maximized log-likelihoods `(M0), `(M1) under model assumptionsM0,M1, respectively,

(1.7) implies that minus twice the logarithmic likelihood ratio Λ := −2 log[L(M0)/L(M1)] must

be greater than 2. Under the assumption

H0 : βj = 0,

i.e., no influence of the jth covariate in the alternative model, the hypothesis can be tested using

a likelihood ratio test (LRT), where Λ
a∼ χ2

1 (see, e.g., Pawitan, 2001). However, if the model

M1 was chosen by the AIC, i.e., AIC(M0) > AIC(M1),

P(Λ ≤ 2|AIC(M0) > AIC(M1)) = 0

holds.

The invalidity of inference after model selection can then be exemplarily explained when the

number of falsely rejected null hypothesis in a number of experiments is considered. For demon-

strating purposes, assume that the above model comparison and subsequent test is repeated
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for B times by a) repeatedly sampling a new response vector y from the true underlying data

generating process, b) conducting the AIC comparison and c) testing the jth coefficient if the

larger model is preferred by the AIC. This example can be thought of as a research question,

which is investigated by B independent researcher teams conducting one and the same experi-

ment. Assume that H0 holds for all B cases and set the significance level α to 0.05. Then, in

an average of P(Λ ≤ 2) ·B ≈ 0.8427 ·B cases the LRT is not performed and thus H0 cannot be

falsely rejected. In P(Λ > 2) · B ≈ 0.1573 · B expected number of cases, however, the LRT is

performed and yields and expected number of

P(Λ > qΛ
0.95|Λ > 2) ·B = P(Λ > qΛ

0.95)/P(Λ > 2) ≈ 0.3179 ·B

false rejections, where qΛ
0.95 ≈ 3.8415 is the (1 − α)-quantile of the χ2

1 distribution. Although

this results in an overall expected number of α ·B false rejections, the number of false rejections

in those cases, in which the variable was selected into the model is ≈ 0.3179 · B � α · B. As in

practice, significance tests are only ever performed for coefficients, for which the corresponding

covariate has been selected by the model selection procedure, this example elucidates the

importance of valid inference concepts after model selection.

1.4.2 Selective Inference

An important concept for valid inference after model selection can be obtained when hypothesis

tests and other inference statements are conducted conditional on the model selection. This idea has

already been developed some time ago, including Buehler and Feddersen (1963), Brown (1967), Olshen

(1973) and Sen (1979), who focused on conditional properties of tests and the maximum-likelihood

estimators. Prior to the literature, which will be introduced below, the phrase selective inference

was also shaped by approaches, which are concerned with statistical properties after multiple testing

procedures. Most notably, the work of Benjamini and Yekutieli (2005), who generalized the false

discovery rate (Benjamini and Hochberg, 1995)

FDR = E
[

#false discoveries

#discoveries

]

to a false coverage-statement rate (FCR) in order to account for a selective nature of performed

hypothesis tests.

Selective inference as the concept of controlling the selective type I error can be based on the

guiding principle “The answer must be valid, given that the question was asked” (Fithian et al.,

2014). More formally, let Q̂ : Y → Q be a pre-defined selection procedure mapping the data Y ∼ F
from some measurable space (Y,H) to the model or “question space” Q with elements q = (M, H0),

i.e., a hypothesis generating probability modelM, which is believed to – but does not necessarily have
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to – contain F , and a null hypothesis H0 ⊂ M. Selective inference then considers the conditional

distribution

Y |q ∈ Q̂(Y ),

i.e., the distribution of Y conditional on the selection event A = {q ∈ Q̂(Y )} and seeks to control

the selective type I error at level α:

P(A1|A) ≤ α,

where A1 denotes the rejection of the null hypothesis by some test φ ∈ {0, 1}. Analogous to the

classical statistical inference theory, a test φ controls this error at level α if

EF (φ(Y )|A) ≤ α, for all F ∈ H0

and this statement can be used to construct a selective (confidence) interval by duality of tests and

confidence sets (see Fithian et al., 2014).

When ignoring the selection event A or if Q̂ is a selection procedure independent of Y , the selective

type I error coincides with the conventional type I error: P(A1|A) = P(A1). Independence of the

selection event and hypothesis testing can also be accomplished in a more synthetic way by using

data splitting as proposed by Cox (1975). The idea is to split the data Y into two independent parts

Y (1) ∈ Rn1 and Y (2) ∈ Rn2 with n1, n2 < n, n1 + n2 = n, define Q̂ using Y (1), i.e., perform model

selection using only Y (1), and use Y (2) to test the hypothesis H0. Usually, if n is not very large, this

split affects the performance of both the model selection, yielding a potentially decrease in “model

selection quality”, and the following inference, which will have a decrease in power in comparison

to a test, which uses n instead of n2 observations. By conditioning on the selection event itself,

selective inference provides a more elegant way to use Y for both, model selection and inference by

conditioning on the information in Y , which was used for model selection. This approach is therefore

also known as data carving (Fithian et al., 2014).

To calculate p-values for such hypothesis tests in practice, different approaches exist. In

particular, methods can be divided into approaches, which derive a closed form expression of the

conditional null distribution of some test statistic T (e.g., Lee et al., 2016; Tibshirani et al., 2016)

and thus provide exact inference based on analytic expressions, and approaches, which sample from

the conditional distribution and rely on Monte Carlo methods (e.g., Fithian et al., 2014; Tian et al.,

2016; Tian and Taylor, 2018).

The following example serves as a short introduction into recent advances in conditional inference

as well as an geometrical illustration of the underlying problem.See Lee et al. (2016) and Tibshirani

et al. (2016) for more details.

Example: Exact Inference based on the Polyhedral Conditioning Sets

Assume a linear regression setup with a response vector Y ∈ Rn following a normal distribution

Nn(µ, σ2In) with known variance σ2. Samples are obtained from the conditional distribution
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Y |X with fixed design matrix X ∈ Rn×p. Q̂ here can be thought of as some sort of variable

selection criterion, which selects the columns T ∈ P({1, . . . , p})\∅ of X with power set function

P(·) and pT = |T| ≤ n. Inference is then sought for the model

M(βT) =
{
Nn(XTβT, σ

2In),βT ∈ RpT
}

and some hypothesis

H0,j : βTj = 0.

When µ 6= XTβT for any T, the hypothesis H0,j can be regarded as testing the jth direction

when projection µ onto span(XT). This idea is described in more detail in Chapter 3.

Let T := T (Y ) = η>Y ∈ R be a test statistic linearly depending on Y via the vector η ∈ Rn.

Further, assume σ2 to be known and let µ be the parameter of interest. The distribution of T

is then given by F = N1(η>µ, σ̃2 := σ2||η||22) with || · ||22 the quadratic euclidean norm. In

the case, in which we want to test H0,j , we obtain a suitable test statistic T by choosing η as

(e>j (X>TXT)−1X>T )> with jth unit vector ej . When model or variable selection Q̂ is regarded as

a function of Y , valid inference can be based on the conditional distribution of Y , conditional on

the selection event q ∈ Q̂(Y ). For approaches, which provide exact inference such as Lee et al.

(2016), the model selection event q ∈ Q̂(Y ) can be equivalently written as a restriction G ⊂ Rn

on the space, in which Y resides. Such a restriction can, for example, be a hyperplane

G = {Y : a>Y = b},

with a ∈ Rn, a 6= 0, b ∈ R; a polyhedron

G = {Y : a>j Y ≤ bj , j = 1, . . . , e, c>j Y ≤ dj , j = 1, . . . , f} (1.8)

or other subspaces of Rn such as an intersection or union of polyhedra (see Boyd and Vanden-

berghe, 2004, for formal definitions and further examples). When the Lasso (Tibshirani, 1996)

or the L2Boosting algorithm is used for model selection, the space of Y is restricted to a union

of polyhedra (see Lee et al., 2016, and the contributing article in Chapter 4).

If the distribution E of T (Y )|Y ∈ G is sought and the space restriction is only a single

polyhedron, E can be obtained by rewriting Y ∈ G in terms of T . For simplicity, assume that

G in (1.8) is only defined by inequalities associated with aj , j = 1, . . . , e and note that Y can

be decomposed in PηY , with projection matrix Pη = ηη>/||η||22 projecting Y onto η and the

residual Z := (In − Pη)Y . Plugging in Y = PηY + Z = T · η/||η||22 + Z in the definition of G

yields the conditioning set G̃ with respect to T :

G̃ := {T : T · a>j η/||η||22 + a>j Z ≤ bj , j = 1, . . . , e}. (1.9)
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By solving the inequalities for T , the conditional distribution of T can be written as

T | Y ∈ G =d T | V−(Z) ≤ T ≤ V+(Z),V0(Z) ≥ 0,

where

V−(Z) := max
j:a>j η<0

bj − a>j Z

a>j η
·||η||22, V+(Z) := min

j:a>j η>0

bj − a>j Z

a>j η
·||η||22, V0(Z) := min

j:a>j η=0
bj−a>j Z.

For every realization z of Z, T then follows a normal distribution with fixed truncations V−(z)

and V+(z), which by construction are independent of T . The truncation limits being theoretically

random as functions of Z, selective inference proceeds by conditioning on the realized value of

Z for a given observation Y = y. Doing so facilitates the derivation of an explicit distribution

at the cost of conditioning on more information and thereby a potentially loss of power for the

subsequent inference. When conditioning on Z = z, a pivotal quantity can be defined as

F
[V−(z),V+(z)]

η>µ,σ̃2 (T ) | V−(z) ≤ T ≤ V+(z),V0(z) ≥ 0,Z = z ∼ Unif(0, 1),

with

F
[a,b]
ψ,ω2(x) =

Φ((x− ψ)/ω)− Φ((a− ψ)/ω)

Φ((b− ψ)/ω)− Φ((a− ψ)/ω)

denoting the cumulative distribution function (CDF) of a truncated normal distribution with

truncation limits a, b, expectation ψ and variance ω2. Φ denotes the CDF of a standard normal

random variable. Finally, the pivotal quantity can be used to test the hypothesis H0,j based on

T and can also be used to construct confidence intervals by inverting the test.

Further Developments in Selective Inference

The following tries to give a snapshot of current developments and the many facets of selective

inference. Due to the high topicality, this includes many preprints, which may be work in progress

and does not guarantee completeness given the speed of growth of this research field. The focus of

this summary lies on selective inference. Many other potentially relevant methods including concepts

for simultaneous inference are listed afterwards in order to provide a bigger picture on the topic of

valid inference post-model selection.

Many other explicit inference approaches are motivated by the exact post-selection inference frame-

work of Lee et al. (2016), proposing a general approach for valid inference after model selection with

particular focus on the Lasso. This work has been extended in several ways, e.g., by tests for groups

of variables initially proposed by Loftus and Taylor (2015). Yang et al. (2016) further extended this

idea in order to calculate p-values beyond the null hypothesis H0,j : βTj = 0 and thereby allow for

the construction of confidence intervals. Both of these publications represent an important founda-
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tion of the work in Chapter 3 and 4 and will be discussed in greater detail in those contributing

articles. Different approaches also allow the regularization parameters of the Lasso to be chosen

via cross-validation by extending existing inference concepts for fixed regularization parameter (see,

e.g., Loftus, 2015; Markovic et al., 2017). An explicit framework for selective inference has also been

established for sequential selection procedures (G’Sell et al., 2016; Tibshirani et al., 2016) such as

forward stagewise regression, for which an explicit conditional distribution can be derived in a similar

manner as for the Lasso. The second and third contributing article will elaborate on this framework

in more detail.

An important milestone in the evolution of selective inference is given by Fithian et al. (2014)

and Tian and Taylor (2018), introducing the concept of randomization to obtain more power when

conducting selective inference. The principle idea is to introduce a known randomization distribution

Ω as well as a randomization map π : Y × R → Y∗, where R is an auxiliary probability space, and

to fit the regression model using a randomized response Y ∗ = π(Y ,ω), where ω ∼ Ω. A possible

choice for π is π(y,ω) = y+ω, i.e., defining the randomization as an additive noise or by defining the

response for model selection as a random subsample of y, which then coincides with data splitting.

For randomized selective inference, the model selection procedure can be defined by Q̂∗ : Y ×R → Q
and inference is based on the conditional distribution of Y |q ∈ Q̂∗(Y ∗). For the linear regression

setup and additive randomization noise, for example, the condition in (1.9) is replaced by

G̃∗ := {T : T (Y ∗) · a>j η/||η||22 + a>j Z ≤ bj , j = 1, . . . , e}

with T (Y ∗) = T (Y + ω) being distributed according to the selective distribution or selective law :

T (Y + ω) ∼ F∗. Although an explicit derivation of the conditional set is not possible in this case

due to the randomization, the restricted space, again, is a polyhedron, which can be explored using

a sampling algorithm such as a hit-and-run Gibbs sampler or a Hamiltonian Monte Carlo algorithm

(Fithian et al., 2014; Tian and Taylor, 2018). The randomization concept cannot only be used to

derive weak convergence results for selective inference procedures, but has the advantage of increasing

the power of statistical inference while only slightly affecting the model selection quality at the same

time for appropriate randomization schemes. The increase in power is due to more leftover information

after model selection for the inferential procedure, which can be quantified by the so-called leftover

Fisher information (see Tian and Taylor, 2018, Section 4.2 for more details).

Tian Harris et al. (2016) consider the general problem of selective inference after solving a convex

optimization problem stemming from a regularized as well as constrained loss function and propose

a projected Langevin sampler to sample from the selective distribution. This sampling procedure

requires knowledge of the exact or asymptotic distribution of the data generating process, wherefore

Markovic and Taylor (2016) extend this idea in order to use the bootstrap distribution instead.

Panigrahi et al. (2017) extended the framework of Tian Harris et al. (2016) to an Monte Carlo

free approach based on a pseudo selective law. The application of these approaches require the

optimization problem to have a closed form expression. Despite the fact, that some special cases of

model-based boosting can be related to known optimization problems, namely the Lasso, LARS or
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forward stagewise regression (Efron et al., 2004; Bühlmann and Yu, 2003), the (penalty terms of the)

target function in model-based boosting are in general unknown (Hothorn et al., 2014; Mayr et al.,

2017).

Although many approaches focus on linear regression, several frameworks provide methods or

theory for a broader class of models, such as Fithian et al. (2014) considering distributions from the

exponential family or Tibshirani et al. (2015) and Tian and Taylor (2017) removing the Gaussian

assumption of most previous works on selective inference by considering the large sample properties

and convergence behavior of the pivot established in Lee et al. (2016).

Furthermore, selective inference frameworks for several other methods have been proposed re-

cently, including selective inference for the use in model approaches with internal predictors (Gross

et al., 2015), for the Lasso in specific causal inference problems (Zhao et al., 2017), selective inference

to adjust for outlier removal (Chen and Bien, 2017) as well as selective inference for change point

detection (Umezu and Takeuchi, 2017).

Selective inference has also been applied in Bayesian analysis by Panigrahi et al. (2016). Based on

an idea of Yekutieli (2012), the authors first investigate the two possible schemes of space truncation

of Y induced by model selection. From a Bayesian point of view, the truncation Y ∈ G may come

from a “random” parameter setting or a “fixed” parameter setting. In the random parameter setting,

the truncation Y ∈ G is given for some Y sampled alongside with a parameter of interest θ, i.e., when

sampling pairs (Y ,θ). In the fixed parameter setup, some fixed θ ∼ Θ is realized and afterwards Y

is sampled based on this realization of θ. In both cases, the truncated joint distribution of (Y ,θ)

with density fS can be derived by

fS(θ,y) =
fG(θ)f(y|θ)

PG
I(y ∈ G).

In the “random” parameter setting, PG = P(Y ∈ G) and fG(θ) is equal to the prior f(θ), whereas

in the “fixed” parameter case PG = P(Y ∈ G|θ) and fG(θ) is a prior f(θ|Y ∈ G) based on the

model selection. This makes clear, that for the first assumption, the posterior distribution of θ does

not change, as for Y ∈ G the posterior f(θ|y) ∝ fS(θ,y) ∝ f(θ)f(y|θ). Panigrahi et al. (2016)

take the position of the fixed parameter view, which disagrees with some earlier work in this field

but can be justified when the distribution assumption of θ is viewed as summary of available prior

information. Panigrahi and Taylor (2017) adopt this methodology and derive an optimization problem

to approximate the posterior as well as proposing a sampling technique to reduce the computational

cost of the problem.

1.4.3 Simultaneous Inference and Alternative Concepts

As described before, the principle idea of Berk et al. (2013), which initially unleashed the wave of valid

inference concepts in the beginning of the early 2010s, is not to condition on the selection event but

rather provide inference simultaneously for all possible model selection outcomes. Bachoc et al. (2014)

extended the simultaneous inference framework of Berk et al. (2013) to valid confidence intervals for
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predicted values post model selection. Whereas Berk et al. (2013) presented the PoSI idea for linear

models with homoskedastic Gaussian error assumption, Bachoc et al. (2016) extended the framework

to construct valid confidence intervals post model selection, allowing for different regression setups

(e.g., logistic regression) and without the requirement of the existence of an unbiased or uniformly

consistent estimator for σ2. These confidence intervals (CI) guarantee coverage for any data-driven

selection procedure and, similar to Berk et al. (2013), the CI is a function of K, the so-called PoSI

constant (Berk et al., 2013). K as the most crucial component in those frameworks in turn depends

on the question space Q, i.e., the space of all considered models, where larger values of K yield

to more conservative statements. Although quite general and attractive due to the validity for any

selection mechanism, calculations may often not be feasible if the question space is large as the

following example will briefly illustrate by giving an explicit construction for linear regression with

homoskedastic Gaussian errors.

Example: Uniformly Valid Inference in Linear Regression

As in the previous example assume |T| ≤ n and let the target of inference be βTj , the jth

direction of the projection of µ onto the span defined by XT. Following Berk et al. (2013), a

valid post-selection confidence interval CITj (K) has the following guarantee:

P(∀j ∈ T : βTj ∈ CITj (K)) ≥ 1− α. (1.10)

This definition can be thought of as a family-wise guarantee for all βTj for which j ∈ T, but

provides no statement about coefficients for which j /∈ T. “Universal validity for all selection

procedures” (Berk et al., 2013) additionally requires (1.10) to hold for all possible model selection

procedures Q̂. A uniformly valid confidence interval Bachoc et al. (2016), which builds on this

premise, is then given by

CITj (K) = β̂Tj ±
√
σ̂2
[
(X>TXT)−1

]
[j,j]
·K(M),

where the notation A[j,j] denotes the jth diagonal element of a matrix A, σ̂2 is the empirical

residual variance based on OLS estimation of the linear model with covariates in T. K, in this

case, is a function of the block-matrix M, which is in turn defined by the blocks

MT(i),T(j) = η>
T(i)ηT(j) (1.11)

with pseudo-inverse matrices ηT(i) ,ηT(j) of two models Mi,Mj searched in the model space.

In linear models, for which the number of columns p in X corresponds to the number

of covariates and for which all possible submodels of X can be selected by Q̂, M consists

of 2p−1 blocks defined by (1.11) for all combinations of submodelsMi,Mj , i, j ∈ {1, . . . , 2p−1}.
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Many other approaches, which have been primarily presented in combination with Lasso-based model

selection, can be summarized under the key word high-dimensional linear model inference. Rather

than to correct inference, the idea in this case is the derivation of an (approximate) distribution of

the parameter estimator. These high-dimensional inference concepts are to a large extent driven by

publications from Zhang and Zhang (2014); van de Geer et al. (2014); Javanmard and Montanari

(2014) and are based on a corrected, desparsified or de-biased version of the Lasso estimator for

applications in which the number of columns p exceeds the number of observations (“p > n-case”).

After correcting the Lasso or an alternative initial estimator, these approaches derive an asymptotic

distribution based on an estimator with a “relaxed form” of the inverse of the empirical covariance

Σ̂ = (X>X/n) , which in turn can be used to provide p-values and confidence intervals. The work

of Chen et al. (2016) is closely related, using the proposed inference concepts to derive a consistent

estimator of the empirical covariance when using stochastic gradient boosting, for which iterative

stochastic properties of the algorithm are exploited. Another approach based on the Lasso is given by

Lu et al. (2017), who derive confidence intervals and regions for the Lasso estimator using stochastic

variational inequality techniques. Meir and Drton (2017) provide inference for the Lasso by creating

a noisy post-selection score function. Extensions to other model classes include, e.g., results on

the likelihood ratio test in high-dimensional logistic regression (Sur et al., 2017) or valid PoSI in

quantile regression models (Belloni et al., 2018). Ewald and Schneider (2015) derive confidence sets

for the parameter vector based on the Lasso estimator. In the economic research field a line of post-

selection inference frameworks for the Lasso but also for other machine learning techniques and, in

particular, for L2-Boosting have been proposed by Chernozhukov et al. (2015), Belloni et al. (2016),

Chernozhukov et al. (2016) and Luo and Spindler (2017). The aim is to estimate causal and treatment

effects in models that assume some form of endogeneity. Apart from methods, which mainly focus on

the Lasso, PoSI concepts for many other methods have been proposed, e.g., by Yamada et al. (2018)

proposing a kernel based PoSI algorithm.

Closely related to the problem of correct assessment of uncertainty after model selection is an

appropriate performance measure in machine learning. Here model selection can be the reason for

over-fitting and should be used as an integral part of the fitting procedure when estimating the gener-

alization performance (Cawley and Talbot, 2010). The work of Hong et al. (2018), which is interesting

from a predictive as well as from an inferential point of view, explicitly proved this phenomenon by

showing that the estimated variance in a linear model that is selected via the AIC is strictly smaller

than the oracle estimate.

1.5 Functional Data Analysis

Part II of this thesis addresses the estimation of functional regression models and their application

as well as extension to studies, in which study settings vary between different observation units and

additionally yield subject specific measurements. As a methodological basis this section therefore

briefly introduces functional data analysis, functional regression models in general and the framework
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of Brockhaus et al. (2017), which serves as a basis for Chapter 5.

The second part of this thesis is concerned with functional data analysis (FDA), nowadays one of

the fastest growing fields in statistics, which has especially become popular due to the publication of

Ramsay and Silverman (2005) describing different aspects of FDA in a “seminal textbook” (Morris,

2015). Strongly inspired by longitudinal and time series data, the analysis of “first generation func-

tional data” or “curve data” (Wang et al., 2016) is concerned with samples x1(t), . . . , xn(t), t ∈ T ⊂ R,

representing real-valued functions on the domain T . In applications, the domain T is often thought of

as a certain time interval. These intrinsically infinite dimensional functions are viewed as realizations

of a stochastic process X : T → R, defined on a Hilbert space. In the the following and in both chap-

ters in part II of this thesis this space is defined by L2(T , µ), the space of square integrable functions

with Lebesgue measure µ, satisfying E(
∫
T X

2
i (t) dµ(t)) <∞. In practice, the realized functions xi(·)

of samples Xi(·), i = 1, . . . , n are observed on a grid of ordered time points t1,i, . . . , tGi,i ∈ T and are

often summarized in a vector xi = (xi(t1,i), . . . , xi(tGi,i)) . The time grid can be sparse or dense,

depending on the observation mechanism and may have missing values. Thus an appropriate analysis

of such data requires different methods, depending on the question of interest, the nature of the data

generating process and on how the functions are observed.

Two further challenges are given when analyzing multivariate data of p stochastic processes

X
(j)
i , j = 1, . . . , p, each potentially with a different domain Tj or when the analysis is concerned with

“next-generation functional data” (Wang et al., 2016) such as neuroimaging data, time-space data

or shapes. In the latter case, the methodology of functional data is extended to stochastic processes,

which are defined on higher dimensional domains T ⊂ Rd, d ∈ N.

Analysis of functional data is done in various ways, including (functional) principal component analy-

sis, clustering and classification of functional data, discriminant analysis or functional regression (see,

e.g., Ramsay and Silverman, 2005; Wang et al., 2016). In the following, functional regression models

are described in more detail.

1.5.1 Functional Regression Models

The second part of this thesis focuses on functional regression models, an area, that has received great

attention with respect to the application of functional data as well as with respect to the development

of new methodology (Morris, 2015). In the FDA literature, three types of functional regression models

are usually addressed: (a) scalar-on-function regression (SOFR) with scalar response and functional

covariate(s), (b) function-on-scalar regression (FOSR) with functional response and scalar covariate(s)

and (c) function-on-function regression (FOFR), where both response and covariate(s) are considered

as functions. Whereas Chapter 5 is only concerned with function-on-function regression, chapter 6

describes methods for all three model classes and illustrates how (a) and (b) can be represented

as special cases of (c). For introductory purposes, a short introduction into function-on-function

regression is given in the following.
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1.5.2 Function-on-Function Regression

Consider a functional response Y and a functional covariate X from the product space Y×X , where Y
and X are elements of L2(T , µ) and L2(S, µ), respectively, with intervals T = [T1, T2] and S = [S1, S2]

defined by T1, T2, S1, S2 ∈ R, T1 ≤ T2, S1 ≤ S2. For realizations (Y,X)i = (Yi, Xi), i = 1, . . . , n of

(Y,X) a simple FOFR with unconstrained surface effect β(s, t) can be defined as

Yi(t) = β0(t) +

∫

S
Xi(s)β1(s, t) ds+ εi(t), i = 1, . . . , n, (1.12)

where εi are independent and identically distributed Gaussian white noise processes, i.e., stochastic

processes with zero mean and constant variance σ2 across T , β0(·) is a smooth function in t and

β1(·, ·) a smooth two-dimensional function defined on T × S. Using (1.12) to relate the functional

covariate and the functional response, we assume a linear relationship of Xi(s) and Yi(t) for all

time points s ∈ S and t ∈ T . Linear models such as (1.12) were first presented in Ramsay and

Dalzell (1991) and adopted by many others, e.g., Yao et al. (2005). In particular, the model can be

extended to include several functional covariates. In the case of J functional predictors, X itself can

be defined as J-dimensional product space
⊗J

j=1Xj and each Xj is defined on L2(Sj , µ). The work

of Scheipl et al. (2015) is particularly notable in this respect, presenting a framework, which does

not only allow for multiple linear functional covariates but also for (potentially time-varying) random

effects, smooth functional effects, fixed scalar covariates as well as functional varying coefficients

and interaction effects. This is also the case for the framework by Brockhaus et al. (2015), which

additionally allows to model different characteristics of the conditional distribution of Y and which

is described in more detail in the following subsection as well as in Chapter 6. Both approaches can

be embedded in a comprehensive view based on GAMs, which was presented by Greven and Scheipl

(2017a) describing “an impressively general framework for functional regression” (Morris, 2017) and

which will be explained in more detail in the following.

Both SOFR and FOSR can be seen as special cases of the function-on-function regression. For

SOFR, for which the response Yi is assumed to be scalar, this can be achieved by defining the time

domain T as single point interval [t, t] and µ as Dirac measure (see, e.g., Brockhaus et al., 2015).

The FOSR can be derived from the FOFR when no functional covariates are present. Although

SOFR and FOSR represent special cases of the FOFR, the FOFR has received comparatively little

attention in the past literature (Morris, 2015).

Representation and Estimation

In Greven and Scheipl (2017a) with corresponding rejoinder (Greven and Scheipl, 2017b) present and

discuss FDA with particular focus on FOFR and give an extensive comparison of different available

methods with their practical applicability. The authors identify five general approaches which deal

with functional responses and four particularly developed software solutions, implementing fitting

routines for FOFR to some extent. The presented approaches and software solutions stem from
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three different representation of FOFR. The idea of Ramsay and Silverman (2005), implemented in

the R package fda (Ramsay et al., 2016), works with pre-smoothed observations. Although this

is convenient from a mathematical point of view, the practical applicability is limited due to the

neglect of measurement error and due to the less general setup of this framework. The two remaining

frameworks excel in their broad scope of applicability and are thus briefly described in the following.

The functional mixed model (FMM) framework, firstly introduced by Morris and Carroll (2006),

is a Bayesian model setup, which represents a very flexible and historically early representation and

implementation of FOSR. The approach is based on a representation of curves in their (wavelet)

basis space, which reduces the regression of infinitely many observations to a finite number of basis

coefficients and estimates the resulting model in the basis space using MCMC sampling. After the

estimation results can be retransformed into the original space. This approach allows for a general

assumption on residual errors and different random effect structures with potential extensions to

parametrically specified correlation structures of the functional residuals (Zhu et al., 2016; Zhang

et al., 2016). The extension of this framework to FOFR was presented by Meyer et al. (2015), which

is applicable if functions are observed on a common grid.

The second approach stems from the representation of functional regression as an additive mixed

model and has several roots, with some ideas dating back to Hastie and Mallows (1993) as well as

Marx and Eilers (1999) and Marx and Eilers (2005), who initially proposed this concept for SOFR.

The extension to functional responses by transformation to scalar data is related to varying coefficient

models (Hastie and Mallows, 1993) and the idea of Reiss et al. (2010). These ideas have then been

extended to FOFR by Ivanescu et al. (2015) and Scheipl et al. (2015) in the functional additive mixed

model (FAMM) framework. Instead of estimating a surrogate model in the basis space as done in

the FMM framework, additive model terms in the FAMM framework are represented using tensor or

row-wise tensor products of two marginal basis functions for parameterizing (a) the covariate effect

and (b) the (functional) form of the effect over T . A notable extension to the FAMM framework is

given by Scheipl et al. (2016), presenting generalized functional additive mixed models (GFAMM),

which allows for the estimation of the conditional expectation E(Y (t)|X) for Y (t), which is assumed

to follow a distribution from the exponential family, but can be also be a random variable from a

less commonly used distribution, such as the Tweedie or the Negative Binomial distribution (see

Scheipl et al., 2016, Section 2 for a complete list of supported distributions). In the case of FAMM

and GFAMM, estimation is done by the initial use of a Laplace-approximate marginal likelihood to

estimate involved smoothing parameters, followed by the estimation of model coefficients for given

smoothing parameters based on a penalized likelihood. The model framework is implemented in the

R package refund (Goldsmith et al., 2016), which in turn uses the R package mgcv (Wood, 2016)

as fitting engine. As presented by Greven and Scheipl (2017a), the framework can be even more

generalized, including the extension to GAMLSS, a general basis representation and an alternative

way of model estimation, namely boosting, which is presented in Chapter 6.

Whereas most of the initial ideas have been proposed for an unconstrained functional effect∫
S X(s)β(s, t) ds, further functional predictors can be defined by softening the linear assumption,
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by allowing for interaction with scalar covariates or by restricting the integration of X(s)β(s, t) to an

interval [l(t), u(t)] ⊂ S. A special case, which can be derived from this restriction, is the so-called his-

torical effect. Historical effects are extensively studied and generalized in Chapter 5 and are therefore

described briefly in the following.

1.5.3 Historical Models

In the second part of this thesis, functional historical models will play an important role in the

application of FOFR to bioelectrical signals. In contrast to previously described frameworks for

FOFR, both functional response and functional covariates are therefore assumed to be observed over

the same (time) interval, i.e., T = S, allowing for a meaningful association between the response and

a covariate with respect to the (time) domain. The name historical stems from the fact, that only

the history s < t of covariates modeled via historical effects are assumed to influence the response

at time point t, s, t ∈ T , but not “future values”. In more detail, a historical effect for a functional

covariate X can be defined via ∫ t

T1

X(s)β(s, t) ds, s, t ∈ T

or more general via ∫ u(t)

l(t)
X(s)β(s, t) ds, s, t ∈ T ,

where l(·) and u(·) define the integration limits as function of the time t and the first definition of a

historical effect can be obtained by setting l(t) = T1 and u(t) = t. FOFR models with one historical

effect were introduced by Malfait and Ramsay (2003), Harezlak et al. (2007) and Gervini (2015),

whereas the FAMM framework and the framework by Brockhaus et al. (2017) allow for a variety and

multitude of functional and, in particular, historical effects. The FAMM approach, on the one hand,

relies on the estimation via mixed models and is thus based on a well established and thoroughly

studied framework but limited to estimation of models for the conditional mean of the response.

On the other hand, Brockhaus et al. (2017) use the CFGD algorithm as fitting procedure, which

is not accompanied with a ready to use inference toolbox, but allows for model estimation of any

transformation function of the conditional response and is computational advantageous. This is due

to the component-wise nature of the estimation procedure, highlighted in more detail in Section 1.3

and studied in Part II of this thesis. The used software package, which is presented in Chapter 6,

additionally allows for a very modular specification of historical and other FOFR models.
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Abstract

Model selection in mixed models based on the conditional distribution is appropriate
for many practical applications and has been a focus of recent statistical research. In
this paper we introduce the R-package cAIC4 that allows for the computation of the
conditional Akaike Information Criterion (cAIC). Computation of the conditional AIC
needs to take into account the uncertainty of the random effects variance and is therefore
not straightforward. We introduce a fast and stable implementation for the calculation
of the cAIC for linear mixed models estimated with lme4 and additive mixed models
estimated with gamm4 . Furthermore, cAIC4 offers a stepwise function that allows for a
fully automated stepwise selection scheme for mixed models based on the conditional AIC.
Examples of many possible applications are presented to illustrate the practical impact
and easy handling of the package.

Keywords: conditional AIC, lme4, Mixed Effects Models, Penalized Splines.

1. Introduction

The linear mixed model is a flexible and broadly applicable statistical model. It is naturally
used for analysing longitudinal or clustered data. Furthermore, any regularized regression
model incorporating a quadratic penalty can be written in terms of a mixed model. This in-
corporates smoothing spline models, spatial models and more general additive models (Wood
2017). Thus efficient and reliable estimation of such models is of major interest for applied
statisticians. The package lme4 for the statistical computing software R (R Core Team 2016)
offers such an exceptionally fast and generic implementation for mixed models (see Bates,
Mächler, Bolker, and Walker 2015). The package has a modular framework allowing for the
profile restricted maximum likelihood (REML) criterion as a function of the model parameters
to be optimized using any constrained optimization function in R and uses rapid techniques
for solving penalized least squares problems based on sparse matrix methods.
The fact that mixed models are widely used popular statistical tools make model selection
an indispensable necessity. Consequently research regarding model choice, variable selection
and hypothesis testing in mixed models has flourished in recent years.
Hypothesis testing on random effects is well established, although for likelihood ratio tests
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boundary issues arise (Crainiceanu and Ruppert 2004; Greven, Crainiceanu, Küchenhoff, and
Peters 2008; Wood 2013). In model selection for mixed models using the Akaike information
criterion (AIC Akaike 1973), Vaida and Blanchard (2005) suggest to use different criteria
depending on the focus of the underlying research question. They make a distinction between
questions with a focus on the population and on clusters, respectively. For the latter, they
introduce a conditional AIC accounting for the shrinkage in the random effects. Based on
this conditional AIC, Liang, Wu, and Zou (2008) propose a criterion that corrects for the
estimation uncertainty of the random effects variance parameters based on a numerical ap-
proximation. Greven and Kneib (2010) show that ignoring this estimation uncertainty induces
a bias and derive an analytical representation for the conditional AIC.
For certain generalized mixed models, analytical representations of the conditional AIC exist,
for instance for Poisson responses (see Lian 2012). Although there is no general unbiased cri-
terion in analytical form for all exponential family distributions as argued in Säfken, Kneib,
van Waveren, and Greven (2014), bootstrap-based methods can often be applied as we will
show for those in presented in Efron (2004). An asymptotic criterion for a wider class of
distributions is described in Wood, Pya, and Säfken (2016).
In this paper, we describe an add-on package to lme4 that facilitates model selection based
on the conditional AIC and illustrates it with several examples. For the conditional AIC pro-
posed by Greven and Kneib (2010) for linear mxied models, the computation of the criterion
is not as simple as it is for other common AIC criteria. This article focuses on techniques for
fast and stable computation of the conditional AIC in mixed models estimated with lme4,
as they are implemented in the R-package cAIC4. The amount of possible models increases
substantially with the R-package gamm4 (see Wood and Scheipl 2016) allowing for the esti-
mation of a wide class of models with quadratic penalty such as spline smoothing and additive
models. The presented conditional AIC applies to any of these models.
In addition to translating the findings of Greven and Kneib (2010) to the model formulations
used in Bates et al. (2015), we present the implementation of conditional AICs proposed for
non-Gaussian settings in Säfken et al. (2014) and as we propose based on Efron (2004). With
these results, a new scheme for stepwise conditional variable selection in mixed models is
introduced. This allows for fully automatic choice of fixed and random effects based on the
optimal conditional AIC. All methods are accompanied by examples, mainly taken from lme4,
see Bates et al. (2015). The rest of this paper is structured as follows:
In Section 2 the mixed model formulations are introduced based on one example with ran-
dom intercepts and random slopes and a second example on penalised spline smoothing. The
conditional AIC for Gaussian, Poisson and Bernoulli responses is introduced in Section 3.
Section 4 gives a hands-on introduction to cAIC4 with specific examples for the sleepstudy

and the grouseticks data from lme4. The new scheme for stepwise conditional variable
selection in mixed models is presented in Section 5 and applied to the Pastes data set. After
the conclusion in Section 6, part A of the appendix describes how cAIC4 automatically deals
with boundary issues. Furthermore the underlying code for the rapid computation of the
conditional AIC is presented in part B of the appendix.

2. The mixed model

In a linear mixed model, the conditional distribution of the response y given the random
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effects u has the form

y|u ∼ N
(
Xβ +Zu, σ2In

)
, (1)

where y is the n-dimensional vector of responses, β is the p-dimensional vector of fixed effects
and u is the q-dimensional vector of random effects. The matrices X and Z are the (n× p)
and (n × q) design matrices for fixed and random effects, respectively, and σ2 refers to the
variance of the error terms.
The unconditional distribution of the random effects u is assumed to be a multivariate Gaus-
sian with mean 0 and positive semidefinite (q × q) covariance matrix Dθ, i.e.,

u ∼ N (0,Dθ) .

The symmetric covariance matrix Dθ depends on the covariance parameters θ and may be
decomposed as

Dθ = σ2ΛθΛ
t
θ, (2)

with the lower triangular covariance factor Λθ and the variance parameter σ2 of the condi-
tional response distribution. In analogy to generalized linear models, the generalized linear
mixed model extends the distributional assumption in (1) to a distribution F from the expo-
nential family,

y|u ∼ F(µ, φ)

where φ is a scale parameter and the mean has the form

µ = E(y|u) = h (Xβ +Zu) , (3)

with h being the response function applied componentwise and natural parameter η =
h−1 (µ). As the hereinafter presented results are limited to the Poisson and binomial dis-
tributions we can assume φ = 1. The symmetric covariance matrix in (2) then is the same as
for Gaussian responses except that σ2 is omitted, i.e., Dθ = ΛθΛ

t
θ.

The given conditional formulations of (generalized) linear mixed models imply marginal mod-
els, which can (conceptually) be obtained by integrating the random effects out of the joint
distribution of y and u, i.e.,

f(y) =

∫
f(y | u)f(u)du.

However, there is typically no closed form solution for this integral. While the marginal model
formulation is usually used for estimation, an analytic representation of f(y) is only available
for the linear mixed model (1). The marginal distribution f(y) for Gaussian responses y is
given by

y ∼ N
(
Xβ, σ2

(
In +ZΛθΛ

t
θZ

t
))
.
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Further extensions of linear mixed models can be obtained by, for example, relaxing the
assumption Cov(y|u) = σ2In.

Example I: Random intercepts and random slopes

Some special cases of mixed models are commonly used in applications, including the random
intercept model and the random slope model. In the random intercept model, the responses
differ in an individual- or cluster-specific intercept for m individuals or clusters. In this case
the individual-specific intercept is modeled as random effect u = (u1,1, u1,2, . . . , u1,m), yielding
the (generalized) linear mixed model

E(yij |u1,i) = h(xijβ + u1,i), u1,i
iid∼ N (0, τ20 Im)

for the j-th observation from an individual or cluster i.

Whereas for the random intercept model all covariates modeled with fixed effects are assumed
to have the same influence on the response variable across individuals, the random slope model
is suitable when an independent variable xs is assumed to have an individual-specific effect
on the dependent variable. The random intercept model is extended to

E(yij |ui) = h(xijβ + u1,i + xs,iju2,i),

where u2,i is the individual-specific slope, which can be regarded as the deviation from the
population slope βs corresponding to the s-th covariate xs,ij in xij . In most cases, there is
no reason to suppose u1,i and u2,i to be uncorrelated and the distributional assumption thus
is

(
u1,i
u2,i

)
∼ N

((
0
0

)
,

(
τ21 τ12
τ21 τ22

))
. (4)

Example II: Penalised spline smoothing

In addition to many possibilities to extend these simple random effect models, linear mixed
models can also be utilized to fit semi-parametric regression models (see, e.g., Ruppert, Wand,
and Carroll 2003). For univariate smoothing, consider the model

E(yi) = f(xi), (5)

for i = 1, . . . , n, where f(·) is a deterministic function of the covariate xi, which shall be
approximated using splines. For illustrative purposes, we consider the truncated polynomial
basis representation

f(x) =

g∑

j=0

βjx
j +

k∑

j=1

uj(x− κj)g+, (6)
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in the following, where κ1 < . . . < κk are k ∈ N knots, partitioning the domain of x, g ∈ N
and

(z)g+ = zg · I(z > 0) =

{
zg if z > 0

0 if z ≤ 0
. (7)

As the truncated part uj(x−κj)g+ is non-zero for x > κj , uj can be seen as a gradient change
of the two consecutive function segments defined on (κj−1, κj ] and (κj , κj+1]. In order to
estimate βj , j = 0, . . . , g and uj , j = 1, . . . , k, the method of ordinary least squares (OLS)
could in principle be applied. In most cases, however, this yields a rather rough estimate
of f for suitably large k as the gradient changes of functions segments have a large impact.
Therefore estimation methods for linear mixed models can be utilized in order to obtain a
smooth function. Representing the untruncated polynomial part in (6) as the fixed effects
and

∑k
j=1 uj(x − κj)

g
+ as the random effects part, the well known shrinkage effect of mixed

models is transferred to the estimation of the ujs, shrinking the changes in the gradient of
the fitted polynomials. The random effects assumption corresponds to a quadratic penalty
on the uj , with the smoothing parameter estimated from the data.

This approach also works analogously for various other basis functions including the frequently
used B-spline basis (see, e.g., Fahrmeir, Kneib, Lang, and Marx 2013). Moreover, a rich variety
of models that can be represented as reduced rank basis smoothers with quadratic penalties
allow for this kind of representation. The estimation via lme4 can be employed by the use of
gamm4. For an overview of possible model components see Wood (2017). An example is also
given in Section 5.

3. The conditional AIC

The Akaike Information Criterion

Originally proposed by Hirotogu Akaike (Akaike 1973) as An Information Criterion (AIC),
the AIC was one of the first model selection approaches to attract special attention among
users of statistics. In some way, the AIC extends the maximum likelihood paradigm by
making available a framework, in which both parameter estimation and model selection can
be accomplished. The principle idea of the AIC can be traced back to the Kullback-Leibler
distance (KLD Kullback and Leibler 1951), which can be used to measure the distance between
a true (but normally unknown) density g(y) and a parametric model f(y | ν). The unknown
parameters ν are commonly estimated by their maximum likelihood estimator ν̂(y). As
minimizing the expected Kullback-Leibler distance is equivalent to minimizing the so called
Akaike Information

AI = −2Eg(y)Eg(ỹ) log f(ỹ | ν̂(y)), (8)

with ỹ a set of independent new observations from g, minus twice the maximized log-likelihood
log f(y | ν̂(y)) as a natural measure of goodness-of-fit is an obvious estimator of the AI.
However, this approach induces a bias as the maximized log-likelihood only depends on y

5
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whereas (8) is defined as a predictive measure of two independent replications ỹ and y from
the same underlying distribution. Therefore the bias correction is defined by

BC = 2
(
Eg(y) log f(y | ν̂(y))− Eg(y)Eg(ỹ) log f(ỹ | ν̂(y))

)
. (9)

Akaike derived the bias correction, which under certain regularity conditions can be estimated
asymptotically by two times the dimension of ν. This yields the well-known AI estimator

AIC(y) = −2 log f(y | ν̂(y)) + 2 dim(ν).

Hence, as the statistical model f(·|ν) with the smallest AI aims at finding the model which
is closest to the true model, the AIC can be seen as a relative measure of goodness-of-fit
for different models of one model class. Notice that the bias correction is equivalent to the
(effective) degrees of freedom and the covariance penalty, see Efron (2004).

The marginal and the conditional perspective on the AIC

Adopting this principle for the class of mixed models to select amongst different random effects
is not straightforward. First of all, the question arises on the basis of which likelihood to define
this AIC. For the class of mixed models, two common criteria exist, namely the marginal AIC
(mAIC) based on the marginal log-likelihood and the conditional AIC (cAIC) based on the
conditional log-likelihood. The justification of both approaches therefore corresponds to the
purpose of the marginal and the conditional mixed model perspective, respectively. Depending
on the question of interest, the intention of both perspectives differs, as for example described
in Vaida and Blanchard (2005) or Greven and Kneib (2010).

The marginal perspective of mixed models is suitable when the main interest is to model fixed
population effects with a reasonable correlation structure. The conditional perspective, by
contrast, can be used to make statements based on the fit of the predicted random effects.
In longitudinal studies, for example, the latter point of view seems to be more appropriate
if the focus is on subject- or cluster-specific random effects. Another crucial difference in
both approaches lies in the model’s use for prediction. On the one hand, the marginal model
seems to be more plausible if the outcome for new observations comes from new individuals
or clusters, i.e., observations having new random effects. The conditional model on the other
hand is recommended if predictions are based on the same individuals or clusters, thereby
predicting on the basis of already modeled random effects.

The corresponding AI criteria have closely related intentions. The conditional AIC estimates
the optimism of the estimated log-likelihood for a new data set ỹ by leaving the random
effects unchanged. This can be understood as a predictive measure based on a new data set
originating from the same clusters or individuals as y. On the contrary, the marginal ap-
proach evaluates the log-likelihood using a new predictive data set ỹ, which is not necessarily
associated with the cluster(s) or individual(s) of y.

In particular for the use of mixed models in penalized spline smoothing, the cAIC usually
represents a more plausible choice. As demonstrated in Example II of Section 2, the repre-
sentation of penalized spline smoothing via mixed models divides certain parts of the spline
basis into fixed and random effects. Using the marginal perspective in Example II, predic-
tions would therefore be based only on the polynomial coefficients of f . If the fitted non-linear
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function is believed to represent a general relationship of x and y, predictions as well as the
predictive measure in terms of the Akaike Information, however, make more sense if the trun-
cated parts of the basis are also taken into account.

Vaida and Blanchard (2005) proposed the cAIC, an estimator of the conditional Akaike In-
formation

cAI = −2Eg(y,u)Eg(ỹ|u) log f(ỹ | ν̂(y), û(y)) (10)

as an alternative to the mAIC, where ν includes the fixed effects and covariance parameters
θ. The cAIC may be more appropriate when the AIC is used for the selection of random
effects. In addition, Greven and Kneib (2010) investigated the difference of both criteria from
a mathematical point of view. Since the mAIC is intended for the use in settings where the
observations are independent and the k-dimensional parameter space Vk can be transformed
to Rk, the corresponding bias correction 2 dim(ν) is biased for mixed models for which these
conditions do not apply. In particular, Greven and Kneib showed that the mAIC leads to a
preference for the selection of smaller models without random effects.

Conditional AIC for Gaussian responses

Depending on the distribution of y, different bias corrections of the maximized conditional
log-likelihood exist to obtain the cAIC. For the Gaussian case, Liang et al. (2008) derive a
corrected version of the initially proposed cAIC by Vaida and Blanchard (2005) for known
error variance, taking into account the estimation of the covariance parameters θ:

cAIC(y) = −2 log f(y | ν̂(y), û(y)) + 2 tr

(
∂ŷ

∂y

)
. (11)

Evaluating the bias correction BC = 2 tr(∂ŷ∂y ) in expression (11) via numerical approxima-
tion, or a similar formula for unknown error variance, is however computationally expensive.
Greven and Kneib (2010) develop an analytic version of the corrected cAIC making the cal-
culation of the corrected cAIC feasible. We adapt their efficient implementation originally
written for lme-objects (returned by the nlme package) and reimplement their algorithm for
lmerMod-objects (returned by lme4). A more detailed description on the calculation of several
terms in the proposed formula of Greven and Kneib (2010) is given in Appendix B. Further-
more, a partition of the parameter space is needed in order to account for potential parameters
on the boundary of the parameter space, as presented in Theorem 3 in Greven and Kneib
(2010). This process can be very unwieldy. Therefore, a fully automated correction algorithm
is implemented in cAIC4 and presented in Appendix A.

Conditional AIC for Poisson responses

As for the Gaussian case, note that for the Poisson and the binomial distribution the bias
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correction (9) can be rewritten as twice the sum of the covariances between η̂i and yi,

BC = 2
n∑

i=1

E (η̂i (yi − µi)) , (12)

with true but unobserved mean µi and the estimator of the natural parameter η̂ depending
on y. For the Poisson distribution an analytic reformulation of the bias correction term (12)
has to be utilized to make it analytically accessible as in Säfken et al. (2014). Using results
from Hudson (1978) and an identity due to Chen (1975), the bias correction (12) for Poisson
distributed responses can be reformulated to

BC = 2

n∑

i=1

E (yi (log µ̂i(y)− log µ̂i(y−i, yi − 1))) , (13)

for observations i = 1, . . . , n and mean estimator µ̂i. The i-th component of y in (y−i, yi− 1)
is substituted by yi − 1 along with the convention yi log µ̂i(y−i, yi − 1) = 0 if yi = 0. The
computational implementation of the cAIC in this case requires n − d model fits, where d
corresponds to the number of Poisson responses being equal to zero (see Section 4 for details).
The resulting cAIC was first derived by Lian (2012).

Conditional AIC for Bernoulli responses

For binary responses there is no analytical representation for the bias correction (12), see
Säfken et al. (2014). Nevertheless a bootstrap estimate for the bias correction can be based
on Efron (2004). The bias correction is equal to the sum over the covariances of the estimators
of the natural parameter η̂i and the data yi. To estimate this quantity, we could in principle
draw a parametric bootstrap sample zi of size B for the i-th data point - keeping all other
observations fixed at their observed values - to estimate the i-th component E (η̂i (yi − µi))
of the bias correction (12) for binary responses by

1

B − 1

B∑

j=1

η̂i(zij) (zij − zi·) =
B1

B − 1
η̂i(1) (1− zi·) +

B0

B − 1
η̂i(0) (−zi·) ,

where B0 is the number of zeros in the bootstrap sample, B1 is the number of ones in the

bootstrap sample, η̂i(1) = log
(

µ̂i(1)
1−µ̂i(1)

)
is the estimated logit (the natural parameter) with

zij = 1, η̂i(0) = log
(

µ̂i(0)
1−µ̂i(0)

)
is the estimated logit with zij = 0 and zi· is the mean of the

bootstrap sample zi. Letting the number of bootstrap samples tend to infinity, i.e., B → ∞
the mean of the bootstrap sample zi· = 1

B

∑B
j=1 zij = B1/B (as well as B1/(B−1) ) converges

to the estimate from the data, which corresponds to the true mean in the bootstrap, µ̂i and
therefore

B1

B − 1
η̂i(1) (1− zi·)−

B0

B − 1
η̂i(0) (zi·)→ µ̂iη̂i(1) (1− µ̂i)− (1− µ̂i) η̂i(0) (µ̂i)

= µ̂i (1− µ̂i) (η̂i(1)− η̂i(0)) for B →∞.
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Since the bootstrap estimates are optimal if the number of bootstrap samples B tends to
infinity, this estimator can be seen as the optimal bootstrap estimator. The resulting estimator
of the bias correction

B̂C = 2

n∑

i=1

µ̂i (1− µ̂i) (η̂i(1)− η̂i(0)) (14)

, which we use in the following, avoids a full bootstrap but requires n model refits.

4. Introduction to cAIC4

Example for linear mixed models

An example that is often used in connection with the R-package lme4 is the sleepstudy data
from a study on the daytime performance changes of the reaction time during chronic sleep
restriction, see Belenky, Wesensten, Thorne, Thomas, Sing, Redmond, Russo, and Balkin
(2003). Eighteen volunteers were only allowed to spend three hours of their daily time in
bed for one week. The speed (mean and fastest 10% of responses) and lapses (reaction times
greater than 500 ms) on a psychomotor vigilance task where measured several times. The
averages of the reaction times are saved as response variable Reaction in the data set. Each
volunteer has an identifier Subject. Additionally the number of days of sleep restriction at
each measurement is listed in the covariate Days.

An example of how the sleepstudy data looks can be derived by the first 13 of the 180
measurements it contains:

R> sleepstudy[1:13,]

Reaction Days Subject

1 249.5600 0 308

2 258.7047 1 308

3 250.8006 2 308

4 321.4398 3 308

5 356.8519 4 308

6 414.6901 5 308

7 382.2038 6 308

8 290.1486 7 308

9 430.5853 8 308

10 466.3535 9 308

11 222.7339 0 309

12 205.2658 1 309

13 202.9778 2 309

Further insight into the data can be gained by a lattice plot, as presented in Bates et al.
(2015). The average reaction times of each volunteer are plotted against the days of sleep
restriction with the corresponding linear regression line. Such a plot can be found in Figure 1.
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Figure 1: Lattice plot of the sleepstudy data. For each volunteer there is one panel. The
identification number of each volunteer is in the heading of the panels. In the panels the
reaction time is plotted against the days of sleep restriction and a regression line is added for
each volunteer/panel.
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The conditional AIC can be used to find the model that best predicts future observations,
assuming that future observations share the same random effects as the ones used for the
model fitting. In case of this data set, using the cAIC for model choice corresponds to finding
the model that best predicts future reaction times of the volunteers that took part in the
study.
After looking at the lattice plot, a first model that could be applied is a model with a random
intercept and a random slope for Days within each volunteer (Subject):

yij = β0 + β1 · dayij + uj0 + uj1 · dayij + εij (15)

for i = 1, . . . , 18 and j = 1, . . . 10, with

(
uj0
uj1

)
∼ N

((
0
0

)
,

(
τ21 τ212
τ212 τ22

))
.

In the preceding notation τ21 = θ1, τ
2
2 = θ2 and τ212 = θ3. That τ212 is not necessarily zero

indicates, that the random intercept and the random slope are allowed to be correlated.

R> (m1 <- lmer(Reaction ~ 1 + Days + (1 + Days|Subject), sleepstudy))

Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ 1 + Days + (1 + Days | Subject)

Data: sleepstudy

REML criterion at convergence: 1743.628

Random effects:

Groups Name Std.Dev. Corr

Subject (Intercept) 24.740

Days 5.922 0.07

Residual 25.592

Number of obs: 180, groups: Subject, 18

Fixed Effects:

(Intercept) Days

251.41 10.47

The output shows that the within-subject correlation between the random intercepts uj0 and
the random slopes uj1 is low, being estimated as 0.07. Hence there seems to be no evidence
that the initial reaction time of the volunteers has systematic impact on the pace of increasing
reaction time following the sleep restriction.
Consequently a suitable model might be one in which the correlation structure between both
is omitted. The model for the response therefore stays the same as in (15), but the random
effects covariance structure is predefined as

(
uj0
uj1

)
∼ N

((
0
0

)
,

(
τ20 0
0 τ21

))
.

Such a model without within-subject correlation is called by
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R> (m2 <- lmer(Reaction ~ 1 + Days + (1|Subject) + (0 + Days|Subject),

+ sleepstudy))

Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ 1 + Days + (1 | Subject) + (0 + Days | Subject)

Data: sleepstudy

REML criterion at convergence: 1743.669

Random effects:

Groups Name Std.Dev.

Subject (Intercept) 25.051

Subject.1 Days 5.988

Residual 25.565

Number of obs: 180, groups: Subject, 18

Fixed Effects:

(Intercept) Days

251.41 10.47

Notice that the estimates of standard deviations of the random effects do not differ much
between the first and the second model. To decide which model is more appropriate in terms
of subject specific prediction the conditional AIC can be used. Calling the cAIC-function from
the cAIC4-package gives the output:

R> cAIC(m1)

$loglikelihood

[1] -824.507

$df

[1] 31.30192

$reducedModel

NULL

$new

[1] FALSE

$caic

[1] 1711.618

The conditional log-likelihood and the corrected degrees of freedom, i.e., the bias correction,
are the first two elements of the resulting list. The third element is called reducedModel and
is the model without the random effects covariance parameters that were estimated to lie on
the boundary of the parameter space, see Appendix A and Greven and Kneib (2010), and
NULL if there were none on the boundary. The fourth element says if such a new model was
fitted because of the boundary issue, which was not the case here. The last element is the
conditional AIC as proposed in Greven and Kneib (2010).
The cAIC of the second model m2 is:
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R> cAIC(m2)$caic

[1] 1710.426

From a conditional perspective, the second model is thus preferred to the first one. This
confirms the assertion that the within-subject correlation can be omitted in the model.
There are several further possible models for these data. For instance the random slope could
be excluded from the model. In this model the pace of increasing reaction time does not
systematically vary between the volunteers. This model is estimated by

R> m3 <- lmer(Reaction ~ 1 + Days + (1|Subject), sleepstudy)

The conditional AIC of this model is

R> cAIC(m3)$caic

[1] 1767.118

This is by far larger than the cAIC for the two preceding models. The lattice plot in Figure 1
already indicated that there is strong evidence of subject-specific (random) slopes. This is
also reflected by the cAIC.
The conditional AIC is also appropriate for choosing between a simple null model without
any random effects and a complex model incorporating random effects, as has been noticed
by Greven and Kneib (2010). Thus it is possible to compare the cAIC of the three previous
mixed models with the standard AIC for a linear model, here including three parameters
(intercept, linear effect for Days and error variance)

R> -2 * logLik(lm(Reaction ~ 1 + Days, sleepstudy), REML = TRUE)[1] + 2 * 3

[1] 1899.664

In this case, however, the mixed model structure is evident, reflected by the large AIC for the
linear model.

Example for generalized linear mixed models

The cAIC4-package additionally offers a conditional AIC for conditionally Poisson distributed
responses and an approximate conditional AIC for binary data. The Poisson cAIC uses the
bias correction (13) and the bias correction term for the binary data is (14).
Making use of the fast refit() function of the lme4-package, both cAICs can be computed
moderately fast, since n − d and n model refits are required, respectively, with n being the
number of observations and d the number of responses that are zero for the Poisson responses.
In the following, the cAIC for Poisson response is computed for the grouseticks data set
from the lme4-package as an illustration.
The grouseticks data set was originally published in Elston, Moss, Boulinier, Arrowsmith,
and Lambin (2001). It contains information about the aggregation of parasites, so-called
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Variable Description

INDEX identifier of the chick
TICKS the number of ticks sampled
BROOD the brood number
HEIGHT height above sea level in meters
YEAR the year as 95, 96 or 97

LOCATION the geographic location code

Table 1: The variables and response of the grouseticks data set.

sheep ticks, on red grouse chicks. The variables in the data set are given in Table 1. Every
chick, identified by INDEX, is of a certain BROOD and every BROOD, in turn, corresponds to a
specific YEAR.

The number of ticks is the response variable. Following the authors in a first model the
expected number of ticks λl with INDEX (l) is modelled depending on the year and the height
as fixed effects and for each of the grouping variables BROOD (i), INDEX (j) and LOCATION (k)
a random intercept is incorporated. The full model is

log (E (TICKSl)) = log (λl) = β0 + β1 · YEARl + β2 · HEIGHTl + u1,i + u2,j + u3,k (16)

with random effects distribution



u1,i
u2,j
u3,k


 ∼ N






0
0
0


 ,



τ21 0 0
0 τ22 0
0 0 τ23




 .

Before fitting the model the covariates HEIGHT and YEAR are centred for numerical reasons
and stored in the data set grouseticks_cen.

R> formula <- TICKS ~ YEAR + HEIGHT + (1|BROOD) + (1|INDEX) + (1|LOCATION)

R> p1 <- glmer(formula, family = "poisson", data = grouseticks_cen)

A summary of the estimated model is given below. Notice that the reported AIC in the
automated summary of lme4 is not appropriate for conditional model selection.

Generalized linear mixed model fit by maximum likelihood

(Laplace Approximation) ['glmerMod']
Family: poisson ( log )

Formula: TICKS ~ YEAR + HEIGHT + (1 | BROOD) + (1 | INDEX) + (1 | LOCATION)

Data: grouseticks_cen

AIC BIC logLik deviance df.resid

1845.5 1869.5 -916.7 1833.5 397

Scaled residuals:

Min 1Q Median 3Q Max
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-1.6507 -0.5609 -0.1348 0.2895 1.8518

Random effects:

Groups Name Variance Std.Dev.

INDEX (Intercept) 2.979e-01 5.458e-01

BROOD (Intercept) 1.466e+00 1.211e+00

LOCATION (Intercept) 5.411e-10 2.326e-05

Number of obs: 403, groups: INDEX, 403; BROOD, 118; LOCATION, 63

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.472353 0.134712 3.506 0.000454 ***

YEAR -0.480261 0.166128 -2.891 0.003841 **

HEIGHT -0.025715 0.003772 -6.817 9.32e-12 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

Correlation of Fixed Effects:

(Intr) YEAR

YEAR 0.089

HEIGHT 0.096 0.061

The conditional log-likelihood and the degrees of freedom for the conditional AIC with con-
ditionally Poisson distributed responses as in (13) for model (16) are obtained by the call of
the cAIC-function:

R> set.seed(42)

R> cAIC(p1)

$loglikelihood

[1] -572.0133

$df

[1] 205.5786

$reducedModel

NULL

$new

[1] FALSE

$caic

[1] 1555.184

The output is the same as for Gaussian linear mixed models. It becomes apparent that there
is a substantial difference between the conditional and the marginal AIC: In the output of
the model the marginal AIC is reported to be 1845.48. Note that the marginal AIC is biased,
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see Greven and Kneib (2010), and based on a different likelihood .
In the full model, the standard deviations of the random effects are rather low. It thus
may be possible to exclude one of the grouping variables from the model, only maintaining
two random effects. There are three possible models with one of the random effects terms
excluded.
If the random intercept associated with LOCATION is excluded the model is

R> formel <- TICKS ~ YEAR + HEIGHT + (1|BROOD) + (1|INDEX)

R> p2 <- glmer(formel, family = "poisson", data = grouseticks_cen)

R> cAIC(p2)$caic

[1] 1555.214

The conditional AIC is almost the same as for the full model. It may thus make sense to
choose the reduced model and for the prediction of the number of ticks not to make use of
the random intercept associated with the LOCATION grouping.
Another possible model can be obtained by omitting the random intercepts for the INDEX

grouping structure instead of those associated with LOCATION. This would make the model
considerably simpler, since each chick has an INDEX and hence a random intercept is estimated
for each observation in order to deal with overdispersion in the data.

R> formel <- TICKS ~ YEAR + HEIGHT + (1|BROOD) + (1|LOCATION)

R> p3 <- glmer(formel, family = "poisson", data = grouseticks_cen)

R> cAIC(p3)$caic

[1] 1842.205

The large cAIC in comparison with the two preceding models documents that the subject-
specific random intercept for each observation should be included.
The final model for the comparison omits random intercepts associated with the BROOD group-
ing. This is equivalent to setting the associated random intercepts variance to zero, i.e.,
τ22 = 0.

R> formel <- TICKS ~ YEAR + HEIGHT + (1|INDEX) + (1|LOCATION)

R> p4 <- glmer(formel, family = "poisson", data = grouseticks_cen)

R> cAIC(p4)$caic

[1] 1594.424

The cAIC is higher than the cAICs for the full model and the model without the LOCATION

grouping structure. Consequently either the full model or the model without the LOCATION

grouping structure is favoured by the cAIC. The authors favour the latter.

5. A scheme for stepwise conditional variable selection

Now having the possibility to compare different (generalized) linear mixed models via the
conditional AIC, we introduce a model selection procedure in this section, searching the

16

51



space of possible model candidates in a stepwise manner. Inspired by commonly used step-
functions as for example given by the stepAIC function in the MASS-package (Venables and
Ripley 2002), our stepcAIC-function provides an automatic model selection applicable to all
models of the class merMod (produced by [g]lmer) or objects resulting from a gamm4-call.

For example, consider the sleepstudy model

R> fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

which implicitly fits the random effects structure (1 + Days | Subject) (correlated random
intercept and slope). In order to perform a data-driven search for the best model, a backward
step procedure needs to fit and evaluate the following three nested models (uncorrelated
random intercept and slope, only random slope, only random intercept).

R> fm1a <- lmer(Reaction ~ Days + (1 | Subject) + (0 + Days | Subject),

+ sleepstudy)

R> fm1b <- lmer(Reaction ~ Days + (0 + Days | Subject), sleepstudy)

R> fm1c <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)

Choosing the model fm1a in the first step, further model comparisons may be performed by for
example reducing the model once again or adding another random effect. For this purpose, the
stepcAIC-function provides the argument direction, having the options backward, forward
and both. Whereas the backward- and forward-direction procedures fit and evaluate all
nested or extended models step-by-step, the both-direction procedure alternates between
forward- and backward-steps as long as any of both steps lead to an improvement in the cAIC.
During model modifications in each step, the function allows to search through different types
of model classes.
For fixed effects selection, the step procedure furthermore can be used to successively extend
or reduce the model in order to check whether a fixed effect has a constant, linear or non-linear
impact. For example, we specify a generalized additive mixed model (GAMM) as follows (cf.
Gu and Wahba 1991)

yij = β0 + x1,i,jβ1 + f(x3,i,j) + bi + εij , i = 1, . . . , 20, j = 1, . . . , Ji,

with metric variables x1 and x3 in the guWahbaData supplied in the cAIC4 package with
continuous covariates x0, x1, x2 and x3. .

The corresponding model fit in R using gamm4 is given by

R> set.seed(42)

R> guWahbaData$fac <- fac <- as.factor(sample(1:20, 400, replace =TRUE))

R> guWahbaData$y <- guWahbaData$y + model.matrix(~ fac - 1) %*% rnorm(20) * 0.5

R> br <- gamm4(y ~ x1 + s(x3, bs = "ps"), data = guWahbaData, random = ~ (1|fac))

resulting in the following non-linear estimate of f(x3,i,j) (Figure 2).

Applying the backward stepwise procedure to the model br via

R> stepcAIC(br, trace = TRUE, direction = "backward", data = guWahbaData)
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Figure 2: Plot of non-linear effect estimate for covariate x3.

the procedure stops after one step with a warning, saying that the model contains zero variance
components and the corresponding terms must be removed manually. This is due to the fact
that the stepcAIC function can not reduce non-linear effects such as f(x3,i,j) automatically,
as the type of additive effect depends on the specification of the s-term and its arguments.
Modifying the term manually, a GLMM is fitted and passed to the stepcAIC function.

R> br0 <- gamm4(y ~ x1 + x3, data = guWahbaData, random = ~ (1|fac))

R> stepcAIC(br0, trace = TRUE, direction = "backward", data = guWahbaData)

In the next steps stepcAIC removes x3 completely from the model and also checks whether a
GLM with no random effects at all might be the best possible model, hence having searched
for the smallest cAIC in three different model classes in the end.

Whereas the backward procedure has straightforward mechanism and does not need any fur-
ther mandatory arguments as shown in the previous example, the stepcAIC-function provides
several optional and obligatory arguments for the forward- and both procedure in order to
limit the possibly large number of model extensions. Regarding the required parameters, the
user must specify the variables, which may be added with fixed or random effects as they
are referred to in the data.frame given by the argument data. For the fixed effects, this is
done by specifying the fixEf argument, which expects a character vector with the names of
the covariates, e.g., fixEf=c("x1","x2"). Variables listed in the fixEf-argument are firstly
included in the model as linear terms and, if the linear effect leads to an improvement of the
cAIC, checked for their non-linearity by evaluating the cAIC of the corresponding model(s).
Model extensions resulting from additional random effects are created in two different ways.
A new model may, on the one hand, include a random intercept for a variable forming a
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grouping structure (in the sleepstudy example for Subject) or, on the other hand, a ran-
dom slope for a variable (Days in this case). These two types are specified using the arguments
groupCandidates for grouping variables candidates or slopeCandidates for candidates for
variables with random slope, again by referring to the variable names in data as string.

Further optional arguments can determine the way random effects are treated in the step
procedure:

- allowUseAcross: logical value whether slope variables, which are already in use with a
grouping variable can also be used with other grouping variables,

- maxSlopes: maximum number of slopes for one grouping variable.

Following the stepAIC-function, the stepcAIC-function also provides an argument for printing
interim results (trace) and allows for the remaining terms of the initial model to be unaffected
by the procedure (keep: list with entries fixed and random, each either NULL or a formula). In
addition, the user may choose whether the cAIC is calculated for models, for which the fitting
procedure in (g)lmer could not find an optimum (calcNonOptimMod, default = FALSE) and
might choose the type of smoothing terms added in forward steps (bsType).

If the step-function is used for large datasets or in the presence of highly complex models the
fitting procedures as well as the calculations of the cAIC can be parallelized by defining the
number of cores (numCores) being used if more than one model has to be fitted and evaluated
in any step (therefore passing the numCores-argument to a mclapply-function implemented
in the parallel-package (R Core Team 2016)).

Due to the variety of additive model definitions in gamm4, the stepcAIC is however limited in
its generic step-functionality for GAMMs. On the one hand, extensions with non-linear effects
are restricted to one smooth class given by bsType, on the other hand, the step-procedure is
not able to deal with further arguments passed in smooth terms. The latter point is a current
limitation, since the default basis dimension of the smooth term (i.e., the number of knots
and the order of the penalty) is essentially arbitrary.

An additional current limitation of the stepcAIC-function in its applications with GAMMs is
the handling of zero variance components occurring during the function call. As a meaningful
handling of zero variance smoothing terms would depend on the exact specification of the
non-linear term, the stepwise procedure is stopped and returns the result of the previous
step. After removing the zero variance term manually the user may call the step-function
again.

Examples

In order to demonstrate some functionalities of the stepcAIC-function, various examples are
given in the following using the Pastes data set (Davies and Goldsmith 1972), which is
available in the lme4-package. The data set consists of 60 observations including one metric
variable strength, which is the strength of a chemical paste product and the categorical
variables batch (the delivery batch), the cask within the delivery batch and sample, which
is an identifier from what cask in what batch the paste sample was taken.

Starting with a random effects backward selection, the model fm3
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R> fm3 <- lmer(strength ~ 1 + (1|sample) + (1|batch), Pastes)

may be automatically reduced using

R> fm3_step <- stepcAIC(fm3, direction = "backward", trace = TRUE, data = Pastes)

Starting stepwise procedure...

_____________________________________________

_____________________________________________

Step 1 (backward): cAIC=178.2809

Best model so far: ~ (1 | sample) + (1 | batch)

New Candidates:

Calculating cAIC for 2 model(s) ...

models loglikelihood df caic

~(1 | batch) -141.49709 9.157892 301.3100

~(1 | sample) -58.95458 30.144477 178.1981

_____________________________________________

_____________________________________________

Step 2 (backward): cAIC=178.1981

Best model so far: ~ (1 | sample)

New Candidates:

Calculating cAIC for 1 model(s) ...

models loglikelihood df caic

~1 -155.1363 2 312.2727

_____________________________________________

_____________________________________________

Best model: ~ (1 | sample) , cAIC: 178.1981

_____________________________________________

where in a first step, the random intercept of batch is dropped. Afterwards, the proce-
dure compares the cAICs of the models lmer(strength ~ 1 + (1|sample), Pastes) and
lm(strength ~ 1, Pastes), keeping the second random effect due to a smaller cAIC of the
linear mixed model.

Using the step function the other way round, a forward stepwise selection can be initialized
by a simple linear model

R> fm3_min <- lm(strength ~ 1, data = Pastes)
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followed by a stepcAIC-call

R> fm3_min_step <- stepcAIC(fm3_min,

+ groupCandidates = c("batch", "sample"),

+ direction = "forward", trace = TRUE,

+ data = Pastes, analytic = TRUE)

where possible new candidates for grouping variables are specified using the groupCandidates-
argument. Again, the random intercept model with group sample is finally selected.

To illustrate the use of the stepcAIC-function in the context of GAMM selection, two examples
are generated following the gamm4-help page on the basis of the guWahbaData data set. First,
the GAMM

yij = β0 + f(x0,i,j) + x1,i,jβ1 + f(x2,i,j) + bi, i = 1, . . . , 20, j = 1, . . . , Ji

is fitted to the guWahbaData including a nonlinear term for the covariate x0 using a thin-plate
regression spline, a P-spline (Eilers and Marx 1996) for the covariate x2 as well as a random
effect for the grouping variable fac.

R> br <- gamm4(y ~ s(x0) + x1 + s(x2, bs = "ps"),

+ data = guWahbaData, random = ~ (1|fac))

In order to check for linear or non-linear effects of the two other covariates x1 and x3, the
stepcAIC-function is employed.

R> br_step <- stepcAIC(br, fixEf = c("x1", "x3"),

+ direction = "both",

+ data = guWahbaData)

After changing the linear effect x1 to a non-linear effect, i.e., s(x1, bs = "tp"), and therefore
improving the model’s cAIC in a first forward step, the function stops due to zero variance
components.

The final model br_step to this point is thus given by y ~ s(x0, bs = "tp") + s(x2, bs =

"ps") + s(x1, bs = "tp") + (1 | fac). In contrast to the effect of covariate x2 modeled
as P-spline, the effects of covariates x0 and x1 are modeled as thin plate regression splines
(Wood 2017). For x0, this is due to the initial model definition, as s(x0) is internally equal to
s(x0, bs = "tp"), whereas for x1, the definition of the spline is set by the argument bsType
of the stepcAIC-function. As the bsType-argument is not specified in the call, the default
"tp" is used.

Finally, a demonstration of the keep-statement is given for the model

R> br2 <- gamm4(y ~ s(x0, bs = "ps") + x2, data = guWahbaData,

+ random = ~ (1|fac))

where the aim is to prevent the step procedure changing the linear effect of the covariate x2,
the non-linear effect of x0 as well as the random effect given by ~ (1|fac).
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R> br2_step <- stepcAIC(br2, trace = TRUE, direction = "both",

+ fixEf = c("x1", "x3"), bsType = "cs",

+ keep = list(fixed = ~ s(x0, bs = "ps") + x2,

+ random= ~ (1|fac)), data = guWahbaData)

After successively adding a linear effect of x1 to the model, neither the following backward
step nor another forward step do improve the cAIC. The final model is given by y ~ s(x0,

bs = "ps") + x1 + x2 and random effect (1|fac).

6. Conclusion

This paper gives a hands-on introduction to the R-package cAIC4 allowing for model selection
in mixed models based on the conditional AIC. The package and the paper offer a possibility
for users from the empirical sciences to use the conditional AIC without having to worry
about lengthy and complex calculations or mathematically sophisticated boundary issues of
the parameter space. The applications presented in this paper go far beyond model selection
for mixed models and extend to penalized spline smoothing and other structured additive re-
gression models. Furthermore a stepwise algorithm for these models is introduced that allows
for fast model selection.
Often statistical modelling is not about finding one ’true model’. In such cases it is of in-
terest to define weighted sums of plausible models. This approach called model averaging is
presented in Zhang, Zou, and Liang (2014) for weights chosen by the cAIC. We plan to imple-
ment this approach in cAIC4. Another future research path is to implement an appropriate
version of the Bayesian information criterion (BIC) for conditional model selection.
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A. Dealing with the boundary issues

A major issue in obtaining the conditional AIC in linear mixed models is to account for
potential parameters of θ on the boundary of the parameter space (see Greven and Kneib
2010). This needs to be done in order to ensure positive definiteness of the covariance matrix
Dθ.
The restructuring of the model in order to obtain the cAIC is done automatically by cAIC4.
To gain insight into the restructuring, an understanding of the mixed model formulas used in
lme4 is essential. For an in depth explanation on how the formula module of lme4 works, see
Bates et al. (2015), Section 2.1.
Suppose we want to fit a mixed model with two grouping factors g1 and g2. Within the
first grouping factor g1, there are three continuous variables v1, v2 and v3 and within the
second grouping factor there is only one variable x. Thus there are not only random intercepts
but also random slopes that are possibly correlated within the groups. Such a model with
response y would be called in lme4 by
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R> m <- lmer(y ~ (v1 + v2 + v3|g1) + (x|g2), exampledata)

In mixed models fitted with lme4, the random effects covariance matrix Dθ always has block-
diagonal structure. For instance in the example from above the Cholesky factorized blocks of
the estimated Dθ associated with each random effects term are

R> getME(m, "ST")

$g2

[,1] [,2]

[1,] 1.18830353 NaN

[2,] -0.01488359 0

$g1

[,1] [,2] [,3] [,4]

[1,] 1.0184626697 0.00000000 NaN NaN

[2,] -0.1438761295 0.05495809 NaN NaN

[3,] -0.0007341796 0.19904339 0 NaN

[4,] -0.0883652598 -1.36463267 -Inf 0

If any of the diagonal elements of the blocks are zero the corresponding random effects terms
are deleted from the formula. In lme4 this is done conveniently by the component names list

R> m@cnms

$g2

[1] "(Intercept)" "x"

$g1

[1] "(Intercept)" "v1" "v2" "v3"

Thus a new model formula can be obtained by designing a new components names list:

R> varBlockMatrices <- getME(m, "ST")

R> cnms <- m@cnms

R> for(i in 1:length(varBlockMatrices)){

+ cnms[[i]] <- cnms[[i]][which(diag(varBlockMatrices[[i]]) != 0)]

+ }

R> cnms

$g2

[1] "(Intercept)"

$g1

[1] "(Intercept)" "v1"
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The cnms2formula function from the cAIC4-package forms a new formula from the cnms

object above. Hence the new formula can be computed by

R> rhs <- cAIC4:::cnms2formula(cnms)

R> lhs <- formula(m)[[2]]

R> reformulate(rhs, lhs)

y ~ (1 | g2) + (1 + v1 | g1)

This code is called from the deleteZeroComponents function in the cAIC4-package. This
function automatically deletes all zero components from the model. The
deleteZeroComponents function is called recursively, so the new model is checked again for
zero components. In the example above only the random intercepts are non-zero. Hence the
formula of the reduced model from which the conditional AIC is calculated is

R> formula(cAIC4:::deleteZeroComponents(m))

y ~ (1 | g2) + (1 | g1)

With the new model the conditional AIC is computed. If there are no random effect terms left
in the formula, a linear model and the conventional AIC is returned. The deleteZeroComponents
function additionally accounts for several special cases that may occur.
Notice however that in case of using smoothing terms from gamm4 no automated check for
boundary issues can be applied and zero components have to be manually deleted.

B. Computational matters

Gaussian responses

The corrected conditional AIC proposed in Greven and Kneib (2010) accounts for the uncer-
tainty induced by the estimation of the random effects covariance parameters θ. In order to
adapt the findings of Greven and Kneib (2010), a number of quantities from the lmer model
fit need to be extracted and transformed. In the following these computations are presented.
They are designed to minimize the computational burden and maximize the numerical stabil-
ity. Parts of the calculations needed, for instance the Hessian of the ML/REML criterion, can
also be found in Bates et al. (2015). Notice however, that lme4 does not explicitly calculate
these quantities but uses derivative free optimizers for the profile likelihoods.
A core ingredient of mixed models is the covariance matrix of the marginal responses y. The
inverse of the scaled covariance matrix V0 will be used in the following calculations:

V = cov(y) = σ2
(
In +ZΛθΛ

t
θZ

t
)

= σ2V0.

Large parts of the computational methods in lme4 rely on a sparse Cholesky factor that
satisfies

LθL
t
θ = Λt

θZ
tZΛθ + Iq. (17)
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From this equation and keeping in mind that I − V −10 = Z
(
ZtZ +

(
Λt
θ

)−1
Λ−1θ

)−1
Zt, see

Greven and Kneib (2010), it follows that

Λθ
(
Ltθ
)−1

L−1θ Λt
θ =

(
ZtZ +

(
Λt
θ

)−1
Λ−1θ

)−1

⇒ I − V −10 =
(
L−1θ Λt

θZ
t
)t (
L−1θ Λt

θZ
t
)
.

Hence the inverse of the scaled variance matrix V −10 can be efficiently computed with the help
of the R-package Matrix (see Bates and Maechler 2017) that provides methods specifically for
sparse matrices:

R> Lambdat <- getME(m, "Lambdat")

R> V0inv <- diag(rep(1, n)) -

+ crossprod(solve(getME(m, "L"), system = "L") %*%

+ solve(getME(m, "L"), Lambdat, system = "P") %*% t(Z))

Notice that solve(getME(m, "L"), Lambdat, system = "P") accounts for a fill-reducing
permutation matrix P associated (and stored) with Lθ, see Bates et al. (2015), and is thus
equivalent to

R> P %*% Lambdat

Another quantity needed for the calculation of the corrected degrees of freedom in the condi-
tional AIC are the derivatives of the scaled covariance matrix of the responses V0 with respect
to the j-th element of the parameter vector θ:

Wj =
∂

∂θj
V0 = ZD

(j)
θ Z

t,

where the derivative of the scaled covariance matrix of the random effects with respect to the
j-th variance parameter is defined by

D
(j)
θ =

1

σ2
∂

∂θj
Dθ.

Notice that Dθ = [dst]s,t=1,...,q is symmetric and block-diagonal and its scaled elements

are stored in θ, hence dst = dts = θjσ
2, for certain t, s and j. Thus the matrix D

(j)
θ =[

d
(j)
st

]
s,t=1,...,q

is sparse with

d
(j)
st =

{
1 , if dst = dts = θjσ

2

0 , else.

The derivative matrices Wj can be derived as follows:
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R> Lambda <- getME(m, "Lambda")

R> ind <- getME(m, "Lind")

R> len <- rep(0, length(Lambda@x))

R>

R> for(j in 1:length(theta)) {

+ LambdaS <- Lambda

+ LambdaSt <- Lambdat

+ LambdaS@x <- LambdaSt@x <- len

+ LambdaS@x[which(ind == j)] <- LambdaSt@x[which(ind == j)] <- 1

+ diagonal <- diag(LambdaS)

+ diag(LambdaS) <- diag(LambdaSt) <- 0

+ Dj <- LambdaS + LambdaSt

+ diag(Dj) <- diagonal

+ Wlist[[j]] <- Z %*% Dj %*% t(Z)

+ }

The following matrix is essential to derive the corrected AIC of Theorem 3 in Greven and
Kneib (2010). Adapting their notation, the matrix is

A = V −10 − V −10 X
(
XtV −10 X

)−1
XtV −10 .

Considering that the cross-product of the fixed effects Cholesky factor is

XtV −10 X = Rt
XRX ,

the matrix A can be rewritten

A = V −10 −
(
XR−1X V

−1
0

) (
XR−1X V

−1
0

)t
.

Accordingly the computation in R can be done as follows:

R> A <- V0inv - crossprod(crossprod(X %*% solve(getME(m, "RX")), V0inv))

With these components, the Hessian matrix

B =
∂2REML(θ)

∂θ∂θt
or B =

∂2ML(θ)

∂θ∂θt

and the matrix

G =
∂2REML(θ)

∂θ∂yt
or G =

∂2ML(θ)

∂θ∂yt
,

depending on whether the restricted or the marginal profile log-likelihood REML(θ) or ML(θ)
is used, can be computed straightforward as in Greven and Kneib (2010). Depending on the
optimization, it may not even be necessary to compute the matrix B. Considering that B
is the Hessian of the profile (restricted) log-likelihood, the matrix can also be taken from the
model fit, although this is only a numerical approximation. If the Hessian is computed it is
stored in:
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R> B <- m@optinfo$derivs$Hessian

The inverse of B does not need to be calculated – instead, if B is positive definite, a Cholesky
decomposition and two backward solves are sufficient:

R> Rchol <- chol(B)

R> L1 <- backsolve(Rchol, G, transpose = TRUE)

R> Gammay <- backsolve(Rchol, L1)

The trace of the hat matrix, the first part of the effective degrees of freedom needed for the
cAIC, can also easily be computed with the help of the residual matrix A

R> df <- n - sum(diag(A))

The correction needed to account for the uncertainty induced by the estimation of the variance
parameters can be added for each random effects variance parameter separately by calculating

R> for (j in 1:length(theta)) {

+ df <- df + sum(Gammay[j,] %*% A %*% Wlist[[j]] %*% A %*% y)

+ }

Poisson responses

The computation of the bias correction for Poisson distributed responses is obtained differ-
ently. In a first step the non-zero responses need to be identified and a matrix with the
responses in each column is created. Consider the grouseticks example in Section 4 with
the model p1 fitted by glmer.

R> y <- p1@resp$y

R> ind <- which(y != 0)

R> workingMatrix <- matrix(rep(y, length(y)), ncol = length(y))

The diagonal values of the matrix are reduced by one and only those columns of the matrix
with non-zero responses are kept.

R> diag(workingMatrix) <- diag(workingMatrix) - 1

R> workingMatrix <- workingMatrix[, ind]

Now the refit() function can be applied to the columns of the matrix in order to obtain the
estimates log µ̂i(y−i, yi − 1) in (13) from the reduced data.

R> workingEta <- diag(apply(workingMatrix, 2, function(x)

+ refit(p1, newresp = x)@resp$eta)[ind,])

The computation of the bias correction is then straightforward:
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R> sum(y[ind] * (p1@resp$eta[ind] - workingEta))

[1] 205.5785

and corresponds to the bias correction obtained in Section 4.

Bernoulli

The computation of an estimator of the bias correction for Bernoulli distributed responses
as in Equation (14) is similar to the implementation for Poisson distributed responses above.
Therefore consider any Bernoulli model b1 fitted by the glmer function in lem4. For the
calculation of the bias correction for each observed response variable the model needs to be
refitted with corresponding other value, i.e., 0 for 1 and vice versa. This is done best by use
of the refit() function from lme4.

R> muHat <- b1@resp$mu

R> workingEta <- numeric(length(muHat))

R> for(i in 1:length(muHat)){

+ workingData <- b1$y

+ workingData[i] <- 1 - workingData[i]

+ workingModel <- refit(b1, nresp = workingData)

+ workingEta[i] <- log(workingModel@resp$mu[i] /

+ (1 - workingModel@resp$mu[i])) -

+ log(muHat[i] / (1 - muHat[i]))

+ }

The sign of the re-estimated logit (the natural parameter) in (14) which is stored in the vector
workingEta needs to be taken into account, i.e., η̂i(1) is positive and η̂i(0) negative. With a
simple sign correction

R> signCor <- - 2 * b1@resp$y + 1

the following returns the bias correction:

R> sum(muHat * (1 - muHat) * signCor * workingEta)

It should be pointed out that for the conditional AIC it is essential to use the conditional
log-likelihood with the appropriate bias correction. Notice that the log-likelihood that by
default is calculated by the S3-method logLik for class merMod (the class of a mixed model
fitted by a lmer call) is the marginal log-likelihood.
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Chapter 3 is concerned with the non-trivial task of performing valid inference after model selection.

The selective inference framework is presented, which provides valid inference statements conditional

on the selection event. In this context, analytic expressions for valid inference after likelihood- and

test-based model selection are derived. The validity of the proposed expressions are demonstrated

using simulation studies.
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a b s t r a c t

Statistical inference after model selection requires an inference framework that takes the
selection into account in order to be valid. Following recentwork on selective inference, we
derive analytical expressions for inference after likelihood- or test-based model selection
for linear models.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The invalidity of standard inference after model selection has been mentioned by many authors throughout the last
decades, including Buehler and Feddersen (1963) and Leeb and Pötscher (2005). Following these publications different
approaches for inference in (high-dimensional) regressionmodels after some sort of model selection have emerged over the
past years. Initiated by the proposal for valid statistical inference after arbitrary selection procedures by Berk et al. (2013),
many new findings and adoptions of post-selection inference (PoSI) to existing statistical methods have been published.
Particularly notable is the general framework of Fithian et al. (2014) transferring the classical theory of Lehmann and
Scheffé (1955) in exponential family models to selective inference. This post-selection inference concept is based on the
conditional distribution of parameter estimators, conditional on the given selection event. Apart from general theory, several
authors derive explicit representations of the space to which inference is restricted by well-known selection methods.
Initially motivated by the application to the Lasso (see, e.g., Lee et al., 2016) several recent publications aim for valid
selective inference in forward stepwise regression or any forward stagewise algorithms. In this context, substantial work
was done by Tibshirani et al. (2016) as well as by Loftus and Taylor (2014, 2015) for linear models with known error
variance σ 2. Tibshirani et al. (2016) build a framework for any sequential regression technique resulting in a limitation to
the space for inference, where the limitation can be characterized by a polyhedral set. Loftus and Taylor (2014, 2015) extend
the idea to amore general framework, forwhich the limitation of the inference space is given by quadratic inequalities,which
coincides with the polyhedral approach in special cases.

Despite the popularity of the Lasso and similar selection techniques in statistical applications, likelihood-based model
selection such as stepwiseAkaike InformationCriterion (AIC, Akaike, 1973) selection is still used in an extremely vast number
of statistical applications and diverse scientific fields (see, e.g., Zhang, 2016). However, authors usually do not adjust their
inference for model selection, although consequences may be grave (see, e.g., Mundry and Nunn, 2009). Selective inference
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allows to adjust inference after model selection, but an explicit representation of the required conditional distribution for
likelihood-based model selection or similar selection procedures has not been derived so far.

We close this gap by explicitly deriving the necessary distribution in linear models with unknown σ 2 after likelihood-
or test-based model selection, which comprises (iterative) model selection based on the AIC or Bayesian Information
Criterion (BIC, Schwarz, 1978), model selection via likelihood-based tests, F-tests, and p-value selection (‘‘significance
hunting’’, Berk et al., 2013) based on t-tests. We derive an analytical solution for inference in linear models after thesemodel
selection procedures and make available an R package for selective inference in such settings in practice (Rügamer, 2017).
In addition, we provide inference for multiple and arbitrarily combined selection events, such as stepwise AIC selection
followed by significance hunting. We thereby close an important gap in the application of selective inference to model
selection approaches that are ubiquitous in statistical applications across all scientific areas.

Section 2 presents the theory on selective testing for linear models and explicitly derives the necessary conditional
distributions for several commonly used model selection approaches. In Section 3 we present simulation results for the
proposed methods and apply our method to the prostate cancer data. We summarize our concept in Section 4. Derivations
of our results and visualizations of additional simulation settings can be found in the supplementary material online.

2. Selective inference in linear models

After outlining the model framework and existing theoretical foundations on selective tests for linear models in
Section 2.1, we present the new results on selective tests after various particular selection techniques in Sections 2.2–2.3.
We further show how to extend existing theory for the construction of conditional confidence intervals in Section 2.4 and
outline tests of grouped variables in this framework in Section 2.5.

2.1. Setup and theoretical foundation

Given n independent variables Y = (Y1, . . . , Yn)⊤ with true underlying distributionNn(µ, σ 2In), we consider as possible
models submodels of the maximal linear model Y = Xβ + ε, ε ∼ Nn(0, σ 2In), for the given data (y,X), where y =

(y1, . . . , yn)⊤ are the observed values of Y and X = (x1, . . . , xp) ∈ Rn×p is a fixed design matrix. In particular, we allow
the considered models to be misspecified if µ does not lie in the column space of the design matrix, in which case the
corresponding model aims at estimating the linear projection of µ onto the column space of the design matrix. We then
compare two or more linear models based on different column subsets XT of X by using a likelihood-based model selection
criterion, as for example the AIC. For the compared subsets, we let T ∈ P({1, . . . , p}) \ ∅ with power set function P(·). After
selection of the ‘‘best fitting’’ model with designmatrix XT ∗ with |T ∗

| = pT ∗ , we would ideally like to test the jth regression
coefficient in the set of corresponding coefficients βT ∗ , i.e.

H0 : βT ∗,j = θ. (1)

However, taking into account that the true mean µ is potentially non-linear in the selected covariates or the selection is not
correct, we instead test the jth component of the projection ofµ into the linear space spanned by the selected covariatesXT ∗ :

H0 : β̃T ∗,j = v⊤µ := e⊤

j (XT ∗
⊤XT ∗ )−1XT ∗

⊤µ = θ, (2)

where ej is the jth unit vector and v is the so-called test vector. This coincides with (1) if we select the correct model and µ

is actually linear in XT ∗ . Testing the linear approximation instead of (1) is a more realistic scenario in practice and is in line
with the approach of several recent publications including Berk et al. (2013).

We consider the following quadratic inequality introduced in a similar form by Loftus and Taylor (2015), on the basis of
which a model is chosen:

Y⊤AY + c ≥ 0, (3)

before showing that several common model selection approaches lead to restrictions on Y that can be written in this form.
In most practical situations c ≡ 0. We are interested in the null distribution of β̂T ∗,j = v⊤Y , which we use as a test statistic
to test the null hypothesis (2). Since Y ∼ Nn(µ, σ 2In), v⊤Y ∼ N1(v⊤µ, σ 2v⊤v) with v⊤µ = θ under H0. After model
selection of the form (3), v⊤Y conditional on Y⊤AY + c ≥ 0, and also conditional on P⊥

v Y = P⊥
v y with P⊥

v y the projection
of y into the space orthogonal to v, follows a truncated normal distribution (Loftus and Taylor, 2015) with truncation limits
based on τ1/2 =

1
2δ

−1(−ζ ±

√
ζ 2 − 4δξ ), where δ = y⊤PvAPvy, ζ = 2y⊤PvAP⊥

v y and ξ = y⊤P⊥
v AP⊥

v y + c . In this case,
additionally conditioning on P⊥

v y is necessary to derive the truncation limits of the truncated normal distribution of v⊤Y ,
which otherwisewould be random themselves (see, e.g., Lee et al., 2016, Section 5.1). Due to the formof (3), the two solutions
τ1 ≤ τ2 imply that the distribution of our test statistic is truncated to (−∞, τ1 · v⊤y] ∪ [τ2 · v⊤y,∞) in the case in which δ
is positive, and to [τ1 · v⊤y, τ2 · v⊤y] if δ is negative.
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2.2. Explicit derivations

We now show that several commonly used model selection approaches can be written as in (3) and explicitly derive
the corresponding truncation limits to the normal distribution of the test statistic. For all derivations, please see the
supplementary material. We always consider the comparison of two models 1 and 2 in which model 1 is preferred over
model 2. Let Tk, k = 1, 2 be the corresponding covariate subsets of the two considered models k and let Xk := XTk denote
the corresponding design matrix.

Model selection based on log-likelihood comparison plus optional penalty term. We start with conventional model
selection procedures that are based on a log-likelihood comparison plus optional penalty term (as, for example, used in
the AIC or BIC). Let ℓk be the log-likelihood of model k and penk the penalty term for this model, which is assumed not
dependent on Y . For example, if pk denotes the number of regression coefficients for model k and the unknown σ 2 is
estimated, penk = 2(pk + 1) for the AIC and penk = log(n)(pk + 1) for the BIC. Furthermore, let σ̂ 2

k be the scale parameter
estimator and µ̂k = PXkY the mean vector estimator of model k = 1, 2 with PXk = Xk(X⊤

k Xk)−1X⊤

k and Xk ∈ Rn×pk . Then the
model 1 is selected iff

− 2ℓ1(Y ) + pen1 ≤ −2ℓ2(Y ) + pen2

⇔ Y⊤
{(n − p1) exp(−γ /n)(I − PX2 ) − (n − p2)(I − PX1 )}Y ≥ 0

(4)

with γ = (p2 − p1 + pen1 − pen2). We therefore define A := {(n − p1) exp(−γ /n)(I − PX2 ) − (n − p2)(I − PX1 )} as well as
c := 0. In the supplementary material we additionally derive the matrix A and c when treating σ 2 as known and plugging
in σ̂1, σ̂2 as estimators, i.e. when ignoring the fact that σ̂ 2

k , k = 1, 2 are also functions of Y , to show the difference.
Model selection on the basis of tests. We first consider the likelihood-ratio test (LRT). Formodel 1 being nested inmodel

2, the derivation is analogous to the AIC comparison by defining pen2 − pen1 := qχ2
1−α (p2−p1)

, where qχ2
α (df )

is the α-quantile
of the χ2-distribution with df degrees of freedom.

The F-Test is not strictly likelihood-based, but falls into the same framework. Let RSSk = ∥Y − µ̂k∥
2 be the residual sum

of squares of model k. If we choose model 1, which is nested in model 2, and denote by F (φ1, φ2) the critical value of the
F-distribution with φ1 and φ2 degrees of freedom, then:

RSS1−RSS2
p2−p1
RSS2
n−p2

≤ F (p2 − p1, n − p2) ⇔ Y⊤
{PX1 + κ(I − PX2 ) − PX2}Y ≥ 0, (5)

where κ = F (p2 − p1, n − p2) ·
p2−p1
n−p2

and therefore A = {PX1 + κ(I − PX2 ) − PX2} and c = 0. Similarly, if we select the
larger model 2 for either LRT or F-test, we simply have to invert the previous inequalities and define A as the negative of the
respective matrices A defined above.

‘‘Significance hunting’’. As described in Berk et al. (2013), variable deselection or backward selection on the basis of
the size of t-test p-values reduces to deselecting the smallest t-value among several candidates. For the comparison of two
variables j∗ and j and deselection of j∗ in the model k, it therefore holds that

|tj∗ | :=
|β̂k,j∗ |

se(β̂k,j∗ )
=

⏐⏐⏐⏐⏐⏐ v⊤

j∗ Y√
σ̂ 2
k v

⊤

j∗ vj∗

⏐⏐⏐⏐⏐⏐ ≤

⏐⏐⏐⏐⏐⏐ v⊤

j Y√
σ̂ 2
k v

⊤

j vj

⏐⏐⏐⏐⏐⏐ , (6)

where v⊤

j = e⊤

j (Xk
⊤Xk)−1Xk

⊤ and v⊤

j∗ = e⊤

j∗ (Xk
⊤Xk)−1Xk

⊤. Let Pv = vv⊤/
√

∥v∥2 for a given vector v. Then (6) is equivalent

to Y
(
Pvj − Pvj∗

)
Y ≥ 0 and we can define A :=

(
Pvj − Pvj∗

)
, c = 0. If only variables which are not significant are

dropped for the ‘‘significance hunting’’, the t-value of j∗ additionally fulfills the condition |tj∗ | ≤ QTn−pk
(1 −

α
2 ), where

QTn−pk
(·) is the quantile function of the Student’s t-distribution with n − pk degrees of freedom, which is evaluated with a

prespecified significance level α to obtain the decision. Since this is equivalent to Y⊤Pvj∗Y ≤ σ̂ 2
k · (QTn−pk

(1 −
α
2 ))

2, we get
A = {(QTn−pk

(1 −
α
2 ))

2(n − pk)−1(I − PXk ) − Pvj∗ } and c = 0.

2.3. Multiple selection events and p-value calculation

If there are m selection events of the kind as in Section 2.2, the final space restriction can be calculated by finding the
two (or more) most restrictive values in all limiting selection steps. Since this may involve several inequalities with different
directions and may result in two or more non-overlapping intervals, additional care is needed. In general, let the resulting
truncated normal distribution have multiple truncations given by the ordered intervals [a1, b1], . . . , [az, bz], z ∈ N, where
the case of no finite lower or upper truncation is given by a1 = −∞ or bz = ∞with intervals (−∞, b1] or [az,∞) implied by
convention, respectively. Let β̂T ∗,j = v⊤y be the observed value of the test statistic, which lies in the interval [al, bl] for some
l ∈ {1, . . . , z}. Then, following Tibshirani et al. (2016), a p-value p ∼ U[0, 1] for the two-sided significance test for (2) based
on β̂T ∗,j can be calculated via p = 2 · min(p̃, 1 − p̃), with p̃ being the p-value of the one sided test. In our setting and as we
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allow formultiple disjoint truncation intervals, we can define this as p̃ = PH0 (v
⊤Y > β̂T ∗,j | selection event, P⊥

v Y = P⊥
v y) =

Ψnom/Ψdenom, whereΨnom = ψ(bl)−ψ(β̂T ∗,j)+
∑z

i=l+1 ψ(bi)−ψ(ai),Ψdenom =
∑z

i=1ψ(bi)−ψ(ai) andψ(x) = Φ( x
σ
√

v⊤v
)with

cumulative distribution functionΦ(·) of the standard normal distribution. In other words, Ψdenom is equal to the cumulative
probability mass for all possible values v⊤Y that comply with the conditioning event, andΨnom is the cumulative probability
mass of possible values v⊤Y that are larger than β̂T ∗,j.

As in practice σ 2 is usually unknown,we investigate in simulations the performance and validity of our proposed p-values
when plugging in the restricted maximum likelihood estimate σ̂ 2

REML = ∥y − XT ∗ β̂T ∗∥
2/(n − pT ∗ ) for σ 2. We describe the

corresponding results in Section 3. Note that while σ̂ 2
REML is plugged into the truncated normal conditional distribution for

v⊤Y , this distribution is exact and does account for estimation of σ 2 in the selection event.

2.4. Conditional confidence intervals

We extend the results of Tibshirani et al. (2016) to allow for the construction of selective confidence intervals if the null
distribution is truncated to several intervals. We thus find the quantiles qα/2 and q1−α/2, for which

P(qα/2 ≤ v⊤µ ≤ q1−α/2 | selection event, P⊥

v Y = P⊥

v y) = 1 − α.

Analogous to Tibshirani et al. (2016), we can make use of the fact that the truncated normal survival function with multiple
truncation limits is alsomonotonically decreasing in itsmean θ as the truncatednormal distributionwithmultiple truncation
intervals is a natural exponential family in θ (see Fithian et al., 2014; Lee et al., 2016). The corresponding quantiles can be
found via a grid search, where qα satisfies 1 − F∪l[al,bl]

N (qα ,σ2v⊤v)(v
⊤y) = α with FJ

N (µ,σ2)
being the truncated cumulative normal

distribution function with mean µ, variance σ 2 and truncation interval(s) J ⊆ (−∞,∞). In other words, we search for the
mean values θ = qα/2 and θ = q1−α/2 of the truncated normal distribution NJ (θ, σ 2v⊤v), for which the observed value
v⊤y is equal to the α/2 and 1 − α/2 quantile, respectively, and H0 : βT ∗,j = θ thus would not be rejected.

2.5. Testing groups of variables

Following Loftus and Taylor (2015), a selectiveχ-significance test for groups of variables can be constructed by testing the
null hypothesisH0 : P̃gµ = 0,where P̃g = X̃T ∗,g (X̃⊤

T ∗,g X̃T ∗,g )−1 X̃⊤

T ∗,g , X̃T ∗,g = (I−PT ∗\g )XT ∗,g ,XT ∗,g are the columns of the
grouped variable g in XT ∗ , PT ∗\g is the projection onto the column space of XT ∗\g and XT ∗\g are the columns of XT ∗ without

XT ∗,g . Without model selection, a test statistic is given by T = σ−1
∥P̃⊤

g Y∥2
H0
∼ χTrace(P̃g ), i.e., T

2 follows a χ2-distribution
with Trace(P̃g ) degrees of freedom under H0. When conditioning on (I − P̃g )Y = (I − P̃g )y =: z and the unit vector u in the
direction of P̃⊤

g y, Y can be decomposed as Y = z + σTu, such that the only variation is in T . Conditional on the selection
event (3), T follows a truncated χ-distribution with truncation limits τ1/2 now given by δ = σ 2u⊤Au, ζ = 2σu⊤Az and
ξ = z⊤Az + c . Depending on the sign of δ and the number of solutions τ1/2 ≥ 0, the truncation set J ⊆ [0,∞) is either a
closed interval J = [max(0, τ1), τ2], an open interval J = [τ2,∞), or a union of intervals J = [0, τ1] ∪ [τ2,∞). The test
for grouped variables with multiple selection events can be treated analogously to Section 2.3 by normalizing the truncated
χ distribution analogously, replacing ψ with the cumulative distribution function of the χTrace(P̃g )-distribution. Note that
while the truncated normal distribution is replaced by a truncated χ-distribution, the types of conditioning events do not
change when incorporating groups of variables. The only exception is significance hunting, for which model selection is then
not based on t-statistics of regression coefficients but an F-test as in (5) is typically used. We also note that tests for grouped
variables can be employed to test model terms in a semi-parametric regression model Y = Xβ +

∑pf
j=p+1f (xj)+ ε, in which

smooth terms are incorporated using a basis representation f (xj) ≈ Bj(xj)ϑj with Bj(xj) being the vector of basis functions
for the jth component evaluated at observed values xj. Testing the basis coefficient vector ϑj against zero then corresponds
to testing for a vanishing model term, i.e., f (xj) = 0, in the best linear projection of µ onto the space spanned by the selected
linear covariates and selected basis functions. Extensions to selective inference after model selection of penalized smooth
terms in non-parametric and functional regression, such as in Aneiros and Vieu (2014), are, however, beyond the scope of
this work.

3. Empirical evidence

We evaluate the proposed selective inference concepts in linearmodels for a forward stepwise selection procedure based
on the AIC.

For the simulation study, we consider p ∈ {5, 25} covariates x1, . . . , xp ∈ Rn, n ∈ {30, 150} observations and use the
data generating process y = X†β†

+ ε. X†
= (x1, . . . , x4) respectively β†

= (4,−2, 1,−0.5)⊤ correspond to the true
active covariates respectively their effects and ε is Gaussian noise with zero mean and variance σ 2, which is determined
by the signal-to-noise ratio SNR ∈ {0.5, 1}. Covariates are independently drawn from a standard normal distribution (ind)
or exhibit a correlation of 0.4 (cor). For each setting, 100,000 simulation iterations are performed. We present resulting
p-values in a uniform quantiles vs. observed p-value-plot in Fig. 1, where p-values are calculated on the basis of concepts
introduced in Section 2. In the plot, p-values along the diagonal indicate uniformity, which seems to hold for all inactive
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Fig. 1. Quantiles of the standard uniform distribution versus the observed p-values for different SNR and correlation settings (columns) as well as different
settings for n and p (rows) in simulation iterations, in which all of the active covariates and additional inactive covariates are selected. p-values were
calculated on the basis of the true variance. For each setting, the number of iterations (nobs) is noted in the left upper corner. The dotted line indicates the
non-uniformity of ‘‘naive’’ p-values for inactive variables, which are not adjusted for model selection.

Table 1
Coverage of selective 95% confidence intervals for the simulation setting with correlation, n = 150, p = 25 and SNR = 1 for selection cases in which all the
active (and potentially additional inactive) variables are selected after AIC stepwise forward selection. The coverage is estimated using 8725 observations
for active and 31,371 observations for inactive variables.

Inactives x1 x2 x3 x4
Using true variance 0.9516 0.9492 0.9485 0.9532 0.9542
Using plugin estimate 0.9496 0.9485 0.9457 0.9515 0.9532

variables in all given simulation settings. For active variables, the corresponding selective test shows higher power the
closer the point line of p-values runs along the axis. Results are based on those simulation iterations in which all of the
active covariates and additional inactive covariates are selected. Note that in the selective inference framework, p-values
of inactive variables should exhibit uniformity given any particular set of selection events, if the null hypothesis holds.
Aggregating across selected models in each panel of Fig. 1 results in mixture distributions for the p-values, with a mixture
of uniform U[0, 1] variables again being U[0, 1]. Results for iterations without selected inactive variables (not shown) are
similar in terms of power. In summary, p-values for inactive variables exhibit uniformity in every setting. p-values for active
covariates indicate large power in most of the settings, with notable exceptions for those simulation settings in which p is
relatively large in comparison to n.

Further results are given in the supplementarymaterial, showing the resulting p-values for simulation iterations inwhich
the selectedmodel ismisspecified due tomissing active variables andpotentially selected inactive variables. Here,p-values of
inactive variables exhibit some deviation from the uniform quantiles when not all of the active variables have been selected.
However, deviations mainly occur when inactive variables are correlated with unselected active variables in which case the
null hypothesis (2) in fact does not exactly hold. This is due to the fact that the linear projection of µ into the column space
of the selected designmatrix has a non-zero coefficient for the jth variable if a correlated variable is omitted from themodel.
For the setting with correlation, n = 150, p = 25 and SNR = 1, Table 1 additionally provides the estimated coverage for
the confidence intervals constructed as in Section 2.4, averaging over all iterations where at least all the active variables are
selected (and over inactive variables for the inactives column). In addition, we investigate the performance of our approach
when plugging in σ̂ 2

REML for σ 2 in the derived distribution of β̂T,j for all simulation settings (see supplementary material).
p-values for inactive variables still approximately exhibit a uniform distribution when using an estimate for σ 2. Notable
deviations in comparison to p-values calculated with the true variance can occur when σ 2 is not estimated well such as for
n = 30 and p = 25. Furthermore, as shown in Table 1, almost no difference in the coverage of selective confidence intervals
is obtained when plugging in σ̂ 2

REML for σ
2. In the supplementary material, we also provide results for a simulation study for

the χ-test after stepwise AIC selection with a group noise variable.
We additionally apply our approach to the prostate cancer data set (Stamey et al., 1989), which has also been

used in Tibshirani et al. (2016) to illustrate selective confidence intervals after forward stepwise regression (see the
supplementary material). When using α = 0.05, the significant variables match the two significant variables after forward
stepwise regression in Tibshirani et al. (2016), although the selected model is different. Compared to unadjusted inference,
confidence intervals become wider for all coefficients in the selective inference framework.
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4. Summary

Based on the general selective inference framework derived in Loftus and Taylor (2014), Tibshirani et al. (2016) and
Loftus and Taylor (2015), we address the issue of conducting valid inference in linear models after likelihood- or test-based
model selection, which comprises (iterative) model selection based on the AIC or BIC, model selection via likelihood-based
or F-tests and significance hunting based on t-tests. We explicitly derive the necessary conditional distributions for these
selection events, which allow the application of selective inference to additional practically relevant settings compared to
existing results. We extend the construction of p-values and confidence intervals to the case in which the distribution of
the test statistic conditional on the selection events is truncated to multiple intervals. In simulations, we see that obtained
p-values yield desirable properties even if the selected model is not correctly specified and confidence intervals show the
nominal coverage. Wemake available an R software package (Rügamer, 2017) for selective inference to apply the proposed
framework in practice.
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Chapter 4

Valid Inference for L2-Boosting

Chapter 4 extends the methodology of Chapter 3 to the selection process induced by L2-Boosting,

an important special case of the component-wise functional gradient descent algorithm. In contrast

to the previous chapter, the conditional distribution of commonly used test statistics, conditional

on the model selection with L2-Boosting, cannot derived analytically. A selective sampling idea

is presented, on the basis of which tests and confidence intervals for linear, grouped and penalized

base-learners in the boosted regression model can be constructed. The framework is verified in

simulation studies and applied to the prostate cancer data set.
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Abstract

We review several recently proposed post-selection inference frameworks and as-
sess their transferability to the component-wise functional gradient descent algorithm
(CFGD) under normality assumption for model errors, also known as L2-Boosting.
The CFGD is one of the most versatile toolboxes to analyze data, as it scales well
to high-dimensional data sets, allows for a very flexible definition of additive regres-
sion models and incorporates inbuilt variable selection. Due to the iterative nature,
which can repeatedly select the same component to update, an inference framework
for component-wise boosting algorithms requires adaptations of existing approaches;
we propose tests and confidence intervals for linear, grouped and penalized addi-
tive model components estimated using the L2-boosting selection process. We apply
our framework to the prostate cancer data set and investigate the properties of our
concepts in simulation studies.

Keywords: Bootstrap, Functional Gradient Descent Boosting, Post-Selection Inference,
Selective Inference
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1 Introduction

Inference for Boosting. In this work we review and adapt recently proposed inference

techniques to the component-wise functional gradient descent algorithm (CFGD; see, e.g.,

Hothorn et al. 2010), which emerged from the field of machine learning (c.f. Friedman

2001), but has since also become an algorithm used to estimate statistical models (see,

e.g., Mayr et al. 2017, Melcher et al. 2017, Rügamer et al. 2018, Brockhaus et al. 2018). A

commonly used and well studied special CFGD algorithm is L2-Boosting (Bühlmann & Yu

2003). Apart from Luo & Spindler (2017), who study uncertainty for treatment effects when

selecting control variables via L2-Boosting in instrumental variable models, which require

additional assumptions for all the variables in the model, no general inferential concepts in

the sense of classical statistical inference have been proposed for L2-Boosting yet, though

ad-hoc solutions such as a non-parametric bootstrap are often used to quantify the uncer-

tainty of boosting estimates (see e.g. Brockhaus et al. 2015, Rügamer et al. 2018). In many

research areas such an uncertainty quantification is indispensable. We therefore propose

a framework for conducting valid inference for regression coefficients in models fitted with

L2-Boosting by conditioning on the selected covariates. We adapt recent research findings

on selective inference, which transfers classical statistical inference to algorithms that rely

on a preceding selection of model terms as is the case for CFGD algorithms. Compared to

existing approaches for sequential regression procedures including forward stepwise regres-

sion (Tibshirani et al. 2016) inference for L2-Boosting carries additional challenges due to

an iterative procedure that can repeatedly select the same model term.

Suitable inference concepts. The necessity for an explicit inference framework for

methods with preceding selection is due to the invalidity of inference after model selection.

This invalidity has been mentioned by many authors throughout the last decades (see, e.g.,

Berk et al. 2013). Different approaches for inference in high-dimensional regression models

have emerged over the past years, including data splitting (Wasserman & Roeder 2009).

Apart from these techniques, post-selection inference (PoSI; Berk et al. 2013) attracts

growing interest. Initiated by the proposal for valid statistical inference after arbitrary

selection procedures by Berk et al. (2013), many new findings and adoptions of post-
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selection inference to known statistical methods have been published in the last years.

We here focus on selective inference, which provides inference statements conditional

on the observed model selection. Similar to data splitting, selective inference separates

the information in the data, which is used for the model selection, from the information,

which is used to infer about parameters post model selection. In contrast to the original

PoSI idea of providing simultaneous inference for every possible model selection, selective

inference is designed to yield less conservative inference statements.

Apart from general theory described in Fithian et al. (2014), which transfers the classi-

cal theory to selective inference in exponential family models following any type of selection

mechanism, different explicit frameworks for several selection methods have been derived

(see e.g. Lee et al. 2016, for selective inference after Lasso selection or Rügamer & Greven

2018, for selective inference after likelihood- and test-based model selection). Recent pub-

lications, which are particularly relevant for this work, aim for valid inference in forward

stepwise regression (Tibshirani et al. 2016, Loftus & Taylor 2014, 2015). Whereas Tibshi-

rani et al. (2016) build a framework for any sequential regression technique resulting in a

limitation to the space for inference, which can be characterized by a polyhedral set, Loftus

& Taylor (2014, 2015) extend the idea to a more general framework, for which the infer-

ence space is given by quadratic inequalities and coincides with the polyhedral approach

in special cases. A continuation of Loftus & Taylor (2015) is given by Yang et al. (2016).

With the objective to build a selective inference framework for the group Lasso (Yuan &

Lin 2006), Yang et al. describe an importance sampling algorithm that circumvents the

problem of having to explicitly define the space, to which the inference is restricted after

conditioning.

Resampling for uncertainty quantification. Uncertainty quantification by the use of

resampling methods is as error-prone as classical inference when applied to models after

a certain model selection procedure. We therefore will shortly address this issue by the

example of bootstrap as one of the most commonly used techniques.

Let us first consider the parametric bootstrap. When generating new samples of the

response from the selected model and proceeding as in unadjusted inference post model-
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selection, the selected model is treated as the true model and this can incorrectly lead effects

to be (non-)zero. A non-parametric bootstrap on the other hand is accompanied by its own

problems. First, when drawing pairs of response and covariates, we (implicitly) assume

that the underlying data model is based on a random design in contrast to many regression

model settings, where the covariates are assumed to be fixed. If we ignore this issue, we

still face the problem of either neglecting the uncertainty of model selection, if we refit

the initially selected model for the resampled data, or the problem of having to aggregate

over different models when integrating the model selection process into our resampling

procedure. If estimates are aggregated over different models, uncertainty quantification

of parameters is based on different selected models with different interpretations of the

estimated coefficients and thus does not correspond to a meaningful single null hypothesis.

An additional difficulty arises when using the bootstrap for boosted regression models,

in which the estimated coefficients exhibit a bias due to the shrinkage effect of boosting.

Hence, bootstrap intervals are not centered around the true value and thus yield a quan-

tification of variability rather than a measure of deviation from the truth.

Contribution of this work. In this work, we adapt and extend several existing ap-

proaches for selective inference, thereby addressing the following issues:

1. We explicitly derive the space restriction of the response given by the L2-Boosting

path and thereby allow for inference as proposed in Tibshirani et al. (2016).

2. We propose a new conditional inference concept for L2-Boosting and potentially other

slow learning algorithms by conditioning on a set of possible selection paths.

3. We combine the work of Tibshirani et al. (2016) and Yang et al. (2016) to allow for

the computation of p-values and confidence intervals using test statistics, which lie

in a union of polyhedra and therefore have a (conditional) normal distribution with

potentially multiple truncation limits.

4. We explain how the proposed inference concept can easily be extended to account for

cross-validation, stability selection (Shah & Samworth 2013) and similar sub-sampling

methods.
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5. We extend the idea of the selective inference framework to models including L2-

penalized additive effects, such as smooth effects.

In the following, we describe the L2-Boosting algorithm in section 2 and recapitulate the

concept of selective inference for sequential regression procedures in section 3. In section

4 we investigate the challenges accompanying a new inference framework for L2-Boosting

and propose several solutions. In section 5 we present simulation results and analyze the

prostate cancer data using our new approach in section 6. We discuss limitations and

further extensions of the approach in section 7. An add-on R-package to the model-based

boosting R package mboost is available at https://github.com/davidruegamer/iboost,

which can be used to conduct inference for boosted models and to reproduce the results of

section 5 and 6. Supplementary materials including further simulation results are available

at https://github.com/davidruegamer/inference_boosting.

2 L2-Boosting

We now present the L2-Boosting algorithm as a special generic CFGD algorithm. Let

X ∈ Rn×p be a fixed set of covariates and y a realization of the random response variable

Y ∈ Rn. The goal is to minimize a loss function ℓ(·,y) for the given realization y with

respect to an additive model f :=
∑J

j=1 gj(Xj), where function evaluations of gj are

evaluated row-wise. The functions gj(·), the so called base-learners, are defined for column

subsets Xj ∈ Rn×pj of X with 1 ≤ pj ≤ p and can be fitted to some vector u ∈ Rn, which

yields ĝj as estimate for gj(Xj). We estimate f by f̂ using the component-wise functional

gradient descent algorithm:

(1) Initialize an offset value f̂ (0) ∈ Rn. If y is centered, a natural choice is f̂ (0) =

(0, . . . , 0)⊤. Define m = 0.

(2) Do the following for m = 1, . . . , mstop:

(2.1) Compute the pseudo-residuals u(m) ∈ Rn of step m as u(m) = − ∂
∂f

ℓ(f ,y)
∣∣∣
f=f̂ (m−1)

.

(2.2) Approximate the negative gradient vector with ĝj by fitting each of the base-

learners gj(·), j = 1, . . . , J to the pseudo-residuals and find the base-learner j(m),

for which j(m) = argmin1≤j≤J ||u(m) − ĝj||22 holds.

5
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(2.3) Update f̂ (m) = f̂ (m−1) + ν · ĝj(m) , where ν ∈ (0, 1] is the so called step-length or

learning rate.

When defining ℓ(f ,y) = 1
2
||y−f ||22 with quadratic L2-Norm ||·||22, L2-Boosting is obtained,

which corresponds to mean regression using the model E(Y |X) =
∑J

j=1 gj(Xj). The vector

u(m) then corresponds to the residuals y − f̂ (m). In the framework of additive regression

models, each base-learner gj(·) constitutes a partial effect and is represented as linear effect

of a covariate or of a basis evaluated at that covariate vector, i.e., gj(Xj) = Xjβj. βj is

estimated using ordinary or penalized least squares. The model fit ĝ
(m)
j of each base-learner

in the mth step is therefore given by ĝ
(m)
j = Hju

(m) = Xj(X
⊤
j Xj+λjDj)

−1X⊤
j u(m), where

the hat matrix Hj is defined by the corresponding design matrix Xj, a penalty matrix Dj

and a pre-specified smoothing parameter λj ≥ 0 controlling the penalization. As only one

base-learner is chosen in each iteration, the final effective degrees of freedom of the jth

base-learner depend on the number of selections.

As L2-Boosting scales well to large data sets due to its component-wise fitting nature

and is particularly suited for the estimation of structured additive regression models, it

is often used as an estimation algorithm for a statistical additive model (see, e.g., Mayr

et al. 2017). It has the additional advantage of being able to handle n < p-settings and

conducting variable selection, as not all J model terms are necessarily selected in at least one

iteration. However, when constructing a measure of uncertainty for regression coefficients,

the preceding variable selection has to be accounted for. As for other variable selection

procedures, the iterative nature of L2-Boosting restricts the space of Y and thereby the

space of estimated parameters.

3 A Review of Selective Inference for Sequential Re-

gression Procedures

We first define the considered model framework and some necessary notations before re-

viewing existing selective inference approaches we build on in Section 4. Let Y = µ + ε

with ε ∼ N (0, σ2In) and n-dimensional identity matrix In. Furthermore, assume that σ2

is known and µ is an unknown parameter of interest. In particular, we do not assume
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any true linear relationship between µ and covariates, but estimate µ with a “working

model”, which is of additive nature based on fixed covariates X ∈ Rn×p, for which p

potentially exceeds n. Furthermore, define the selection procedure or selection event S:

Rn → P({1, . . . , p}),y 7→ S(y) with power set function P(·). For the given realization y

of Y , we denote S(y) =: A, for which we assume |A| ≤ n.

We focus on estimating the best linear projection of µ into the space spanned by the

variables given by A after model selection. We therefore run the selection procedure defined

by S, select the subset XA of X defined by the selected column indices S(y) = A and

estimate regression coefficients βA by projecting y into the linear subspace WA ⊆ Rn

spanned by the columns of XA. With the goal to infer about βj, j ∈ A, in βA, we test the

hypothesis H0 : βj = 0. This is equivalent to testing

H0 : v⊤µ := eT
j (X⊤

AXA)−1X⊤
Aµ = 0 (1)

with ej the unit vector selecting j ∈ A (see, e.g., Tibshirani et al. 2016).

3.1 Inference based on a Polyhedral Space Characterization

In a classical statistical approach without selection, (1) is tested by using R̃ := v⊤Y , which

follows a normal distribution with expectation ρ̃ = v⊤µ and variance σ2v⊤v under the null.

However, after model selection, the space of Y is restricted to G = {y : S(y) = A}, which

we call the inference region. Many of the proposed methods for selective inference then

describe this space restriction mathematically and derive the distribution of v⊤Y |Y ∈ G.

For sequential regression procedures such as Forward Stepwise Regression (FSR) or the

Least Angle Regression (LAR, Efron et al. 2004), Tibshirani et al. (2016) characterize the

restricted region of the on-going selection mechanism as a polyhedral set G = {y : Γy ≥ b}
with Γ ∈ Rκ×n, b ∈ Rκ for some κ ∈ N and an inequality ≥ which is to be interpreted

componentwise. In other words, for FSR, LAR and also for other algorithms, Γ and b can

be explicitly derived by reformulating inequalities determining the selection in each step.

As shown in 4, this is also the case for L2-Boosting when conditioning on the selection

path. Let PW be the projection onto a linear subspace span(W ) ⊂ Rn defined by W ∈
Rn×w, w ≥ 1 and P ⊥

W be the projection onto the orthogonal complement of this linear

subspace. Furthermore, define the direction of PW y as the unit vector dirW (y) = PW y
||PW y||2 .

7
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In the framework of Tibshirani et al. (2016), Y is written as R̃· v
v⊤v

+Z with Z = P ⊥
v Y .

By construction Z is independent of R̃. The selection event Y ∈ G can thus be rewritten

G = {Y with V lo(Z) ≤ R̃ ≤ Vup(Z),V0(Z) ≥ 0}, (2)

where V lo, Vup and V0 are functions of Z as well as of the fixed quantities Γ and v. By

additionally conditioning on the realization z of Z as well as on a list of signs for each

step similar to those defined in (9) and which will be explained in Section 4, V lo, Vup are

fixed limits for R̃ (see, e.g., Lee et al. 2016) with Y ∈ G corresponding to R̃ ∈ Ry :=

{R̃ : V lo(z) ≤ R̃ ≤ Vup(z)}. Incorporating these boundaries into the distribution of

R̃ ∼ N (ρ, σ2v⊤v) yields a truncated Gaussian distribution with truncation limits V lo =

V lo(z), Vup = Vup(z). Let F
[Vlo,Vup]

ρ̃,σ2v⊤v
(R̃) denote the cumulative distribution function of the

truncated normal distribution evaluated at R̃. Then, for

H0 : ρ̃ ≤ 0 vs. H1 : ρ̃ > 0,

the test statistic

T = 1 − F
[Vlo,Vup]

0,σ2v⊤v
(R̃)

is a valid conditional p-value, conditional on the polyhedral selection, as

PH0(T ≤ α | ΓY ≥ b) = α

for any 0 ≤ α ≤ 1. For a two-sided hypothesis

H0 : ρ̃ = 0 vs. H1 : ρ̃ ̸= 0,

Tibshirani et al. (2016) define

T = 2 · min
(
F

[Vlo,Vup]

0,σ2v⊤v
(R̃), 1 − F

[Vlo,Vup]

0,σ2v⊤v
(R̃)

)

and the validity of inference based on this p-value holds analogously. A valid conditional

confidence interval [δα/2, δ1−α/2] can then be derived by inverting the given test, i.e., finding

the limits δα/2 and δ1−α/2, which satisfy 1 − F
[Vlo,Vup]

δα/2,σ2v⊤v
(r̃) = α/2 and 1 − F

[Vlo,Vup]

δ1−α/2,σ2v⊤v
(r̃) =

1−α/2 for the observed value R̃ = r̃. Limits in this case are unique due to the monotonicity

of the survival function 1 − F
[Vlo,Vup]

γ,σ2v⊤v
(r̃) in the mean γ. For more details, see section 4 and

Tibshirani et al. (2016).
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The characterization of the inference region as a polyhedral set, however, is only possible

if the algorithmic decision in each selection step is a linear restriction on the space of Y .

For example for groups of variables, the underlying inequality for the choice of the covariate

is inherent quadratic and no polyhedral representation can be obtained. Loftus & Taylor

(2015) therefore introduce a framework for inference after model selection procedures which

can be described by affine inequalities.

Apart from a different characterization of the space restriction, a different test statistic

must be used for groups of variables. For testing the jth group variable coefficient βA,j ∈ Rw

in the best linear approximation βA = arg min E [ ||Y − XAβ||22 ], Loftus & Taylor (2015),

Yang et al. (2016) rewrite the null hypothesis βA,j = 0 as PW µ = 0 ⇔

H0 : ρ := ||PW µ||2 = 0 (3)

with W = P ⊥
XA\j

Xj, where XA\j denotes XA without the pj columns corresponding to

the jth group variable. In other words we want to test the correlation of Xj and µ after

adjusting for all other predictors A\j in the selected model A. Using R := ||PW Y ||2 as

test statistic, the authors then conduct inference. Under the null and when additionally

conditioning on the direction dirW (y), R follows a truncated χ-distribution and trunca-

tion limits of R can again be derived analytically. With the goal to also facilitate the

computation of confidence intervals, Yang et al. (2016) note that R and dirW (y) are not

independent for ρ ̸= 0 and as a consequence, the χ-conditional distribution of R as derived

in Loftus & Taylor (2015) for (3) when ρ = 0 no longer holds for more general hypotheses.

Similar to (2), Yang et al. (2016) decompose Y as R · dirW (Y ) + P ⊥
W Y and condition

on dirW (Y ) = dirW (y) as well as on P ⊥
W Y = P ⊥

W y. Then, the only variation left is in R

and the selection A can be equally written as R ∈ Ry with

Ry =
{
R > 0 : S(R · dirW (y) + P ⊥

W y) = A
}

.

Yang et al. (2016) then derive the conditional distribution of R, conditional on dirW (y) as

well as on P ⊥
W y. The corresponding density is

f(R) ∝ Rw−1 exp

{
− 1

2σ2
(R2 − 2R · ⟨dirW (y),µ⟩)

}
· 1{R ∈ Ry} (4)

with indicator function 1{·}. (4) can be used to conduct inference on the inner product

⟨dirW (y),µ⟩. As for the quantity of interest ρ = ||PW µ||2 ≥ ⟨dirW (y),µ⟩ holds, (4) can
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also be used to construct a lower bound for ρ. As a byproduct of generalizing the idea of

Loftus & Taylor (2015), the authors additionally bypass the problem of having to define

the selection region analytically. We describe this idea in the following in more detail.

3.2 Inference without explicit inference region definition

Whereas most approaches for selective inference require an explicit definition of the space

G, to which Y is restricted by the selection procedure, a mathematical description of G is

not always feasible. However, as pointed out by Fithian et al. (2014), Yang et al. (2016),

such a characterization is not mandatory when sampling from the conditional distribution

of Y is possible. In the following, we describe the idea of Yang et al. (2016), who use an

importance sampler when conducting inference for (3).

Theorem 1 in Yang et al. (2016) states that, conditional on dirW (y), P ⊥
W y and the

selection event, inference can be conducted using

ς(t) =

∫
R∈Ry,R>||PW y||2 Rw−1e−(R2−2Rt)/2σ2

dR
∫

R∈Ry
Rw−1e−(R2−2Rt)/2σ2 dR

(5)

as ς(tY ), a p-value for ⟨dirW (y),µ⟩ = tY , is Uniform[0, 1]-distributed. Here, ς(·) can also be

seen as the survival function derived from the density defined in (4). In order to circumvent

an explicit definition of the selection region Ry, the authors note that (5) is equal to

ER∼σχw(eRt/σ2 · 1{R ∈ Ry, R > ||PW y||2})

ER∼σχw(eRt/σ2 · 1{R ∈ Ry})
, (6)

which can be approximated by the ratio of empirical expectations computed with a large

number of samples rb ∼ σ · χw, b = 1, . . . , B. In particular, to evaluate the argument of

both expectations in (6) for some rb, rb ∈ Ry must be checked. To this end, note that the

only variation of (Y | dirW (y),P ⊥
W y) is in R. We therefore define yb = P ⊥

W y+rb ·dirW (y)

and rerun the algorithm to check whether S(yb) = A, or equivalently, whether rb ∈ Ry.

Drawing samples from the σχw-distribution, however, is less promising when ||PW y||2 is

large. In this case, P(R ∈ Ry) may be very small and an excessively large number of

samples is needed to obtain a good approximation of ς(t). Yang et al. (2016) therefore

suggest an importance sampling algorithm, which draws new samples rb from a proposal
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distribution Fprop such as N (||PW y||2, σ2) with density fprop and then approximates (6)

by

ς(t) ≈ ς̂(t) =

∑
b wb · erbt/σ2 · 1{rb ∈ RY , rb > ||PW y||2}∑

b wb · erbt/σ2 · 1{rb ∈ RY } (7)

with sampling weights wb = fσχw(rb)/fprop(r
b).

4 Selective Inference concepts for L2-Boosting

4.1 Polyhedron representation-based inference for L2-Boosting

Consider using L2-Boosting with only linear base-learners to fit a linear regression model.

Following Tibshirani et al. (2016) we can derive a polyhedron representation G = {y : Γy ≥
b} in a similar fashion to other stepwise regression procedures for the given selection

path j(1), . . . , j(mstop) of L2-boosting.

This can easily be proven by regarding the residual vector u(m) of step m as a function

of y. The selection condition for the mth chosen base-learner

||(I − Hj(m))u(m)||2 ≤ ||(I − Hj)u
(m)||2 ∀j ̸= j(m)

⇔
(
smX⊤

j(m)/||Xj(m)||2 ± X⊤
j /||Xj||2

)
u(m) ≥ 0 ∀j ̸= j(m),

(8)

with sm = sign(X⊤
j(m)u

(m)), can be written as affine restriction on y by plugging

u(m) =

[
m−1∏

l=1

(
I − νHj(m−l)

)
]

=: Υ(m)y

into (8). This yields the polyhedron representation G for a given selection path and list

of signs sm,m = 1, . . . , mstop with corresponding (2 · (p − 1) · mstop) × n matrix Γ as

stacked matrix of n-dimensional row vectors, where the rows Γ[(m̃+2j−1):(m̃+2j),] with m̃ =

2 · (p − 1) · (m − 1) are given by

(
smX⊤

j(m)/||Xj(m)||2 ± X⊤
j /||Xj||2

)
Υ(m) ∀ j ̸= j(m). (9)

As for other procedures described in the post-selection inference literature, this represen-

tation only holds if the columns of X are in general position, which however, is not a very

stringent assumption (see, e.g., Tibshirani et al. 2016, section 4).
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By showing that the L2-Boosting path results in a space restriction for Y , which can

be described as a polyhedral set, quantities of interest v⊤µ can be tested based on the

conditional distribution of v⊤Y | Y ∈ G as proposed by Tibshirani et al. (2016). To this

end, we have to condition on the selection path. If we do not additionally condition on the

list of signs, G is a union of polyhedra (cf. Lee et al. 2016).

4.2 Choice of the Conditioning Event for Slow Learners

For the selection approaches discussed in Section 3, conditioning on the selection path is

equivalent to conditioning on the selected model, which helps in deriving the corresponding

conditional distribution. For boosting and other slow learners that can repeatedly select

the same base-learner, conditioning on the selection path and thus on variable selection

decisions in each algorithmic step will result in a loss of power. In fact, such a conditional

inference will have almost no power in most practically relevant situations, as we show em-

pirically for the polyhedron approach in the simulation section. In order to avoid excessive

conditioning, we propose to condition only on the set of selected covariates, i.e., on the

selected statistical model.

Conditioning only on the selected covariates, however, means that the mathematical

description of the inference region becomes far more difficult. For L2-Boosting with linear

base-learners, this would result in a union of not necessarily overlapping polyhedra for the

different selection paths leading to the same selected model. In particular for L2-Boosting,

we do not think that an analytical description of the inference region is possible. We thus

circumvent this problem using a Monte Carlo approximation, adapting and extending the

existing approaches presented in Section 3.

4.3 Powerful Inference for L2-Boosting with Linear Base-learners

We now combine the ideas of Section 3.1 and 3.2 to practically realize the idea of the

previous Section 4.2. We base inference on the potentially multiply truncated Gaussian

distribution of R = v⊤Y conditional on P ⊥
v y and the selection R ∈ Ry. Then, the
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truncated normal density of R is given by

f(R) ∝ exp

{
− 1

2σ2v⊤v
(R − v⊤µ)2

}
· 1{R ∈ Ry},

where Ry is a union of polyhedra. Let robs = v⊤y. Then, analogous to Yang et al. (2016)

we can define a p-value by

P =

∫
R>robs,R∈Ry

e−(2σ2v⊤v)−1R2
dR

∫
R∈Ry

e−(2σ2v⊤v)−1R2 dR

for H0 : v⊤µ = 0 and since the truncated Gaussian distribution with potentially multiple

truncation limits is monotone increasing in its mean ρ (see, e.g., Rügamer & Greven 2018),

we can find unique values ρα/2, ρ1−α/2 for any α ∈ (0, 1), such that

ς(ρa) =

∫
R>robs,R∈Ry

e−(2σ2v⊤v)−1(R2−2Rρa) dR
∫

R∈Ry
e−(2σ2v⊤v)−1(R2−2Rρa) dR

= a, a ∈ {α/2, 1 − α/2}

to construct a confidence interval [ρα/2, ρ1−α/2]. Note that P = ς(0), and ς(ρa) can then be

rewritten as
ER∼N (0,σ2v⊤v)

[
1{R ∈ Ry, R > robs} · e(σ2v⊤v)−1Rρα

]

ER∼N (0,σ2v⊤v)

[
1{R ∈ Ry} · e(σ2v⊤v)−1Rρα

] ,

which allows for an empirical approximation as in (7).

In practice, importance sampling from Π = N (robs, σ
2v⊤v) works well if truncation lim-

its around robs are fairly symmetric, yielding the weights wb = exp((2rbrobs−r2
obs)/(−2σ2v⊤v))

for the importance sampler. A refinement of the sampling routine is necessary to also work

well in more extreme cases. An example frequently encountered in practice is given when

robs is rather large and at the same time lies very close to one truncation limit, yielding

an insufficient amount of samples rb ∈ Ry to approximate the truncated distribution well.

We therefore propose a more efficient sampling routine, motivated by and applicable to

selection procedures, for which the support of the truncated distribution is known to be a

single interval [V lo, Vup]. In this case, we do not even need to characterize the space em-

pirically since the distribution of interest is known with the exception of the interval limits

(the variance is assumed to be known and the null distribution determines the mean ρ). By

employing a line search, we can find V lo, Vup and conduct inference based on the truncated

normal distribution function F
[Vlo,Vup]

ρ,σ2v⊤v
(·). We use such a corresponding line search here to
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refine the importance sampling. By searching through the space of potential values R ∈ Ry,

a preliminary interval [R̃lo, R̃up] covering Ry can be found with negligible computational

cost by, e.g., successively checking extreme quantiles of Π for their congruency with respect

to Ry. By checking extremely small and large values of R and defining R̃lo, R̃up such that

both limits include all values, for which R ∈ Ry, we can find a superset of the support

of R up to numerical precision. We then draw from a uniform distribution with support

[R̃lo, R̃up]. In comparison to the approach, which simply draws samples from Π, finding

preliminary truncation limits [R̃lo, R̃up] to refine the sampling space prior to the actual

sampling proves to notably enhance accuracy and efficiency due the increased amount of

accepted samples.

4.4 Further extensions

The ideas of section 4.2 and 4.3 can be extended to allow for computations in further

relevant settings. An obvious extension is that to groups of variables. analogous to Yang

et al. (2016). We additionally discuss four practically important extensions in the following.

Inference for groups of variables. In order to test groups of variables, the approach by Yang

et al. (2016) described in Subsection 3.2 can almost directly be applied. To this end, we

define S based on the set of chosen variables and use the sampling approach proposed in

Subsection 4.3 for the χ-distribution on R+, such that R̃lo ≥ 0.

Incorporating cross-validation and other sub-sampling techniques. One of the most common

ways to choose a final stopping iteration for the boosting algorithm is by using a resampling

technique such as k-fold cross-validation and estimating the prediction error of the model

in each step. By choosing the model with the smallest estimated prediction error, we again

exploit information from the data, which we have to discard in the following inference.

For the sampling approach described in 4.3 the extension is straightforward as we simply

incorporate the cross-validation conditions in the space definition of Ry. In order to check

the congruency with the selection event Ry, we keep the folds fixed and identical to the

original fit when rerunning the algorithm with a new sample yb. In fact, this approach is
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not only restricted to resampling methods. Stability selection (Shah & Samworth 2013) or

other possibilities to choose an “optimal” number of iterations, as for example, by selection

criteria such as the Akaike Information Criterion (AIC, Akaike 1974) can be incorporated

into the inference framework in the same manner.

Unknown error variance. If the true error variance is unknown, we may use a consistent

estimator instead. Judging by our simulation results, the effect of plugging in the empirical

variance of the boosting model residuals is negligible in many cases and may also be a

better (less anti-conservative) choice than the analogous estimator given by ordinary least

squares estimation in the selected model due to the shrinkage effect. In cases with smaller

signal-to-noise ratio, however, the plug-in approach may also yield invalid p-values under

the null as shown in our simulation section. Tibshirani et al. (2015) present a plug-in as

well as a bootstrap version of the test statistic, which yield asymptotically conservative

p-values for v⊤µ = 0. The bootstrap approach, however, can only be conducted efficiently

if truncation limits of the test statistic are known. In the simulation section, we investigate

the first suggestion by Tibshirani et al. (2015) – using the empirical variance of y as a

conservative estimate for σ2 – which better suits the presented framework.

Smooth effects. The given approach can also be used for additive models when the linear

predictor ηi = x⊤
i β in the working model yi = ηi + εi, i = 1, . . . , n is extended by additive

terms of the form g(ci) for some covariate c = (c1, . . . , cn)⊤. For the ease of presentation,

we assume only one covariate c that is incorporated as an additive term. We therefore

use a basis representation g(ci) = B(ci)γ =
∑M

ϖ=1 Bϖ(ci)γϖ with M basis function Bϖ(·)
evaluated at the observed value ci, basis coefficients γϖ, B(ci) = (B1(ci), . . . , BM(ci)) and

γ = (γ1, . . . , γM)⊤. When XA is the composed matrix of all covariates, which are assumed

to have a linear effect, and of the evaluated basis functions B̃ = (B(c1)
⊤, . . . , B(cn)⊤)⊤

of c, we again might be interested in testing the best linear approximation of µ in the

space spanned by a given design matrix XA. To this end, we can perform a point-wise

test H0 : g(c) = 0 for g the true function in the basis space resulting from the best linear

approximation of µ by the given model. This can be done by using the proposed framework

15
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with test vector v⊤ = B0(c)(X⊤
AXA)−1X⊤

A as g(c) = v⊤µ, where B0(c) is defined as XA

for which all columns but those corresponding to B(c) are set to zero. Instead of a point-

wise test, the whole function can be tested

H0 : g(·) ≡ 0 (10)

by regarding the columns in B̃ as groups of variables and setting W in (3) to P ⊥
XA\j

B̃,

where XA\j denotes XA without the pj columns of B̃.

The proposed tests and testvectors can also be used when smooth effects are estimated

using a penalized base-learner.

5 Simulations

We now provide evidence for the validity of our method for linear and spline base-learners

based on B = 1000 samples. We also show the performance of the proposed method in

comparison to the polyhedron approach in a relevant setting and investigate the effect of

different variance values. For linear regression with linear base-learners the true underlying

model is given by

yi = ηi + εi = X[i,1:4]β + εi, i = 1, . . . , n, (11)

where β = (4,−3, 2,−1), εi
iid∼ N (0, σ2) with σ defined such that the signal-to-noise ration

SNR ∈ {1, 4} and [i, 1 : 4] indicates the rows and columns of X, respectively. We construct

four linear base-learners for the four covariates x1, . . . , x4 in X[,1:4] and additionally build

p0 ∈ {4, 22} base-learners based on noise variables for n ∈ {25, 100} observations, where

the columns in X are independently drawn from a standard normal distribution (empirical

correlations range from −0.53 to 0.48). Figure 1 shows the observed p-values versus the

expected quantiles of the standard uniform distribution for settings, in which either the

true model or a model larger than the true model with all four signal variables is selected.

This corresponds to selection events, in which the null hypothesis (1) holds for j > 4 and

thus p-values of inactive variables should exhibit uniformity given the selection event A.

The mixture of uniform U [0, 1] p-values when aggregating across selected models again

results in U [0, 1] p-values.
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Figure 1: Observed p-values vs. expected quantiles across different covariates (rows) as well

as different number of boosting iterations, number of noise variables and iterations, SNR

and methods (columns) after boosting with a step-length of 0.1 using different variance

types (colors), and a total of 1000 simulation iterations in settings with n = 25. p-values

are shown for simulation iterations, in which either the true model or a model larger than

the true model is selected.

Results : p-values for effects of “true effect” variables show deviations from the angle bi-

secting line, indicating the ability of the proposed procedure to correctly infer about the

significance of the effects. The power decreases for a smaller number of observations (not

shown), a smaller SNR and a larger number of noise variables. The polyhedron approach

yields correct p-values under the null, but shows undesirable properties for non-noise vari-

ables. p-values for the proposed approach are uniform under the null when using the true

variance, with more conservative results when using the empirical variance of the response

and slightly non-uniform p-values when using a plugin estimator. In this respect, the em-
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pirical variance of boosting residuals is more favorable than that of an OLS refit, but can

also lead to deviations. However, note that the empirical approximation of p-values is not

very accurate in the settings where specific selection events are rather unlikely, as only a

small number of samples rb ∈ Ry can be used. This, in particular, is the case for the

setting with mstop = 150 iterations and 26 covariates, where the selection probabilities for

each path are rather small due to the large number of possible paths, and this may be the

reason for deviations from the angle bisecting line for noise variables. Furthermore, corre-

sponding confidence intervals of the proposed test procedure reveal approximately 1 − α%

coverage. Results for α = 0.05 are given in Table 1. Deviations from the ideal coverage

of 95% are primarily due to numerical imprecision when inverting the hypothesis test and

more accurate results can be obtained by increasing the number of samples B.

p0, number of iterations, SNR

4, 40, 1 4, 80, 1 4, CV, 1 22, 40, 1 22, 40, 4

coverage noise variables 0.9566 0.9571 0.9618 0.9485 0.9211

coverage signal variables 0.9699 0.9559 0.9326 0.9444 0.9429

Table 1: Estimated coverage of selective confidence intervals obtained by the proposed

sampling approach for n = 25 observations when using the true variance in different settings

(columns).

In the supplementary material, we additionally provide results for other settings of the

previous simulation study as well as results for additive models using spline base-learners,

where the true underlying function is given by yi = sin(2X[i,1])+ 1
2
X2

[i,2] + εi, i = 1, . . . , 300,

εi
iid∼ N (0, σ2) with σ defined such that the signal-to-noise ration SNR ∈ {0.5, 1} and 13

further covariates X[,3:15]. All covariate effects are represented using penalized B-splines

(P-spline; Eilers & Marx 1996) with B-Spline basis of degree 3, 5 knots and second order

differences penalty. Tests for the whole function are performed as proposed in (10). Results

suggest very high power and uniformity of p-values for noise variables, supporting the

conclusion that the proposed test also works well for additive terms.
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6 Application

We now apply our framework to the prostate cancer data set (Stamey et al. 1989) to model

logarithmic PSA level (lpsa) of patients having prostate cancer. This data set has already

been analyzed with regard to post-selection inference by, for example, Tibshirani et al.

(2016) using forward stepwise regression and testing after a prespecified number of steps.

In contrast to previous approaches, we do not enforce effects of continuous covariates to be

linear but assume a more flexible additive model

lpsai = β0 +
7∑

j=1

gj(X[i,j]) +
4∑

j=1

I(gleasoni = j)βj + εi, i = 1, . . . , 97,

with 7 metric variables Xj, j = 1, . . . , 7 and categorical variable gleason. In order to

estimate the smooth effects, we fit the model using P-spline base-learners with difference

penalties. To facilitate a fair base-learner selection (Hofner et al. 2011), we split up effects of

continuous covariates into a linear effect and a non-linear deviation from the corresponding

linear effect. The optimal stopping iteration mstop = 47 for the boosting algorithm with

step-length ν = 0.1 is found by using 10-fold cross-validation, which is incorporated into

the selection mechanism S. After 47 iterations, five effects are selected by the boosting

procedure, including two non-linear deviations for the covariate lbph (logarithmic benign

prostatic hyperplasia amount) and the covariate pgg45 (percentage Gleason scores 4 or 5).

The two covariates reveal a U-shaped effect, which is shown in the supplementary material.

The following table shows the results for componentwise tests of linear and additive terms

for hypothesis tests based on the proposed sampling approach with 5000 samples. Testing

additive terms, which have been split up into a linear part and a non-linear deviation,

can be done by defining B as concatenated matrix of the covariate vector itself and the

corresponding matrix of evaluated basis functions orthogonalized to the linear effect. The

logarithmic cancer volume (lvacol) is found to be the only variable having a significant

influence on the response for the given model.
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lbph (NL) pgg45 (NL) lcavol (L) lweight (L) svi (L)

magnitude 2.3319 2.8518 4.0992 2.2067 1.9520

lower limit 0 0 2.4859 0 0

p-value 0.3452 0.2467 0.0004 0.3752 0.1212

Table 2: Magnitude of linear (L) and non-linear (NL) projections ||PW y||2 for the selected

model terms lbph (logarithmic benign prostatic hyperplasia amount), pgg45 (percentage

Gleason scores 4 or 5), lcavol (logarithmic cancer volume), lweight (logarithmic prostate

weight) and svi (seminal vesicle invasion) as well as corresponding lower confidence interval

limits and p-values.

7 Discussion

In this paper we review several recently proposed selective inference frameworks and trans-

fer and adapt them to the L2-Boosting algorithm. As far as we know, there are no previous

general methods available to quantify uncertainty of boosting estimates in a classical sta-

tistical manner when variable selection is performed. We propose tests and confidence

intervals for linear base-learners as well as for group variable and penalized base-learners.

We apply our framework to the prostate cancer data set and in contrast to published anal-

yses of this data also allow for non-linear partial effects. Using simulation studies with a

range of settings, we verify the properties of our approach.

This work opens up a variety of future research topics, including a mathematical de-

scription of the space restriction of test statistics given by the boosting algorithm.

An extension to generalized linear models (GLMs) and beyond, however, proves to be

difficult since conditions involving y might imply conditioning on y itself if the response is

discrete (see Fithian et al. 2014, for more details on selective inference for GLMs). It would

also be interesting to investigate whether asymptotic results of Tian & Taylor (2017) can

be used to construct inference for CFGD algorithms other than L2-Boosting.
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Chapter 5

Boosting factor-specific functional

historical models for the detection of

synchronization in bioelectrical signals

Chapter 5 introduces extensions of functional historical models to models including random historical

effects, factor-specific historical effects, and factor-specific random historical effects. The proposed

methodology is motivated by research questions in the field of cognitive affective neuroscience

and is used to analyse the functional relationship between electroencephalography and facial elec-

tromyography signals. The presented method is further investigated numerically in simulation studies.
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Summary. The link between different psychophysiological measures during emotion episodes
is not well understood. To analyse the functional relationship between electroencephalogra-
phy and facial electromyography, we apply historical function-on-function regression models to
electroencephalography and electromyography data that were simultaneously recorded from
24 participants while they were playing a computerized gambling task. Given the complexity of
the data structure for this application, we extend simple functional historical models to models
including random historical effects, factor-specific historical effects and factor-specific random
historical effects. Estimation is conducted by a componentwise gradient boosting algorithm,
which scales well to large data sets and complex models.

Keywords: Factor-specific functional historical effect; Functional data analysis; Function-
on-function regression; Gradient boosting; Signal synchronization

1. Introduction

Bioelectrical signals such as electromyography (EMG), electroencephalography (EEG) or elec-
trocardiogram are variations in electrical energy that carry information about living systems
(Semmlow and Griffel, 2014). An appropriate analysis of bioelectrical signals, which are usually
obtained in the form of time series data, is a crucial point in many research areas, including
(tele-)medicine, automotive technology and psychology (Kang et al., 2006; Kaniusas, 2012). In
the field of cognitive affective neuroscience, a particular interest lies in the link of measured
brain activity recorded with EEG and peripheral response systems such as the heart rate or
facial muscle activity. In this context, our motivating study (Gentsch et al., 2014) investigated
the coherence between emotion components. In componential emotion theory, an emotional
episode is thought to be an emergence of coherent or temporally correlated changes in emo-
tion components, such as appraisals or facial expressions. This is referred to as synchronization
(Grandjean and Scherer, 2009).

Address for correspondence: David Rügamer, Fachbereich Statistik, Ludwig-Maximilians-Universität, Lud-
wigstraße 33, Munich 80539, Germany.
E-mail: david.ruegamer@stat.uni-muenchen.de
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1.1. The emotion components data
In the study of Gentsch et al. (2014), brain activity (EEG) as well as facial muscle activity (EMG)
were simultaneously recorded. The data set at hand consists of time series of 384 equidistant
observed time points for both EEG and EMG signals, eight different study settings (conditions
in a computerized gambling game) and 24 participants. The traditional approach of analysing
EEG and EMG data is to calculate the average signal for each participant across all trials of
one study setting. For EEG data, this is referred to as event-related potential analysis (see, for
example, Pfurtscheller and da Silva (1999)). Such an aggregation yields a reduced data set of
N = 8 × 24 × 384 = 73728 observed data points. At each of the N time points, measurements
are available for three EMG and 64 EEG electrodes. Fig. 1 depicts one EEG and EMG signal
for one participant and all eight study settings with a common starting point of 200 ms after
stimulus onset.

Efferent signals from the brain (signals originating from the brain) innervate or activate facial
muscles (see, for example, Rinn (1984)). Therefore, it should be possible to trace back facial
muscle activity recorded with facial EMG to brain activity captured with EEG. As certain
cognitive processes can be related to different brain areas and facial regions, our particular
interest lies in investigating the link between a selected EEG electrode signal and a specific
EMG signal. We expect any association between these two signals

(a) to be time varying,
(b) to exhibit a temporal lag that is a priori unknown (even though a minimum lag can be

inferred from the literature),
(c) to be specific to a study setting and/or
(d) to be present only during certain time intervals.

1.2. Existing methods for detecting synchronization
Previous approaches to detect synchrony in brain activity and autonomic physiology data have
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Fig. 1. Example for one EEG signal (Fz-electrode) and one EMG signal (frontalis muscle for raising eye-
brows) of one participant, averaged over all trials for each of the eight possible game conditions; ,
high control, high power, gain; , low control, high power, gain; , high control, high power, loss;

, low control, high power, loss; , high control, low power, gain; , low control, low power,
gain; , high control, low power, loss; , low control, low power, loss
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mostly focused on coherence or cross-correlation. Examinations of EEG and EMG synchro-
nization can, inter alia, be found in Hollenstein and Crowell (2014), Mima and Hallett (1999),
Brown (2000), Mima et al. (2000a,b), Grosse et al. (2002), Quiroga et al. (2002), Bortel and
Sovka (2006) and Hashimoto et al. (2010). Whereas coherence is a function of the frequency
measuring the explained variance of one time series by another time series in the frequency
domain, cross-correlation is a function of time, yielding the correlation of two time series for
a given lag (see, for example, Pawitan (2005)). With the aim to relate different time points of
two signals to each other, we focus on methods in the time domain. Established methods are,
however, concerned with the estimation of the association between two observed time series
rather than the analysis of a large number of time series observations given in pairs of signals.
This applies to (cross-)correlation, which additionally does not provide the possibility of taking
covariates into account, as well as for other methods such as the generalized synchronization ap-
proach based on the state space representation (Diab et al., 2013) or auto-regressive times series
approaches (see for example Ozaki (2012)). Furthermore, most of these approaches require the
definition of a specific or a maximum time lag.

1.3. Function-on-function regression
As both the EEG and the EMG signal can be understood as noisy observations of functional
variables, function-on-function regression approaches offer another possibility to describe and
infer the relationship of such time series (see Morris (2015) for a recent review). Function-
on-function regression models adapt the principle of standard regression by allowing for a
functional response as well as functional covariates. The so-called historical model (Malfait
and Ramsay, 2003; Harezlak et al., 2007) is one possibility to explain a functional response
Y.t/, t ∈T = [T1, T2] with T1, T2 ∈R, using a linear effect of the complete history of a functional
covariate X.s/, s∈T :

E{Y.t/|X=x}=
∫ t

T1

x.s/β.s, t/ds: .1/

In contrast with the existing approaches that were discussed above, historical models enable us
to relate a given time point of one time series to more than one time point in [T1, t] of another
time series.

Early core work on functional historical models is limited to historical models with only
one functional covariate. A multitude of application possibilities are conceivable and historical
models have been used in different research areas including health and biological science (Malfait
and Ramsay, 2003; Harezlak et al., 2007; Gervini, 2015; Brockhaus et al., 2017). Brockhaus et al.
(2017) extended the framework of a simple historical model such as equation (1) to functional
regression models with a high number of functional historical effects and potentially further
covariate effects by utilizing gradient boosting for estimation.

Alternative estimation procedures for flexible function-on-function regression models includ-
ing historical effects are based on a mixed model representation (see Scheipl et al. (2015)) or
componentwise gradient boosting (see Brockhaus et al. (2015, 2017)) These are implemented
in the pffr function of the R package refund (Huang et al., 2015) and in the R package
FDboost (Brockhaus and Rügamer, 2016) respectively.

1.4. Proposed approach
To reflect the study design in this application, we extend functional historical models to historical
effects that vary over one or two (penalized) categorical covariates to allow for subject-, setting-
and subject-by-setting-specific effects. We provide mathematical concepts for the construction of
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design matrices and penalty matrices as well as suitable identifiability constraints. We integrate
these concepts into the framework of Brockhaus et al. (2015, 2017) and implement them for
estimation via componentwise gradient boosting. We also speed up the estimation by making
use of our particular model structure. By carrying out estimation with componentwise gradient
boosting as in Brockhaus et al. (2015), our approach has several advantages. In particular, it can
fit multiple factor- and subject- as well as subject-by-factor-specific functional effects, which is
not possible in alternative approaches for function-on-function regression such as implemented
in the pffr function in the R package refund (Huang et al., 2015). Furthermore, the algorithm
allows for different loss functions and thus covers models beyond mean regression (Kneib, 2013),
e.g. median, robust or quantile regression. It can deal with high dimensional data sets that often
go hand in hand with multisensor bioelectrical signal data collections, as well as settings with
more covariates than observations. Our approach can find multimodal effect surfaces and band
effects, thereby covering special cases of time series approaches. In addition, we derive options
to reduce computation time as well as memory storage considerably and address the question
of uncertainty in complex boosted models.

The remainder of this paper describes the model and method proposed in Section 2, presents
the gradient boosting algorithm in Section 3 and covers a simulation study in Section 4. We
apply boosted historical models to the emotion components data in Section 5 and conclude with
a discussion in Section 6. Our proposed methods are implemented in the R package FDboost,
which is an extension of the model-based boosting package mboost (Hothorn et al., 2016). The
R code for our simulation, as well as code and data for our application, is provided in an on-line
repository (https://github.com/davidruegamer/BoostingSignalSynchro).

2. Functional response models and historical effects

After outlining the functional historical model in Section 2.1, we extend the model of Brockhaus
et al. (2017) to models with functional historical terms interacting with categorical covariates
and to random functional historical effects in Section 2.2.

2.1. Functional historical models
We focus on additive functional regression models of the form (Brockhaus et al., 2015, 2017)

ξ{Y.t/|X =x}=h.x/.t/=
J∑

j=1
hj.x/.t/, .2/

where ξ is a transformation function for the conditional distribution of the functional response
Y.t/, t ∈T . In our application ξ is equal to the conditional expectation E, although it could also
be for example the (pointwise) median or a quantile. The covariate set x comprises functional
observations x1.·/, : : : , xpx.·/ and scalar covariates z1, : : : , zpz with p := px + pz. hj.x/.t/ are
partial effects, which can depend on scalar as well as on functional covariates. In particular, this
general model class includes models with one or more historical effects

hj.x/.t/=
∫ u.t/

l.t/

xkj .s/βj.s, t/ds, .3/

kj ∈{1, : : : , px}, which can have general integration limits l.t/ and u.t/, for example, defined by
l.t/=T1 and u.t/= t, l.t/= t − δ and u.t/= t or partial histories l.t/= t − δl and u.t/= t − δu, t >

δl > δu > 0 as in Harezlak et al. (2007). Functional historical effects are particularly suited to
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settings where both response Y.t/ and covariates Xkj .s/ are observed over the same time interval,
s, t ∈T .

In practice, xkj .·/ is observed on a grid s1, : : : , sR and the integral as well as the smooth
coefficient surface βj.s, t/ in equation (3) must be approximated. We use numerical integration
and a tensor product spline basis expansion respectively. For k=1, : : : , Kx, l=1, : : : , Kt define the
basis functions Φs

j,k.s/ and Φt
j,l.t/ for the s- and the t-direction of the coefficient surface βj.s, t/

respectively. Let θj,k,l be the corresponding basis coefficients and Δ.sr/ numerical integration
weights for the observed time points sr. Then, the historical effect can be represented by (Scheipl
et al., 2015; Brockhaus et al., 2017)

∫ u.t/

l.t/

xkj .s/βj.s, t/ds≈Bj.xkj , t/θj .4/

with θj = .θj,1,1, : : : , θj,Kx,Kt /
T, Bj.xkj , t/ = Bx

j .xkj , t/ ⊗ Bt
j.t/ by using the Kronecker product

‘⊗’ and by defining

Bx
j .xkj , t/=

(
R∑

r=1
Δ.sr/xkj .sr, t/Φs

j,1.sr/ . . .
R∑

r=1
Δ.sr/xkj .sr, t/Φs

j,Kx
.sr/

)

as well as Bt
j.t/= .Φt

j,1.t/: : :Φt
j,Kt

.t//. Let I.·/ be the indicator function. Following Scheipl et al.
(2015), for n observed curves xkj ,1.·/, : : : , xkj ,n.·/ at grid points sr, xkj .sr, t/=xkj .sr/I{l.t/� sr �
u.t/} and response observations yi.ti,d/ at potentially curve-specific time points ti,d ∈ T , i =
1, : : : , n, d =1, : : : , Di, N =Σn

i=1Di, the design matrix of a historical effect can be summarized
by

Bj :=Bx
j �Bt

j = .Bx
j ⊗1T

Kt
/Å.1T

Kx
⊗Bt

j/, .5/

where Bx
j ∈ RN×Kx with rows Bx

j .xkj ,i, ti,d/, Bt
j ∈ RN×Kt with rows Bt

j.ti,d/, ‘�’ is the rowwise
tensor product, ‘Å’ the Hadamard product (elementwise matrix multiplication) and 1T

a a row
vector of length a. In the on-line supplemental material, we provide a simple example of how to
interpret estimated coefficient surfaces of historical effects, as we believe that this is an important
part in using historical models.

Regularization of the coefficient vector θj in expression (4) is achieved by an anisotropic
penalty. Using the marginal penalties Px

j ∈RKx×Kx and Pt
j ∈RKt×Kt of the historical effect basis

in the s- and t-direction respectively, a quadratic penalty term can be constructed as

θT
j Pjθj =θT

j {λx
j.Px

j ⊗ IKt /+λt
j.IKx ⊗Pt

j/}θj =θT
j .λx

jPx
j ⊕λt

jPt
j/θj, .6/

where λx
j ,λt

j �0 are smoothing parameters and ‘⊕’ is the Kronecker sum (Wood, 2006; Scheipl
et al., 2015). More details on the penalization and potential extensions can be found in the next
subsection. Similarly, penalized basis expansions like expressions (4)–(6) can also be constructed
for a multitude of other effects of scalar and/or functional covariates, including all effects of
scalar covariates in our proposed model for the emotion components data (Scheipl et al., 2015;
Brockhaus et al., 2015).

In addition to ordinary historical effects, this approach can incorporate a time varying inter-
cept hj.x/.t/=α.t/ as well as time varying categorical or random effects

hj.x/.t/=γj,e.t/I.zqj = e/, .7/

where qj ∈ {1, : : : , pz}, zqj is a categorical covariate with levels e ∈ {1, : : : , η} and γj,e.t/ the
corresponding time varying coefficient. The smoothness of the coefficient functions α.t/ and
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γj,e.t/ is obtained with a spline basis representation such as expression (4) and a Kronecker
sum penalty such as equation (6) with Px

j set to zero for categorical effects and Px
j = IKz for

(independent) functional random effects (see Brockhaus et al. (2015) for more details). In par-
ticular, for functional random effects, the quadratic penalty in equation (6) is equivalent to
a normal distribution assumption on θj with zero mean and covariance proportional to the
generalized inverse of Pj (Brumback et al., 1999), inducing a Gaussian process assumption for
the functional random effects. Furthermore, we consider interaction effects of zqj and a second
categorical covariate zq′

j
with levels f =1, : : : ,ϕ of the form

hj.x/.t/=ρj,e,f .t/I.zqj = e/I.zq′
j
=f/: .8/

Identifiability constraints for time varying categorical effects such as equations (7) and (8) are
discussed in the following subsection.

2.2. Factor-specific historical effects
In light of our application, we newly introduce factor-specific historical effects for functional
regression models. Factor-specific historical effects can be useful when historical effects are
assumed to vary, e.g. between different study settings or subjects. First, consider a categorical
covariate zqj with levels e=1, 2, : : : , η and a functional covariate xkj .s/, which is modelled via a
historical effect. A simple additive model of the form (2) would then include a main historical
effect (3) and a factor-specific historical effect

hj.x/.t/= I.zqj = e/

∫ u.t/

l.t/

xkj .s/βj,e.s, t/ds: .9/

Given a total of N observations and the covariate vector zqj = ..zqj ,1 ⊗ 1D1/T, : : : , .zqj ,n ⊗
1Dn/T/T the factor-specific historical effect is constructed similarly to equation (5). The design
matrix is extended to

Bj =Bz
j.zqj /�Bx

j �Bt
j = B̃x

j �Bt
j, .10/

where Bz
j.zqj / is a design matrix for the factor variable depending on the constraints on βj,e.s, t/

(see below) and B̃x
j = Bz

j.zqj / � Bx
j . An important special case is given for the unconstrained

estimation of βj,e when the observations are sorted by the factor levels e=1, : : : , η. This yields a
block diagonal incidence matrix for Bz

j.zqj / = diag.1κ1 , 1κ2 , : : : , 1κη / ∈ RN×η and an N × ηKx

block diagonal matrix for B̃x
j = diag.Bx

j,1, : : : , Bx
j,η/. Here, Bx

j,e ∈ Rκe×Kx contains the rows
Σe−1

k=1κk + 1, : : : , Σe
k=1κk of Bx

j corresponding to all rows with factor level e and κe being the
total number of observation points for factor level e. This special structure can be exploited for
a more efficient computational implementation (see Section 3.2 for more details).

When the historical effect of xkj is not only factor or subject specific, but varies for a categorical
covariate zqj with levels e=1, 2, : : : , η as well as for subjects zq′

j
with levels f =1, 2, : : : ,ϕ, we let

hj.x/.t/= I.zqj = e/I.zq′
j
=f/

∫ u.t/

l.t/

xkj .s/βj,e,f .s, t/ds: .11/

The design matrix for the random factor-specific historical effect or doubly varying historical
effect (11) is then defined by extending Bz

j.zqj / in equation (10) to

Bz
j.zqj , zq′

j
/=Bz

j.zqj /�Bz
j.zq′

j
/:
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For these factor-specific historical effects (9) and (11), we must carefully consider their identifi-
ability and regularization.

2.2.1. Identifiability constraints
To ensure that the main historical effect is separable from the factor-specific historical effects
and vice versa, we impose the following constraint when both are included in the model:

η∑
e=1

ψeβj,e.s, t/=0 ∀ t ∈T , s∈ [l.t/, u.t/], .12/

where ψe are weights for each level e=1, : : : , η of the factor variable. Specifically, for observed
curves i = 1, : : : , n, we use ψe = Σn

i=1I.zqj ,i = e/, which coincides with equal weighting in the
case of balanced factor levels. This also enables βj.s, t/ in equation (9) to be interpretable as
average historical effects over the η subgroups. Constraint (12) ensures identifiability because
the factor-specific historical effects are centred near the surface of the main effect for models
including both equation (3) and equation (9).

For the doubly varying historical effects to be defined as deviations from both factor-specific
historical effects, we impose the constraints

η∑
e=1

ψe,f βj,e,f .s, t/=0 ∀t ∈T , s∈ [l.t/, u.t/], f ∈{1, : : : ,ϕ} .13/

and
ϕ∑

f=1
ψe,f βj,e,f .s, t/=0 ∀t ∈T , s∈ [l.t/, u.t/], e∈{1, : : : , η}, .14/

for which we use the weights ψe,f =Σn
i=1I.zqj ,i = e, zq′

j ,i =f/.
To ensure identifiability and interpretability of the whole model, further constraints must be

placed on effects other than the historical effects, i.e. when including time varying effects in the
model. As in Scheipl et al. (2015) and Brockhaus et al. (2015), all time varying effects in our
models are specified as deviations from the smooth interceptα.t/. This ensures the identifiability
of each effect and enables a meaningful interpretation (as deviation from the sample mean α.t/).
Consider the factor variable zqj and an effect as in equation (7). We then impose Σ

η
e=1ψe γj,e.t/=

0 ∀ t ∈T . A similar constraint is enforced for interaction effects (8) with coefficients ρj,e,f .t/:
Σ
η
e=1ψe,f ρj,e,f .t/=0 ∀ t ∈T , f ∈{1, : : : ,ϕ} and Σ

ϕ
f=1ψe,f ρj,e,f .t/=0 ∀ t ∈T , e∈{1, : : : , η}, i.e.

each interaction effect must be centred near its corresponding main effects. For details on the
implementation, see section B in the on-line supplementary material.

2.2.2. Parameterization
The separation of the factor-specific historical effect and the corresponding main historical effect
together with constraint (12) is particularly useful in the light of model selection. However, an
alternative model formulation that does not separate main and factor-specific historical effects
may sometimes be beneficial for the interpretation of estimated effects and the simplicity of
the model definition. A historical model with a main and factor-specific historical effects can
be rewritten as

∫ u.t/
l.t/ xkj .s/{βj.s, t/+ I.zqj = e/βj,e.s, t/}ds, combining main and factor-specific

historical effects by estimating the sum β̃j,e.s, t/ := .βj.s, t/ + I.zqj = e/βj,e.s, t// and thereby
making constraint (12) obsolete.
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2.2.3. Regularization
For the regularization of a factor-specific historical effect, the penalty depends on whether we
want to regularize over the factor levels, e.g. for ‘random historical effects’, or not, e.g. for study
settings. In general, the quadratic penalty matrix in expression (6) is extended to an anisotropic
penalty

Pj = .λz
jPz

j ⊕ .λx
jPx

j ⊕λt
jPt

j//, .15/

where Pz
j is the Kz × Kz marginal penalty matrix over the factor levels and λx

j , λt
j and λz

j are
the smoothing parameters controlling the regularization of the historical effect part in the s-
as well as t-direction and of the factor variable part respectively. Usually, Kz is the number of
factor levels (minus one, depending on the constraint on the effect) and Pz

j is a simple ridge
penalty Pz

j = IKz . Whereas the factor-specific historical effect is therefore shrunk towards the
main historical effect in a model with both main and factor-specific historical effect, the penalty
in the alternative parameterization without constraint on the factor-specific historical effect
enforces shrinkage of βj,e towards 0. In practice, the s- and t-directions of the historical effect
are typically measured on the same scale (i.e. time); thus we introduce an isotropic penalty for
the historical effect part by defining λt

j ≡λx
j =:λh

j and Px
j ⊕ Pt

j =: Ph
j . For the doubly varying

historical effect (11), the term λz
jPz

j in equation (15) is replaced by .λz
jPz

j ⊕λz′
j Pz′

j /. If one or
both factors are not penalized, the corresponding penalty matrices are set to 0.

3. Estimation: componentwise gradient boosting

The estimation via componentwise gradient boosting (Bühlmann and Hothorn, 2007; Brock-
haus et al., 2015) has several advantages. The main advantage of using componentwise boosting
over conventional estimation procedures lies in the nature of componentwise fitting, as the feasi-
bility of componentwise fitting procedures depends on the most complex individual component
only. Adding partial effects step by step, boosting provides implicit variable selection and enables
model estimation in settings with J>n or p>n.

3.1. Componentwise gradient boosting
The componentwise gradient boosting algorithm for a function-on-function regression model
was introduced by Brockhaus et al. (2015) and is based on the functional gradient descent
(FGD) algorithm (see Bühlmann and Hothorn (2007) and Hothorn et al. (2016)).

3.1.1. Loss function and empirical risk
In general, the componentwise FGD algorithm aims to minimize the expected loss
E.Y ,X/[ρ{.Y , X/, h}] for response Y and covariates X with respect to the additive predictor h

for a suitable loss function ρ. The loss is determined by the underlying regression problem,
e.g. the L2-loss for mean regression. To adapt the principle of FGD to functional observa-
tions, the loss function l for a whole trajectory is defined as l{.Y , X/, h}= ∫

T ρ{.Y , X/, h}.t/dt,
i.e. the integrated pointwise loss ρ over the domain T . For potentially functional observations
.yi, xi/, i=1, : : : , n, the objective function, the risk, is then given by E.Y ,X/[l{.Y , X/, h}] and the
FGD algorithm for functional regression models aims at minimizing the empirical risk

n−1
n∑

i=1

Di∑
d=1

wiΥ.ti,d/ρ{.yi, xi/, h}.ti,d/,
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where sampling weights wi are used to select or deselect all observations of one functional
trajectory in resampling approaches and Υ.t/ are weights of a numerical integration scheme
used to approximate the integrated loss l (Brockhaus et al., 2017).

3.1.2. Routine and base learners
In each step, the FGD algorithm evaluates a set of base learners (in this case corresponding to
penalized regression for the partial effects hj), chooses the base learner that best fits the negative
gradient at the current estimate −@E.Y ,X/[l{.Y , X/, h}]=@h and updates the fit in the light of this
choice. As in representation (4), we assume that every base learner can be represented as a linear
effect in θj ∈RKj , i.e. hj.x/.t/=Bj.xkj , t/θj, with suitable penalty, e.g. expression (6) or (15).

3.1.3. Algorithm
The full algorithm is given by the following five steps.

Step 1: set m=0; initialize the estimates, e.g. θ̂
[m]
j ≡0 for each base learner j ∈{1, : : : , J}, and

define ĥ
[m]

.x/.t/ =ΣJ
j=1Bj.x, t/θ̂

[m]
j ; choose a step length ν ∈ .0, 1] and a maximal stopping

iteration mstop.
Step 2: compute the negative gradient −@ρ{.y, x/, h}=@h and define the so-called pseudoresid-
uals

ui.ti,d/ :=− @

@h
ρ{.yi, xi/, h}.ti,d/

∣∣∣
h=ĥ

[m] :

Step 3: fit the base learners j =1, : : : , J to the pseudoresiduals

ϑ̂j =arg min
ϑ∈R

Kj

n∑
i=1

Di∑
d=1

wiΥ.ti,d/{ui.ti,d/−Bj.xkj ,i, ti,d/ϑ}2 +ϑTPjϑ

and find the best-fitting jÅth base learner such that

jÅ =arg min
j=1,:::,J

n∑
i=1

Di∑
d=1

wiΥ.ti,d/{ui.ti,d/−Bj.xkj ,i, ti,d/ϑ̂j}2:

Step 4: set θ̂
[m+1]
jÅ = θ̂

[m]
jÅ +νϑ̂jÅ and θ̂

[m+1]
j = θ̂

[m]
j ∀j 
= jÅ and update ĥ

[m]
accordingly.

Step 5: set m=m+1; as long as m�mstop, repeat steps 2–5.

The final model with corresponding parameters θ̂
mÅ

j , j =1, : : : , J , mÅ ∈{1, : : : , mstop}, is cho-
sen from the set of mstop estimated models via cross-validation or other resampling methods on
the level of curves (Brockhaus et al., 2015) to prevent overfitting. This so-called early stopping
of the boosting procedure introduces regularization on coefficient estimates (Zhang and Yu,
2005).

3.2. Unbiased base learner selection and smoothing parameter computation
It is important to set equal degrees of freedom dfj for every base learner j for a fair selection of
base learners (Hofner et al., 2011). A regularization over factor levels for categorical covariates
with a moderate or large number of factor levels is thus often necessary in practice as dfj

would otherwise become very large. The smoothing parameters λj, which have a one-to-one
correspondence with dfj, must therefore be computed and fixed appropriately beforehand for
j =1, : : : , J . Model complexity and smoothness are then controlled for fixed ν by the stopping
iteration, which is chosen by resampling.
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The FDboost package, which is based on the mboost package, uses the Demmler–Reinsch
orthogonalization (see, for example, Ruppert et al. (2003)), which avoids repeated matrix inver-
sions to find a suitable λj efficiently. Nonetheless, computing the Demmler–Reinsch orthogo-
nalization may be very expensive, particularly for factor- and subject-specific historical effects,
because of a singular value decomposition, and can take up to 99% of total computing time.
To tackle this problem, on the one hand, we recommend reducing the number of knots for
(doubly) varying historical effects to a small number (e.g. 4), if this is not expected to lead to
unwanted oversmoothing. On the other hand, we exploit the model structure for factor-specific
historical effects and derive a presentation that allows for a blockwise singular value decompo-
sition with computation time of the order of an ordinary historical effect. This reduces overall
computation time dramatically (see section C in the on-line supplementary material for more
details). For the application in Section 5, for example, the most complex model with partially
aggregated data could be fitted in under 16 min with less than 45 Gbytes of random-access
memory, whereas the brute force method (fitting the model with 10 knots without exploita-
tion of the model structure) failed, exceeding the memory limit of 1 Tbyte of random-access
memory after running for more than 10 days. Although the first approach can be a good (ap-
proximate) ad hoc solution, the second approach is exact and thus generally recommended if
feasible.

3.3. Quantification of uncertainty
Because of the large fluctuation in bioelectrical signals, a very important aspect in the analysis
of such signals is the assessment and quantification of uncertainty. For the detection of synchro-
nization with a large number of potentially relevant time intervals of both signals, ‘significant’
effects for specific time point combinations are of particular interest. Apart from rank-based
p-values provided in the context of likelihood-based boosting (Binder et al., 2009) using permu-
tations of the response, no general inferential framework in the classical statistical sense exists for
boosting methods. An alternative approach is stability selection (Meinshausen and Bühlmann,
2010), which evaluates the importance of explanatory variables by looking at the stability of term
selection under subsampling and has already been adapted for functional regression boosting
(see, for example, Brockhaus et al. (2015)). In the emotion components application, however,
the applied research question defines the chosen covariates and the statistical analysis needs
to address the uncertainty of estimated coefficient surfaces. We therefore use a non-parametric
curve level bootstrap to assess the variability of estimated effects. Because of the shrinkage effect
of boosting, the corresponding bootstrap intervals are useful for quantification or variability
of the regularized coefficients but are on average not centred at the true coefficient surface,
unlike unbiased estimators. In consequence, the distribution of bootstrap estimates does not
provide valid confidence intervals. In the following section, we investigate whether, despite the
shrinkage effect, variability bands can be used at least to assess pointwise difference from zero.
As simulation results suggest, these variability bands find most of the truly non-zero surface
regions in all of our simulation settings.

4. Simulations

We provide results for the estimation performance of simple historical effects (Section 4.1),
factor-specific historical effects (Section 4.2) and for the uncertainty quantification via the boot-
strap (Section 4.3). In Section 4.4, we briefly address results on different parameterizations and
boosting step lengths.
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Similarly to our application, we use historical effects with integration limits l.t/ = T1 = 0
and u.t/ = t − δ with δ= 0:025. We compare the estimated surface with the underlying true
function and, wherever possible, with an estimate by using a functional additive mixed model as
implemented in the pffr function in R package refund (Scheipl et al., 2015). Apart from visual
comparisons, we estimate the relative integrated mean-squared error reliMSE

∫ ∫
{β̂.s, t/ −

β.s, t/}2ds dt {
∫ ∫

β.s, t/2ds dt}−1 by its discrete approximation to compare the estimates of our
method, referred to as FDboost.

Simulation settings were generally based on n∈{80, 160, 320, 640} observed curves with Di ≡
D∈{20, 40, 60} observed grid points per trajectory and a signal-to-noise ratio SNR∈{0:1, 1, 10}.
For the following subsections the combinations were customized or restricted accordingly, in
particular for simulations with very time-consuming bootstrap calculations. Whereas the num-
ber of curves in our application n= 184 is within the range of simulated settings, we use fewer
observations per trajectory in our simulations than are available in our application (D=384) to
reduce computational time. Increasing sampling density D from 60 to 180 or 380 in additional
simulations with SNR ∈{0:01, 0:1, 1} and n= 160 almost always results in an improvement of
estimation performance. The average estimated SNR in our application is 0:42, which, because
of the shrinkage effect, might potentially be underestimating the true SNR. We also present
results of another simulation for n∈{24, 48}, D∈{190, 380} and SNR∈{0:01, 0:1, 1} in the on-
line appendix. The results suggest that, even for a small number of observations, the estimation
performance is satisfactory when the density of sampling is sufficiently large.

The results of our simulation studies are briefly summarized in the following sections. See the
on-line supplementary material for a full presentation of results.

4.1. Estimation of historical effects
Though estimation performance for simple historical effects has already been examined in
Brockhaus et al. (2017), we provide additional simulation results for complex multimodal effect
surfaces. The simulation settings are motivated by our application, in which several time win-
dows may show a relationship between the two biosignals. We thus simulate data sets where the
effect surface is multimodal for both the s-direction and the t-direction. Samples were generated
from the model

Yi.t/=α.t/+
∫ t−δ

0
xi.s/β.s, t/ds+ "i.t/, i=1, : : : , n, .16/

for which the functional covariate xi.s/ is simulated as a sum of ~ ∈ {5, 7, 9, 11} natural cubic
B-splines with independent random coefficients from a standard normal distribution. The true
underlying coefficient surface is given by β.s, t/ = sin.10 |s − t|/cos.10t/I.s� t − δ/ with I.s�
t − δ/ equal to 1 if s� t − δ, and 0 otherwise. The independent Gaussian error process ".t/ with
mean 0 has constant variance σ2 defined via SNR =√

var.Ξ/=σ with var.Ξ/ being the empirical
variance of the linear predictor.

In addition, we simulate effect surfaces with a band structure. This is done by using the data-
generating process in expression (16) and restricting the influence of xi to values s, for which s �
t −δ, s � t −0:1 and t � 0:75, s, t ∈ [0, 1]. With 40 observed time points the restriction s� t −0:1
corresponds to an auto-regressive model with time varying effects and a lag of 0:1=.1=40/= 4
time points. With this simulation, we want to investigate whether our approach can adequately
recover the effect of xi restricted to a certain number of lags without having to predefine lags. This
would be an advantage over time series models which must specify the assumed lag structure a
priori and would enable a corresponding dimension reduction without restricting the analysis.
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4.1.1. Results
For combinations in which n and SNR are not very small at the same time, our gradient boosting
approach works well and recovers the true underlying functional relationship. These findings
are depicted in Fig. 2. As can be seen in Figs 2(a)–2(c), both pffr and FDboost can recover
the true underlying effect well (Figs 2(d)–2(f)) with FDboost having an advantage for low SNR
and low n (Figs 2(a)–2(c)). For higher SNR, where FDboost shows less of an improvement
than pffr compared with the low SNR setting, boosting estimates may potentially be further
improved by using a higher number of iterations (limited to 1500 for this subsection). In the
on-line supplementary material, we additionally provide estimates with average reliMSE for a
smaller number of observations, visualizing the deterioration in estimation performance with
decreasing sample size.

Similarly to the multimodal example, FDboost outperforms pffr (Figs 2(g)–2(l)) for band
surfaces in settings with a lower SNR, whereas for SNR = 10 pffr shows partly better per-
formances. As exemplarily shown in Figs 2(j)–2(l), FDboost can often correctly detect the
non-zero regions, whereas the typical estimated surface of pffr exhibits larger parts with false
positive estimates.

4.2. Estimation performance for factor-specific historical effects
For random historical effects, we adapt the ideas of Scheipl and Greven (2016) and Brockhaus
et al. (2017), Web appendix C, and generate random coefficient functions βf .s, t/ as linear com-
binations of cubic P-splines (Eilers and Marx, 1996) for nsubject =10 factor levels (subjects). The
coefficient functions βf .s, t/, f =1, : : : ,ϕ=10, are then centred to comply with constraint (12).
For factor-specific historical effects, we specify multiples ι.e/ of one fixed coefficient function
�.s, t/= .s=

√
2/cos.π

√
t/ with ι.e/ being centred coefficients drawn uniformly between −5 and

5 for each factor level e=1, : : : , η=4, allowing for a more systematic examination of estimation
accuracy in specific regions of the coefficient function. An additional doubly varying effect is
simulated by multiplying�.s, t/ with centred random coefficients drawn from a standard normal
distribution.

In a first series of settings (correctly specified case), the data are generated on the basis of the
fitted model, including a main historical effect and

(a) a time varying categorical effect as well as a factor-specific historical effect,
(b) a time varying random effect as well as a random historical effect,
(c) combining (a) and (b) or
(d) combining (c) with a doubly varying historical effect (full model).

In a second series of settings, the model is misspecified by fitting a single historical effect, whereas
the data are simulated by using a main and

(e) a factor-specific historical effect or
(f) a random historical effect or alternatively
(g) by generating the data from the full model whereas the model is fitted without the doubly

varying effect.

4.2.1. Results
Whereas the main historical effect for the settings (a)–(d) shows a similar logarithmic reliMSE
as in previous simulation settings in Section 4.1, the historical effects varying with a categorical
covariate show more diverse performances and larger deviations. The factor-specific and random
historical effect estimation mostly capture the main features of the true underlying surface but
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are not estimated as reliably as the main historical effect. Estimates for the doubly varying
historical effect are often shrunk almost to 0 because of an insufficient number of observations.

In settings (e) or (f) where the true underlying model includes a random or factor-specific his-
torical effect, estimation performance for the main historical effect is equally good when fitting
the correct or the misspecified model. For setting (g) the performance is practically the same
for the estimation of the main historical effect. The difference in estimation performance varies
more strongly for the factor-specific as well as random historical effect and, in particular, indi-
cates a better performance of the correctly specified model for high SNR and larger n. The fact
that estimation performance is not affected more strongly is likely to be due to the orthogonality
of the omitted effect to the effects that are included in the model; see equations (12)–(14).

4.3. Quantification of uncertainty
In what follows, we examine the ability of 95% bootstrap intervals to identify correctly (non-)
zero coefficients in the manner of conventional confidence intervals by looking at the inclusion of
zero. On the basis of 100 non-parametric bootstrap iterations, we calculate the false negative rate
FNR and false positive rate FPR over the surface for each of 100 simulated data sets. In addition,
the frequencies of false negative, FFN , and false positive estimates, FFP, for each surface point
across all data sets are obtained. We present results for a model including only one main historical
effect in addition to a model with main and factor-specific historical effects, for both of which true
coefficient surfaces are partly equal to zero. The true coefficient surface for the main historical
effect is defined as β.s, t/=Q0:001{sin.|t − s|+ 10/cos.5s/} and surfaces for factor-specific his-
torical effects are simulated as multiples of�.s, t/=Q0:001{φ0:9,0:2.s/φ0:9,0:2.t/}, where Qa.x/=
xI.x� a/ and φμ,σ.·/ is the normal density function with expectation μ and variance σ2. We
additionally investigate the performance of our uncertainty quantification for a model including
main and random historical effects, which are simulated as described in Section 4.2.

4.3.1. Results
Fig. 3 depicts the results for a simple historical effect simulation with SNR = 1, n = 160 and
D=40. Both FNR and FPR are below 0:05 in all except a few cases. When decreasing SNR to
0:1, the bootstrap approach yields smaller FPR at the cost of a larger FNR. Considering FFP
and FFN, 8% of all non-zero surface points reveal an FFN of above 0:05 and 30% of all zero
surface points reveal an FFP of above 0:05. Plotting FFN against the coefficient size indicates
that FFNs larger than 0:05 occur only for coefficient values of below 0:2 (below 0.6 if SNR=0:1).
Fig. 3(d) reveals a strong relationship between FFP and a smaller distance to non-zero points
on the surface, with FFP mostly below about 0:1 for points not next to a non-zero coefficient.

Though the performance depends on the specific surface, the bootstrap approach finds the
majority of non-zero coefficient points in simulations for a simple historical model and tends to
have an FFN of almost 0. A large FFP occurs only for surface points that are directly adjacent
to true non-zero coefficient points.

For a more complex model also including a factor-specific historical effect, the bootstrap
approach works well regarding the detection of the truly non-zero surface area. However, it
reveals considerably higher FNR as well as higher FFN particularly for smaller coefficients of
both effect surfaces. In the case of correlated observations, e.g. given by repeated measurements
per subject, we subsample on the level of independent observation units (subjects). In the simu-
lation with a main and a random historical effect, higher frequencies of false positive estimates
for the main historical effect occur, which, however, are again located around the true non-zero
coefficient area.
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In summary, simulation results suggest that the bootstrap approach does not comply with
the chosen confidence level in the manner of conventional confidence intervals but proves to
find most of the truly non-zero surface regions for all simulation settings. Large FFN and FFP
are mainly revealed at the edges of non-zero coefficient areas, such that an interpretation of
detected non-zero areas of the surface are still possible as long as exact pixel locations of edges
are not taken at face value.

4.4. Further simulations
In addition to the simulations presented, we investigate the performance of boosting for different
parameterizations as introduced in Section 2.2 and compare boosting estimates with step length
ν=0:1 and ν=1. The gradient boosting algorithm is defined for step length ν∈ .0, 1]. In general,
it is recommended to set the step length ‘sufficiently small’ (Bühlmann and Hothorn, 2007) for
predictive accuracy, e.g. in the range of 0:01 and 0:1. A larger step length, and in particular ν=1,
requires much fewer iteration steps and therefore speeds up the model fit but may result in a
deterioration of prediction performance due to overfitting. Since we are rather interested in the
estimation performance of model components, we investigate whether or how much overfitting
is a problem in our particular setting.

4.4.1. Results
For the two different parameterizations, performances differ on a relatively small scale, sug-
gesting that the choice of parameterization can be based on the given research question. In
the comparison of step lengths, there appears to be no clear best choice in all settings. Thus
estimation with ν= 1 might be a reasonable alternative to smaller step lengths, requiring less
computing time and memory consumption due to a smaller number of necessary iterations,
especially in complex models applied to large data sets.

5. Application to the detection of synchronization in bioelectrical signals

5.1. Data and background
Gentsch et al. (2014) conducted a study in which 24 participants played a computerized gambling
game with real monetary outcome. During the gambling rounds, Gentsch et al. (2014) modified
three factors (so-called appraisals) related to Scherer’s component process model (Scherer, 2009)
and simultaneously recorded brain activity with EEG and facial muscle activity with EMG. In
componential emotion theories such as the component process model an emotion episode is
assumed to emerge through the synchronization of the emotion components (e.g. appraisals,
expressions or feelings). To investigate synchronization processes, Gentsch et al. (2014) opera-
tionalized three dichotomous appraisals, which are included as dummy variables in the present
data set:

(a) goal conduciveness, which was related to the monetary outcome at the end of each gambling
round (gain coded as G=1 or loss with G=0),

(b) power, which allowed players to change the final outcome if the setting was high power,
hp, coded as P =1, otherwise referred to as low power, lp, with P =0, and

(c) control.

The control setting was manipulated in blocks to change the participant’s subjective feeling
about her ability to cope with the situation. Before a block with several gambling rounds would
start, participants were told whether they were going to have high or low power for the majority
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of upcoming games, which corresponds to high or low control settings (respectively hc coded as
C =1 and lc with C =0). In rounds with high control, for example, the player was told to have
high power frequently, thereby trying to induce a subjective feeling of control over the situation,
and vice versa for low control. Each participant played over 100 gambling rounds for each of
the eight appraisal settings, which we also refer to as trials.

Before performing statistical analyses, EEG as well as EMG signals are preprocessed (see the
on-line supplementary material for further details). After removing the data of one participant
because of considerably deviating observations, which imply a defective or displaced sensor,
several hundred gambling rounds each with 384 equally spaced EEG and EMG measurements
within around 1500 ms are available for each of the 23 participants. Analogously to previous
studies on synchronization and, in particular, the study of Gentsch et al. (2014), we use aggre-
gated observations for each participant and game condition by averaging the corresponding
trials for each time point. On the one hand, this results in less computing time and the fea-
sibility to quantify uncertainty in effect estimates via the bootstrap; on the other hand, this
is motivated by investigations on event-related potentials. Event-related potential analysis is a
commonly practised method to infer from neuronal activity. Neuronal activity is thought to be
time locked in delay to a certain stimulus, wherefore aggregating over a large number of trials
is used to cancel out random brain activity and strengthens those parts of the signal, which are
commonly observed for all trials (see, for example, Pfurtscheller and da Silva (1999), Handy
(2005) and Rousselet et al. (2008)).

Instead of combining the (spatially correlated) EEG signals to maximize the explanatory
power of the analysis, the question of interest rather lies in the dominant influence of certain
selected EEG signals. We fit a model for each EEG signal of interest (Fz-, FCz-, POz- and
Pz-electrode) to determine the direct effect on the facial muscle activity. To demonstrate the
ability of our approach to handle high-dimensional data sets, we also provide sample code in
the repository for fitting a model, in which all 64 EEG signals are potentially included with
historical, factor-specific and random historical effects. In the on-line supplementary material,
we additionally provide a visualization for the selection frequency of this model after 2000
iterations.

5.2. Model
It is predicted that facial expression is largely driven by efferent brain signals reflecting appraisal
processes. We use the following maximal model:

Yil.t/=
13∑

j=1
hj.xil/.t/+ "il.t/, .17/

for l=1, : : : , nsetting =8, i=1, : : : , nsubject =23, t ∈T = [0 ms, 1500 ms] and Di ≡D=384 observed
time points in T . In model (17), Yil.t/ represents a chosen EMG signal for subject i, game
condition l and time point t in the game. hj.xil/.t/, or, for short, hj.t/ are 13 partial effects of
covariates xil including a time varying intercept, game condition effects (C, P , G) and EEG
signal effects depending on the selected electrode signal ωil. Table 1 provides the details on each
part of the linear predictor. For the integration limits, we use l.t/ = 0 and a lead parameter
u.t/= t − δ= t −12 ms, which is meaningful because of restrictions given by the neuroanatomy
of humans and is just below the time lag between EMG and EEG of 14:3 ms (Mima and
Hallett, 1999). To reflect subject-specific variation, we include time varying random intercepts
and subject-specific historical EEG effects in the model.

Though game condition-specific historical effects may be subject specific, simulations in the
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Table 1. Partial effects in the EMG–EEG model

Partial effect hj(xil)(t) Effect (of)

h1.t/=α.t/ Intercept
h2.t/=b0,i.t/ Subject-specific intercepts
h3.t/=γ1.t/Cil Game condition control
h4.t/=γ2.t/Pil Game condition power
h5.t/=γ3.t/Gil Game condition goal conduciveness
h6.t/=γ4.t/CilPil Interaction of control and power
h7.t/=γ5.t/CilGil Interaction of control and goal conduciveness
h8.t/=γ6.t/PilGil Interaction of power and goal conduciveness
h9.t/=γ7.t/CilPilGil Interaction of all game conditions
h10.t/=∫ t−12

0 ωil.s/β1.s, t/ds EEG signal
h11.t/=∫ t−12

0 ωil.s/β2,l.s, t/ds EEG signal (game condition specific)
h12.t/=∫ t−12

0 ωil.s/b1,i.s, t/ds EEG signal (subject specific)
h13.t/=∫ t−12

0 ωil.s/b2,i,l.s, t/ds EEG signal (subject and game condition specific)

previous section suggest that, even if the true model corresponds to the full model, estimation
performance is only slightly affected when using a misspecified model without a random factor-
specific historical effect h13.t/. As a sensitivity analysis, we also fit the full model including h13.t/

on a finer aggregation of the data, for which we average over fewer trials per subject and thus
obtain repeated measurements per subject–game condition combination.

5.3. Results
For the historical effects, the estimated coefficient surfaces are depicted in Fig. 4 for the EEG
covariate in the form of the electrode Fz (in particular measuring intentional and motivational
activities; Teplan (2002)) and the EMG response signal of the frontalis muscle (which raises
the eyebrows). The lower panel in each part of Fig. 4 depicts the average EEG signal per game
condition, demeaned per time point by the overall mean and with negative or positive values
highlighted in blue or red respectively. Two further panels (left and centre of each part) for the
EMG signal show the overall mean, the prediction with and without the historical effects (left)
as well as the difference between these predictions (centre). For predictions, the average EEG
signal per game condition was used. Additionally, corresponding bootstrap results for uncer-
tainty assessment are incorporated in the figures by different degrees of transparency related
to different pointwise bootstrap intervals BIα= [qα=2, q1−α=2], qa as α%-bootstrap quantile and
α∈{1, 5, 10}. Surface points are coloured with the corresponding coefficient value and are less
transparent if the specified bootstrap interval does not contain the value zero.

Fig. 4 shows the sum of the estimated coefficient surfaces of main and game condition-specific
historical effects for the four high control settings (the other four surfaces are included in the
on-line appendix). In all four effect surfaces a similar pattern can be found, which reflects the
structure of the main historical effect. The coefficients near the diagonal reveal a positive sign
at around s ≈ 500 ms, whereas the upper left as well as the upper right of the surface, visually
separated by a thick black contour line, are estimated with a negative sign. In contrast with the
upper left negative coefficient area, which is mostly indicated to be not different from zero by
the boostrap, the upper right negative coefficient area is indicated to be non-zero for all eight
conditions at least to some extent. The positive area in between those two negative subareas is
mostly estimated to be either zero or non-zero but with relatively small coefficient values. The
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Fig. 4. Estimated coefficient surfaces for the model with EEG covariate Fz (plot of average signals per game
condition at the bottom with negative and positive values highlighted in blue and red respectively; signals are
demeaned per time point by the overall mean), all four high control settings and the EMG response signal
of the frontalis muscle (left panels: overall mean (1) in grey, prediction without historical effects (2) in green,
with historical effects (3) by using the average EEG signal per game condition in black; centre panel: ,
difference between (1) and (2); , difference between (1) and (3)) (surfaces correspond to estimated
main historical effect plus game condition-specific historical effect; different degrees of transparency in the
coefficient plots indicate surface points having 1� niveau bootstrap intervals which do not contain the value
zero; to obtain a reasonably sized image estimated effects are visualized on a 40�40 grid): (a) hc–hp–gain;
(b) hc–hp–loss; (c) hc–lp–gain; (d) hc–lp–loss

positive effect near the diagonal at s ≈ 500 ms is estimated to have the largest values for hc-
settings in combination with hp–loss and lp–gain situations and is found to be non-zero by the
bootstrap only for the latter scenario. This very strong short-term synchronization of EEG and
EMG signals seems to be very reasonable from a theoretical point of view, as facial reactions
including raising of the eyebrows are usually brief and are linked to appraisals such as novelty,
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which is consistent in the hc–lp–gain case with low power not being expected in a high control
setting (Scherer, 2009).

The estimated effect can on the one hand be interpreted on the subject level. A person with
a higher EEG signal at s ≈ 500 ms, for example, will on average show a higher EMG signal
(i.e. stronger muscle activity) for t ≈ 600 ms, given that the preceding EEG signal and game
condition remain the same. On the other hand, effects can be explained by relating the demeaned
average EEG signal for one game condition and the corresponding coefficients to the changes
in the average EMG signal, which is illustrated by the hc–lp–gain setting in Fig. 4. As EEG
values related to this game condition are on average above the overall mean EEG values for
s∈ [300, 1000] ms, the EEG value seems to have an increasing effect on subsequent EMG values
and thus muscle activity, with the effect lasting for at least 100 ms.

In theory, muscle activity should be traceable to brain signals. Therefore the results indicate
that brain activity measured at the Fz electrode contributes to only a relatively small amount
in explaining the movement of eyebrows (the difference panels on the left of each plot in Fig.
4). However, for the game condition hc–lp–gain, the model explains a considerable amount of
EMG activity (which is particularly visible in the difference plot of EMG predictions).

When reparameterizing the factor-specific historical effects without historical main effect,
when boosting with step length 1 as well as in the full model with more finely aggregated data,
the estimated effects are similar to the reported effects. Further results for the application are
given in the on-line appendix, including results for the scalar covariates.

Gentsch et al. (2014) analysed EEG and EMG signals separately and made statements re-
garding differences in game conditions for one of the signals at a time. Although this and other
similar strategies may yield results on significant changes in one signal for different study set-
tings, no statement on the association of the two signals can be made. In contrast, investigating
the emotion components data with our proposed approach facilitates the modelling of synchro-
nization of EMG and EEG signals in the first place and additionally allows the simultaneous
EEG and EMG analysis to differ for influence factors given by the study design. Our method
therefore can recreate parts of the theoretical emotion components model and leads to new
insights on the underlying synchronization process. Specifically, we found associations between
EEG and EMG signals that are time localized (without the need to prespecify time lags) and
which differ between experimental settings, with setting hc–lp–gain showing the clearest asso-
ciation.

6. Discussion

The focus of this paper is the development of a regression framework for the synchronization
analysis of bioelectrical signal data. Bioelectrical signals like EEG or EMG signals are recorded
in many research areas, such as in neuroscience or cognitive neuropsychology, where the goal
is to develop an understanding of synchronization processes in emotion episodes. In contrast
with previous approaches, which are mostly based on coherence, cross-correlation or similar
concepts (see, for example, Mima and Hallett (1999), Brown (2000) and Grosse et al. (2002)),
we use a function-on-function regression model (see, for example Morris (2015)) with factor-
specific historical effects. Our model extends the simple historical model (Malfait and Ramsay,
2003; Harezlak et al., 2007; Brockhaus et al., 2017) by factor-specific and/or random historical
effects. As far as we know, no methods are available other than FDboost allowing historical
effects to vary with other covariates. We develop constraints to make the resulting estimates
both interpretable as well as identifiable. This flexible class of function-on-function regression
models is implemented in the R package FDboost. Using the componentwise gradient boosting
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approach by Brockhaus et al. (2015, 2017) for estimation, this approach can deal with high
dimensional data, even p>n settings, and includes variable selection. The algorithm can recover
different effect surfaces, including relationships that are assumed in time series approaches, and
allows for potentially time varying associations. The quality of estimates is comparable with
those of the function pffr of the R package refund for special cases of function-on-function
regression where pffr is applicable.

A bootstrap can be employed to assess the variability of boosted estimates. Although boot-
strap intervals, because of the shrinkage, do not constitute confidence intervals with proper
coverage, simulations show that the bootstrap approach can recover areas with non-zero effects
very well and shows a larger FPR and FNR only at the edges of true non-zero effect surfaces.
A better uncertainty quantification would be a relevant avenue for future developments.

Although we do not focus on this feature here, our approach can also model other character-
istics of the conditional response distribution than the mean, such as the median or a quantile.
A more complex yet interesting class of models would be obtained by combining functional
regression models with generalized additive models for location, scale and shape as done for
scalar response by Brockhaus et al. (2016).

For the emotion components data, our model contributes to the understanding of the com-
ponential theory by estimating a functional relationship between the EEG and EMG signals
without having to prespecify a certain time lag between these two signals. In addition, our
proposed extension for historical models enables appraisal-specific investigations on synchro-
nization processes of emotion components.
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Abstract

The R add-on package FDboost is a flexible toolbox for the estimation of functional regression
models by model-based boosting. It provides the possibility to fit regression models for scalar
and functional response with effects of scalar as well as functional covariates, i.e., scalar-on-
function, function-on-scalar and function-on-function regression models. In addition to mean
regression, quantile regression models as well as generalized additive models for location scale
and shape can be fitted with FDboost. Furthermore, boosting can be used in high-dimensional
data settings with more covariates than observations. We provide a hands-on tutorial on model
fitting and tuning, including the visualization of results. The methods for scalar-on-function
regression are illustrated with spectrometric data of fossil fuels and those for functional response
regression with a data set including bioelectrical signals for emotional episodes.

Keywords: functional data analysis, function-on-function regression, function-on-scalar regression,
gradient boosting, model-based boosting, scalar-on-function regression.

1. Introduction

With the progress of technology today, we have the ability to observe more and more data of a
functional nature, such as curves, trajectories or images (Ramsay and Silverman 2005). Func-
tional data can be found in many scientific fields like demography, biology, medicine, meteorology
and economics (see, e.g., Ullah and Finch 2013). In practice, the functions are observed on fi-
nite grids. In this paper, we deal with one-dimensional functional data that are observed over a
real valued interval. Examples for such data are growth curves over time, acoustic signals, tem-
perature curves and spectrometric measurements in a certain range of wavelengths. Regression
models are a versatile tool for data analysis and various models have been proposed for regression
with functional variables; see Morris (2015) and Greven and Scheipl (2017) for recent reviews
of functional regression models. One can distinguish between three different types of functional
regression models: scalar-on-function regression, a regression with scalar response and functional
covariates, function-on-scalar regression referring to models with functional response and scalar
covariates and function-on-function regression, which is used when both response and covariates
are functional. Models for scalar-on-function regression are sometimes also called signal regression.

Greven and Scheipl (2017) lay out a generic framework for functional regression models including
the three mentioned model types. Many types of covariate effects are discussed including linear and
non-linear effects of scalar covariates as well as linear effects of functional covariates and interaction
terms. They describe that estimation can be based on a mixed models framework (Scheipl,
Staicu, and Greven 2015; Scheipl, Gertheiss, and Greven 2016) or on component-wise gradient
boosting (Brockhaus, Scheipl, Hothorn, and Greven 2015; Brockhaus, Melcher, Leisch, and Greven
2017). In this paper, we describe the latter approach and provide a hands-on tutorial for its

1
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implementation in R (R Core Team 2017) in the comprehensive R package FDboost (Brockhaus
and Rügamer 2017).

Boosting estimates the model by iteratively combining simple models and can be seen as a method
that conducts gradient descent (Bühlmann and Hothorn 2007). Boosting is capable of estimating
models in high-dimensional data settings and implicitly does variable selection. The modeled fea-
tures of the conditional response distribution can be chosen quite flexibly by minimizing different
loss functions. The framework includes linear models (LMs), generalized linear models (GLMs)
as well as quantile and expectile regression. Furthermore, generalized additive models for loca-
tion, scale and shape (GAMLSS, Rigby and Stasinopoulos 2005) can be fitted (Mayr, Fenske,
Hofner, Kneib, and Schmid 2012). GAMLSS model all distribution parameters of the conditional
response distribution simultaneously depending on potentially different covariates. Brockhaus,
Fuest, Mayr, and Greven (2018) discuss GAMLSS with scalar response and functional covariates.
Stöcker, Brockhaus, Schaffer, von Bronk, Opitz, and Greven (2017) introduce GAMLSS for func-
tional response. Due to variable selection and shrinkage of the coefficient estimates, no classical
inference concepts are available for the boosted models. However, it is possible to quantify uncer-
tainty by bootstrap (Efron 1979) and stability selection (Meinshausen and Bühlmann 2010). The
main advantages of the boosting approach are the possibility to fit models in high dimensional
data settings with variable selection and to estimate not only mean regression models but also
GAMLSS and quantile regression models. The main disadvantage is the lack of formal inference.

Other frameworks for flexible regression models with functional response exist. Morris and Carroll
(2006) and Meyer, Coull, Versace, Cinciripini, and Morris (2015) use a basis transformations
approach and Bayesian inference to model functional variables. Usually, loss-less transformations
like a wavelet transformation are used. See Morris (2017) for a detailed comparison of the two
frameworks.

In this tutorial, we present the R package FDboost (Brockhaus and Rügamer 2017), which is
designed to fit a great variety of functional regression models by boosting. FDboost builds on the
R package mboost (Hothorn, Bühlmann, Kneib, Schmid, and Hofner 2016) for statistical model-
based boosting. Thus, in the back-end we rely on a well-tested implementation. FDboost provides
a comprehensive implementation of the most important methods for boosting functional regression
models. In particular, the package can be used to conveniently fit models with functional response.
For effects of scalar covariates on functional responses, we provide base-learners with suitable
identifiability constraints. In addition, base-learners that model effects of functional covariates are
implemented. The package also contains functions for model tuning and for visualizing results.

As a case study for scalar-on-function regression, we use a dataset on fossil fuels, which was
analyzed in Fuchs, Scheipl, and Greven (2015) and Brockhaus et al. (2015) and is part of the
FDboost package. In this application, the heat value of fossil fuels should be predicted based on
spectral data. As a case study for function-on-scalar and function-on-function regression, we use
the emotion components data set, which is analyzed in Rügamer, Brockhaus, Gentsch, Scherer, and
Greven (2018) in the context of factor-specific historical effect estimation and which is provided
in an aggregated version in FDboost. Note that we use both data sets as a running example to
illustrate the capabilities of the package. We give a more complex example with a stronger focus
on answering the underlying research question in Appendix E.

The remainder of the paper is structured as follows. We shortly review the generic functional
regression model (Section 2) for scalar and for functional response. Then the boosting algorithm
used for model fitting is introduced in Section 3. In Section 4, we give details on the infrastructure
of the package FDboost. Scalar-on-function regression with FDboost is described in Section 4.1.
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Regression models for functional response with scalar and/or functional covariates are described
in Section 4.2. We present possible covariate effects as well as discuss model tuning and show
how to extract and display results. In Section 4.3, we discuss regression models that model other
characteristics of the response distribution than the mean, in particular median regression and
GAMLSS. In Section 4.4, we shortly comment on stability selection in combination with boosting.
In Section 4.4 we comment on the computational burden of fitting models with FDboost. We
conclude with a discussion in Section 5. The paper is structured such that the subsections on
functional response can be skipped if one is only interested in scalar-on-function regression.

2. Functional regression models

In Section 2.1 we first introduce a generic model for scalar response with functional and scalar
covariates. Afterwards, we deal with models with functional response in Section 2.2.

2.1. Scalar response and functional covariates

Let the random variable Y be the scalar response with realization y ∈ R. The covariate set X
can include both scalar and functional variables. We denote a generic scalar covariate by Z and a
generic functional covariate by X(s), with s ∈ S = [S1, S2] and S1 < S2, S1, S2 ∈ R. We assume
that we observe i = 1, . . . , N data pairs (yi,xi), where xi comprises the realizations zi of scalar
covariates as well as the realizations xi(s) of Xi(s). In practice, xi(s) is observed on a grid of
evaluation points s1, . . . , sR, such that each curve is observed as a vector (xi(s1), . . . , xi(sR))>.
While different functional covariates may be observed on different grid points over different inter-
vals, which is supported by FDboost as also the following example will show, we do no introduce
additional indices here for ease of notation.

We model the expectation of the response by an additive regression model

E(Yi|Xi = xi) = h(xi) =
J∑

j=1

hj(xi), (1)

where h(xi) is the additive predictor containing the additive effects hj(xi). Each effect hj(xi) can
depend on one or more covariates in xi. Possible effects include linear, non-linear and interaction
effects of scalar covariates as well as linear effects of functional covariates. Moreover, group-
specific effects and interaction effects between scalar and functional variables are possible. To give
an idea of possible effects hj(x), Table 1 lists effects of functional covariates that are currently
implemented in FDboost. A scalar-on-function model with only one functional covariate would

covariate(s) type of effect hj(x)

functional covariate x(s) linear functional effect
∫
S x(s)β(s) ds

scalar and functional covariate, z and x(s) linear interaction z
∫
S x(s)β(s) ds

smooth interaction
∫
S x(s)β(z, s) ds

Table 1: Overview of possible covariate effects of functional covariates, including interaction effects with
scalar covariates.

be E(Yi|Xi = xi) = β0+
∫
S xi(s)β(s) ds, see Section 4.1 for concrete examples of scalar-on-function

models for the fossil fuel data set.

3
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The effects hj(xi) are linearized using a basis representation:

hj(xi) = bj(xi)
>θj , j = 1, . . . , J, (2)

with basis vector bj(xi) ∈ RKj and coefficient vector θj ∈ RKj that has to be estimated. The
N ×Kj design matrix for the jth effect consists of rows bj(xi)

> for all observations i = 1, . . . , N .
A ridge-type penalty term λjθ

>
j Pjθj is used for regularization, where Pj is a suitable penalty

matrix for bj and λj is a non-negative smoothing parameter. The smoothing parameter controls
the degrees of freedom of the effect.

Consider, for example, a linear effect of a functional covariate
∫
S xi(s)β(s) ds. Using θj =

(θj1, . . . , θjKj )
>, this effect is computed as

∫

S
xi(s)β(s) ds =

∫

S
xi(s)

Kj∑

k=1

φk(s)θjk

︸ ︷︷ ︸
≈β(s)

ds

≈
R∑

r=1

(
∆(sr)xi(sr)

Kj∑

k=1

φk(sr)θjk

)

=

Kj∑

k=1

( R∑

r=1

∆(sr)xi(sr)φk(sr)

︸ ︷︷ ︸
entries in bj(xi)

θjk

)

= bj(xi)
>θj ,

where first, the smooth effect β(s) is expanded in basis functions, second, the integration is
approximated by a weighted sum and, third, the terms are rearranged such that they fit into the
scheme bj(xi)

>θj . The basis bj(xi) is thus computed as

bj(xi)
> =

[
R∑

r=1

∆(sr)xi(sr)φ1(sr) · · ·
R∑

r=1

∆(sr)xi(sr)φKj (sr)

]

≈
[∫

S
xi(s)φ1(s) ds · · ·

∫

S
xi(s)φKj (s) ds

]
,

(3)

with spline functions φk, k = 1, . . . ,Kj , for the expansion of the smooth effect β(s) in s direction
and integration weights ∆(sr) for numerical computation of the integral. The penalty matrix Pj
is chosen such that it is suitable to regularize the splines φk. In the current implementation only
P-splines are readily available to estimate smooth effects. To set up a P-spline basis (Eilers and
Marx 1996) for the smooth effect, φk in Equation 3 are B-splines and the penalty Pj is a squared
difference matrix.

Case study: Heat value of fossil fuels

The aim of this application is to predict the heat value y of fossil fuels using spectral data (Fuchs
et al. 2015, Siemens AG). For N = 129 samples, the dataset contains the heat value, the percentage
of humidity zh2o and two spectral measurements, which can be thought of as functional variables
xNIR(sNIR) observed over SNIR= [250.4, 876.8] and xUV(sUV) observed over SUV= [800.4, 2761.0].
One spectrum is ultraviolet-visible (UVVIS), the other a near infrared spectrum (NIR). For both

4
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spectra, the observation points are not equidistant. The dataset is contained in the R package
FDboost.

R> library(FDboost)

R> data("fuelSubset", package = "FDboost")

R> str(fuelSubset)

List of 7

$ heatan : num [1:129] 26.8 27.5 23.8 18.2 17.5 ...

$ h2o : num [1:129] 2.3 3 2 1.85 2.39 ...

$ nir.lambda : num [1:231] 800 803 805 808 810 ...

$ NIR : num [1:129, 1:231] 0.2818 0.2916 -0.0042 -0.034 -0.1804 ...

$ uvvis.lambda: num [1:134] 250 256 261 267 273 ...

$ UVVIS : num [1:129, 1:134] 0.145 -1.584 -0.814 -1.311 -1.373 ...

$ h2o.fit : num [1:129] 2.58 3.43 1.83 2.03 3.07 ...

Figure 1 shows the two spectral measurements colored according to the heat value. Predictive
models for the heat values, discussed in the next sections, will include scalar-on-function terms to
accommodate the spectral covariates.
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Figure 1: Spectral data of fossil fuels. Coloring of the spectral data depicts the corresponding heat value.
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2.2. Functional response

We denote the functional response by Y (t), where t is the evaluation point at which the function
is observed. We assume that t ∈ T , where T is a real-valued interval [T1, T2], for example a time-
interval. All response curves can be observed on one common grid or on curve-specific grids. For
responses observed on one common grid, we write yi(tg) for the observations, with tg ∈ {t1, . . . , tG}
denoting the grid of evaluation points. For curve-specific evaluation points, the observations are
denoted by yi(tig), with tig ∈ {ti1, . . . , tiGi}. As above, the covariate set X can contain both scalar
and functional variables.
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As in model (1), we model the conditional expectation of the response. In this case, the expectation
is modeled for each point t ∈ T :

E(Yi(t)|Xi = xi) = h(xi, t) =
J∑

j=1

hj(xi, t). (4)

As the response Yi(t) is a function of t, the linear predictor h(xi, t) as well as the additive effects
hj(xi, t) are functions of t. Each effect hj(xi, t) can depend on one or more covariates in xi
as well as on t. To give an idea of possible effects hj(xi, t), Table 2 lists some effects that are
currently implemented. A function-on-function model with only one functional covariate would

covariate(s) type of effect hj(x, t)

(none) smooth intercept β0(t)

scalar covariate z linear effect zβ(t)

smooth effect f(z, t)

two scalars z1, z2 linear interaction z1z2β(t)

functional varying coefficient z1f(z2, t)

smooth interaction f(z1, z2, t)

functional covariate x(s) linear functional effect
∫
S x(s)β(s, t) ds

scalar z and functional x(s) linear interaction z
∫
S x(s)β(s, t) ds

smooth interaction
∫
S x(s)β(z, s, t) ds

functional covariate x(s), concurrent effect x(t)β(t)

with S = T = [T1, T2] historical effect
∫ t
T1
x(s)β(s, t) ds

lag effect, with lag δ > 0
∫ t
t−δ x(s)β(s, t) ds

lead effect, with lead δ > 0
∫ t−δ
T1

x(s)β(s, t) ds

effect with t-specific integration
limits [l(t), u(t)]

∫ u(t)
l(t)

x(s)β(s, t) ds

grouping variable g group-specific smooth intercepts βg(t)

grouping variable g and scalar z group-specific linear effects zβg(t)

curve indicator i curve-specific smooth residuals ei(t)

Table 2: Overview of some possible covariate effects that can be represented within the framework of
functional regression.

be E(Yi|Xi = xi) = β0(t)+
∫
S xi(s)β(s, t) ds. In Section 4.2, we give several examples for concrete

models with functional response.

All effects mentioned in Table 2 are varying over t but can also be modeled as constant in t.
The upper part of the table contains linear, smooth and interaction effects for scalar covariates.
The middle part of the table gives possible effects of functional covariates and interaction effects
between scalar and functional covariates. The lower part of the table in addition shows some
group-specific effects.

In practice, all effects hj(xi, tig) are linearized using a basis representation (Brockhaus et al. 2017):

hj(xi, tig) = bjY (xi, tig)
>θj , j = 1, . . . , J, (5)
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where the basis vector bjY (xi, tig) ∈ RKjY depends on covariates xi and the observation-point of
the response tig. The corresponding coefficient vector θj ∈ RKjY has to be estimated. The design
matrix for the jth effect consists of rows bjY (xi, tig)

> for all observations i = 1, . . . , N and all
time-points tig, g = 1, . . . , Gi.

In the following, we will use a modularization of the basis into a first part depending on covariates
and a second part that only depends on t. This modular structure reduces the problem of specifying
the basis bjY (xi, tig) to that of creating two suitable marginal bases. For many effects, the marginal
bases are easy to define as they are known from regression with scalar response.

First, we focus on responses observed on one common grid (t1, . . . , tG)> which does not depend
on i. In this case, we represent the effects using the Kronecker product ⊗ of two marginal bases
(Brockhaus et al. 2015)

hj(xi, tg) =
(
bj(xi)

> ⊗ bY (tg)
>)θj , (6)

where the marginal basis vector bj(xi) ∈ RKj , i = 1, . . . , N , depends on covariates in xi and the
marginal basis vector bY (tg) ∈ RKY , g = 1, . . . , G, depends on the grid point tg. The NG×KjKY

design matrix is computed as the Kronecker product of the two marginal design matrices, which
have dimensions N × Kj and G × KY . If the effect can be represented as in Equation 6 it fits
into the framework of linear array models (Currie, Durban, and Eilers 2006). The representation
as array model has computational advantages, saving time and memory. Brockhaus et al. (2015)
discuss array models in the context of functional regression.

Note that the representation in Equation 6 is only possible for responses observed on one common
grid, as otherwise bY (tig) depends on the curve-specific grid points tig. In this case, the marginal
bases are combined by the row-wise tensor product (Scheipl et al. 2015; Brockhaus et al. 2017).
This is a rather technical detail and is thoroughly explained in Brockhaus et al. (2017), also for
the case where the basis for the covariates depends on tig such as for historical effects.

We regularize the effects by a ridge-type penalty term θ>j PjY θj . The penalty matrix for the
composed basis can be constructed as (Wood 2006, Sec. 4.1.8)

PjY = λj(Pj ⊗ IKY
) + λY (IKj ⊗ PY ), (7)

where Pj= [pj,κ,ς ]κ,ς∈{1,...,Ks} is a suitable penalty for bj and PY is a suitable penalty for bY .
The non-negative smoothing parameters λj and λY determine the degree of smoothing in each
direction. To illustrate the resulting penalty matrix, we explicitly compute the Kronecker products
in Equation 7:

PjY = λj



pj,1,1 · IKy · · · pj,1,Ks · IKy

...
. . .

...
pj,Ks,1 · IKy · · · pj,Ks,Ks · IKy


+ λY



PY 0

. . .

0 PY




This shows the block structure of the penalty matrix and how the two marginal penalty matrices
are combined. The anisotropic penalty in Equation 7 can be simplified in the case of an isotropic
penalty depending on only one smoothing parameter λj ≥ 0:

PjY = λj(Pj ⊗ IKY
+ IKj ⊗ PY ). (8)

In this simplified case only one instead of two smoothing parameters has to be estimated. If Pj = 0
in Equation 8, this results in a penalty that only penalizes the marginal basis in t direction:

PjY = λj(IKj ⊗ PY ). (9)
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Consider, for example, a linear effect of a functional covariate
∫
S xi(s)β(s, t) ds. The basis vector

bj(xi) and the penalty Pj are the same as in Equation 3. For the basis in t direction, we use a
spline representation

bY (tg)
> = [φ1(tg) · · · φKY

(tg)] (10)

with spline functions φk, k = 1, . . . ,KY and the penalty matrix PY has to be chosen such that it
is suitable for the chosen spline basis. Using P-splines again, φk are B-splines and PY is a squared
difference matrix (Eilers and Marx 1996). The complete basis is

bj(xi)
> ⊗ bY (tg)

> =

[∫

S
xi(s)φ1(s) ds · · ·

∫

S
xi(s)φKj (s) ds

]
⊗
[
φ1(tg) · · · φKY

(tg)
]
.

This choice expands β(s, t) in a tensor-product spline basis and approximates the integral using
numerical integration. For this effect, the penalty matrix from Equation 7 ensures smoothness of
β(s, t) in s- and in t-direction.

Case study: Emotion components data with EEG and EMG

The emotion components data set is based on a study of Gentsch, Grandjean, and Scherer (2014),
in which brain activity (EEG) as well as facial muscle activity (EMG) was simultaneously recorded
during a computerised game. As the facial muscle activity should be traceable to the brain activity
for a certain game situation, Rügamer et al. (2018) analyzed the synchronization of EEG and EMG
signal using function-on-function regression models with factor-specific historical effects. During
the gambling rounds, three binary game conditions were varied, resulting in a total of 8 different
study settings:

• the goal conduciveness (game_outcome) corresponding to the monetary outcome (gain or
loss) at the end of each game round,

• the power setting, which determined whether the player was able or not able to change the
final outcome in her favor (high or low, respectively) and,

• the control setting, which was manipulated to change the participant’s subjective feeling
about her ability to cope with the game outcome. The player was told to frequently have high
power in rounds with high control and have frequently low power in low control situations.

We focus on the EMG of the frontalis muscle, which is used to raise the eyebrow. The EMG
signal is a functional response Y (t), with t ∈ T = [0, 1560] ms, which is measured at a frequency
of 256Hz resulting in 384 equidistant observed time points given by the vector t. The experimental
conditions are scalar covariates. The EEG signal xEEG(s) is observed over the same time interval
as the EMG signal. We use the EEG signal from the Fz electrode, which is in the center front of
the head.

In the following, we consider an aggregated version of the data, in which the EEG and EMG
signals are aggregated per subject and game condition. One participant is excluded, yielding
N = 23 subjects.

R> data("emotion", package = "FDboost")

R> str(emotion)
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List of 8

$ power : Factor w/ 2 levels "high","low": 1 1 2 2 1 1 2 2 1 1 ...

$ game_outcome: Factor w/ 2 levels "gain","loss": 1 2 1 2 1 2 1 2 1 2 ...

$ control : Factor w/ 2 levels "high","low": 1 1 1 1 2 2 2 2 1 1 ...

$ subject : Factor w/ 23 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 2 2 ...

$ EEG : num [1:184, 1:384] -0.14 0.303 -0.715 0.7 0.11 ...

$ EMG : num [1:184, 1:384] -2.56 -4.06 -1.15 4.11 8.09 ...

$ s : int [1:384] 1 2 3 4 5 6 7 8 9 10 ...

$ t : int [1:384] 1 2 3 4 5 6 7 8 9 10 ...

In order to fit simple and meaningful models for function-on-function regression, we define a subset
of the data that contains only the observations for a certain game condition. We use the game
condition with high control, gain and low power:

R> subset <- emotion$control == "high" &

+ emotion$game_outcome == "gain" &

+ emotion$power == "low"

R> emotionHGL <- list()

R> emotionHGL$subject <- emotion$subject[subset]

R> emotionHGL$EMG <- emotion$EMG[subset,]

R> emotionHGL$EEG <- emotion$EEG[subset,]

R> emotionHGL$s <- emotionHGL$t <- emotion$t

In Figure 2 the EEG and EMG signal is depicted for each of the 23 participants and the 384
observation points.
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Figure 2: EEG signal (Fz electrode) and EMG signal (frontalis muscle) for each of the 23 participants (line
colours) and the chosen game condition.
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3. Estimation by gradient boosting

9
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Initially, boosting was proposed as a technique to iteratively improve the predictive performance of
simple models or base-learners (Ridgeway 1999). Boosting was soon recognized as a model fitting
technique for statistical applications. Based on the idea of Friedman (2001), Bühlmann and
Hothorn (2007) proposed the model-based boosting framework, which allows for a component-
wise fitting of additive terms in the linear predictor and can handle complex additive effects.
Many boosting algorithms, which are purely used for prediction, fit a rather simple model using
all covariates. In contrast, in model-based boosting it is possible to define the effects of each
covariate separately in different base-learners. By iteratively selecting only one base-learner at a
time, model-based boosting performs variable selection as base-learners that are never selected for
the model update are excluded from the model. This framework is implemented in the mboost

package. In contrast to other implementations of gradient boosting, such as gbm (Ridgeway 2017),
the focus of model-based boosting lies in estimating an interpretable additive structure rather
than aiming at optimal predictive performance.

Component-wise gradient boosting minimizes the expected loss (risk) via gradient descent in a
step-wise procedure. In each boosting step, each base-learner is fitted separately to the negative
gradient and only the best fitting base-learner is selected for the model update; hence the term
’component-wise’. To fit a model for the expectation, like the models in Equation 1 and 4, the
squared error loss (L2 loss) is minimized. In this case, the negative gradient corresponds to the
residuals.

Resulting estimation and prediction performance of boosting depend on different tuning param-
eters, namely the number of boosting iterations mstop, the step-length ν, and the specification of
the base-learners, e.g., whether a continuous covariate has a linear or smooth effect and the set-up
of spline functions and penalties for smooth effects. We will give guidance on the choice of these
parameters in the following by briefly describing the functionality of the algorithm.

The most important tuning parameter of boosting is the number of boosting iterations, as the
algorithm is usually stopped before convergence. This so-called early stopping leads to regularized
effect estimates and therefore yields more stable predictions. Since some of the base-learners are
never selected in the course of all iterations, boosting also performs variable selection. The optimal
stopping iteration can be determined by methods like cross-validation, sub-sampling or bootstrap.
For each fold, the empirical out-of-bag risk is computed and the stopping iteration that yields
the lowest empirical risk is chosen. As resampling must be conducted on the level of independent
observations, this is done on the level of curves for functional response.

In order to avoid overshooting the minimum of the loss function in each iteration, only a small
step in the chosen direction is made. The length of the update is determined by the step-length ν.
Some boosting frameworks adapt the choice of the step-length in each iteration. Bühlmann and
Hothorn (2007) show that the estimation performance is barely affected by setting ν to a fixed
and sufficiently small value for all iterations. They there propose to use a fixed step-length in the
range 0.01 to 0.1. The appropriate size of the step-length depends on the loss that is minimized.
In practice, the default value ν = 0.1 works well for most applications when the model is specified
using the L2-loss. A smaller step-length than 0.01 is sometimes needed for loss functions, which
result in discontinuous gradients, such as the check-function for quantile regression (Fenske, Kneib,
and Hothorn 2011) or for loss functions, which can result in infinite pseudo-residuals, such as the
Poisson likelihood loss. Since base-learner-specific tuning parameter are fixed for all iterations,
the model fit is determined by the number of iterations for a given step-length.

By representing all base-learners as linear effects of covariates (if necessary, by using a basis
representation for non-linear effects), base-learners also define the covariate effects in the sense of
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additive regression models and can be associated with a specific hat matrix as well as a certain
number of degrees of freedom. The degrees of freedom for each base-learner and other base-learner-
specific tuning parameters have an influence on the prediction and estimation performance. The
degrees of freedom dfj for each base-learner j = 1, . . . , J – not to be confused with the effective
degrees of freedom for each model term in the final model – determine the flexibility of each base-
learner prior to the model fit. In the model-based boosting framework each base-learner is fitted
to the pseudo-residuals using a (penalized) least squares fit with fixed smoothing parameter λj ,
which is determined via the pre-specified degrees of freedom. Whereas defining a fixed smoothness
for each model term prior to the model fit might seem restrictive at first sight, the final smoothness
of each model term is in fact determined through the number of iterations in which the respective
base-learner is chosen. The effective degrees of freedom for each smooth component after the model
fit are cumulated over the iterations where the model term is selected and typically differ from
the initially specified dfj . The model fit can thus adapt even to relatively complex functions by
repeatedly selecting and updating a particular model term (cf. Brockhaus et al. 2015). Determining
the smoothness through the number of iterations works well in practice and allows for a closed-
form solution of the penalized least squares fit in each update. As boosting chooses base-learners
in a greedy manner, selection in each step is biased towards more flexible base-learners with higher
degrees of freedom, if base-learners exhibit different degrees of freedom. This is due to the fact that
these base-learner more likely yield larger improvements of the fit in each iteration (see Hofner,
Hothorn, Kneib, and Schmid 2011, for details). For parameter estimation quality, it is essential to
facilitate a fair base-learner selection in each step (Hofner et al. 2011). It is recommended to set
dfj to an equal and rather small number for all base-learners j = 1, . . . , J (Kneib, Hothorn, and
Tutz 2009; Hofner et al. 2011). In the case of scalar-on-function regression, fulfilling this constraint
is not straightforward as functional covariates must usually be incorporated with more than one
degree of freedom whereas scalar linear effects are restricted to have one degree of freedom. In
order to maintain a fair base-learner selection, more complex effects can be orthogonalized such
that they represent deviations from less complex effects. For example, a smooth effect can be
centered around its linear effect, thereby allowing both terms to have one degree of freedom.
In Section 4.3 as well as in Appendix E different examples demonstrate how to facilitate a fair
selection in this respect.

Due to the nature of the algorithm, other base-learner-specific tuning parameters are also defined
prior to the model fit and kept fixed over the iterations. The number of knots is of primary
interest for functional or smooth predictors and should be chosen considering as a trade-off between
computing time and flexibility of each base-learner. Per default, 10 knots are used, which can be
rather large for some applications, but allows for a large flexibility of the estimated effects. The
number of knots can be decreased if computing time is a concern. Moreover, due to the smoothness
penalty, with the default penalizing deviations from linearity for smooth functions, users need not
to be concerned about overfitting when increasing the number of knots.

Functional Response

To adapt boosting for a functional response, we compute the loss at each point t and integrate it
over the domain of the response T (Brockhaus et al. 2015).

For the L2 loss the optimization problem for functional response aims at minimizing

N∑

i=1

∫ [
yi(t)− h(xi, t)

]2
dt, (11)
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which is approximated by numerical integration. To obtain identifiable models, suitable identi-
fiability constraints for the base-learners are necessary and implemented. FDboost also contains
base-learners that model the effects of functional covariates. For a discussion of both points, please
see Brockhaus et al. (2015).

4. The package FDboost

Fitting functional regression models via boosting is implemented in the R package FDboost. The
package uses the fitting algorithm and other infrastructure from the R package mboost (Hothorn
et al. 2016). All base-learners and distribution families that are implemented in mboost can be
used within FDboost. Many naming conventions and methods in FDboost are implemented in
analogy to mboost. A tutorial for mboost can be found in Hofner, Mayr, Robinzonov, and Schmid
(2014). We will mention all features of mboost that are important when working with FDboost
in the following.

The main fitting function to estimate functional regression models, like the models in Equation 1
and 4, is called FDboost(). The interface of FDboost() is as follows:1

R> FDboost(formula, timeformula, id = NULL, numInt = "equal",

+ data, offset = NULL, ...)

First, we focus on the arguments that are necessary for regression models both with scalar and
with functional response. formula specifies the base-learners for the covariate effects bj and
timeformula specifies bY , which is the basis along t. Per default, this basis bY is the same for
all effects j = 1, . . . , J . To specify different base-learners along t, it is necessary to set up the
Kronecker product of two base-learners explicitly in formula. For a detailed explanation, we
refer to Appendix C. The data is provided in the data argument as a data.frame or a named
list. The data-object has to contain the response, all covariates and the evaluation points of
functional variables. Prior to the model fit, an offset is subtracted from the response to center
it. This corresponds to initializing the fit with this offset, e.g., an overall average, and leads
to faster convergence and better stability of the boosting algorithm. For mean regression, by
default the offset is the smoothed point-wise mean of the response over time without taking into
account covariates. This offset is part of the intercept and corresponds to an initial estimate
that is then updated. In the dots-argument, ’...’, further arguments passed to mboost() and
mboost_fit() can be specified. The most important argument is family determining the loss-
and link-function for the model fit. The default is family = Gaussian(), which minimizes the
squared error loss and uses the identity as link function. Thus, per default a mean regression
model for continuous response is fitted. For the duality of loss-function and the family argument,
we refer to Section 4.3. Further important arguments are control, which determines the number
of boosting iterations and the step-length ν of the boosting algorithm specified by nu. The
argument control must be supplied as a call to the function boost_control(). For example,
control = boost_control(mstop = 100, nu = 0.1) implies 100 boosting iterations and step-
length ν = 0.1, which also corresponds to the default settings. Note that while 100 iterations are
the default chosen to avoid a computationally expensive default, this might not be sufficient and
should be chosen appropriately for the given application.

1Note that for the presentation of functions we restrict ourselves to the most important function arguments. For
the full list of arguments, we refer to the corresponding manuals.
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FDboost allows for (tensor product) spline or functional principle component bases, but user-
specified base-learner allow for possible extensions (see, e.g. Hofner et al. 2014). Although the
package only provides base-learners with ridge- or L2-type penalization, model selection as facil-
itated by an L1-penalty is achieved by early stopping of the algorithm. The covariance of final
effects results from the additive fit with Kronecker separable penalty structure. Dependent func-
tions can be modelled by including regularized cluster-specific functional intercepts or smooth
temporal / spatial effects.

Specification for scalar response

For scalar response, we set timeformula = NULL as no expansion of the effects in t direction is
necessary. formula specifies the base-learners for the covariates effects bj as in Equation 2. The
arguments id and numInt are only needed for functional responses. For scalar response, offset
= NULL results in a default offset, as, for example, the overall mean for mean regression.

Arguments needed for functional response

For functional response, the set-up of the covariate effects generally follows Equation 6 by sepa-
rating the effects into two marginal parts. The marginal effects bj , j = 1, . . . , J , are represented
in the formula as y ~ b_1 + b_2 + ...+ b_J. The marginal effect bY is represented in the
timeformula, which has the form ~ b_Y. The base-learners for the marginal effects also contain
suitable penalty matrices. Internally, the base-learners specified in formula are combined with
the base-learner specified in timeformula as in Equation 6 and a suitable penalty matrix is con-
structed according to Equation 8. Per default, the response is expected to be a matrix. In this
case id = NULL. The matrix representation is not possible for a response which is observed on
curve specific grids. In this case the response is provided as vector in long format and id specifies
which position in the vector is attributed to which curve; see section 4.2 for details. The argument
numInt provides the numerical integration scheme for computing the integral of the loss over T in
Equation 11. Per default, numInt = "equal", and thus all integration weights are set to one; for
numInt = "Riemann" Riemann sums are used. For functional response, offset = NULL induces
a smooth offset varying over t. For offset = "scalar", a scalar offset is computed. This corre-
sponds to an offset that is constant along t. For more details and the full list of arguments, see
the manual of FDboost().

4.1. Scalar response and functional covariates

In this subsection, we give details on models with scalar response and functional covariates like
the model in Equation 1. Such models are called scalar-on-function regression models. As case
study the data on fossil fuels is used.

Potential covariate effects: base-learners

In order to fit a scalar-on-function model as in Equation 1, the timeformula is set to NULL and
potential covariate effects hj(xi) are specified in the formula argument. The effects of scalar
covariates can be linear or non-linear. A linear effect zβ for the covariate z is obtained using the
base-learner bols(z), which is also suitable for factor variables, in which case dummy variables are
constructed for each factor level (Hofner et al. 2014). Per default, bols() contains an intercept. If
the specified degrees of freedom are less than the number of columns in the design matrix, bols()
penalizes the linear effect by a ridge penalty with the identity matrix as penalty matrix. The
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base-learner brandom() for factor variables sets up an effect, which is centered around zero and
is penalized by a ridge penalty, having similar properties to a random effect, but no underlying
distributional assumption. It is not possible to estimate random effects in the classical sense that
they are estimated using variance parameters. See the web appendix of Kneib et al. (2009) for a
discussion on brandom(). The ridge penalized effects, however, have a similar interpretation as
random effects as a quadratic penalty is mathematically equivalent to a Gaussian prior. Note that
this also allows for other types of random effects such as cluster-specific random effect functions.
A non-linear effect expanded by P-splines is obtained by the base-learner bbs(). Within bbs(),
the argument knots determines the number of knots of the P-spline basis, degree specifies the
degree of the spline basis and differences the order of the differences in the penalty matrix. Per
default, cubic B-splines on 20 knots with a second order difference penalty are used. For more
details on base-learners with scalar covariates, we refer to Hofner et al. (2014).

Potential base-learners for functional covariates can be seen in Table 3. In this table exemplary
linear predictors are listed in the left column. In the right column, the corresponding call to
formula is given. Because of the scalar response, the call to timeformula is set to NULL. For
simplicity, only one possible parameterization which leads to simple interpretations and one cor-
responding model call are shown, although FDboost allows to specify several parameterizations.

additive predictor h(x) =
∑
j hj(x) call

β0 +
∫
S x(s)β1(s) ds y ~ 1 + bsignal(x, s = s)

y ~ 1 + bfpc(x, s = s)

β0 + zβ1 +
∫
S x(s)β2(s) ds y ~ 1 + bolsc(z) + bsignal(x, s = s)

+z
∫
S x(s)β3(s) ds + bsignal(x, s = s) %X% bolsc(z)

Table 3: Additive predictors for scalar-on-function regression models.

For a linear effect of a functional covariate
∫
S x(s)β1(s) ds, two base-learners exist that use different

basis expansions. Assuming β1(s) to be smooth, bsignal() uses a P-spline representation for
the expansion of β1(s). In this case, the observations x(s) are used directly without any basis
representation. Assuming that the main modes of variation in the functional covariate are the
important directions for the coefficient function β1(s), a representation with functional principal
components is suitable (Ramsay and Silverman 2005). In the base-learner bfpc(), the coefficient
function β1(s) and the functional covariate x(s) are both represented by an expansion in the
estimated functional principal components of x(s). As penalty matrix, the identity matrix is
used. In Appendix B, technical details on the representation of functional effects are given.

The specification of a model with an interaction term between a scalar and a functional covariate
is given at the end of Table 3. The interaction term is centered around the main effect of the
functional covariate using bolsc for the scalar covariate (as is the linear effect of the scalar covariate
around the intercept). Thus, the main effect of the functional covariate has to be included in the
model. For more details on interaction effects, we refer to Brockhaus et al. (2015) and Rügamer
et al. (2018). The interaction is formed using the operator %X% that builds the row-wise tensor
product of the two marginal bases, see Appendix C.

As explained in Section 3, all base-learners in a model should have equal and rather low degrees of
freedom. The number of degrees of freedom that can be given to a base-learner is restricted. On
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the one hand, the maximum number is bounded by the number of columns of the design matrix
(more precisely by the rank of the design matrix). On the other hand, for rank-deficient penalties,
the minimum number of degrees of freedom is given by the rank of the null space of the penalty
matrix.

The interface of bsignal() is as follows:

R> bsignal(x, s, knots = 10, degree = 3, differences = 1,

+ df = 4, lambda = NULL, check.ident = FALSE)

The arguments x and s specify the name of the functional covariate and the name of its argument.
knots gives the number of inner knots for the P-spline basis, degree the degree of the B-splines
and differences the order of the differences that are used for the penalty. Thus, per default, 14
cubic P-splines with first order difference penalty are used. The argument df specifies the number
of degrees of freedom for the effect and lambda the smoothing parameter. Only one of those two
arguments can be supplied. If check.ident = TRUE identifiability checks proposed by Scheipl and
Greven (2016) for functional linear effects are additionally performed.

The interface of bfpc() is:

R> bfpc(x, s, df = 4, lambda = NULL, pve = 0.99, npc = NULL)

The arguments x, s, df and lambda have the same meaning as in bsignal(). The two other
arguments allow to control how many functional principal components are used as basis. Per
default the number of functional principal components is chosen such that the proportion of the
explained variance is 99%. This proportion can be changed using the argument pve (proportion
variance explained). Alternatively, the number of components can be set to a specific value using
npc (number principal components).

The interface of bolsc() is very similar to that of bols(), which is laid out in detail in Hofner
et al. (2014). In contrast to bols(), bolsc() centers the design matrix such that the resulting
linear effect is centered around zero. More details on bolsc() are given in Section 4.2.

R> bolsc(..., df = NULL, lambda = 0, K = NULL)

In the dots argument, ..., one or more covariates can be specified. For factor variables bolsc()

sets up a design matrix in dummy-coding. The arguments df and lambda have the same meaning
as above. If lambda > 0 or df < the number of columns of the design matrix a ridge-penalty is
applied. Per default, K = NULL, the penalty matrix is the identity matrix. Setting the argument
K to another matrix allows for customized penalty matrices.

Case study (ctd.): Fossil fuel data

For the heat values Yi, i = 1, . . . , 129, we fit the model

E(Y |x) = β0 + f(zh2o) +

∫

SNIR

xNIR(sNIR)βNIR(sNIR) dsNIR +

∫

SUV

xUV(sUV)βUV(sUV) dsUV, (12)

with water content zh2o and centered spectral curves xNIR and xUV, which are observed over the
wavelengths sNIR ∈ SNIR and sUV ∈ SUV. We center the NIR and the UVVIS measurement per
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wavelength such that
∑N

i=1 xNIR,i(sNIR) = 0 ∀sNIR and analogously for UVVIS. Thus, the functional

effects have mean zero,
∑N

i=1

∫
SNIR

xNIR,i(sNIR)β(sNIR) dsNIR = 0 and analogously for UVVIS. This
does not affect the interpretation of βNIR(sNIR) and βUV(sUV), it only changes the interpretation of
the intercept of the regression model. If all effects are centered, the intercept can be interpreted
as overall mean and the other effects as deviations from the overall mean.

Note that the functional covariates have to be supplied as <number of curves> by <number of
evaluation points> matrices. The non-linear effect of the scalar variable H2O is specified using the
bbs() base-learner. For the linear functional effect of NIR and UVVIS, we use the base-learner
bsignal(). The degrees of freedom are set to 4 for each base-learner. For the functional effects,
we use a P-spline basis with 20 inner knots. Because of the scalar response timeformula = NULL.

R> fuelSubset$UVVIS <- scale(fuelSubset$UVVIS, scale = FALSE)

R> fuelSubset$NIR <- scale(fuelSubset$NIR, scale = FALSE)

R> sof <- FDboost(heatan ~ bbs(h2o, df = 4)

+ + bsignal(UVVIS, s = uvvis.lambda, knots = 20, df = 4)

+ + bsignal(NIR, s = nir.lambda, knots = 20, df = 4),

+ timeformula = NULL, data = fuelSubset)

�

Model tuning and early stopping

Boosting iteratively selects base-learners to update the additive predictor. Fixing the base-learners
and the step-length, the model complexity is controlled by the number of boosting iterations. With
more boosting iterations the model becomes more complex (Bühlmann and Yu 2003). The step-
length ν is chosen sufficiently small in the interval (0, 1], usually as ν = 0.1, which is also the
default. For smaller step-length, more boosting iterations are required and vice versa (Friedman
2001). Note that the default number of boosting iterations is 100. This is arbitrary and in most
cases not adequate. The number of boosting iterations and the step-length of the algorithm can be
specified in the argument control. This argument must be supplied as a call to boost_control().
For example, control = boost_control(mstop = 50, nu = 0.2) implies 50 boosting iterations
and step-length ν = 0.2.

The most important tuning parameter is the number of boosting iterations. For regression with
scalar response, the function cvrisk.FDboost() can be used to determine the optimal stop-
ping iteration. This function directly calls cvrisk.mboost() from the mboost package, which
performs an empirical risk estimation using a specified resampling method. The interface of
cvrisk.FDboost() is:

R> cvrisk.FDboost(object,

+ folds = cvLong(id = object$id, weights = model.weights(object)),

+ grid = 1:mstop(object))

In the argument object, the fitted model object is specified. grid defines the grid on which
the optimal stopping iteration is searched. Per default the grid from 1 to the current stopping
iteration of the model object is used as search grid. But it is also possible to specify a larger
grid, e.g., 1:5000. The argument folds expects an integer weight matrix with dimension N × κ
(<number of observations> times <number of folds>). Depending on the range of values in the
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weight matrix, different types of resampling are performed. For example, if the weights sum to
N for each column but also have values larger than one, the resampling scheme corresponds to
bootstrap while a κ-fold cross-validation is employed by using an incidence matrix, for which the
rows sum to κ− 1. If not manually specified, mboost and FDboost provide convenience functions
– cv() and cvLong() – that construct such matrices on the basis of the given model object. The
function cvLong() is suited for functional response and treats scalar response as the special case
with one observation per curve. For scalar response, the function cv() from package mboost can
be used, which has a simpler interface.

R> cv(weights, type = c("bootstrap", "kfold", "subsampling"),

+ B = ifelse(type == "kfold", 10, 25))

The argument weights is used to specify the weights of the original model, which can be extracted
using model.weights(object). Usually all model weights are one. Via argument type the
resampling scheme is defined: "bootstrap" for non-parametric bootstrap, "kfold" for cross-
validation and "subsampling" for resampling half of all observations for each fold. The number
of folds is defined by B. Per default, 10 folds are used for cross-validation and 25 folds for bootstrap
as well as for subsampling.

The function cvLong() is especially suited for functional response and has the additional argument
id, which is used to specify which observations belong to the same response curve. For scalar
response, id = 1:N.

Case study (ctd.): Fossil fuel data

To tune the scalar-on-function regression model (12), we search the optimal stopping iteration by
10-fold bootstrapping. First, the bootstrap folds are created using the function cv(). Second, for
each bootstrap fold, the out-of-bag risk is computed for models with 1 to 1000 boosting iterations
using the cvrisk function. The choice of the grid is independent of the number of boosting
iterations of the fitted model object.

R> set.seed(123)

R> folds_sof <- cv(weights = model.weights(sof), type = "bootstrap", B = 10)

R> cvm_sof <- cvrisk(sof, folds = folds_sof, grid = 1:1000)

The object cvm_sof contains the out-of-bag risk of each fold for all 1000 iterations. �

Methods to extract and visualize results from the resampling object

For a cvrisk-object as created by cvrisk(), the method mstop() extracts the estimated optimal
number of boosting iterations, which corresponds to the number of boosting iterations yielding
the minimal mean out-of-bag risk. plot() generates a plot of the estimated out-of-bag risk per
stopping iteration in each fold. In addition, the mean out-of-bag risk per stopping iteration is
displayed. The estimated optimal stopping iteration is marked by a dashed vertical line. In such
a plot, the convergence behavior can be graphically examined.

Case study (ctd.): Fossil fuel data

We generate a plot that displays for each fold the estimated out-of-bag risk per stopping iteration
for each fold; see Figure 3.
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R> plot(cvm_sof, ylim = c(2, 15))
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Figure 3: Bootstrapped out-of-bag risk for the model of the fossil fuels. For each fold, the out-of-bag risk
is displayed as a gray line. The mean out-of-bag risk is visualized by a black line. The optimal number of
boosting iterations is marked by a dashed vertical line.

For small numbers of boosting iterations, the out-of-bag risk declines sharply with a growing
number of boosting iterations. With more and more iterations the model gets more complex and
the out-of-bag risk starts to slowly increase. The dashed vertical line marks the estimated optimal
stopping iteration of 511, which can be accessed using the function mstop():

R> mstop(cvm_sof)

[1] 511

�

Methods to extract and display results from the model object

Fitted FDboost objects inherit methods from class mboost. Thus, all methods available for mboost
objects can also be applied to models fitted by FDboost(). The design and penalty matri-
ces that are constructed by the base-learners can be extracted using the extract() function.
For example, extract(object, which = 1) returns the design matrix of the first base-learner
and extract(object, which = 1, what = "penalty") the corresponding penalty matrix. The
number of boosting iterations for an FDboost object can be changed afterwards using the subset
operator; e.g., object[50] sets the number of boosting iterations for object to 50. Note that the
subset operator directly changes object, and hence no assignment is necessary.

One can access the estimated coefficients by the coef() function. The function takes a fitted
object produced by FDboost() and returns estimated coefficient functions such as β̂(s), β̂(s, t),
ĝ(x) or other estimated effects. For smooth effects, coef() returns the smooth estimated effects
evaluated on a regular grid. The resolution of the grid can be specified by the arguments n1,
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n2 and n3 for 1-, 2- and 3-dimensional smooth terms, respectively, which define the number of
equidistantly spaced grid points over the range of the covariate. The resulting object is a list
containing an element for the offset and a named list with one entry for each further model term.
The value of the offset for each observation can be accessed with coef(object)$offset$value.
List entries for model terms in coef(object)$smterms are, in turn, lists with different entries, in
particular, including $x ($y, $z) representing unique grid-points used to evaluate the coefficient
function and $value representing a vector, matrix or list of matrices with the coefficient values.
The estimated spline-coefficients θ̂j of smooth effects can be obtained by object$coef(), which
is equal to setting the argument raw to TRUE in the coef function.

The estimated effects can be graphically displayed by the plot() function. The coefficient plots
can be customized by various arguments. For example, coefficient surfaces can be displayed as
image plots, setting pers = FALSE, or as perspective plots, setting pers = TRUE. To plot only
some of the base-learners, the argument which can be used. For instance, plot(object, which

= c(1,3)) plots the estimated effects of the first and the third base-learner. The fitted values and
predictions for new data can be obtained by the methods fitted() and predict(), respectively.

Case study (ctd.): Fossil fuel data

To better understand the penalization used in the sof model, we can exemplarily extract the
marginal penalty matrix for UVVIS as follows:

R> marg_pen <- extract(sof, "penalty", which = 2)

R> marg_pen[[1]][1:5,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 -1 0 0 0

[2,] -1 2 -1 0 0

[3,] 0 -1 2 -1 0

[4,] 0 0 -1 2 -1

[5,] 0 0 0 -1 2

In order to continue working with the optimal model, we set the number of boosting iterations to
the estimated optimal value.

R> sof <- sof[mstop(cvm_sof)]

We can access estimated coefficients using coef(), e.g., by extracting the estimated coefficient
function β̂NIR(sNIR) contained in $value evaluated at grid points $x

R> coef_sof <- coef(sof)

R> str(coef_sof$smterms$`bsignal(NIR)`)

To display the estimated effects, plot() can be called on the fitted FDboost object.

Per default, plot() only displays effects of base-learners that were selected at least once. See
Figure 4 for the resulting plots.
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R> par(mfrow = c(1,3))

R> plot(sof, ask = FALSE, ylab = "")
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Figure 4: Coefficient estimates of the model for the heat value of the fossil fuels with optimal number of
boosting iterations. The smooth effect of the water content (left), the linear effect of the UVVIS spectrum
(center) and the NIR spectrum (right) are displayed.

The mean heat value is estimated to be higher for higher water content and lower for lower water
content (see Figure 4 left). High values of the UVVIS spectrum at a wavelength of around 500
and 850 nm are associated with higher heat values. Higher values of the UVVIS spectrum at
wavelength around 300 and 750 nm are associated with lower heat values (see Figure 4 middle).
The effect of the NIR spectrum can be interpreted analogously. �

Bootstrapped coefficient estimates

In order to get a measure for the uncertainty associated with the estimated coefficient functions,
one can employ nested bootstrap. The optimal number of boosting iterations in each bootstrap
fold, in turn, is estimated by an inner resampling procedure. The bootstrapped coefficients are
shrunken towards zero as boosting shrinks coefficients towards zero due to early stopping. Thus,
the resulting bootstrap “confidence” interval is biased towards zero but still captures the vari-
ability of the coefficient estimates. While they do not have proper coverage properties due to
shrinkage bias, these bootstrap intervals capture all the sources of uncertainty (induced by the
resampling, the model selection as well as the actual uncertainty of coefficients). They may be
used to check, e.g., for the existence of certain effects by examining whether the resulting intervals
contain the value zero, which was found to work well in Rügamer et al. (2018). Having no for-
mal inference procedure clearly is a limitation of the model-based boosting framework in general
and users who want to formally test pre-specified hypotheses are referred to alternative software
packages such as refund (Huang, Scheipl, Goldsmith, Gellar, Harezlak, McLean, Swihart, Xiao,
Crainiceanu, and Reiss 2016) for cases where these are applicable and the particular strengths of
model-based boosting (high-dimensional data and models, model selection, general loss-functions)
are not needed. In FDboost the function bootstrapCI() can be used to conveniently compute
bootstrapped coefficients:
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R> bootstrapCI(object, B_outer = 100, B_inner = 25, ...)

The argument object is the fitted model object. The maximal number of boosting iterations for
each bootstrap fold is the number of boosting iterations of the model-object. Per default bootstrap
is used with B_outer = 100 outer folds and B_inner = 25 inner folds. The dots argument, ...
can be used to pass further arguments to applyFolds(), which is used for the outer bootstrap.
In particular, setting the argument mc.cores to an integer greater 1 will run the outer bootstrap
in parallel on the number of cores that are specified via mc.cores (this does not work under
Windows, as the parallelization is based on the function mclapply()). As for the resampling
scheme, which determines the number of iterations, the bootstrap which is done to quantify
uncertainty of coefficient estimates should be conducted on the level of independent observations.
This is particularly relevant for functional responses, where both resampling procedures should
be done on the level of curves. Additional dependence in the data, such as observations sampled
from clusters or in a longitudinal fashion, should also be taken into account for scalar-on-function
models. To this end, observations should be sampled on the levels of clusters, subjects, or in
nested designs, by a nested sampling for each of the levels. This yields a limitation of our method
in cases, in which observations can not be separated into independent units (e.g., for spatially
correlated observations with a strong dependence among all observations). However, costumized
solutions such as a block-wise bootstrap (cf. Brockhaus et al. 2018) for time-series data can be
employed as in the scalar case.

Case study (ctd.): Fossil fuel data

We recompute the model on 100 bootstrap samples to compute bootstrapped coefficient estimates.
In each bootstrap fold the optimal number of boosting iterations is estimated by an inner bootstrap
with 10 folds. In contrast to other methods and analytic inference concepts, employing bootstrap
for coefficient uncertainty is much more time consuming but can be easily parallelized. See the
help page of bootstrapCI() for example code. The resulting estimated coefficients can be seen
in Figure 5.

R> set.seed(123)

R> sof_bootstrapCI <- bootstrapCI(sof[1000], B_outer = 100, B_inner = 10,

+ mc.cores = 10)

R> par(mfrow = c(1,3))

R> plot(sof_bootstrapCI, ask = FALSE, commonRange = FALSE, ylab = "")

�

4.2. Functional response

In this subsection, we explain how to fit models with functional response like model (4). Models
with scalar and functional covariates are treated, thus covering function-on-scalar and function-
on-function regression models.

Specification of functional response

If a functional variable is observed on one common grid, its observations can be represented by
a matrix. In FDboost, such functional variables have to be supplied as <number of curves> by
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Figure 5: Bootstrapped coefficient estimates of the model for the heat value of the fossil fuels. The coefficient
estimates in the bootstrap samples for the smooth effect of the water content (left), the linear effect of the
UVVIS spectrum (middle) and the NIR spectrum (right) are displayed. The pointwise 5% and the 95%
quantiles are marked with dashed red lines. The pointwise 50% quantile is marked by a black line.

<number of evaluation points> matrices. That is, a functional response yi(tg), with i = 1, . . . , N
curves and g = 1, . . . , G evaluation points, is stored in an N × G matrix with cases in rows and
evaluation points in columns. This corresponds to a data representation in wide format. The
t variable must be given as vector (t1, . . . , tG)>.

For the functional response, curve-specific observation grids are possible, i.e., the ith response
curve is observed at evaluation points (tig, . . . , tiGi)

> specific for each curve i. In this case, three
pieces of information must be supplied: the values of the response, the evaluation points and
the curve to which each of the observations belongs. The response is supplied as the vector
(y1(t11), . . . , yN (tNGN

))>. This vector has length n =
∑N

i=1Gi. The t variable contains all eval-
uation points (t11, . . . , tNGN

)>. The argument id contains the information on which observation
corresponds to which response curve. The argument id must be supplied as a right-sided formula
id = ~ idvariable.

Case study (ctd.): Emotion components data

In the following, we give an example for a model fit with a functional response. In the first model
fit, the response is stored in the matrix EMG, in the second in the vector EMG_long. We fit an
intercept model by defining the formula as y ~ 1 and the timeformula as ~ bbs(t).

R> # fit intercept model with response matrix

R> fos_intercept <- FDboost(EMG ~ 1,

+ timeformula = ~ bbs(t, df = 3),

+ data = emotionHGL)

The corresponding mathematical formula is

E(YEMG(t)) = β0(t),
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i.e., we simply estimate the mean curve β0(t) of the functional EMG signal.

To fit a model with response in long format, we first have to convert the data into the corresponding
format. We therefore construct a dataset data_emotion_long that contains the response in long
format. Usually, the long format specification is only necessary for responses that are observed
on curve specific grids. We here provide this version for illustrative purposes, but in this example
the following model specification is equivalent to the previous model fit fos_intercept.

R> emotion_long <- emotionHGL

R> emotion_long$EMG_long <- as.vector(emotion_long$EMG)

R> emotion_long$time_long <- rep(emotionHGL$t, each = nrow(emotionHGL$EMG))

R> emotion_long$curveid <- rep(1:nrow(emotionHGL$EMG), ncol(emotionHGL$EMG))

R> fos_intercept_long <- FDboost(EMG_long ~ 1,

+ timeformula = ~ bbs(time_long, df = 3),

+ id = ~ curveid, data = emotion_long)

�

Effects in the formula that are combined with the timeformula

Many covariate effects can be represented by the Kronecker product of two marginal bases as
in Equation 6. The response and the bases in covariate direction bj(x) are specified in formula

as Y ~ b_1 + ...+ b_J. The base-learner for the expansion along t is specified in timeformula

as ~ b_Y. Each base-learner in formula is combined with the base-leaner in timeformula using
the operator %O%. This operator implements the Kronecker product of two basis vectors as in
Equation 6. Consider, for example, formula = Y ~ b_1 + b_2. If, b_1 is defined by bols(z)

with covariate z and a scalar response is given, using timeformula = NULL specifies a model with
linear effect zβ. In the case of a functional response, we usually want the effect zβ to vary for each
time-point t ∈ T of the response, i.e., zβ(t). This can be done by defining timeformula = ~ b_Y,
where the base-learner b_Y defines the form of variation in t-direction. Assuming a linear effect
in t, b_Y is set to bols(t). The combination of timeformula and formula yields Y ~ b_1 %O%

b_Y + b_2 %O% b_Y. For the particular example, b_1 %O% b_Y is equal to bols(z) %O% bols(t)

yielding zβ(t).

If marginal base-learners are specified with a penalty, the Kronecker product of the two basis
vectors is defined with an isotropic penalty matrix as in 8. If the effect should only be penalized
in t direction, the operator %A0% can be used as it sets up the penalty as Equation 9. If formula
contains base-learners that are composed of two base-learners by %O% or %A0%, those effects are not
expanded with timeformula, allowing for model specifications with different effects in t direction.
This can be used, for example, to model some effects linearly and others non-linearly in t or to
construct effects using %A0%. For further details on these operators and their use, we refer to
Appendix C.

We start with base-learners for the timeformula. Theoretically, it is possible to use any base-
learner which models the effect of a continuous variable. Usually, the effects are assumed to be
smooth along t. In this case, the base-learner bbs() can be used, which represents the smooth
effect by P-splines (Schmid and Hothorn 2008a). Thus, bbs() uses a B-spline representation for
the design matrix and a squared difference matrix as penalty matrix. Using the bbs() base-leaner
in the timeformula corresponds to using a marginal basis bY as described in Equation 10.
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Base-learners that can be used in formula are listed in Table 4. In this table, a selection of additive
predictors that can be represented within the array framework are listed in the left column. In
the right column, the corresponding formula is given. The timeformula is set to ~ bbs(t) to
model all effects as smooth effects in t. Thus, the specified effects in formula are combined with
timeformula using the Kronecker product.

additive predictor

h(x, t) =
∑
j hj(x, t) call

β0(t) y ~ 1

β0(t) + z1β1(t) y ~ 1 + bolsc(z1)

β0(t) + f1(z1, t) y ~ 1 + bbsc(z1)

β0(t) + z1β1(t) + z2β2(t) + z1z2β3(t) y ~ 1 + bolsc(z1) + bolsc(z2) +

bols(z1) %Xc% bols(z2)

β0(t) + z1β1(t) + f2(z2, t) + z1f3(z2, t) y ~ 1 + bolsc(z1) + bbsc(z2) + bols(z1) %Xc% bbs(z2)

β0(t)+f1(z1, t)+f2(z2, t)+f3(z1, z2, t) y ~ 1 + bbsc(z1) + bbsc(z2) + bbs(z1) %Xc% bbs(z2)

β0(t) +
∫
S x(s)β1(s, t) ds y ~ 1 + bsignal(x, s = s)

y ~ 1 + bfpc(x, s = s)

β0(t) + zβ1(t) +
∫
S x(s)β2(s, t) ds y ~ 1 + bolsc(z) + bsignal(x, s = s)

+z
∫
S x(s)β3(s, t) ds + bsignal(x, s = s) %X% bolsc(z)

Table 4: Additive predictors that can be represented within the array framework.

For offset = NULL, the model contains a smooth offset β∗0(t). The smooth offset is computed prior
to the model fit as smoothed population minimizer of the loss. For mean regression, the smooth
offset is the smoothed mean over t. The specification offset = "scalar" yields a constant offset
β∗0 . The resulting intercept in the final model is the sum of the offset and the smooth intercept
β̃0(t) specified in the formula as 1, i.e., β0(t) = β∗0(t) + β̃0(t).

The upper part of Table 4 gives examples for linear predictors with scalar covariates. A linear
effect of a scalar covariate is specified using the base-learner bolsc(). This base-learner works for
continuous and for factor variables. A smooth effect of a continuous covariate is obtained by using
the base-learner bbsc(). The base-learners bolsc() and bbsc() are similar to the base-learners
bols() and bbs() from the mboost package, but enforce pointwise sum-to-zero constraints to
ensure identifiability for models with functional response (the suffix ’c’ refers to ’constrained’).
Since, for example, the effect f1(z1, t) contains a smooth intercept as special case, the model would
not be identifiable without constraints, see Appendix A for more details. We use the constraint∑N

i=1 hj(xi, t) = 0 for all t, which centers each effect for each point t (Scheipl et al. 2015). This
implies that effects varying over t can be interpreted as deviations from the smooth intercept and
that the intercept can be interpreted as global mean if all effects are centered in this way. It is
possible to check whether all covariate effects sum to zero for all points t by setting check0 = TRUE

in the FDboost() call. To specify interaction effects of two scalar covariates, the base-learners
for each of the covariates are combined using the operator %Xc% that applies the sum-to-zero
constraint to the interaction effect.
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The lower part of Table 4 gives examples for linear predictors with functional covariates. In analogy
to models with scalar response, the linear effect

∫
S x(s)β(s, t) ds can be fitted by bsignal() or

bfpc() and the interaction effect is formed using the operator %X% (see the explanations for
Table 3).

Case study (ctd.): Emotion components data

For the emotion components data with the EMG signal as functional response, YEMG(t), t ∈
[0, 1560]ms, we fit models with scalar and functional covariate effects in the following.

Function-on-scalar regression

We specify a model for the conditional expectation of the EMG signal using a random intercept
curve for each subject and a linear effect for the study setting power:

E(YEMG(t)|x) = β0(t) +
23∑

k=1

I(xsubject = k)βsubject,k(t) + xpowerβpower(t), (13)

with subject having values 1 to 23 for the participants of the study, and xpower taking values
{−1, 1} for low and high power. Both covariate effects in the model are specified by using a
centered base-learner. The linear effect of the factor variable subject and the effect of power are
both specified using the bolsc() base-learner. Therefore, the effects sum up to zero for each time-
point t over all observations i = 1, . . . , N = 184, i.e.,

∑N
i=1

∑23
k=1 I(xsubject,i = k)βsubject,k(t) = 0

for all t.

R> fos_random_power <- FDboost(EMG ~ 1 + bolsc(subject, df = 2)

+ + bolsc(power, df = 1) %A0% bbs(t, df = 6),

+ timeformula = ~ bbs(t, df = 3),

+ data = emotion)

As described in Section 3, it is important that all base-learners have the same number of degrees of
freedom. In this model the degrees of freedom for each base-learner are 2∗3 = 6. By specifying the
bolsc-baselearner with df = 2 for subject, the subject effect is estimated with a Ridge penalty
similar to a random effect, whereas the power effect is estimated unpenalized due to the use of
the %A0%-operator.

Analogously, a model with response in long format as in fos_intercept_long could be specified
by changing the formula to the formula of fos_random_power.

Function-on-function regression

For the data subset for one specific game condition, we use the effect of the EEG signal to model
the EMG signal:

E(YEMG(t)|x) = β0(t) +

∫

S
xEEG(s)βEEG(s, t) ds. (14)

In this model each time-point of the covariate xEEG(s) potentially influences each time-point of the
response YEMG(t). We center the EEG signal per time point such that

∑N
i=1 xEEG,i(s) = 0 for each

s to center its effect per time-point.

25

150 6. Boosting Functional Regression Models with FDboost



R> emotionHGL$EEG <- scale(emotionHGL$EEG, scale = FALSE)

R> fof_signal <- FDboost(EMG ~ 1 + bsignal(EEG, s = s, df = 2),

+ timeformula = ~ bbs(t, df = 3),

+ data = emotionHGL)

We will show and interpret plots of the estimated coefficients later on. Assuming that the brain
activity (measured via the EEG) triggers the muscle activity (measured via the EMG), it is reason-
able to assume that EMG signals are only influenced by past EEG signals. Such a relationship can
be represented using a historical effect

∫ t
T1
x(s)β(s, t) ds, which will be discussed in the following

paragraph. �

Effects in the formula comprising both the effect in covariate and t-direction

If the covariate varies with t, the effect cannot be separated into a marginal basis depending on
the covariate and a marginal basis depending only on t. In this case the effects are represented
as in Equation 5. Examples for such effects are historical and concurrent functional effects, as
discussed in Brockhaus et al. (2017). In Table 5 we give an overview of possible additive predictors
containing such effects.

additive predictor h(x, t) =∑
j hj(x, t)

call

β0(t) + x(t)β(t) y ~ 1 + bconcurrent(x, s = s, time = t)

β0(t) +
∫ t
T1
x(s)β(s, t) ds y ~ 1 + bhist(x, s = s, time = t)

β0(t) +
∫ t
t−δ x(s)β(s, t) ds y ~ 1 + bhist(x, s = s, time = t,

limits = limitsLag)∗

β0(t) +
∫ t−δ
T1

x(s)β(s, t) ds y ~ 1 + bhist(x, s = s, time = t,

limits = limitsLead)∗

∫ u(t)
l(t)

x(s)β(s, t) ds y ~ 1 + bhist(x, s = s, time = t, limits = mylimits)

β0(t) + zβ1(t) +
∫ t
T1
x(s)β2(s, t) ds y ~ 1 + bolsc(z) + bhist(x, s = s, time = t)

+ z
∫ t
T1
x(s)β3(s, t) ds + bhistx(x) %X% bolsc(z)

Table 5: Additive predictors that contain effects that cannot be separated into an effect in covariate
direction and an effect in t direction. These effects in formula are not expanded by the timeformula. We
give examples for general limit functions mylimits in this section. In bhistx(), the variable x has to be
of class hmatrix, please see the manual of bhistx() for details.

The concurrent effect β(t)x(t) is only meaningful if the functional response and the functional
covariate are observed over the same domain. Models with concurrent effects can be seen as
varying-coefficient models (Hastie and Tibshirani 1993), where the effect varies over t. The base-
learner bconcurrent() expands the smooth concurrent effect β(t) in P-splines. The historical
effect

∫ t
T1
x(s)β(s, t) ds uses only covariate information up to the current observation point of the

response. The base-learner bhist() expands the coefficient surface β(s, t) in s and in t direction
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using P-splines to fit the historical effect. In Appendix B, details on the representation of functional
effects are given.

The interface of bhist() is:

R> bhist(x, s, time, limits = "s<=t", knots = 10, degree = 3, differences = 1,

+ df = 4, lambda = NULL, check.ident = FALSE)

Most arguments of bhist() are analogous to those of bsignal(). bhist() has the additional
argument time to specify the observation points of the response. Via the argument limits in
bhist() the user can specify integration limits depending on t. Per default a historical effect with
limits s ≤ t is used. Other integration limits can be specified by using a function with arguments
s and t, which returns TRUE for combinations of s and t that lie within the integration interval
and FALSE otherwise. In the following, we give three examples for functions that can be used for
limits resulting in a classical historical effect, a lag effect or a lead effect, respectively:

R> limitsHist <- function(s, t) {

+ s <= t

+ }

R> limitsLag <- function(s, t, delta = 5) {

+ s >= t - delta & s <= t

+ }

R> limitsLead <- function(s, t, delta = 5) {

+ s <= t - delta

+ }

The base-learner bhistx() is especially suited to form interaction effects such as factor-specific
historical effects (Rügamer et al. 2018), as bhist() cannot be used in combination with the row-
wise tensor product operator %X% to form interaction effects. bhistx() requires the data to be
supplied as an object of type hmatrix; see the manual of bhistx() for its setup.

Case study (ctd.): Emotion components data

Again, we use the subset of the data for one specific game condition. We start with a simple
function-on-function regression model by specifying a concurrent effect of the EEG signal on the
EMG signal:

E(YEMG(t)|x) = β0(t) + xEEG(t)β(t).

A concurrent effect is obtained by the base-learner bconcurrent(), which is not expanded by
the base-learner in timeformula. In this model, timeformula is only used to expand the smooth
intercept.

R> fof_concurrent <- FDboost(EMG ~ 1 + bconcurrent(EEG, s = s, time = t, df = 6),

+ timeformula = ~ bbs(t, df = 3), data = emotionHGL,

+ control = boost_control(mstop = 300))

Assuming that the activity in the muscle can be completely traced back to previous activity in
the brain, a more appropriate model seems to be a historical model including a historical effect

E(YEMG(t)|x) = β0(t) +

∫ u(t)

l(t)
xEEG(s)βEEG(s, t) ds. (15)
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From a neuro-anatomy perspective, the signal from the brain requires time to reach the muscle.
We therefore set l(t) = 0 and u(t) = t− 3, which is in line with Rügamer et al. (2018).

R> fof_historical <- FDboost(EMG ~ 1 + bhist(EEG, s = s, time = t,

+ limits = function(s, t) s <= t - 3, df = 6),

+ timeformula = ~ bbs(t, df = 3), data = emotionHGL,

+ control = boost_control(mstop = 300))

More complex historical models are discussed in Rügamer et al. (2018). In particular, a model
containing random effects for the participants, effects for the game conditions and game condition-
as well as subject-specific historical effects of the EEG signal. �

It is also possible to combine effects listed in Table 4 and Table 5 to form more complex models.
In particular, base-learners with and without array structure can be combined within one model.
As in the component-wise boosting procedure each base-learner is evaluated separately, the array
structure of the Kronecker product base-learners can still be exploited in such hybrid models.

Model tuning and early stopping

For a fair selection of base-learner, additional care is needed for functional responses as only
some of the base-learners in the formula are expanded by the base-learner in timeformula. In
particular, all base-learners listed in Table 4 are expanded by timeformula, whereas base-learners
given in Table 5 are not expanded by the timeformula. For the row-wise tensor product and the
Kronecker product of two base-learners, the degrees of freedom for the combined base-learner is
computed as product of the two marginally specified degrees of freedom. For instance, formula =

y ~ bbsc(z, df = 3) + bhist(x, s = s, df = 12) and timeformula = ~ bbs(t, df = 4)

implies 3 · 4 = 12 degrees of freedom for the first combined base-learner and 12 degrees of freedom
for the second base-learner. The call extract(object, "df") displays the degrees of freedom for
each base-learner in an FDboost object. For other tuning options such as the number of iterations
and the specification of the step-length see Section 4.1.

To find the optimal number of boosting iterations for a model fit with functional response, FD-
boost provides two resampling functions. Depending on the specified model, some parameters are
computed from the data prior to the model fit: per default a smooth functional offset β∗0(t) is
computed (offset = NULL in FDboost()) and for linear and smooth effects of scalar variables,
defined by bolsc() and bbsc(), transformation matrices for the sum-to-zero constraints are com-
puted. The function cvrisk.FDboost() uses the smooth functional offset and the transformation
matrices from the original model fit in all folds. Thus, these parameters are treated as fixed and
the uncertainty induced by their estimation is not considered in the resampling. On the other
hand, applyFolds() recomputes the whole model in each fold. The two resampling methods
are equal if no smooth offset is used and if the model does not contain any base-learner with a
sum-to-zero constraint (i.e., neither bolsc() nor bbsc()). In general, we recommend to use the
function applyFolds() to determine the optimal number of boosting iterations for a model with
functional response. The interface of applyFolds() is:

R> applyFolds(object,

+ folds = cv(rep(1, length(unique(object$id))), type = "bootstrap"),

+ grid = 1:mstop(object))
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The interface is in analogy to the interface of cvrisk(). In the argument object, the fitted model
object is specified. grid defines the grid on which the optimal stopping iteration is searched.
Via the argument folds the resampling folds are defined by suitable weights. The function
applyFolds() expects resampling weights that are defined on the level of curves, i = 1, . . . , N .
That means that the folds must contain weights wi, i = 1, . . . , N , which can be done easily using
the function cv().

Methods to extract and display results

Methods to extract and visualize results are the same irrespective of scalar or functional response.
Thus, we refer to the corresponding paragraphs at the end of Section 4.1.

Case study (ctd.): Emotion components data

Exemplarily, the penalty matrix for the historical effect can be extracted as follows:

R> kron_pen <- extract(fof_historical, "penalty")

R> as.matrix(kron_pen[[1]][1:5,1:5])

This is equal to the kronecker sum of two marginal B-Spline penalties with isotropic penalization
(as defined by Equation 7 with λj = λY ):

R> margPen <- extract(with(emotionHGL,

+ bbs(s, knots=10, differences = 1)), "penalty")

R> (kronecker(margPen, diag(ncol(margPen))) +

+ kronecker(diag(ncol(margPen)), margPen))[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 2 -1 0 0 0

[2,] -1 3 -1 0 0

[3,] 0 -1 3 -1 0

[4,] 0 0 -1 3 -1

[5,] 0 0 0 -1 3

As for scalar response, the plot-function can be used to access the estimated effects in a function-
on-function regression. In the following, we compare the three basic types of functional covariate
effects, which can be used in conjunction with a functional response. We first determine the
optimal number of stopping iterations for all three presented models.

R> set.seed(123)

R> folds_bs <- cv(weights = rep(1, fof_signal$ydim[1]),

+ type = "kfold", B = 5)

R> cvm_concurrent <- applyFolds(fof_concurrent, folds = folds_bs, grid = 1:300)

R> ms_conc <- mstop(cvm_concurrent)

R> fof_concurrent <- fof_concurrent[ms_conc]
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R> cvm_signal <- applyFolds(fof_signal, folds = folds_bs, grid = 1:300)

R> ms_signal <- mstop(cvm_signal)

R> fof_signal <- fof_signal[ms_signal]

R> cvm_historical <- applyFolds(fof_historical, folds = folds_bs, grid = 1:300)

R> ms_hist <- mstop(cvm_historical)

R> fof_historical <- fof_historical[ms_hist]

Then, we plot the estimated effects into one figure:

R> par(mfrow = c(1,3))

R> plot(fof_concurrent, which = 2, main = "Concurrent EEG effect")

R> plot(fof_signal, which = 2, main = "Signal EEG effect",

+ n1 = 80, n2 = 80, zlim = c(-0.02, 0.025),

+ col = terrain.colors(20))

R> plot(fof_historical, which = 2, main = "Historical EEG effect",

+ n1 = 80, n2 = 80, zlim = c(-0.02, 0.025),

+ col = terrain.colors(20))
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Figure 6: Visualization of estimated concurrent EEG effect (left panel), signal EEG effect (center panel)
and historical EEG effect (right panel).

The concurrent effect corresponds to the diagonal of the other two surfaces in Figure 6 and assumes
that off-diagonal time-points have no association. Due to the temporal lag between EEG and EMG
discussed for model (15), there is no meaningful interpretation for this model and the effect is only
shown for demonstrative purposes. The historical effect corresponds to the assumption that the
upper triangle in the signal EEG effects should be zero, as future brain activity should not influence
the present muscle activity. The results in Figure 6 (right panel) can be interpreted in the same
manner as results of a scalar-on-function regression when keeping a certain time point t fixed. For
the time point t = 180 of the EMG signal, for example, time points s ≈ 100 to s ≈ 177 of the EEG
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signal do not show an effect, but for s < 100 the estimated effect on the expected EMG signal is
positive. For a detailed description of the interpretation of historical effect surfaces as shown in
Figure 6, we refer to the online appendix of Rügamer et al. (2018).

Careful interpretation has to take into account that this data set has a rather small signal-to-noise
ratio due to the oscillating nature of both signals. In such cases, it is recommended to check
the uncertainty of estimated effects via bootstrap, e.g., by using the bootstrapCI() function as
exemplarily shown in Figure 7.

R> fof_historical_bci <- bootstrapCI(fof_historical, mc.cores = 2,

+ B_inner = 10, type_inner = "kfold")

R> par(mfrow=c(1,3))

R> plot(fof_historical_bci, which = 2, ask = FALSE, pers = FALSE,

+ col = terrain.colors(20), probs = c(0.05, 0.5, 0.95))
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Figure 7: Visualization of three bootstrap quantiles for the historical EEG effect based on 100 bootstrap
samples and a 10-fold cross-validation to optimize the stopping iteration for each bootstrap sample.

�

4.3. Functional regression models beyond the mean

Using boosting for model estimation it is possible to optimize other loss functions than the squared
error loss. This allows to fit, e.g., generalized linear models (GLMs) and quantile regression
models (Koenker 2005). It is also possible to fit models for several parameters of the conditional
response distribution in the framework of generalized additive models for location, scale and shape
(GAMLSS, Rigby and Stasinopoulos 2005).

For the estimation of these more general models, a suitable loss function in accordance with the
modeled characteristic of the response distribution is defined and optimized. The absolute error
loss (L1 loss), for instance, implies median regression, and minimizing the L2-loss yields mean
regression.

In FDboost(), the regression type is specified by the family argument. The family argument
expects an object of class Family, which implements the respective loss function with its corre-
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sponding negative gradient and link function. The default is family = Gaussian() which yields
L2-boosting (Bühlmann and Yu 2003). This means that the mean squared error loss is minimized,
which is equivalent to maximizing the log-likelihood of the normal distribution. Table 6 lists some
loss functions currently implemented in mboost, which can be directly used in FDboost (see Hofner
et al. 2014, for more families). Hofner et al. (2014) also give an example on how to implement
new families via the function Family(). See also the help page ?Family for more details on all
families.

response type regression type loss call

continuous response mean regression L2 loss Gaussian()

median regression L1 loss Laplace()

quantile regression check function QuantReg()

expectile regression asymmetric L2 ExpectReg()

robust regression Huber loss Huber()

non-negative response gamma regression −lgamma GammaReg()

binary response logistic regression −lBernoulli Binomial()

AdaBoost classification exponential loss AdaExp()

count response Poisson model −lPoisson Poisson()

neg. binomial model −lneg. binomial NBinomial()

scalar ordinal response proportional odds model −lproportional odds model ProppOdds()

scalar categorical response multinomial model −lmultinomial Multinomial()

scalar survival time Cox model −lcox CoxPH()

Table 6: Overview of some families that are implemented in mboost. −lF denotes the negative log-likelihood
of the distribution or model F .

For a continuous response, several model types are available (Bühlmann and Hothorn 2007): L2-
boosting yields mean regression; a more robust alternative is median regression, which optimizes
the absolute error loss; the Huber loss is a combination of L1 and L2 loss (Huber 1964); quantile
regression can be used to model a certain quantile of the conditional response distribution (Fenske
et al. 2011); and expectile regression for modeling an expectile (Newey and Powell 1987; Sobotka
and Kneib 2012). For a non-negative continuous response, models assuming the gamma distribu-
tion can be useful. A binary response can be modeled in a GLM framework with a logit model or
by minimizing the exponential loss, which corresponds to the first boosting algorithm ’AdaBoost’
(Friedman 2001; Bühlmann and Hothorn 2007). Count data can be modeled assuming a Poisson
or negative binomial distribution (Schmid, Potapov, Pfahlberg, and Hothorn 2010).

For functional response, we compute the loss point-wise and integrate over the domain of the
response.

The following models can only be applied for scalar and not for functional response. For ordinal
response, a proportional odds model can be used (Schmid, Hothorn, Maloney, Weller, and Potapov
2011). For categorical response, the multinomial logit model is available. For survival models,
boosting Cox proportional hazard models and accelerated failure time models have been introduced
by Schmid and Hothorn (2008b).
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Case study (ctd.): Emotion components data

So far, we fitted a model for the conditional mean of the response. As a more robust alternative,
we consider median regression by setting family = QuantReg(tau = 0.5). We use the update

function, to update the functional model with the new family.

R> fof_signal_med <- update(fof_signal, family = QuantReg(tau = 0.5))

For median regression, the smooth intercept is the estimated median at each time-point and the
effects are deviations from the median.

Similarily, if a certain quantile of the functional response is of interest, for example the 90%
quantile, the model can be updated as follows

R> fof_historical_q90 <- update(fof_historical, family = QuantReg(tau = 0.9))

which is equivalent to the following initial model specification:

R> fof_historical_q90 <- FDboost(EMG ~ 1 + bhist(EEG, s = s, time = t,

+ limits = function(s, t) s <= t - 3, df = 6),

+ timeformula = ~ bbs(t, df = 3), data = emotionHGL,

+ control = boost_control(mstop = 300),

+ family = QuantReg(tau = 0.9))

To illustrate an example for scalar-on-function regression with binary response, consider the case,
in which the goal is to predict the game_outcome in the case study for the emotions component
data using only the muscle activity measured via the EMG. Consider the model

g(P(Yi,j |xi,j)) = β0 + γj +

∫

S
xEMG,i,j(s)βEMG(s)ds+

∫

S
xEMG,i,j(s)γEMG,j(s)ds,

for observation i = 1, . . . , 8 of subject j = 1, . . . , 23, where g is the inverse of the logit function,
Yi,j ∈ {0, 1} determines the game outcome (gain and loss, respectively) for participant j in game
i, γj is a subject effect and the EMG is modeled using a global EMG effect βEMG as well as a
subject-specific EMG effect γEMG,j . We first center the EMG-signal as it is now used as covariate

R> emotion$EMG <- scale(emotion$EMG, center = TRUE, scale = FALSE)

and specifiy the model in FDboost as follows

R> sof_binary <- FDboost(

+ game_outcome ~ 1 +

+ brandom(subject, df = 4) +

+ bsignal(EMG, s = s, df = 4) +

+ brandom(subject, df = 2) %X% bsignal(EMG, s = s, df = 2),

+ data = emotion,

+ family = Binomial(),

+ control = boost_control(mstop = 5000),

+ timeformula = NULL)
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Note that the row-wise tensor product operator %X% in this case is used to specify a subject specific
functional effect of the EMG-signal and the resulting degrees of freedom of this base learner are
determined as the product of the dfs of both base learners. To get a measure of the performance
of this model, we could, e.g., compute predictions and look at the confusion matrix when simply
rounding the predictions:

R> predictions <- predict(sof_binary, type = "response")

R> round_preds <- round(predictions)

R> table(round_preds, as.numeric(emotion$game_outcome))

0 1

0 77 12

1 15 80

�

The combination of GAMLSS with functional variables is discussed in Brockhaus et al. (2018)
and Stöcker et al. (2017). For GAMLSS models, FDboost builds on the package gamboostLSS
(Hofner, Mayr, Fenske, Thomas, and Schmid 2017), in which families are implemented to fit
GAMLSS. For details on the boosting algorithm to fit GAMLSS, see Mayr et al. (2012) and
Thomas, Mayr, Bischl, Schmid, Smith, and Hofner (2018). The families in gamboostLSS need to
model at least two distribution parameters. For an overview of currently implemented response
distributions for GAMLSS, we refer to Hofner, Mayr, and Schmid (2016). In FDboost, the func-
tion FDboostLSS() implements GAMLSS with functional data. The interface of FDboostLSS()
is:

R> FDboostLSS(formula, timeformula, data = list(), families = GaussianLSS(), ...)

In formula a named list of formulas is supplied. Each list entry in the formula specifies the
potential covariate effects for one of the distribution parameters. The names of the list are
the names of the distribution parameters. The argument families is used to specify the as-
sumed response distribution with its modeled distribution parameters. The default families =

GaussianLSS() yields a Gaussian location scale model. In the dots-argument further arguments
passed to FDboost() can be supplied. The model object which is fitted by FDboostLSS() is
a list of FDboost model objects. It is not possible to automatically fit a smooth offset within
FDboostLSS(). Per default, a scalar offset value is used for each distribution parameter. For func-
tional response, it can thus be useful to center the response prior to the model fit. All integration
weights for the loss function are set to one, corresponding to the negative log-likelihood of the
observation points.

For model objects fitted by FDboostLSS(), methods to estimate the optimal stopping iterations,
as well as methods for plotting and prediction exist. For more details on boosting GAMLSS
models, we refer to Hofner et al. (2016), which is a tutorial for the package gamboostLSS.

Case study (ctd.): Fossil fuel data

We fit a Gaussian location scale model for the heat value. Such a model is obtained by setting
families = GaussianLSS(), where the expectation is modeled using the identity link and the
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standard deviation by a log-link. Mean and standard deviation of the heat value are modeled by
different covariates:

Yi|xi ∼ N(µi, σ
2
i ),

µi = β0 + f(zh2o,i) +

∫

SNIR

xNIR,i(sNIR)βNIR(sNIR) dsNIR +

∫

SUV

xUV,i(sUV)βUV(sUV) dsUV

log σi = α0 + α1zh2o,i.

The mean is modeled depending on the water content as well as depending on the NIR and the
UVVIS spectrum. The standard deviation is modeled using a log-link and a linear predictor based
on the water content. The formula has to be specified as a list of two formulas with names mu and
sigma for mean and standard deviation of the normal distribution. We use the noncyclic fitting
method that is introduced by Thomas et al. (2018).

R> fuelSubset$h2o_center <- fuelSubset$h2o - mean(fuelSubset$h2o)

R> library("gamboostLSS")

R> sof_ls <- FDboostLSS(list(mu = heatan ~ bbs(h2o, df = 4)

+ + bsignal(UVVIS, uvvis.lambda, knots = 40, df = 4)

+ + bsignal(NIR, nir.lambda, knots = 40, df = 4),

+ sigma = heatan ~ 1 + bols(h2o_center, df = 2)),

+ timeformula = NULL, data = fuelSubset,

+ families = GaussianLSS(), method = "noncyclic")

R> names(sof_ls)

[1] "mu" "sigma"

The optimal number of boosting iterations is searched on a grid of 1 to 2000 boosting iterations.
The algorithm updates in each boosting iteration the base-learner that best fits the negative
gradient. Thus, in each iteration the additive predictor for only one of the distribution parameters
is updated.

R> set.seed(123)

R> cvm_sof_ls <- cvrisk(sof_ls, folds = cv(model.weights(sof_ls[[1]]), B = 5),

+ grid = 1:2000, trace = FALSE)

The estimated coefficients for the expectation are similar to the effects resulting from the pure
mean model. The water content has a negative effect on the standard deviation, with higher water
content being associated with lower variability.

4.4. Variable selection by stability selection

Variable selection can be refined using stability selection (Meinshausen and Bühlmann 2010; Shah
and Samworth 2013). Stability selection is a procedure to select influential variables while control-
ling false discovery rates and maximal model complexity. For component-wise gradient boosting,
it is implemented in mboost in the function stabsel() (Hofner, Boccuto, and Göker 2015),
which can also be used for model objects fitted by FDboost(). Brockhaus et al. (2017) compute
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function-on-function regression models with more functional covariates than observations and per-
form variable selection by stability selection. Thomas et al. (2018) discuss stability selection for
GAMLSS estimated by boosting.

4.5. Computational Characteristics and Costs

In order to give rough estimates on how FDboost scales up with increasing number of obervations
N , observation points per response curve G, number of base-learners J as well as other data and
run-time related setups, this section provides some further insights into the algorithm and bottle-
necks to bear in mind.

Estimating the run-time of FDboost is not straightforward as it depends on the number of boosting
iterations, the size of the data set, the number and complexity of base-learners, as well as the type
and parallelization of resampling. Different loss-functions, i.e., different types of regression should
not change the run-time directly, but may require a smaller step-length as explained before which
in turn induces a higher number of boosting iterations. In the following simulation study, we use
the default value ν = 0.1. FDboost scales linearly in the number of iterations, which is why we use
a fixed number mstop = 50 in the following. However, note that the initialization of the model can
get computationally very expensive, if very complex base-learners are defined (see, e.g. Rügamer
et al. 2018). This is due to a singular-value decomposion of the design matrix of each base-
learner, which is needed to compute the smoothing parameter corresponding to the pre-defined
degrees of freedom and which has cubic run-time in the number of columns of the design matrix.
For smooth effects, the number of columns of the design matrix of a base-learner is defined by
the number of knots. For the simulation study, we use 20 knots for a historical or unrestricted
functional effect base-learner for function-on-function and scalar-on-function models, respectively.
This corresponds to the number of knots used in the fuelSubset data and yields rather flexible
estimates of functions. For applications where less flexibility is needed, this simulation study can
be seen as a worst-case scenario estimate of run-times.

Furthermore, we define the number of observations to be N ∈ {10, 100, 1000}, the number of
time-points to be G ∈ {1, 10, 100, 1000} and the number of base-learners to be J ∈ {5, 10, 20}.
For G = 1 scalar-on-function regression is performed, the other settings correspond to function-
on-function regression. Due to computational burden, we exclude settings, in which N = 1000
and G = 1000 at the same time. The simulation was conducted on a Linux server with Intel(R)
Xeon(R) CPU E5-4620 0 with 2.20GHz, 64 cores and 512 GB RAM.

We do not consider resampling or validation here as resampling on k folds should approximately
yield a k-multiple of the original run-time if not parallelized, i.e. run-times scale linearly in the
number of folds. With parallelization the run-time can be reduced to the run-time of a single
model fit.

The results of the simulation study are visualized in the following, indicating a roughly linear
increase in run-time and total allocation of memory by the number of observations (note that both
are plotted against log10(N)), a linear increase by the number of observed time points per curve G
as well as by the number of base-learners J . The mstop = 50 iterations play a comparatively minor
role in time and memory consumption after the model has been initialized. Note that the total
amount of allocated memory can only be interpreted in relative terms and does not correspond to
the maximum amount of consumed memory at one time-point, which is considerably smaller.
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Figure 8: Estimated computational costs of FDboost in the simulation study. Different columns correspond
to different numbers of observed time points per curve (G) and the number of base learners (J) is visualized
by different colors.

5. Discussion

The R add-on package FDboost provides a comprehensive implementation to fit functional re-
gression models by gradient boosting. The implementation allows to fit regression models with
scalar or functional response depending on many covariate effects. The framework includes mean,
mean with link function, median and quantile regression models as well as GAMLSS. Various
covariate effects are implemented including linear and smooth effects of scalar covariates, linear
effects of functional covariates and interaction effects, also between scalar and functional covari-
ates (Rügamer et al. 2018). The linear functional effects can have flexible integration limits, for
example, to form historical or lag effects (Brockhaus et al. 2017). Whenever possible, the effects
are represented in the structure of linear array models (Currie et al. 2006) to increase computa-
tional efficiency (Brockhaus et al. 2015). Component-wise gradient boosting allows to fit models
in high-dimensional data situations and performs data-driven variable selection. FDboost builds
on the well tested and modular implementation of mboost (Hothorn et al. 2016). This facilitates
the implementation of further base-learners in order to fit new covariate effects and that of families
modeling other characteristics of the conditional response distribution.
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A. Constraints for effects of scalar covariates

Consider a model for functional response with smooth intercept and an effect that contains a
smooth intercept as special case, E(Yi(t)) = β0(t) + hj(xi, t), and define the mean effect at each
point t as h̄j(x, t) = EX(hj(X, t)). This model can be parametrized in different ways, e.g., as

E(Yi(t)) = β0(t) + hj(xi, t)

=
[
β0(t) + h̄j(x, t)

]
+
[
hj(xi, t)− h̄j(x, t)

]

= β̃0(t) + h̃j(x, t).

The problem arises as h̄j(x, t) (or any other smooth function in t) can be shifted between the
intercept and the covariate effect. At the level of the design matrices of these effects, this can be
explained by the fact that the columns of the design matrix BjY and the columns of the design
matrix of the functional intercept are linearly dependent. To obtain identifiable effects, Scheipl
et al. (2015) propose to center such effects hj(x, t) at each point t. The centering is achieved by
setting the point-wise expectation over the covariate effects to zero on T , i.e., EX(hj(X, t)) = 0 for

all t, approximated by the sum-to-zero constraint
∑N

i=1 hj(xi, t) = 0 for all t. How to enforce such
constraints is described in Appendix A of Brockhaus et al. (2015). Other constraints to obtain
identifiable models are possible. However, this sum-to-zero constraint for each point t yields an
intuitive interpretation: the intercept can be interpreted as global mean and the covariate effects
can be interpreted as deviations from the smooth intercept.

The constraint is enforced by a basis transformation of the design and penalty matrix. As shown
in Brockhaus et al. (2015), it is sufficient to apply the constraint on the covariate-part of the
design and the penalty matrix. Thus, it is not necessary to transform the basis in t direction.

B. Base-learners for functional covariates

The base-learner bsignal() sets up a linear effect of a functional variable
∫
S xj(s)βj(s) ds ≈

bj(x)>θj using P-splines. We approximate the integral numerically as a weighted sum using
integration weights ∆(s) (Wood 2011), see Equation 3:

bj(xi)
> =

[
R∑

r=1

∆(sr)xi(sr)φ1(sr) · · ·
R∑

r=1

∆(sr)xi(sr)φKj (sr)

]

≈
[∫

S
xi(s)φ1(s) ds · · ·

∫

S
xi(s)φKj (s) ds

]
,

where φk(sr), k = 1, . . . ,Kj are B-splines evaluated at sr. The corresponding penalty matrix Pj
is a squared difference matrix and thus, the smooth effect βj(s) in s is represented by P-splines.

Using the base-learner bfpc() the linear functional effect
∫
S xj(s)βj(s) ds is specified using an FPC

basis. The functional covariate xj(s) and the coefficient βj(s) are both represented in the basis
that is spanned by the functional principal components (FPCs, see, e.g., Ramsay and Silverman
2005, Chap. 8 and 9) of xj(s). Let Xj(s) be a zero-mean stochastic process in the space of all
square-integrable functions L2(S). Let xij(s) be the observations of the copies Xij(s) of this
process. We denote the eigenvalues of the auto-covariance of Xj(s) as ζ1 ≥ ζ2 ≥ · · · ≥ 0 and
the corresponding eigenfunctions as ek(s), k ∈ N. The eigenfunctions {ek(s), k ∈ N} form an
orthonormal basis for the L2(S). Using the Karhunen-Loève theorem, the functional covariate
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can be represented as weighted sum

Xij(s) =
∞∑

k=1

Zikek(s),

where Zik are uncorrelated mean zero random variables with variance ζk and realizations zik. In
practice, the infinite sum is truncated at a certain value Kj . Representing the functional covariate
and the coefficient function by this truncated basis with weights θl and zik, respectively, the effect
simplifies to

∫

S
xij(s)βj(s) ds ≈

Kj∑

k,l=1

∫

S
zikek(s)el(s)θl ds =

Kj∑

k=1

zikθk,

as the eigenfunctions ek(s) are orthonormal. Thus, this approach is equivalent to using the (es-
timated) first Kj FPC scores zik as linear covariates. The number of eigenfunctions is usually
chosen such that the truncated basis explains a fixed proportion of the total variability of the
covariate, for example 99% (cf., Morris 2015). This truncation achieves regularized effects, as the
effect can only lie in the space spanned by the first Kj eigenfunctions. For the penalty matrix Pj
the identity matrix is used in bfpc().

For scalar response, the base-learners bsignal() and bfpc() yield the effect
∫
S xj(s)βj(s) ds.

Combining them with a smooth effect in t using bbs(), they can be used to fit effects for function-
on-function regression

∫
S xj(s)βj(s, t) ds.

The base-learner bhist() allows to specify functional linear effects with integration limits depend-

ing on t,
∫ u(t)
l(t) x(s)β(s, t) ds. Per default, a historical effects with limits [l(t), u(t)] = [T1, t] is fitted.

The integral is approximated by a numerical integration scheme (Scheipl et al. 2015). We transform
the observations of the functional covariate xj(sr) such that they contain the integration limits
and the weights for numerical integration. We define x̃j(sr, t) = I (l(t) ≤ sr ≤ u(t)) ∆(sr)xj(sr),
with indicator function I(·) and integration weights ∆(sr). The marginal basis over the covariates
x, which in this case also depends on t, is:

bjY (xi, t)
> =

[
R∑

r=1

x̃j(sr, t)φ1(sr) · · ·
R∑

r=1

x̃j(sr, t)φKj (sr)

]
⊗
[
φ1(tg) · · · φKY

(tg)
]

≈
[∫ u(t)

l(t)
xi(s)φ1(s) ds · · ·

∫ u(t)

l(t)
xi(s)φKj (s) ds

]
⊗
[
φ1(tg) · · · φKY

(tg)
]
.

The isotropic penalty in Equation 8 is used with squared difference matrices as marginal penalties
to form P-splines bases for the s and t direction of β(s, t).

For a concurrent effect x(t)β(t), the base-learner bconcurrent() can be used. The smooth effect
β(t) in t is expanded by P-splines.

C. Row tensor product and Kronecker product bases

In the R package mboost (Hothorn et al. 2016), the Kronecker product of two base-learners is
implemented as %O%. The row-wise tensor product of two base-learners is implemented in the
operator %X%. The row-wise tensor product of two marginal design matrices, Bj ∈ Rn×Kj and
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BY ∈ Rn×KY , is defined as n×KjKY matrix

Bj �BY = (Bj ⊗ 1>KY
) · (1>Kj

⊗BY ),

where · denotes entry-wise multiplication and 1K is the K-dimensional vector of ones. The opera-
tors %X% and %O% use the Kronecker product or the row-wise tensor product to compute the design
matrix. The penalty is computed according to Equation 7. When %X% or %O% is called with spec-
ified argument df in both marginal base-learners, the degrees of freedom of the composed effect
are computed as the product of the two specified degrees of freedom. Then, only one smoothing
parameter is computed for an isotropic penalty like in Equation 8. Consider, for example, the
composed base-learner bols(z1, df = df1) %O% bbs(t, df = df2). The base-learner bols()

specifies a linear effect. The base-learner bbs() specifies a smooth effect represented by P-splines.
Thus, the composed base-learner yields the effect z1βj(t), which is linear in z1 and smooth in t.
The global degrees of freedom for the composed base-learner are computed as dfj = df1 * df2.
The corresponding smoothing parameter λj is computed by Demmler-Reinsch orthogonalization
(Ruppert, Wand, and Carroll 2003, Appendix B.1.1).

For array models, FDboost() connects the effects of formula and timeformula by the operator
%O%, yielding b_1 %O% b_Y + ...+ b_J %O% b_Y. The operator %O% uses the array framework
of Currie et al. (2006) to efficiently implement such effects in boosting (Hothorn, Kneib, and
Bühlmann 2013). If it is not possible to use the array framework, e.g., if the response is observed
on curve-specific grids or for historical effects, the design matrix is computed as row-wise tensor
product basis, i.e., using the operator %X%. Within the function FDboost() the appropriate oper-
ator is used automatically. When the marginal base-learners are supplied with specified degrees
of freedom (argument df), %O% and %X% use the isotropic penalty (8).

The anisotropic penalty (7) is obtained if the smoothing parameter is specified in both marginal
base-learners; for instance, as bols(z1, lambda = lambda1) %O% bbs(t, lambda = lambda2).
However, it is hard to control the degrees of freedom in this case such that each base-learner in
the model has the same number of degrees of freedom. Thus, specifying the smoothing parameter
λ in both marginal base-learners is hardly applicable in practice.

In some cases, one only wants to penalize the basis in t direction. In this case, the penalty in
Equation 9 can be used. Such a penalty is obtained using the operators %A0% or %Xa0%, for the
Kronecker and the row-wise tensor product basis, respectively. When %A0% or %Xa0% are used to
form an effect with penalty (9), the number of degrees of freedom in the first base-learner has
to be equal to the number of its columns. Consider, bols(z1, df = 1, intercept = FALSE)

%A0% bbs(t, df = df2), with a metric variable z1. This specification implies bj(xi) = zi1 and
Pj = 0 for the bols() base-learner. The bbs() base-learner sets up a design matrix of B-spline
evaluations in t and a squared difference matrix as penalty matrix.

Linking formula and timeformula in FDboost() to representation (6), the J base-learners in
formula correspond to the J marginal bases bj and the base-learners in timeformula corresponds
to the marginal basis bY . If it is possible to represent the effects as Kronecker product, the base-
learners are combined by %O%. Otherwise, the row-wise tensor product %X% is used to combine the
marginal bases.

Consider, for example, formula = Y ~ b_1 + b_2 + ...+ b_J, and the timeformula = ~ b_Y.
For an array model, this yields Y ~ b_1 %O% b_Y + b_2 %O% b_Y + ... + b_J %O% b_Y. If
formula contains base-learners that are composed of two base-learners by %O% or %A0%, those
effects are not expanded with timeformula, allowing for model specifications with different effects
in t direction. For example, formula = Y ~ b_1 + b_2 %A0% b_Y0, and timeformula = ~ b_Y,
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with non-linear base-learner b_Y and linear base-learner b_Y0, yield Y ~ b_1 %O% b_Y + b_2

%A0% b_Y0.

D. Example code for resampling with repeated measurements

In the following, we search the optimal stopping iteration for model (13), which contains a linear
effect for the game condition power and a person-specific effect.

We search the optimal stopping iteration by a 5-fold cross-validation. The resampling is done on
the level of curves, assuming that the observations per subject are independent conditional on the
subject specific effects. We use the function applyFolds() for the resampling.

R> set.seed(123)

R> folds_bs <- cv(weights = rep(1, fos_random_power$ydim[1]),

+ type = "kfold", B = 5)

R> cvm <- applyFolds(fos_random_power, folds = folds_bs, grid = 1:200)

The optimal stopping iteration is estimated to be 200, which is the upper limit of the searched
grid. Thus, the resampling has to be rerun with a higher maximal number of boosting iterations.

To resample the observations on the level of independent observation units, the folds can be set
up on the level of subjects. The corresponding folds for a leave-on-subject out cross-validation,
which are then passed to applyFolds(), could be constructed as follows:

R> set.seed(123)

R> folds_bs_long_subject <- sapply(levels(emotion$subject),

+ function(x) as.numeric(x != emotion$subject))

E. Fitting factor-specific historical models

In this section we provide code to fit a more complex and realistic model to the emotion compo-
nent data. As the EMG signal might depend on all three study settings (power, game_outcome,
control) as well as their interactions, and the influence of the EEG signal might also be specific
for each setting as well as for each subject, we assume the following model (cf. Rügamer et al.
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2018):

E(YEMG,i,j(t)|xi,j) = β0(t) + γsubject,j(t)

+ I(xpower,i,j = 1)βpower(t)

+ I(xoutcome,i,j = 1)βoutcome(t)

+ I(xcontrol,i,j = 1)βcontrol(t)

+ I(xpower,i,j = 1, xoutcome,i,j = 1)βpower,outcome(t)

+ I(xoutcome,i,j = 1, xcontrol,i,j = 1)βoutcome,control(t)

+ I(xpower,i,j = 1, xcontrol,i,j = 1)βpower,control(t)

+ I(xpower,i,j = 1, xoutcome,i,j = 1, xcontrol,i,j = 1) ·
βpower,outcome,control,i(t)

+

∫ t−3

0
xEMG,i,j(s)βEMG(s, t)ds

+

∫ t−3

0
xEMG,i,j(s)γEMG,i(s, t)ds

+

∫ t−3

0
xEMG,i,j(s)ζEMG,j(s, t)ds+ εi,j(t)

(16)

for observation i = 1, . . . , 8 corresponding to the 8 different game conditions of subject j =
1, . . . , 23. The model was proposed in Rügamer et al. (2018), which extended historical models
by allowing for factor-specific historical effects. To our knowledge, FDboost so far is the only
software capable of fitting such effects.

To this end, we have to define the 3 two-way interactions power.outcome, outcome.control,
power.control, 1 three-way interaction gamecondition and an hmatrix-object X1h. The object
is needed for the function bhistx, which in turn allows to combine historical effects with factor
variables using the row-wise tensor product operator %X%. To construct a hmatrix-object, the time
and an identifier for each curve in long format must be supplied along with the original response.
The corresponding model fit in R takes around 75 minutes to fit the model with 5000 iterations
and needs approximately a maximum of 15GB RAM at once. We further allow for an anisotropic
penalty for all factor effects that are time-dependent, which is achieved by using the %A%-operator.

This example also demonstrates how the degrees of freedom can be defined to be equal across all
base-learners (in this case dfj = 20), which is explained in Appendix C.

R> N <- nrow(emotion$EEG)

R> G <- ncol(emotion$EEG)

R>

R> emotion$id_repeated = rep(1:N, G)

R>

R> emotion$EEG <- scale(emotion$EEG, center = TRUE, scale = FALSE)

R>

R> X1h <- hmatrix(time = rep(emotion$t, each = N),

+ id = emotion$id_repeated,

+ x = emotion$EEG)
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R> emotion$power.outcome <- interaction(emotion$power, emotion$game_outcome)

R> emotion$outcome.control <- interaction(emotion$game_outcome, emotion$control)

R> emotion$power.control <- interaction(emotion$power, emotion$control)

R> emotion$gamecondition <- interaction(emotion$power, emotion$game_outcome,

+ emotion$control)

R>

R> emotion$X1h <- I(X1h)

R>

R> mod <- FDboost(

+ EMG ~ 1 + brandomc(subject, df = 5) %A% bbs(t, df = 4) +

+ bolsc(power, df = 2, intercept = TRUE) %A% bbs(t, df = 10) +

+ bolsc(game_outcome, df = 2, intercept = TRUE) %A% bbs(t, df = 10) +

+ bolsc(control, df = 2, intercept = TRUE) %A% bbs(t, df = 10)+

+ bolsc(power.outcome, intercept = TRUE, df = 2) %A% bbs(t, df = 10) +

+ bolsc(outcome.control, intercept = TRUE, df = 2) %A% bbs(t, df = 10) +

+ bolsc(power.control, intercept = TRUE, df = 2) %A% bbs(t, df = 10) +

+ bolsc(gamecondition, intercept = TRUE, df = 2) %A% bbs(t, df = 10) +

+ bhistx(X1h,

+ limits = function(s,t){ s < t - 3 },

+ df = 20, knots = 10,

+ differences = 2,

+ standard = "length"

+ ) +

+ bhistx(X1h,

+ limits = function(s,t){ s < t - 3 },

+ df = 5, knots = 10,

+ differences = 2,

+ standard = "length") %X%

+ bolsc(gamecondition, df = 4, intercept = TRUE,

+ index = id_repeated) +

+ bhistx(X1h,

+ limits = function(s,t){ s < t - 3 },

+ df = 5, knots = 10,

+ differences = 2,

+ standard = "length") %X%

+ brandomc(subject, df = 4, index = id_repeated),

+ control = boost_control(mstop = 5000, trace = TRUE),

+ timeformula = ~ bbs(t),

+ data = emotion

+ )
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Rügamer D, Brockhaus S, Gentsch K, Scherer K, Greven S (2018). “Boosting factor-specific
functional historical models for the detection of synchronization in bioelectrical signals.” Journal
of the Royal Statistical Society: Series C (Applied Statistics), 67(3), 621–642. doi:10.1111/

rssc.12241.

Ruppert D, Wand MP, Carroll RJ (2003). Semiparametric Regression. Cambridge University
Press.

Scheipl F, Gertheiss J, Greven S (2016). “Generalized Functional Additive Mixed Models.” Elec-
tronic Journal of Statistics, 10(1), 1455–1492.

Scheipl F, Greven S (2016). “Identifiability in Penalized Function-On-Function Regression Models.”
Electronic Journal of Statistics, 10(1), 495–526.

Scheipl F, Staicu AM, Greven S (2015). “Functional Additive Mixed Models.” Journal of Com-
putational and Graphical Statistics, 24(2), 477–501.

Schmid M, Hothorn T (2008a). “Boosting Additive Models Using Component-Wise P-splines.”
Computational Statistics & Data Analysis, 53(2), 298–311.

Schmid M, Hothorn T (2008b). “Flexible Boosting of Accelerated Failure Time Models.” BMC
Bioinformatics, 9(1), 1–13. ISSN 1471-2105.

Schmid M, Hothorn T, Maloney KO, Weller DE, Potapov S (2011). “Geoadditive Regression
Modeling of Stream Biological Condition.” Environmental and Ecological Statistics, 18(4), 709–
733.

Schmid M, Potapov S, Pfahlberg A, Hothorn T (2010). “Estimation and Regularization Techniques
for Regression Models with Multidimensional Prediction Functions.” Statistics and Computing,
20(2), 139–150.

Shah RD, Samworth RJ (2013). “Variable Selection with Error Control: another Look at Stability
Selection.” Journal of the Royal Statistical Society B, 75(1), 55–80.

Sobotka F, Kneib T (2012). “Geoadditive Expectile Regression.” Computational Statistics & Data
Analysis, 56(4), 755–767.
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	Introduction
	Overview
	Generalized Additive and Mixed Models
	Regression Model Setup
	Linear Mixed Models
	Additive Models
	Beyond Normality
	Akaike Information Criterion

	The History of Statistical Boosting
	AdaBoost
	Boosting from a Statistical Point of View
	Implementation and Extensions

	Post-Selection Inference
	The Problem with Classical Statistical Inference after Model Selection
	Selective Inference
	Simultaneous Inference and Alternative Concepts

	Functional Data Analysis
	Functional Regression Models
	Function-on-Function Regression
	Historical Models


	References
	I Model Selection and Subsequent Inference
	Conditional Model Selection in Mixed-Effects Models
	Selective inference after model selection in linear models
	Valid Inference for L2-Boosting

	II Function-on-Function Regression Models
	Boosting factor-specific functional historical model
	Boosting Functional Regression Models with FDboost


