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 The Annals of Statistics
 1994, Vol. 22, No. 3, 1328-1345

 SIMULTANEOUS CONFIDENCE BANDS FOR
 LINEAR REGRESSION AND SMOOTHING

 BY JIAYANG SUN1 AND CLIVE R. LOADER

 University of Michigan and AT&T Bell Laboratories

 Suppose we observe Yi = f(xi) + ei, i = 1, . . ., n. We wish to find approxi-
 mate 1 - a simultaneous confidence regions for {f(x), x E X}. Our regions
 will be centered around linear estimates f(x) of parametric or nonparamet-

 ricf(x). There is a large amount of previous work on this subject. Substantial
 restrictions have been usually placed on some or all of the dimensionality

 of x, the class of functions f that can be considered, the class of linear es-
 timates f and the region X. The method we present is an approximation to
 the tube formula and can be used for multidimensional x and a wide class
 of linear estimates. By considering the effect of bias we are able to relax
 assumptions on the class of functions f which are considered. Simulations
 and numerical computations are used to illustrate the performance.

 1. Introduction. In a standard regression model, we observe (xi, Yi), i =
 1, ... ,n, where xi E JRd are predictor variables and Yi are responses. We as-
 sume the relation Yi = f(xi) + Ei for an unknown function f(.) and independent
 residuals ei, distributed as N(O, c2). In this paper, we are interested in con-
 structing simultaneous confidence bands for the unknown function f.

 A linear estimate of f(x) is an estimate of the form

 n

 f(x) = E li(x)Yi = (I(X)Y),
 i=l

 where l(x) = (li(x),... , ln(x)f" and Y = (y1,... , Yn)T. Many popular regression
 estimates are linear, for example, least squares polynomial regression. Some
 nonparametric regression estimates, such as kernel methods, locally weighted
 polynomial regression and smoothing splines, are also linear, at least after a
 smoothing parameter has been selected.

 Confidence bands for f(x) over a subset X of the predictor space may take
 the form

 (1.1) { (f(x) - cuI1l(x)lv, f(x) + caoJl(x)HJ); x E X

 for a suitable constant c. An estimate a is used in place of a when a is unknown.

 Received February 1991; revised February 1993.
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 SIMULTANEOUS CONFIDENCE BANDS 1329

 The simultaneous coverage probability of the confidence bands is

 (1.2) 1 - a = inf Pf { f(x) - call(x)l < f(x) < f(x) + coil(x)ll, V x E Xi

 where T is a suitably large class of functions. Setting confidence bands requires
 evaluation of the right-hand side of (1.2).

 Exact confidence bands have been obtained for a number of parametric
 regression models. The classic results of Scheffe [(1959), page 68ff] are ap-
 plicable when f is assumed to be a plane in d dimensions and X = :Zd. Other
 papers deriving exact bands include Bohrer and Francis (1972), Casella and
 Strawderman (1980), Uusipaikka (1983) and Wynn (1984). However, for many
 models, exact evaluation of the coverage probabilities appears intractable, and
 approximate methods are required.

 Knafl, Sacks and Ylvisaker (1985) apply upcrossing methods to approximate
 the probability (1.2). This approach is applicable to both parametric and non-
 parametric regression models, but is most suited to a one dimensional pre-
 dictor. Alternative methods of constructing confidence bands in nonparamet-
 ric regression are discussed by Hall and Titterington (1988) and Hardle and
 Marron (1991).

 A class Y which is of natural interest is those functions for which f(x) is an
 unbiased estimator,

 (1.3) = {f: f(x) = (I(X),,a), VX}

 and ,u = (f(x1),...,f(x'))T. In this case the probability (1.2) is independent of
 f and

 (1.4) a=P{suP IT(X), E)I >cu}c

 where T(x) = l(x)/jl(x)jj and E = (6,...,6r)T. Since U = e/jjejj is uniformly
 distributed on the unit sphere Sn- 1 and is independent of 11e11,

 (1.5) a = j P sup I (T(x), U) ? >}g(y, n) dy,

 where g(y, n) is the density of a X random variable with n degrees of freedom.
 Letting M = {T(x): x E X}, the probability in (1.5) is simply the area of a
 tubular neighborhood of M u -M, divided by the surface area of Sn- 1. This
 type of problem has been studied by Hotelling (1939) for d = 1; by Weyl (1939)
 for d > 1 and more recently by Naiman (1986, 1990); and by Knowles and
 Siegmund (1989), Johansen and Johnstone (1990), Sun (1993) and others. In
 Section 2, we apply these results to derive easily computed approximations to
 (1.4). These approximations involve certain geometric constants related to the
 manifold M. Section 3 discusses the computation of these constants.
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 1330 J. SUN AND C. R. LOADER

 The class (1.3) of functions that are estimated without bias is generally fairly
 small. In practice, model selection procedures that trade off bias and variance

 are used; the selected model will result in an estimate f(x) that has a small but
 not negligible amount of bias. In Section 4 we examine the effect of bias on the
 coverage probability, and we discuss methods to adjust the confidence bands to
 account for the bias.

 In Section 5, the approximation formulae and bias corrections are compared
 with some simulation results.

 2. The approximation formula. In this section we state approximation
 formulae for one-, two- and d > 3-dimensional predictors. A number of as-
 sumptions are made to keep the statements simple. We suppose X is a closed
 d-dimensional rectangle. The manifold M = {T(x); x E X} is assumed to be C3,
 with a positive critical radius. We also suppose T: X -t N is 1-1, three times
 differentiable and there exists a vector A with (A, T(x)) > 0 for all x E X. This
 last condition ensures tubes around M and -M do not intersect for sufficiently
 small radii. The vector A = (1, .. ., 1)T suffices in most regression models.

 PROPOSITION 1 (One-dimensional). Suppose X = [a, b]. The length of M is

 o fb IIT'(x)ll dx, and the boundary of M has size (o = 2. If o2 is known, then

 (2.1) o=?exp (-2 + Co (1 - (cO) + o (e-/)

 as c -+ oo. If a is estimated by a with v&C2/U2 x2 and is independent of
 (T(x), E), then

 (2.2) +c ( c2 ) -> C).

 Naiman (1986) shows (2.1) and (2.2) to be upper bounds for a. This can also
 be deduced from Knafl, Sacks and Ylvisaker (1985), where X is partitioned and
 discrete upcrossing methods used to approximate the coverage probabilities.

 PROPOSITION 2 (Two-dimensional). Suppose X is a rectangle in JZ2. Let so
 be the area of M; let (o be the length of the boundary of M; and let E = 1 be the
 Euler-Poincare characteristic of M [cf Kreyszig (1968)]. Then

 (2.3) a = -/O3 exp - + exp (-c +2E (- (c))+o exp (-
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 SIMULTANEOUS CONFIDENCE BANDS 1331

 If a is estimated by a with v'2/a2 X2,

 (o rF((v+ 1)/2) C (1c 2(v+l)/2

 (2.4) ~.3/2 (/2 v -v/2

 PROOF. Suppose U is distributed uniformly over the unit sphere Sn- 1.
 Knowles and Siegmund [(1989), Corollary 1] gives

 P sup I (T(x), U) > w}

 r (n/2)80 W( 1w2 (n 3)/2 (0 (1 _W2 ) (n -2)/2 r(n/2) iow (1 - W2)(n)' + (
 ir3/2r((n - 1)/2) 27r

 + r1/2r{(n /2 ( x2)(n - 3)/2 d

 for wo < w < 1, where wo is the critical radius of M u -M. Substituting into
 (1.5) gives (2.3). 0

 For the d-dimensional case, approximations to the volumes of tubular neigh-
 borhoods can be carried out using similar ideas; that is, the tube is decomposed
 into a main region and boundary regions of various orders. These ideas have
 been developed in detail by Naiman (1990).

 Let Ak = 27rk/2/r(k/2) be the area of the unit sphere embedded in 3Zk and,
 for fixed n and d,

 An-d+ei j (1U2)(n-d+e-3)/2Ud - edU
 J"() n du

 Then

 P sup (T(x), U) > w}
 (2.5) x e x

 j, (W) J + OJj (W) +2+ 1+mOJ2(W) ((1 - W2)(nd+2)/2)
 QO/2 2i7r 2W+

 as w -+ 1. Here, rO is the volume of the manifold M, and Co is the area of the
 boundary of M; K2 and C, are measures of the curvature of M and &M, respec-
 tively; and mo measures the rotation angles in the regions 02M where two faces
 of M meet. Explicit forms for these constants that are suitable for computation
 are given in Section 3. When d > 3 there are higher-order boundary terms and
 additional terms in Weyl's formula that have been neglected in (2.5). These
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 1332 J. SUN AND C. R. LOADER

 terms represent an additional computational burden and are less important
 than the high-order terms unless X is a small subset of the predictor space.

 Substituting into (1.5) leads to the following proposition.

 PROPOSITION 3 (d-dimensional). If T(x) is a one-to-one C3 map from X, a
 rectangle in Rd, to SI' - 1, then

 P sup I (T(X), E) I > co}

 (2.6) KO r((d + 1)/2)P(X2 + . >2) + c r(d/2)p(X2 > C?)

 K2+(1+mor((d- 1)/2) p(X2 >C2)
 + 2ir 7r(d -1)/2 d(~ >2

 + 0 (Cd 4 exp (- ))

 as c - oo. If a is estimated by a with vu&2/o2 - X2>

 r((d + 1)/2) P(F C2 ) r(d/2) PC2

 (2.7) r+i+o(d1c2)
 + 2 (+moIF((d-1)/2) c

 21 7r(d -1)/2 P Fd-1, v d- y

 When d = 2, Knowles and Siegmund (1989) show that icO + N2 + (1 +mO = 27rE.
 Using this relationship and integrating the x2 density by parts, (2.6) can be
 shown to equal (2.3).

 In the nonparametric regression setting, variance estimates usually have the
 form YTAY, with A symmetric and positive definite and tr(A) = 1. Appropriate
 choices of A give rise to the normalized residual sum of squares [Cleveland and
 Devlin (1988)] or difference-based estimates such as those considered by Hall,
 Kay and Titterington (1990). Writing Y = ,u + e,

 yTAY = ETAe + 2ETAp + PTAM.

 Usually, A is chosen so that Att 0. It is easy to show E(ETAe) = o2 tr(A) = -2
 and var(ETAE) = 2a4 tr(A2). Letting iv = 1/tr(A2), this suggests the two-moment
 approximation [Cleveland and Devlin (1988)]:

 V,yTAY X2 (2.8) 2 YTY

 The simulations in Section 5 suggest this is a useful approximation in the
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 SIMULTANEOUS CONFIDENCE BANDS 1333

 confidence-band setting. Cleveland and Devlin (1988) report on some extensive
 simulations using this approximation for certain F-ratios.

 Which terms of (2.6) are most important? As c -4 oo, the terms are arranged
 in decreasing order of magnitude; the lead term involving 'co dominates (2.6). In

 (2.7), all terms decay at a rate cv- as c -4oo so there is no asymptotic dominance;
 this should not cause problems unless v is small. For practical purposes, the

 importance of the terms depends on the relative sizes of ti0, Co and k2 + Ci
 + mo. For situations where X is all or a substantial portion of the domain of
 the predictors, numerical examples in Section 5 suggest the first two terms are
 most important, with the third term usually offering some improvement.

 Many exact confidence bands derived in the literature correspond to prob-
 lems with special manifolds M for which closed-form evaluation of the volume
 of tubular neighborhoods is tractable at any radius. Scheffe's method [Scheffe
 (1959)] corresponds to the case M is a hemisphere in d + 1 dimensions; M u -M
 is the full sphere. The results of Casella and Strawderman (1980) correspond
 to situations where

 mCu-V M= {u: u 2+*** +>+ = 1 u2 +** + u2 > 1 -w}

 with r < d and 0 < w < 1. Uusipaikka (1983) considers cases when M is a
 subset of the unit circle in jR2. Bohrer and Francis (1972) consider one-sided
 bounds when M is a spherical triangle on S2, and also when M is the positive
 orthant of Sd + 1.

 3. Computation of constants. In this section we describe the geometric
 constants appearing in the approximation formulae and give forms that are use-
 ful for numerical computation. Throughout this section, (x1, . . . ,Xd) will denote

 a point x E X, and Tj(x) = OT(x)/x. For simplicity, we suppose X = [0, ljd. The
 interior of X, denoted I(X), is (0, 1) . The boundary AX consists of those points
 x with exactly one component 0 or 1. The regions where two faces of AX meet
 are denoted 02X.

 At a point x X, there exists a set of n-dd - 1 orthogonal vectors n1, ... 7 77n - d - 1
 such that (T(x), rj) = (Ti(x), r/j) = 0 for all i andj. Hence if (T(x), u) is maximized
 at a point Xo in I(X) and (T(Xo), u) > 1 - w, then u can be represented as

 (3.1) U = T(Xo) +Z>j=1 tjq (3 . 1 ) ( l~~~~ + Enf - d -1 t2) 1/2X

 with EJnf 'd- 1t2 < (1 - w2)/w2. The results of Weyl (1939) give the series

 P (SUP (T(x), U) > W; Xo E I(X)) = Z $e(27re Je(W),
 e even
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 1334 J. SUN AND C. R. LOADER

 for wo < w < 1. The leading coefficient no is the volume of the manifold M:

 (3.2) jo = det1/2 (ATA)dx

 where A = (Ti(x) ... Td(x)). For computational efficiency, note that det1/2(ATA)
 can be obtained directly from the QR decomposition of A.

 Let S(x) denote the intrinsic scalar curvature of M [see Kreyszig (1968), page

 310, and Sun (1993)]. The total scalar curvature is

 (3.3) 2= {S(x - d }det /2 (ATA)dx.

 Weyl (1939) expresses the scalar curvature S in terms of the metric tensor ma-
 trix ATA and certain curvature tensors; see also Sun (1993). However, these
 expressions are not suitable for fast numerical computation. A much more us-
 able form is

 d j-1

 S(X) = 2 ZZ (/3kk f3j f3kj)
 j=2 kk j = 2 k = 1

 where

 N3kJ, jI3j,j(x)=ek(A A) aOA -A(ATA)-'A

 Then evaluation of n0 and K2 can now be carried out using any multidimensional
 numerical integration routine.

 The extension of volume-of-tube formulae to boundary regions is considered

 by Naiman (1990). At a point x on the boundary of X, the vectors 1j, ... . . n - d - 1
 are supplemented by a vector U(x) that is tangent to the manifold M but normal
 to the boundary o9M and oriented to point outward from M. For example, on the
 face where Xd = 1,

 (3.4) U(x) = Ud(x) = c (I-A* (ATA*)'AT) Td(x),

 where A* = (T(x).. Td - 1(x)) and c is a normalizing constant. The boundary
 region of a tube can then be represented as

 T(x) + sU(x) + En d1 'tTh

 (t + S2 + En-d-?1 -2) Fli t

 with the restriction s > O and s2 ll2<( w)/. Flowing the deri'vation
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 SIMULTANEOUS CONFIDENCE BANDS 1335

 of Naiman (1990), one arrives at a series for the boundary region:

 P ( sup (T(x), U) l > W; X0 e aX) = (oJi(w) + -(1 J2(W) + 0 (J3(W))

 as w -4 1, where co is the volume of aM and Cj is a measure of the curvature of
 aM. For numerical computation, we use the forms

 (= j det1/2 (ATA*),
 x

 (1 = |((x)det1/2 (ATA*)dx,

 where

 d-1 -1 OAT
 41(x) =- Z eT (A*A*) a* U(x)

 j=1Ox

 on the face where Xd is maximized, with similar definitions for (,(x) on other
 faces.

 At a point x at the meeting of the faces xd -1 = 1 and xd = 1, let A** =
 (Ti(x) Td 2(x)) and

 mO(x) = cos 1 (Ud l(X), Ud(X)),

 where Ud- 1(x) and Ud(x) are unit outward normals, defined similarly to (3.4).
 Define mo(x) similarly in regions where other pairs of faces meet. Then

 P(sup (T(x), U)I > w; Xo E a2X) =moJ2(w)+0(J3(w)),
 x EX

 where

 mO= mo(x) det1/2 (A4A**)dx.

 4. Bias correction. The previous section gives approximations to the si-
 multaneous coverage probability (1.2) when Y is the class of functions which
 can be estimated without bias. As noted in the Introduction, this class is fairly
 small and we would like to approximate the simultaneous coverage over larger
 classes of functions. We measure the bias by

 Ef(x) - f(x) = EJZ1 l(x)f(xj) - f(x) (4.1) e m(x)- by Xtj - = fl(x)j)

 One can estimate m(x) by substituting an estimate for f in (4.1). It is then
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 1336 J. SUN AND C. R. LOADER

 tempting to shift the confidence bands by mii(x), giving bands of the form

 (4.2) f(x) - (c + mi(x))oil(x)ll,f(x) + (c - M(x))uI|l(x)|I).

 Unfortunately this technique cannot work well. If f(x) is a reasonably effi-
 cient estimate of f, subtracting mi(x) will generally increase variance more
 than it reduces bias. In simulations reported in Section 5, this correction fails
 badly, sometimes being worse than no correction. A similar technique is used

 by Hardle and Marron (1991); their Table 1 also suggests this bias correction
 is unsatisfactory.

 A more reasonable use of m- (x) may be to estimate certain global functionals
 of the bias; the maximum bias is useful in the confidence-band setting. The

 maximum bias may also be available from practical considerations; if one is
 able to specify bounds on derivatives of f, then Taylor series expansions can be
 used to obtain bounds on the bias. See Knafl, Sacks and Ylvisaker (1985) and
 related ideas in Hall and Titterington (1988). For the remainder of this section

 we assume the maximum bias is known; the effect of estimation will be studied
 in simulations in Section 5.

 Suppose f E Y6, where

 SE = {f: sup jm(x)j <

 An application of the triangle inequality gives

 P{ I f(x) -f(x)j < cUIWl(x)H, V x E X}

 > P{ I(l(x),c) ? (C - 6)oil(x)l, V x E X}.

 This is similar to the bias corrections used in Knafl, Sacks and Ylvisaker (1985).
 If c is chosen so that

 P( Kl(x),) ? cajl(x)lj, Vx E X) = 1 - ,

 this leads to a lower bound for the true coverage probability of the form

 (4.3) inf Pf (f(x) -f(x)l < ca&ll(x)jH, V x e X) = 1 - a - 0(6)
 f EYf

 as 6 -O 0. While this gives a lower bound on the true coverage probability,
 the infimum will be attained by functions f for which m(x) oscillates rapidly
 between -6 and 6. Since we typically do not expect m(x) to have this form, better
 results may be obtained by considering more restrictive classes of functions.
 Indeed, we show that over classes of functions with bounded derivatives, the
 error term in (4.3) can be improved to 0(62). We first give a straightforward
 example to illustrate the main ideas, then give a general result in Theorem 1.
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 SIMULTANEOUS CONFIDENCE BANDS 1337

 EXAMPLE. Suppose -E and c2 are independent N(O, 1), and Z(x) = Cl cos(x)
 + E2 sin(x) for 0 < x < r. Let m(x) = sin(x). Then

 P sup IZ(x) + Sm(x)I < pP( sup (Z(x) + Sm(x)) <c
 O < x< 7r 0 <x < 27r

 p(E2+ (62 + 6)2 < C2)

 = P(2 + 62 < C2) 0(62)

 as & -* 0. The final line can be derived from the bivariate normal integral.

 More generally, suppose m(x) has a bounded derivative, and m(x) = -m(x+ir).
 Then there exists an m1 such that

 Im(x) - m(x')l < ml sin(lx - x'l)

 whenever cos(x - x') > 0. Symmetry arguments give

 sup jZ(x) + 6m(x)J

 (4<4)<=r sup jZ(x) + 6Vm(x)l = sup (Z(x) + 6Vm(x)),
 O<x<ir o<x<27r

 where P(V = 1) = P(V = -1) = 0.5. We can write Z(x) = R cos(x -Xo) for suitable
 R and Xo. For values of x with cos(x - X0) > 0,

 Z(x) + bVm(x) < R cos(x - XO) + 6Vm(Xo) + mi1 sin(lx - XoI)

 < bVm(Xo) + (RI2 + 62m2) 1/2

 62m2
 <R+e5Vm(Xo)+ 2R

 2R

 For 6 < c/2 this implies

 PC SUP IZ(X)+Sm(X) >C) < P(R+ Vm(Xo)+ 2R > c)

 =P(R >c)+0(62),

 using Lemma 1.

 LEMMA 1. Let X, V and R be random variables satisfying the following
 conditions:

 (i) X has a density fx( ) with a bounded derivative.

 (ii) There exists vo such that P(jVI < vo) = 1; G(v,x) = P(V > v IX = x) has a
 bounded partial derivative with respect to x; and G(v,x) + G(-v,x) = 1 for all v
 and x. That is, the conditional distribution of Vgiven X is symmetric about 0.
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 1338 J. SUN AND C. R. LOADER

 (iii) P(R > 0) = 1 and the conditional distribution of R given X = x is contin-
 uous in x, and E(1/R) < x0.

 Then, for any constant c with fx(c) > 0,

 P(X + 8V + 62R > c) = P(X > c) + 0 (62)

 as 8 -- 0.

 PROOF.

 P(X+8V+62R > c)

 = P(X + 8V > c) + P(X + 8V < c, X + 6V + 621R > c)

 and

 P(X + 6V > c)

 =P(X> c)+P(X <c, X+ 6V > c) -P(X> c,IX+6 V> c).

 Conditioning on X,

 fro

 P(X <c,X+V> c) = G(v,c - 6v)fx(c - 6v)dv

 and
 ruo

 P(X > c,X+ V < c) = b G(v,c+8v)fx(c+6v)dv.

 The differentiability conditions on G and f ensure both these integrals are

 equal to 6 f G(v, c)fx(c) + 0(62), and hence

 P(X + 8V > c) = P(X > c) + 0(82).

 Let g6 be the density of X + 8V. Then

 P(X+ 6V < c, X+ SV+ 62R > c)

 =62 j P(R > r lX + 6V = c - 62r)g6 (c - 62r)dr

 62 jP(R > r I X = c)fx(c)dr,

 provided fx(c)>0. The condition E(1/R)<oo ensures the integral converges. O

 The development of the preceding example can be extended to give the
 following theorem.
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 SIMULTANEOUS CONFIDENCE BANDS 1339

 THEOREM 1. Let E1, .. ., Ec be i.i.d. N(O, 1) random variables and
 {T(x); x E X} be a C3 manifold embedded in Sn - 1. Suppose m: X -4 E Cl,
 where

 Sl,mi = {m: jm(x)j < 1, lm(x) - m(x')l < m1 Ix -x'l flT'(x)II, Vx,x' E M}.

 Let

 Z6(x) = (T(x), e) + 6m(x),

 for x E X. Then

 s SUP IZ6(X)l <C} = P SUP IZo(x) <c} 0(62)

 as 6 -O 0. Moreover, the 0(62) term holds uniformly over the set Tl, i1

 PROOF. Define X* to be a translation of X, with T(x*) = -T(x) and m(x*) =
 -m(x). Let P(V = 1) = P(V = -1) = 0.5, independent of e. Similarly to (4.4), we
 have

 sup IZ(x) + 6m(x)l =L SUp (Z(x) + 6Vm(x)).
 xEX xEXUX*

 By the assumptions on T(x), the third derivative of Z(x) is bounded; IZ"'(x)I
 < M. LettingXo = argmaxZ(x),

 Z(x) + 6Vm(x) < Z(Xo) + (Xo)( - X)2 +M
 2 6

 + 6Vm(Xo) + 6m, iIT'(Xo)ll Ix - XOl,

 whenever Ix - XoI < h. The maximum occurs at

 ix - Xo = 6miI T'(Xo)II/ IZ"(Xo)I,

 and hence

 (4.5) sup (Z(x) + 6m(x)) < Z(Xo) + 6Vm(Xo) + 61mlIIT'(Xo)II2 Mh3 Ix -Xo1<h 2ZIX)

 Taking h = 6415

 '4.6' x Exu X*
 supll Z6(xo)> +>c} + )62M2jT'(Xo)jj2

 < P ZXO) +bvm(x) + 1> c + 0(62).

 ?PjZ(Xo)+6Vm(Xo)+ 21Z"I(Xo)I
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 1340 J. SUN AND C. R. LOADER

 Applying Lemma 1 completes the result, provided E(1/IZ"(Xo)l) < oo. For sim-
 plicity, suppose X = [0, 11. Fix h > 0 and let X0(h) = argmaxZ(kh). Then

 P(Xo(h) = kh, IZ"(kh)l < E) = P(2h-1 IZ'(kh)l < IZ"(kh)l < c) + o(h)

 as h 0. This implies

 P(IZ"(Xo)I <E; x z E I(X)) = o(E2)

 as e 0;

 Et 1 )^; Xo EI(X)= j ( >x;XocX) dx<oo. D()

 The following is an immediate corollary of Theorem 1.

 COROLLARY 1. Suppose c is chosen so that

 P(I(l(x),E)I < cUIIl(x)I, V x C X) = 1 - a

 and {T(x); x E X} satisfies the conditions of Theorem 1. Then the confidence

 region (f(x) -caIil(x)Ij, f(x)+coijl(x)jI) has simultaneous probability 1 -a - 0(62)
 over the class

 b, 1= ff: Im(x)I <6, m(x) - m(x')I <61 x -x'l IIT'(x)jI, V x,x' cX,

 with 61 = 0(6).

 We now seek to modify the basic approximation formulae from Section 2. In
 the proof of Theorem 1, several sources contributing to the 0(62) error term
 have been identified. Some of these sources are related to regions of overlap of
 the tube, and it is not possible to approximate these terms while retaining the
 simplicity of the original tube formulae.

 Consider the representation (3.1), with the additional assumption that for

 each x, ,l is chosen so that T"(x) lies in the space spanned by T(x), T'(x) and
 rj1, that is,

 T"(x) = -T'(x)I2T(x) + (T"xT'(x) T'(x) + a(x)71(x),

 for an appropriate a(x) > 0. This leads to

 (Tf(Xo) ?) E= - (T(Xo), E) (I IT'(Xo)l12 - a(Xo)tl).
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 SIMULTANEOUS CONFIDENCE BANDS 1341

 Rearranging (4.6),

 P sup 1 Z6(x)I > c}

 < p{Z(Xo) > c - 6Vm(Xo) - IT'(Xo)II2 - +} (62)
 2c(tJT'(Xo)JJ2 - a(Xo)tl)

 Analysis of (4.7) is made complicated by the a(Xo)tl term. For some special
 manifolds, such as in the example earlier in this section, a(x) = 0 for all x. More
 generally, interest is focused on values of E such that t1 is small, and little is
 lost by ignoring this term. This leads to the approximation

 P sup JZ(x) + 6m(x)l > c}
 x e x

 I j7r (P(X2 > ci(x)2) + p(x2> c2(x))) IT'(x)II dx,

 where ci(x) = c - 6m(x) - 62/2c and c2(x) = c + Em(x) - 62/2c. For large values
 of c, the x2 function is convex, so c - 62/(2c) is usually conservative, leading to
 our final bias-corrected approximation:

 P (sup IZ(x) + 6m(x)l > c
 x E x

 (4.8) 2 2)
 (4.8) ~27r P(2 >(- ))+P(X2 > (c+ E - mint c 7 26))]

 Similar corrections may be obtained for the boundary term. The main ideas
 underlying this approximation extend to the case d > 1, with the definition
 of 61 extended to include all directional derivatives. Note also that, for large
 c, 62/c is small. In a simulated example in the next section, we find little is lost

 if 61 is ignored.

 5. Simulations. The first example consists of a one-dimensional design
 with n = 50 and xi = (i - 1)/49. Four fitting procedures were used, a quadratic
 regression and a local linear regression with three different bandwidths. The
 local linear regression assigns weights wi(x) = W((x - xi)/h), and estimating
 f(x) using weighted least squares. We use the tricube weight function

 (5.1) W(u) = IulI<1,
 0 O, otherwise.

 Local regression is preferred to kernel methods since it has substantially re-
 duced bias, particularly at boundary regions. If the true mean function is ex-
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 1342 J. SUN AND C. R. LOADER

 TABLE 1

 Simulated coverage probabilities for a quadratic regression and locally weighted regression with 50

 equally spaced points on [0, 11

 -~~~~~~~~~~-
 1 - ct

 Ko Jv 0.90 0.95 0.99

 Quadratic 3.9147 47 0.9068 0.9519 0.9899

 h = 0.10 18.4906 38.649 0.9132 0.9556 0.9920
 h = 0.30 6.7004 45.406 0.9088 0.9538 0.9913
 h = 0.50 4.3422 46.768 0.9054 0.9528 0.9910

 Simulation s.e. 0.0009 0.0007 0.0003

 pected to have substantial curvature, further bias reduction can be obtained
 by fitting local quadratic polynomials. See Cleveland (1979) and Hastie and
 Loader (1993) for further discussion of these issues.

 For each fitting procedure, a value of xo is computed with X = [0, 1]; for
 a = 0.1, 0.05 and 0.01, critical values c are computed by solving (2.2). Simula-
 tions of size 105 are then used to estimate the true coverage probabilities in
 the absence of bias; the results are shown in Table 1. As expected, the simula-
 tions indicate the true coverage slightly exceeds the nominal coverage in most
 cases. The approximation is most conservative when r0 is large. The normalized
 residual sum of squares is used as the variance estimate, with the distribution
 approximation (2.8).

 We show the results of a two-dimensional simulation in Table 2. The design
 consisted of observations at the points ((i - 1)/9, (j - 1)/9), i, j = 1, ... , 10; confi-
 dence regions are simulated over the unit square. We use a bivariate quadratic
 regression and local linear regression with three different bandwidths. When

 fitting at x, the observations receive weights wi(x) = W(IIx - xill/h) with W
 defined by (5.1).

 WVhich terms are important? In Table 3, we compare the approximations
 obtained using one, two and three terms from (2.7). One term seems inadequate

 TABLE 2

 Simulated coverage probabilities for a bivariate quadratic regression and a local linear smoother:

 the design consists of 100 points in a 10 x 10 grid on the unit square

 1- a

 KO C0 v 0.90 0.95 0.99

 Quadratic 9.6092 9.9055 94 0.9071 0.9526 0.9901
 h = 0.30 46.9323 25.4649 77.785 0.9199 0.9602 0.9920

 h = 0.50 19.1612 15.9367 88.968 0.9085 0.9550 0.9910
 h = 0.80 8.6926 10.5536 93.702 0.9048 0.9534 0.9900

 Simulation s.e. 0.0009 0.0007 0.0003
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 SIMULTANEOUS CONFIDENCE BANDS 1343

 TABLE 3

 Comparison of the approximation formula with one, two and three terms: the first four models

 correspond to the case of Table 2; the final two cases consist of fitting a quadratic regression to

 points on a 5d grid on the unit cube, with d = 3 and d = 4, respectively

 c v One term Two terms Three terms Sim.

 Quadratic 3.1418 94 0.9633 0.9488 0.9500 0.9526

 h = 0.30 3.6630 77.785 0.9554 0.9471 0.9500 0.9602

 h = 0.50 3.3700 88.968 0.9598 0.9477 0.9500 0.9550

 h = 0.80 3.1249 93.702 0.9652 0.9491 0.9500 0.9534

 Three-dimensional 3.5178 115 0.9692 0.9501 0.9500

 Four-dimensional 3.8043 610 0.9721 0.9509 0.9500

 in most cases; the approximation may substantially overestimate the true cov-
 erage. The third term has contributed little in most cases. The higher-order

 terms are most important when the manifold {T(x); x E X} is small; this may
 result from a smoother with large bandwidth, or finding confidence bands over
 a small region of the predictor space.

 In Table 4 we show simulated coverage probabilities using a model with bias.

 The design is again 50 equally spaced points on [0, 11. The true mean function
 is f(x) = 2 sin(Qrx/2) and af = 1. Five different bandwidths are used; the risk,

 defined as EY = 1E(f(x,) - f(x,))2, indicates the range of bandwidths that would
 be reasonable in practice.

 Since the true mean function is known, exact values of 6 and 61 may be
 calculated. The simulations are of size 10,000.

 Without any bias correction, the coverage is much less than the nominal 95%

 unless a small bandwidth is used. Using the true values of 6 and 61, the bands

 TABLE 4

 Simulated coverage probabilities in the presence of bias, with various bias corrections: the design
 consists of 50 equally spaced points on [0, 1]; the mean function is f(x) = 2 sin(7rx/2); a local linear

 fit is used

 h

 0.10 0.20 0.30 0.40 0.50

 6 0.084 0.465 1.244 2.441 5.737

 61 0.074 0.364 0.993 2.550 7.098
 Risk 8.675 5.401 5.214 6.654 9.295

 No correction 0.9488 0.9327 0.8489 0.5128 0.0900

 6 only 0.9496 0.9674 0.9872 0.9903 0.9893

 6 and 61 0.9497 0.9678 0.9872 0.9903 0.9893
 Triangle 0.9587 0.9840 0.9937 0.9948 0.9947

 6 (estimate) 0.9906 0.9877 0.9772 0.9201 0.7101

 6,61 (estimate) 0.9914 0.9891 0.9778 0.9204 0.7101
 Triangle (estimate) 0.9957 0.9948 0.9870 0.9478 0.7853
 Point estimate 0.7860 0.8249 0.8481 0.8088 0.6241
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 1344 J. SUN AND C. R. LOADER

 TABLE 5

 Critical values for acetylene data

 Unadjusted Adjusted

 c a 6 c Volume

 Linear 3.1618 3.624 3.986 6.7417 6.84 x 104
 Quadratic 3.8184 1.066 1.059 4.4431 1.87 x 104

 are conservative in all cases. When estimated 6 and 61 are used, the bands are
 conservative except for large bandwidths. Note also the effect of including 61 is
 very small; little is lost if 61 is ignored. Using mii(x) as a point estimate in (4.2)
 is a failure; in many cases this is worse than doing no adjustment, and in all
 cases coverage in substantially less than the nominal 95%.

 We conclude with an application to the dataset of Snee (1977), studied in the

 simultaneous confidence band setting by several authors. Naiman (1987) and
 Knafl, Sacks and Ylvisaker (1985) both fit a bivariate linear model; however,
 standard methods can be used to show quadratic terms are highly significant.
 Cubic terms appear less significant.

 We show approximate values of c for 95% confidence and X = [1100, 1300] x
 [5.3,231 in Table 5. Note that when a is known and bias is neglected, our method
 gives critical values within ?0.01 of those obtained by Naiman (1987). However,
 we are unable to reconcile our results with those of Knafl, Sacks and Ylvisaker
 (1985) and believe their computations are in error.

 We obtain approximate values of 6 by considering the difference between
 the linear and quadratic fits in the linear case, and the difference between
 the quadratic and cubic fits in the quadratic case. We ignore the 61 term. The
 adjusted critical values are in both cases vary much larger than the unad-
 justed critical values. The quadratic regression gives a much smaller confidence
 region.
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