
11/16/21, 9:36 AM lme4 performance tips

https://cran.r-project.org/web/packages/lme4/vignettes/lmerperf.html 1/3

lme4 performance tips
library("lme4")

overview
In general lme4 ’s algorithms scale reasonably well with the number of observations and the number of random
effect levels. The biggest bottleneck is in the number of top-level parameters, i.e. covariance parameters for lmer
fits or glmer fits with nAGQ =0 [length(getME(model, "theta"))], covariance and fixed-effect parameters for
glmer fits with nAGQ >0. lme4 does a derivative-free (by default) nonlinear optimization step over the top-level

parameters.

For this reason, “maximal” models involving interactions of factors with several levels each
(e.g. (stimulus*primer | subject)) will be slow (as well as hard to estimate): if the two factors have f1 and f2
levels respectively, then the corresponding lmer fit will need to estimate (f1*f2)*(f1*f2+1)/2 top-level
parameters.

lme4 automatically constructs the random effects model matrix () as a sparse matrix. At present it does not
allow an option for a sparse fixed-effects model matrix (), which is useful if the fixed-effect model includes
factors with many levels. Treating such factors as random effects instead, and using the modular framework
(?modular) to fix the variance of this random effect at a large value, will allow it to be modeled using a sparse
matrix. (The estimates will converge to the fixed-effect case in the limit as the variance goes to infinity.)

setting calc.derivs = FALSE
After finding the best-fit model parameters (in most cases using derivative-free algorithms such as Powell’s
BOBYQA or Nelder-Mead, [g]lmer does a series of finite-difference calculations to estimate the gradient and
Hessian at the MLE. These are used to try to establish whether the model has converged reliably, and (for glmer)
to estimate the standard deviations of the fixed effect parameters (a less accurate approximation is used if the
Hessian estimate is not available. As currently implemented, this computation takes 2*n^2 - n + 1 additional
evaluations of the deviance, where n is the total number of top-level parameters. Using
control = [g]lmerControl(calc.derivs = FALSE) to turn off this calculation can speed up the fit, e.g.

m0 <- lmer(y ~ service * dept + (1|s) + (1|d), InstEval,
 control = lmerControl(calc.derivs = FALSE))

Benchmark results for this run with and without derivatives show an approximately 20% speedup (from 54 to 43
seconds on a Linux machine with AMD Ryzen 9 2.2 GHz processors). This is a case with only 2 top-level
parameters, but the fit took only 31 deviance function evaluations (see m0@optinfo$feval) to converge, so the
effect of the additional 7 () function evaluations is noticeable.

choice of optimizer
lmer uses the “nloptwrap” optimizer by default; glmer uses a combination of bobyqa (nAGQ=0 stage) and

Nelder_Mead. These are reasonably good choices, although switching glmer fits to nloptwrap for both stages
may be worth a try.

Z

X

− n + 1n
2

11/16/21, 9:36 AM lme4 performance tips

https://cran.r-project.org/web/packages/lme4/vignettes/lmerperf.html 2/3

allFits() gives an easy way to check the timings of a large range of optimizers:

optimizer elapsed

bobyqa 51.466

nloptwrap.NLOPT_LN_BOBYQA 53.432

nlminbwrap 66.236

nloptwrap.NLOPT_LN_NELDERMEAD 90.780

nmkbw 94.727

Nelder_Mead 99.828

optimx.L-BFGS-B 117.965

As expected, bobyqa - both the implementation in the minqa package [[g]lmerControl(optimizer="bobyqa")]
and the one in nloptwrap [optimizer="nloptwrap" or
optimizer="nloptwrap", optCtrl = list(algorithm = "NLOPT_LN_BOBYQA"] - are fastest.

changing optimizer tolerances
Occasionally, the default optimizer stopping tolerances are unnecessarily strict. These tolerances are specific to
each optimizer, and can be set via the optCtrl argument in [g]lmerControl . To see the defaults for nloptwrap :

environment(nloptwrap)$defaultControl

$algorithm
[1] "NLOPT_LN_BOBYQA"

$xtol_abs
[1] 1e-08

$ftol_abs
[1] 1e-08

$maxeval
[1] 1e+05

In the particular case of the InstEval example, this doesn’t help much - loosening the tolerances to
ftol_abs=1e-4 , xtol_abs=1e-4 only saves 2 functional evaluations and a few seconds, while loosening the

tolerances still further gives convergence warnings.

parallelization/BLAS
There are not many options for parallelizing lme4 . Optimized BLAS does not seem to help much.

other packages

11/16/21, 9:36 AM lme4 performance tips

https://cran.r-project.org/web/packages/lme4/vignettes/lmerperf.html 3/3

glmmTMB may be faster than lme4 for GLMMs with large numbers of top-level parameters, especially for
negative binomial models (i.e. compared to glmer.nb)
the MixedModels.jl package in Julia may be much faster for some problems. You do need to install Julia.

see this short tutorial (https://github.com/ginettelafit/MixedModelswithRandJulia) or this example
(https://github.com/RePsychLing/MixedModels-lme4-bridge/blob/master/using_jellyme4.ipynb)
(Jupyter notebook)
the JellyMe4 (https://github.com/palday/JellyMe4.jl) and jglmm (https://github.com/mikabr/jglmm)
packages provide R interfaces

https://github.com/ginettelafit/MixedModelswithRandJulia
https://github.com/RePsychLing/MixedModels-lme4-bridge/blob/master/using_jellyme4.ipynb
https://github.com/palday/JellyMe4.jl
https://github.com/mikabr/jglmm

