
11/16/21, 9:59 AM R: Assessing Convergence for Fitted Models

127.0.0.1:10752/library/lme4/html/convergence.html 1/4

convergence {lme4} R Documentation

Assessing Convergence for Fitted Models

Description

[g]lmer fits may produce convergence warnings;
these do not necessarily mean the fit is incorrect (see
“Theoretical details” below). The following steps are recommended
assessing and resolving convergence
warnings
(also see examples below):

double-check the model specification and the data

adjust stopping (convergence) tolerances for the nonlinear optimizer,
using the optCtrl argument to
[g]lmerControl
(see “Convergence controls” below)

center and scale continuous predictor variables (e.g. with scale)

double-check the Hessian calculation with the more expensive
Richardson extrapolation method (see
examples)

restart the fit from the reported optimum, or from a point
perturbed slightly away from the reported
optimum

use allFit to try the fit with all available optimizers (e.g. several different implementations
of BOBYQA
and Nelder-Mead, L-BFGS-B from optim, nlminb,
...). While this will of course be slow for large fits, we
consider
it the gold standard; if all optimizers converge to values that
are practically equivalent, then we
would consider the convergence
warnings to be false positives.

Details

Convergence controls

the controls for the nloptwrap optimizer (the default
for lmer) are

ftol_abs

(default 1e-6) stop on small change in deviance

ftol_rel

(default 0) stop on small relative change in deviance

xtol_abs

(default 1e-6) stop on small change of parameter values

xtol_rel

(default 0) stop on small relative change of
parameter values

maxeval

(default 1000) maximum number of function evaluations

http://127.0.0.1:10752/library/lme4/help/scale
http://127.0.0.1:10752/library/lme4/help/allFit

11/16/21, 9:59 AM R: Assessing Convergence for Fitted Models

127.0.0.1:10752/library/lme4/html/convergence.html 2/4

Changing ftol_abs and xtol_abs to stricter values
(e.g. 1e-8) is a good first step for resolving convergence
problems, at the cost of slowing down model fits.

the controls for minqa::bobyqa (default for
glmer first-stage optimization) are

rhobeg

(default 2e-3) initial radius of the trust region

rhoend

(default 2e-7) final radius of the trust region

maxfun

(default 10000) maximum number of function evaluations

rhoend, which describes the scale of parameter uncertainty
on convergence, is approximately analogous to
xtol_abs.

the controls for Nelder_Mead (default for
glmer second-stage optimization) are

FtolAbs

(default 1e-5) stop on small change in deviance

FtolRel

(default 1e-15) stop on small relative change in deviance

XtolRel

(default 1e-7) stop on small change of parameter
values

maxfun

(default 10000) maximum number of function evaluations

Theoretical issues

lme4 uses general-purpose nonlinear optimizers
(e.g. Nelder-Mead or Powell's BOBYQA method) to estimate
the
variance-covariance matrices of the random effects. Assessing
the convergence of such algorithms reliably is
difficult. For
example, evaluating the
Karush-Kuhn-Tucker conditions (convergence criteria which
reduce in
simple cases to showing that
the gradient is zero and the Hessian is positive definite) is
challenging because of
the difficulty of evaluating the gradient and
Hessian.

We (the lme4 authors and maintainers) are still in the process
of finding the best strategies for testing
convergence. Some of the
relevant issues are

the gradient and Hessian are the basic ingredients of
KKT-style testing, but (at least for now) lme4
estimates
them by finite-difference approximations which are sometimes
unreliable.

The Hessian computation in particular represents
a difficult tradeoff between computational expense and
accuracy. At present the Hessian computations used
for convergence checking (and for estimating
standard errors
of fixed-effect parameters for GLMMs) follow the ordinal package
in using a naive but
computationally cheap centered finite difference
computation (with a fixed step size of 1e-4). A more

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://cran.r-project.org/package=ordinal

11/16/21, 9:59 AM R: Assessing Convergence for Fitted Models

127.0.0.1:10752/library/lme4/html/convergence.html 3/4

reliable but more expensive approach is to use
Richardson extrapolation,
as implemented in the numDeriv
package.

it is important to scale the estimated gradient at
the estimate appropriately; two reasonable approaches are

1. scale gradients by the inverse Cholesky factor of the
Hessian, equivalent to scaling gradients by the
estimated Wald standard error
of the estimated parameters. lme4 uses this
approach; it requires the
Hessian to be estimated (although the Hessian is
required for
reliable estimation of the fixed-effect
standard errors for GLMMs
in any case).

2. use unscaled gradients on the random-effects parameters,
since these are essentially already unitless
(for LMMs they are scaled
relative to the residual variance; for GLMMs they are scaled
relative to
the sampling variance of the conditional distribution);
for GLMMs, scale fixed-effect gradients by
the standard deviations
of the corresponding input variable

Exploratory analyses suggest that (1) the naive estimation
of the Hessian may fail for large data sets
(number of observations
greater than approximately
1e5); (2) the magnitude of the scaled
gradient
increases with sample size, so that warnings will occur
even for apparently well-behaved fits with large
data sets.

See Also

lmerControl, isSingular

Examples

if (interactive()) {

fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)

1. decrease stopping tolerances
strict_tol <- lmerControl(optCtrl=list(xtol_abs=1e-8, ftol_abs=1e-8))

if (all(fm1@optinfo$optimizer=="nloptwrap")) {

 fm1.tol <- update(fm1, control=strict_tol)

}

2. center and scale predictors:
ss.CS <- transform(sleepstudy, Days=scale(Days))

fm1.CS <- update(fm1, data=ss.CS)

3. recompute gradient and Hessian with Richardson extrapolation

devfun <- update(fm1, devFunOnly=TRUE)

if (isLMM(fm1)) {

 pars <- getME(fm1,"theta")

} else {

 ## GLMM: requires both random and fixed parameters

 pars <- getME(fm1, c("theta","fixef"))

}

if (require("numDeriv")) {

 cat("hess:\n"); print(hess <- hessian(devfun, unlist(pars)))

 cat("grad:\n"); print(grad <- grad(devfun, unlist(pars)))

 cat("scaled gradient:\n")

 print(scgrad <- solve(chol(hess), grad))

}

compare with internal calculations:

fm1@optinfo$derivs

4. restart the fit from the original value (or

a slightly perturbed value):

fm1.restart <- update(fm1, start=pars)

set.seed(101)

pars_x <- runif(length(pars),pars/1.01,pars*1.01)

https://en.wikipedia.org/wiki/Richardson_extrapolation
https://cran.r-project.org/package=numDeriv
https://github.com/lme4/lme4/issues/47
http://127.0.0.1:10752/library/lme4/help/lmerControl
http://127.0.0.1:10752/library/lme4/help/isSingular

11/16/21, 9:59 AM R: Assessing Convergence for Fitted Models

127.0.0.1:10752/library/lme4/html/convergence.html 4/4

fm1.restart2 <- update(fm1, start=pars_x,

 control=strict_tol)

5. try all available optimizers

 fm1.all <- allFit(fm1)

 ss <- summary(fm1.all)

 ss$ fixef ## fixed effects

 ss$ llik ## log-likelihoods

 ss$ sdcor ## SDs and correlations

 ss$ theta ## Cholesky factors

 ss$ which.OK ## which fits worked

}

[Package lme4 version 1.1-27.1 Index]

http://127.0.0.1:10752/library/lme4/html/00Index.html

