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Abstract. We show that the spline kernel of order p is a so-called semiseparable function with
semiseparability rank p. A consequence of this is that kernel matrices generated by the spline kernel
are rank structured matrices that can be stored and factorized efficiently. We use this insight to
derive new recursive algorithms with linear complexity in the number of knots for various kernel
matrix computations. We also discuss applications of these algorithms, including smoothing spline
regression, Gaussian process regression, and some related hyperparameter estimation problems.
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1. Introduction. Spline functions play a key role in many areas of applied math-
ematics. They are flexible and have good approximation properties, and they arise
naturally, e.g., in the so-called smoothing spline regression problem

minimize J (f) ≡ 1

n

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a

∣∣∣f (p)(x)
∣∣∣2 dx .(1.1)

The vector y = (y1, . . . , yn) and a < x1 < x2 < · · · < xn < b are given, λ ≥ 0 is a
parameter, p is a natural number less than or equal to n, and the pth derivative of f
is assumed to be square integrable. The second term of the functional J (f) may be
viewed as a roughness penalty. Schoenberg [15] showed that the solution to (1.1) is
a so-called natural spline of order 2p with knots x1, . . . , xn. The set of such splines
form a vector space of dimension n, and hence the variational problem (1.1) can be
cast as an equivalent finite-dimensional problem by introducing a suitable set of basis
functions; see, e.g., [16] for an introduction to spline functions. Alternatively, the
solution to (1.1) can be found by solving a convex quadratic optimization problem of
the form [20]

minimize
1

n
‖y − (Σα+ Fβ)‖22 + λαTΣα(1.2)

with variables α ∈ Rn and β ∈ Rp. The matrix Σ is symmetric and positive semidefi-
nite of order n with entries generated by the so-called spline kernel, and F ∈ Rn×p is a
Vandermonde matrix. Given an optimal solution (α?, β?) to (1.2), the natural spline
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390 MARTIN S. ANDERSEN AND TIANSHI CHEN

of order 2p that interpolates (x1, ŷ1), . . . , (xn, ŷn) with ŷ = Σα? + Fβ? is the unique
optimal solution to (1.1). It can be shown from the optimality condition associated
with (1.2) that there exists a solution (α?, β?) that satisfies the system of equations[

Σ + nλI F
FT 0

] [
α?

β?

]
=

[
y
0

]
.(1.3)

Forming this system explicitly requires O(n2) memory, and solving it using a standard,
general-purpose method requires O(n3) floating-point operations (flops).

The main purpose of this paper is to show that the spline kernel is a so-called
p-semiseparable function, and as a consequence, the matrix Σ is a rank structured
matrix. Specifically, we show that Σ is a so-called extended generator representable
p-semiseparable matrix (see Definition 3.5). In other words, the lower-triangular part
of Σ, which we will denote by tril(Σ), is generated by a rank p matrix, i.e., it can be
expressed as

tril(Σ) = tril
(
UV T

)
, U, V ∈ Rn×p.

We show this in section 3, and it has two important consequences: (i) the matrix
Σ admits an implicit representation (in terms of its generators U and V ) that only
requires O(pn) memory, and (ii) the system (1.3) can be solved in O(p2n) flops. As
a second contribution, we show in section 4 that key computations that involve Σ
can be carried out efficiently (e.g., in O(p2n) flops rather than O(n3) flops) by ex-
ploiting the inherent structure. Specifically, we show that positive definite matrices
of the form Σ + diag(d) may be factorized as LLT where L is lower triangular and,
like Σ, it has a memory-efficient implicit representation. We also derive an implicit
representation of L−1 that we use to construct efficient recursive algorithms for com-
puting the diagonal elements of matrices of the form (Σ + diag(d))−1 and the trace
of, e.g., (Σ + diag(d))−1Σ. This is useful for model selection based on generalized
cross validation (GCV) or generalized maximum likelihood (GML) estimation, e.g.,
in the context of smoothing spline regression. We provide a brief review of theory
pertaining to smoothing spline regression in the next section, and in section 5, we
discuss how the algorithms that we derive in section 4 can be applied to smoothing
spline regression and Gaussian process regression. Finally, we provide a numerical
example in section 6 that demonstrates the computational efficiency of some of the
algorithms presented in section 4, and we conclude the paper in section 7.

2. Background and related work. Before we present our main results in
sections 3 and 4, we briefly introduce notation, recall some results from the literature
about splines and smoothing spline regression, and discuss related work. Interested
readers may find a comprehensive introduction to smoothing spline regression in, e.g.,
the monographs by Wahba [20] and Schumaker [16].

2.1. Notation. We denote by Rn+ the set of elementwise nonnegative vectors in
Rn, and Rn++ = intRn+ denotes its interior (i.e., elementwise positive vectors). Given
n real numbers x1, . . . , xn, we define x = (x1, . . . , xn) to be a column vector in Rn.
The identity matrix of order n is denoted In; we will simply use I when the order can
be inferred from its context. The vector ek denotes the unit vector whose kth element
is equal to 1, and 1 is the vector of ones. Given a square matrix A of order n, tril(A)
denotes the lower-triangular matrix obtained from A by setting all elements above
the main diagonal to zero, and tril(A, k) is obtained from A by setting all elements
above the kth superdiagonal to zero (k > 0 corresponds to a superdiagonal, k < 0
corresponds to a subdiagonal, and tril(A, 0) = tril(A)). Similarly, triu(A) denotes the
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SMOOTHING SPLINES AND RANK STRUCTURED MATRICES 391

upper-triangular part of A and triu(A, k) = tril(AT ,−k)T . Given a vector x ∈ Rn,
diag(x) is a diagonal matrix of order n with the elements of x as its diagonal entries.
Finally, L2[a, b] denotes the space of square integrable functions defined on the interval
[a, b].

2.2. Splines and smoothing spline regression. We start by recalling the
definition of a univariate polynomial spline. Given a set of n simple knots {x1, . . . , xn}
and an interval [a, b] such that a = x0 < x1 < x2 < · · · < xn < xn+1 = b, a polynomial
spline g(x) of order r is a real-valued function, defined on [a, b], that satisfies the
following conditions:

(i) g is a polynomial of degree at most r − 1 on any subinterval [xj , xj+1] (j =
0, . . . , n),

(ii) g has r − 2 continuous derivatives (i.e., g ∈ Cr−2).
We will denote the set of polynomial splines by Sr(∆), where ∆ = {x0, x1, . . . , xn+1}.
The set of functions that satisfy the first condition has dimension (n+ 1)r, and since
the second condition imposes r− 1 constraints for each of the n knots, the dimension
of Sr(∆) is n+ r.

The set of natural polynomial splines of order r = 2p, which we will denote
S2pnat(∆), is the n dimensional subset of S2p(∆) that is obtained by imposing the
additional condition that

(iii) g is a polynomial of degree at most p − 1 on each of the subintervals [a, x1]
and [xn, b].

As mentioned in the introduction, Schoenberg [15] showed that the solution to the
smoothing spline regression problem (1.1) is a natural polynomial spline of order 2p.

We now turn our attention to the problem (1.1) and let the functional J (f) be
defined on the Sobolev space

W 2
p [a, b] =

{
f : f, f ′, . . . , f (p−1) absolutely continuous, f (p) ∈ L2[a, b]

}
endowed with the inner product

〈f, g〉 =

p−1∑
k=0

f (k)(a)g(k)(a) +

∫ b

a

f (p)(u)g(p)(u) du, f, g ∈W 2
p [a, b].(2.1)

It follows from Taylor’s theorem that any f ∈W 2
p [a, b] can be expressed as

f(x) =

p−1∑
k=0

f (k)(a)

k!
(x− a)k +

∫ x

a

(x− u)p−1

(p− 1)!
f (p)(u) du,(2.2)

where the last term is the integral form of the remainder. Furthermore, the inner
product (2.1) implies that the space W 2

p [a, b] can be decomposed as W 2
p [a, b] = H0 ⊕

H1, where H0 and H1 are orthogonal complements and defined as [20]

H0 = span {φ1, . . . , φp} , φk(x) =
(x− a)k−1

(k − 1)!
, k = 1, . . . , p,

H1 =
{
f : f (k)(a) = 0, k = 0, . . . , p− 1, f (p) ∈ L2[a, b]

}
.

As a consequence, every f ∈W 2
p [a, b] has a unique decomposition f = f0 + f1, where

f0 ∈ H0 and f1 ∈ H1. It is easy to check that if f ∈ H0, then the remainder term in
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392 MARTIN S. ANDERSEN AND TIANSHI CHEN

(2.2) is zero, and similarly, if f ∈ H1, then only the remainder term can be nonzero.
If we let P1f denote the orthogonal projection of f onto H1, the roughness penalty
in (1.1) can be expressed as

λ

∫ b

a

∣∣∣f (p)(u)
∣∣∣2 du = λ〈P1f,P1f〉,

and hence it can be viewed as a penalty on the remainder term in the Taylor expansion
(2.2).

Both H0 and H1 are reproducing kernel Hilbert spaces (RKHSs). Their corre-
sponding reproducing kernels (RKs) are

K0
p(s, t) =

p∑
k=1

φk(s)φk(t),(2.3)

K1
p(s, t) =

∫ b

a

Gp(s, u)Gp(t, u) du,(2.4)

where Gp(s, u) = max(0, s − u)p−1/(p − 1)! is the Green’s function for the problem
Dpf = g with f ∈ H1, g ∈ L2[a, b], and where the operatorDp is the pth derivative; we
refer the interested reader to [11] for an introduction to RKHSs. The kernel functions
K0
p and K1

p are both positive semidefinite, and H = H0 ⊕H1 is itself an RKHS with
RK K0

p +K1
p. We remark that K0

p(s, t) consists of p multiplicatively separable terms,
and, as we will show in section 3, K1

p(s, t) is a so-called semiseparable function with
semiseparability rank p.

Kimeldorf and Wahba [9] showed that the solution to (1.1) can be expressed as

f̂(x) =

p∑
k=1

β?k φk(x) +

n∑
j=1

α?j ξj(x),(2.5)

where ξj(x) = K1
p(xj , x) and where the parameter vectors α? and β? satisfy the

system of equations (1.3). The matrix F in (1.3) is of size n× p, and its (i, j) entry is
Fij = φj(xi). Moreover, Σ is a kernel matrix generated by the kernel function K1

p, i.e.,
the (i, j) entry is Σij = K1

p(xi, xj). We will show in section 3 that the semiseparable
structure of K1

p carries over to Σ.
It can be shown that functions of the form (2.5), parameterized by two vectors

α and β instead of α? and β?, are natural splines if FTα = 0; see [20]. Finally, we
note that our assumption that a < x1 < x2 < · · · < xn < b implies that Σ is positive
definite; more generally, if we were to assume that a ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b, then
Σ will be positive semidefinite but not necessarily positive definite.

2.3. Stochastic processes. The smoothing spline regression problem (1.1) has
strong ties to Bayesian estimation. Specifically, suppose X(t) is a zero-mean Gaussian
process defined on [a, b] and with covariance function K1

p, and let

g(t) =

p∑
k=1

θkφk(t) + νX(t), t ∈ [a, b],(2.6a)

yi = g(ti) + εi, i = 1, 2, . . . , n,(2.6b)

where θ ∈ N (0, γIp), ε ∼ N (0, σ2In), and θ and X(t) are assumed to be independent.
Moreover, if we let fλ denote the solution to (1.1) with λ = σ2/(nν2) and xi = ti,
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SMOOTHING SPLINES AND RANK STRUCTURED MATRICES 393

then the conditional expectation of g(t) given the vector y is related to fλ through
the limit [20, Theorem 1.5.3]

lim
γ→∞

E[g(t) | y] = fλ(t), t ∈ [a, b].

The function fλ(t) interpolates the points (ti, ŷi) where ŷ = (ŷ1, . . . , ŷn) can be ex-
pressed as ŷ = H(λ)y and H(λ) is the so-called influence matrix

H(λ) = I − nλ
(
M−1λ −M−1λ F

(
FTM−1λ F

)−1
FTM−1λ

)
, Mλ = Σ + nλI.(2.7)

In section 5, we explain how the semiseparable structure of K1
p can be exploited in

computations that involve H(λ) or matrices with similar structure. It can be shown
that the covariance matrix associated with ŷ is given by σ2H(λ), and the ith diagonal
element of this covariance matrix can be used to construct Bayesian credible intervals
for g(ti). However, in practice, both σ and ν must somehow be selected or estimated in
order to construct such credible intervals, but only the ratio λ = σ2/(nν2) is necessary
to compute ŷ.

2.4. Parameter selection. We now briefly review two commonly used param-
eter selection criteria, namely GCV and GML. GCV chooses the parameter λ as a
minimizer of

GCV(λ) =
1
n‖(I −H(λ))y‖22(
1
n tr(I −H(λ))

)2 .(2.8)

We show in section 5 that tr(I − H(λ)) can be computed in O(p2n) flops using the
recursive algorithms that we derive in section 4.

A GML estimate of λ is a maximizer of the likelihood function of λ given y or,
equivalently, a minimizer of

GML(λ) =
yTQ2

(
QT2MλQ2

)−1
QT2 y

det
(
QT2MλQ2

)−1/(n−p) ,(2.9)

where Q2 ∈ Rn×(n−p) is a matrix whose columns form an orthonormal basis for the
nullspace of FT , i.e., FTQ2 = 0 and QT2Q2 = I. Furthermore, the GML estimate of
σ2 is

σ̂2 =
yT (I −H(λ̂))y

n− p
,

where λ̂ denotes the GML estimate of λ. An implicit representation of the matrix Q2

can be computed by means of a QR factorization

F =
[
Q1 Q2

] [R1

0

]
(2.10)

which requires O(p2n) flops, but the cost of evaluating (2.9) by means of a Cholesky
factorization of QT2MλQ2 is O((n− p)3) flops. We return to the GML objective (2.9)
in section 5, where we show how it can be evaluated in O(p2n) flops by exploiting the
structure of Mλ.
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394 MARTIN S. ANDERSEN AND TIANSHI CHEN

2.5. Related work. It is well known that for a given parameter λ, the smooth-
ing spline regression problem (1.1) can be solved in linear time. One of the earliest
algorithms is due to Reinsch [13], who derived an O(n) algorithm for the case where
p = 2. This corresponds to f being a natural cubic spline, which is a popular choice
in practice. Reinsch’s method is based on a parameterization of natural cubic splines
that leads to a banded system of equations of order n − 2 with bandwidth 5. The
approach can be generalized to other values of p, resulting in a system of equations
with a banded matrix of order n− p and bandwidth 2p + 1, as shown by Reinsch in
a follow-up paper [14]. Hutchinson and de Hoog [7] pointed out that only a partial
inverse of this band matrix is needed to compute a band of the influence matrix,
and it can be computed in O(p2n) flops using the recursively technique developed by
Erisman and Tinney [3]. Reinsch’s approach can also be derived from a stochastic
perspective, as shown by Kohn and Ansley [10]. By applying a modified Kalman filter
and Kalman smoothing to a stochastic model by Wahba [19], they derived an O(n)
algorithm for smoothing spline regression and parameter estimation.

The algorithms that we present in section 4 draw upon an extensive body of
literature on semiseparable and rank structured matrices; see, e.g., the books by
Vandebril, Van Barel, and Mastronardi [18, 17] for a comprehensive overview. We
note that our algorithm for computing the Cholesky factorization of Σ + diag(d),
Algorithm 4.3, is very similar to an algorithm proposed by Foreman-Mackey et al.
[4] which computes an LDL decomposition of an extended generator representable
p-semiseparable matrix that arises from the so-called celerite kernel. However, our
results pertaining to the implicit inverse of the Cholesky factor, Theorem 4.1 and
Algorithm 4.4, appear to be new.

As a special case of the semiseparable structure of the spline kernel, Chen et al.
[2] and Carli, Chen, and Ljung [1] pointed out that for p = 1, the stable spline kernel
generates a kernel matrix that has a tridiagonal inverse. The stable spline kernel is
closely related to the spline kernel, and it has applications in system identification. We
briefly discuss how our results apply to the stable spline kernel in section 5. Other
stochastic processes with semiseparable covariance functions include Brownian motion
and the Brownian bridge, and Keiner and Waterhouse [8] exploited the semiseparable
structure of the covariance matrix associated with these processes to perform fast
principal component analysis.

3. The spline kernel. In this section, we present our main results, namely that
K1
p(s, t) is a p-semiseparable function and that, as a consequence, kernel matrices

generated by K1
p(s, t) are rank structured matrices that possess a computationally

favorable structure. We start with a formal definition of p-semiseparable functions.

Definition 3.1. A real-valued function g(s, t) is said to be p-semiseparable (or
semiseparable with semiseparability rank p) if

g(s, t) =

{∑p
k=1 uk(s)vk(t), s ≥ t,∑p
k=1 pk(s)qk(t), s < t,

(3.1)

where uk, vk, pk, and qk, for k = 1, . . . , p, are univariate functions.

Remark 3.2. If the function g is symmetric (i.e., g(s, t) = g(t, s)), then qk = uk
and pk = vk for k = 1, . . . , p.

To simplify our notation, we will restrict our attention to a “standardized” version
of the spline kernel (2.4), defined on [0, 1]× [0, 1] and given by
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κp(s, t) =

∫ 1

0

Gp(s, u)Gp(t, u) du, s, t ∈ [0, 1],(3.2)

where Gp(s, u) = max(0, s − u)p−1/(p − 1)!. Using integration by substitution, it is
easy to check that K1

p, which is defined on [a, b]× [a, b], may be expressed in terms of
κp as

K1
p(s, t) =

∫ b

a

Gp(s, u)Gp(t, u) du = (b− a)2p−1κp

(
s− a
b− a

,
t− a
b− a

)
, s, t ∈ [a, b].

We are now ready to state our first result.

Theorem 3.3. The spline kernel of order p can be expressed as

κp(s, t) =

p−1∑
k=0

(−1)k

(p− 1− k)!(p+ k)!
(st)p−1−k min(s, t)2k+1, s, t ∈ [0, 1].(3.3)

The proof is provided in Appendix A. As a corollary to Theorem 3.3, we now show
that κp is p-semiseparable.

Corollary 3.4. The spline kernel κp(s, t) is symmetric and semiseparable with
semiseparability rank p.

Proof. Using Theorem 3.3, we may express κp(s, t) as

κp(s, t) =

{∑p−1
k=0(−1)kφp−k(s)φp+1+k(t), s ≥ t,∑p−1
k=0(−1)kφp−k(t)φp+1+k(s), s < t,

where φk(t) = tk−1/(k− 1)! for k = 1, . . . , 2p. The desired result follows by observing
that this is of the form (3.1) with uk(s) = φp+1−k(s), vk(t) = (−1)k−1φp+k(t), pk(s) =
vk(s), and qk(t) = uk(t) for k = 1, . . . , p.

We now turn our attention to symmetric kernel matrices of the form

(Kp)ij = κp(xi, xj), i, j ∈ {1, . . . , n},

i.e., Kp is a symmetric matrix with entries that are generated by the spline kernel κp
and a sequence x1, . . . , xn. Recall that the kernel function κp is positive semidefinite,
and as a consequence Kp is always positive semidefinite. Moreover, as we will show
next, the semiseparable structure of the spline kernel carries over to the corresponding
kernel matrices. We will need the following definition before we state the result in
Corollary 3.7.

Definition 3.5 (see [18, p. 304]). A square matrix A of order n is said to be
extended {p, q}-generator representable semiseparable, with natural numbers p ≥ 0 and
q ≥ 0, if

tril(A) = tril
(
UV T

)
,(3.4)

triu(A) = triu
(
PQT

)
,(3.5)

where U, V ∈ Rn×p and P,Q ∈ Rn×q are so-called generators.

Remark 3.6. When A is symmetric (i.e., Q = U and P = V ) we will use the
shorthand notation A = S(U, V ), where

S(U, V ) = tril
(
UV T

)
+ triu

(
V UT , 1

)
, U, V ∈ Rn×p,
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and we will say that A is an extended generator representable p-semiseparable matrix,
or equivalently, A is an extended generator representable semiseparable matrix with
semiseparability rank p.

Corollary 3.7. The kernel matrix Kp generated by the spline kernel κp(s, t) and
a monotonic sequence x1, . . . , xn is an extended generator representable semiseparable
matrix with semiseparability rank p.

Proof. Let x = (x1, . . . , xn) and φk(x) = 1
(k−1)! (x

k−1
1 , . . . , xk−1n ) for k = 1, . . . , 2p.

We start by assuming that x1, . . . , xn is monotonically increasing. This implies that
for i ≥ j, we have

(xixj)
p−1−k min(xi, xj)

2k+1 = xp−1−ki xp+kj ,

and hence

tril(Kp) =

p−1∑
k=0

(−1)k tril
(
φp−k(x)φp+1+k(x)T

)
.

Similarly, if x1, . . . , xn is decreasing, then for i ≥ j we have that

(xixj)
p−1−k min(xi, xj)

2k+1 = xp+ki xp−1−kj

and hence

tril(Kp) =

p−1∑
k=0

(−1)k tril
(
φp+1+k(x)φp−k(x)T

)
.

It follows that Kp is a symmetric extended generator representable semiseparable
matrix with semiseparability rank p.

4. Algorithms. Corollary 3.7 establishes that the kernel matrixKp is symmetric
extended generator representable semiseparable with semiseparability rank p, i.e., Kp

may be expressed as S(U, V ) for some U, V ∈ Rn×p. To simplify notation, we will
henceforth write K instead of Kp when p is implied by the column dimension of the
generators U and V . We remark that the generator representation is not unique: it
is easy to verify from the definition of S(U, V ) that S(U, V ) = S(UC, V C−T ) for any
nonsingular matrix C ∈ Rp×p. However, any such generator representation allows us
to store the matrix K implicitly using only O(np) memory.

The generator representation S(U, V ) allows us to perform several operations such
as the matrix-vector product Kx in O(np) flops; see, e.g., [18]. To see this, note that
the kth element of Kx can be expressed as

eTkKx =

k∑
j=1

uTk vjxj +

n∑
j=k+1

vTk ujxj = uTk v̄k + vTk ūk,

where uk = UT ek, vk = V T ek, ūk =
∑n
j=k+1 ujxj , and v̄k =

∑k
j=1 vjxj . Notice that

ūk and v̄k may be computed recursively as

ūk = ūk−1 − ukxk
v̄k = v̄k−1 + vkxk

}
k = 1, . . . , n,

where we define ū0 = UTx and v̄0 = 0. Algorithm 4.1 exploits this recursive definition
and evaluates the matrix-vector product Kx in O(np) flops.
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Algorithm 4.1. Matrix-vector product Kx.

Input: U, V ∈ Rn×p such that K = S(U, V )
Output: Overwrites x by Kx

Initialization: v̄ ← 0, ū← UTx
for k = 1, . . . , n do
v̄ ← v̄ + vkxk
ū← ū− ukxk
xk ← uTk v̄ + vTk ū

end for

Algorithm 4.2. Cholesky factorization (K = LLT ).

Input: U ∈ Rn×p, V ∈ Rn×p such that K = S(U, V ) is positive definite
Output: W ∈ Rn×p such that L = tril(UWT )

Initialization: P ← 0
for k = 1, . . . , n do
wk ← vk − Puk
wk ← wk/

√
uTkwk

P ← P + wkw
T
k

end for

The technique behind the efficient algorithm for evaluating the matrix-vector
product Kx can be generalized to a number of other matrix operations. This, in
turn, will allow us to efficiently solve (1.3) and evaluate the GCV and GML parameter
selection criteria. Before we return to this in section 5, we now derive the necessary
algorithms. Implementations of these algorithms are available here: https://git.io/
JvYbI.

We start by showing that if K = S(U, V ) is positive definite, it has a Cholesky
factorization K = LLT , where L has a generator representation of the form

L = tril
(
UWT

)
, W ∈ Rn×p.(4.1)

A similar result was recently shown by Foreman-Mackey et al. [4] for kernel matrices
generated by the so-called celerite kernel. We start by showing that the matrix W
must satisfy the equation LW = V . To see this, partition K, L, U , V , and W into
conformable blocks, i.e.,[
K11 KT

21

K21 K22

]
=

[
L11 0
L21 L22

] [
LT11 LT21
0 LT22

]
, U =

[
U1

U2

]
, V =

[
V1
V2

]
, W =

[
W1

W2

]
.

It follows from the (2, 1) block that K21 = L21L
T
11, or equivalently, using the fact

that K21 = U2V
T
1 , we arrive at the equation L21 = U2W

T
1 , where W1 = L−111 V1.

This has to hold for all possible partitions, and since L11 = tril(U1W
T
1 ), we may

compute W = L−1V recursively in O(p2n) flops using Algorithm 4.2. The generator
representation of L may be used to compute matrix-vector products with L, LT , L−1,
and L−T in O(pn) flops. We will omit the details, which can be found in [18], and note
that the corresponding algorithms are special cases of the more general algorithms
included in Appendix C. We now turn our attention to a somewhat more general case.

4.1. Cholesky factorization. Suppose K + D is positive definite where K =
S(U, V ) is positive semidefinite and D = diag(d) for some d ∈ Rn+. The matrix K+D
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is a so-called quasiseparable matrix with quasiseparability rank p, and the inverse of
such a matrix is itself quasiseparable with quasiseparability rank p [18, Theorem 8.46].
We start by deriving an efficient Cholesky factorization ofK+D which requiresO(p2n)
flops. Specifically, we will show that the Cholesky factorization K +D = LLT yields
a factor L that has a generator representation of the form

L = tril
(
UWT ,−1

)
+ diag(c), W ∈ Rn×p, c ∈ Rn++.(4.2)

To show this, we introduce the following conformable block partitions:

U =

U1

uTk
U2

 , V =

V1vTk
V2

 , W =

W1

wTk
W2

 , L =

 L11 0 0

uTkW
T
1 ck 0

U2W
T
1 U2wk L22

 ,
where uTk , vTk , and wTk denote the kth row of U , V , and W , respectively. The first k
columns of the matrix equation K +D = LLT can then be expressed asK11 +D1 V T1 uk

uTk V
T
1 uTk vk + dk

U2V
T
1 U2vk

 =

 L11L
T
11 L11W1uk

uTkW
T
1 L

T
11 uTkW

T
1 W1uk + c2k

U2W
T
1 L

T
11 U2(ckwk +WT

1 W1uk)

 ,
where D1 = diag(d1, . . . , dk−1) and W1 = L−111 V1. It follows from the kth diagonal
entry that

ck =
(
uTk (vk −WT

1 W1uk) + dk
)1/2

,(4.3)

and from the entries below the kth diagonal entry, we obtain the equation

wk =
(
vk −WT

1 W1uk
)
/ck.(4.4)

Thus, we can compute W and c recursively by defining P0 = 0 and

Pk = Pk−1 + wkw
T
k , k = 1, . . . , n,

such that WT
1 W1 = Pk−1. The resulting algorithm, Algorithm 4.3, computes W =

L−1V and c in O(p2n) flops. As a special case, note that if K is positive definite
and D = 0, then (4.3) and (4.4) imply that ck = uTkwk, and hence L may also be
expressed as (4.1). Finally, we note that the generator representation (4.2) allows
us to compute the matrix-vector products Lx, LTx, L−1x, and L−Tx in O(pn) flops
using Algorithms C.1 to C.4, included in Appendix C.

Algorithm 4.3. Cholesky factorization (K +D = LLT ).

Input: U, V ∈ Rn×p and d ∈ Rn+ such that K = S(U, V ) and D = diag(d)
Output: W ∈ Rn×p and c ∈ Rn++ such that L = tril(UWT ,−1) + diag(c)

Initialization: P ← 0
for k = 1, . . . , n do
wk ← vk − Puk
ck ← (uTkwk + dk)1/2

wk ← wk/ck
P ← P + wkw

T
k

end for
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4.2. Inverse of Cholesky factor. The Cholesky factor L = tril(UWT ,−1) +
diag(c) is a {p, 0}-quasiseparable matrix, and it follows from [18, Theorem 8.46] that
L−1 is itself {p, 0}-quasiseparable. The following theorem provides a generator repre-
sentation of L−1 when K +D = LLT and D = diag(d) for some d ∈ Rn++.

Theorem 4.1. Let L = tril(UWT ,−1) + diag(c) be the Cholesky factor of K +
diag(d) � 0 where K = S(U, V ) is positive semidefinite and d ∈ Rn++. The inverse of
L can then be expressed as

L−1 = tril
(
Y ZT ,−1

)
+ diag(c)−1,(4.5)

where Y = L−1U and Z = L−TW (WTY − I)−T .

Proof. We start by showing that the assumption that d ∈ Rn++ implies that
WTY − I is nonsingular. Using Sylvester’s determinant identity, we may express
det(I −WTY ) as

det
(
I − L−1UWT

)
= det

(
L−1

)
det
(
L− UWT

)
= det

(
L−1

)
det
(
diag(c)− triu(UWT )

)
=

(
n∏
i=1

c−1i

)(
n∏
k=1

(
ck − uTkwk

))
.

It now follows from (4.3) and (4.4) that c2k = uTkwkck+dk or, equivalently, ck−uTkwk =
dk/ck which implies that

det
(
I −WTY

)
=

n∏
k=1

dk
c2k
.(4.6)

Thus, WTY − I must be nonsingular since c, d ∈ Rn++.
To show that the strictly lower-triangular part of L−1 is determined by Y and Z,

we partition L into blocks as

L =

[
L11 0
L21 L22

]
such that L11 and L22 are both square matrices. The inverse of L may then be
expressed as

L−1 =

[
L−111 0

−L−122 U2W
T
1 L
−1
11 L−122

]
,(4.7)

where we have used the fact that L21 = U2W
T
1 . Using conformable partitions of

Y = L−1U and Z = L−TW (WTY − I)−T , i.e.,[
Y1
Y2

]
=

[
L−111 U1

L−122 U2

(
I −WT

1 L
−1
11 U1

)] ,
[
Z1

Z2

]
=

[
L−T11 W1

(
I − UT2 L−T22 W2

)
L−T22 W2

]
(WTY − I)−T ,

we may express Y2Z
T
1 as

Y2Z
T
1 = L−122 U2

(
I −WT

1 L
−1
11 U1

) (
WTY − I

)−1 (
I −WT

2 L
−1
22 U2

)
WT

1 L
−1
11 .(4.8)
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Algorithm 4.4. Inverse of L = tril(UWT ,−1) + diag(c).

Input: U,W ∈ Rn×p, c ∈ Rn++

Output: Y,Z ∈ Rn×p such that L−1 = tril(Y ZT ,−1) + diag(c)−1

Compute Y ← L−1U using Algorithm C.3
Compute Z ← L−TW using Algorithm C.4
Compute Z ← Z(UTZ − I)−1

It follows from the definition of Y that the matrix WTY − I may be expressed as

WTY − I =

[
W1

W2

]T [ L−111 0

−L−122 L21L
−1
11 L−122

] [
U1

U2

]
− I

= WT
1 L
−1
11 U1 +WT

2 L
−1
22 U2 −WT

2 L
−1
22 U2W

T
1 L
−1
11 U1 − I

= −
(
I −WT

2 L
−1
22 U2

) (
I −WT

1 L
−1
11 U1

)
,

and hence the right-hand side of (4.8) reduces to the (2, 1) block of L−1 in (4.7). The
(2, 1) block of L−1 is therefore equal to Y2Z

T
1 . This holds for all block partitions of

the form (4.7), and hence we have that tril(L−1,−1) = tril(Y ZT ,−1). To complete
the proof, we note that the diagonal elements of L−1 are given by 1/L11, . . . , 1/Lnn
(this readily follows from the diagonal of the equation LL−1 = I), and hence L−1

may be expressed as (4.5).

Theorem 4.1 implies that L−1 has a generator representation (Y,Z, c) that only
requiresO(np) memory, and this representation can be computed inO(p3n) flops using
Algorithm 4.4. As we will show next, Theorem 4.1 allows us to compute the diagonal
elements of (K + D)−1 and the trace of matrices of the form (K + D)−1(K̃ + D̃),

where K̃ = S(Ũ , Ṽ ) and D̃ = diag(d̃), in O(p3n) flops.

Remark 4.2. The generator representation of the inverse Cholesky factor (4.5)
requires that d is a positive vector. If d = 0 and K = S(U, V ) is positive definite,
then the Cholesky factor of K still has a generator representation of the form (4.2),
but its inverse is no longer generator representable of the form (4.5) since WTY − I is
singular (see (4.6)). As a result, the representation (4.5) may require high numerical
precision to accurately compute all elements of L−1 from its generators when one or
more elements of d are small.

4.3. Additional algorithms. The kth diagonal element of (K + D)−1 can be
expressed as eTk (K +D)−1ek = ‖L−1ek‖22, where K +D = LLT . We now show that
given a generator representation of L−1, all the diagonal elements of (K +D)−1 can
be computed in O(p2n) flops. Indeed, using the generator representation of L−1, we
can express ‖L−1ek‖22 as

c−2k +

n∑
j=k+1

(
yTj zk

)2
= c−2k + zTk Pkzk, Pk =

n∑
j=k+1

yjy
T
j , k = 1, . . . , n.

Noting that Pn = 0 and Pk = Pk+1 + yiy
T
i for k = 1, . . . , n − 1, we can compute all

the diagonal elements of (K +D)−1 recursively in O(p2n) flops using Algorithm 4.5.
In section 5, we show how this algorithm can be used to efficiently compute the
diagonal elements of matrices of the form H(λ), defined in (2.7). This is useful for
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Algorithm 4.5. Diagonal elements of (K +D)−1.

Input: Y,Z ∈ Rn×p, c ∈ Rn++ such that K +D = LLT and

L−1 = tril(Y ZT ,−1) + diag(c)−1

Output: b ∈ Rn such that bk = eTk (K +D)−1ek = ‖L−1ek‖22
Initialization: P ← 0
for k = n, . . . , 1 do
bk ← c−2k + zTk Pzk
P ← P + yky

T
k

end for

constructing Bayesian credible intervals, as mentioned in subsection 2.3. We also show
how Algorithm 4.5 can be used to efficiently evaluate tr(I−H(λ)) and hence also the
GCV function (2.8).

Next we consider the problem of computing the trace of matrices of the form
(K + D)−1(K̃ + D̃) where K̃ = S(Ũ , Ṽ ) for some Ũ , Ṽ ∈ Rn×p̃ and D̃ = diag(d̃) for
some d̃ ∈ Rn. In section 5, we will see that this can be used to efficiently evaluate a
partial derivative of a certain log-likelihood function. Assuming that K + D = LLT

with L = tril(UWT ,−1) + diag(c) and c ∈ Rn++, we have that

tr((K +D)−1(K̃ + D̃) =

n∑
k=1

eTk L
−1(K̃ + D̃)L−T ek.

The term eTk L
−1(K̃+ D̃)L−T ek only involves the first k elements of the vector L−T ek

and the leading principal minor of K̃ + D̃ of order k, i.e.,

eTk L
−1(K̃ + D̃)L−T ek =

[
Z1yk
c−1k

]T [K̃11 + D̃1 Ṽ1ũk

ũTk Ṽ
T
1 ũTk ṽk + d̃k

] [
Z1yk
c−1k

]
=
(
ũTk ṽk+d̃k

)
c−2k + yTk Z

T
1

(
K̃11 + D̃1

)
Z1yk+2yTk Z

T
1 Ṽ1ũkc

−1
k ,

where K̃11 denotes the leading principal minor of K̃ of order k−1, and Ṽ1 and Z1 de-
note the first k−1 rows of Ṽ and Z, respectively. Now define Rk =

∑k
i=1 ziṽ

T
i , or

equivalently, employing a recursive definition,

Rk = Rk−1 + zkṽ
T
k , R0 = 0.

Similarly, we define Pk = ZTEkE
T
k (K̃ + D̃)EkE

T
k Z, where Ek denotes the first k

columns of the identity matrix of order n. By expanding ZTEkE
T
k (K̃ + D̃)EkE

T
k Z,

we can obtain a recursive definition of Pk, i.e.,

Pk =

[
Z1

zTk

]T [K̃11 + D̃1 Ṽ1ũk

ũTk Ṽ
T
1 ũTk ṽk + d̃k

] [
Z1

zTk

]
= Pk−1 +

(
ũTk ṽk + d̃k

)
zkz

T
k + zkũ

T
k Ṽ

T
1 Z1 + ZT1 Ṽ1ũkz

T
k

= Pk−1 +
(
ũTk ṽk + d̃k

)
zkz

T
k + zkũ

T
kR

T
k−1 +Rk−1ũkz

T
k ,
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Algorithm 4.6. Trace of L−1(K̃ + D̃)L−T .

Input: Ũ , Ṽ ∈ Rn×p̃, d̃ ∈ Rn and Y,Z ∈ Rn×p, c ∈ Rn++ such that

K̃ = S(Ũ , Ṽ ), D̃ = diag(d̃), L−1 = tril
(
Y ZT ,−1

)
+ diag(c)−1

Output: b ∈ R such that b = tr(L−1
(
K̃ + D̃

)
L−T )

Initialization: b← 0, P ← 0, R← 0
for k = 1, . . . , n do

b← b+ yTk Pyk + 2yTk Rũkc
−1
k +

(
ũTk ṽk + d̃k

)
c−2k

P ← P +
(
ũTk ṽk + d̃k

)
zkz

T
k + zk(Rũk)T + (Rũk)zTk

R← R+ zkṽ
T
k

end for

where we define P0 = 0. It follows that

eTk L
−1(K̃ + D̃)L−T ek = yTk Pk−1yk + 2yTk Rk−1ũkc

−1
k +

(
ũTk ṽk + d̃k

)
c−2k ,

and hence

tr((K +D)−1(K̃ + D̃)) =

n∑
k=1

(
yTk Pk−1yk + 2yTk Rk−1ũkc

−1
k +

(
ũTk ṽk + d̃k

)
c−2k

)
.

Algorithm 4.6 evaluates this in O(pp̃n) flops using the recursive definitions of Rk and

Pk. As a special case of this algorithm, we mention that letting K̃ = 0 and d̃ = 1
yields the trace of (K +D)−1. However, we note that Algorithm 4.6 cannot be used
to compute the diagonal elements of (K +D)−1, so it cannot replace Algorithm 4.5.

5. Applications. We now discuss some applications of the algorithms intro-
duced in section 4. We start by revisiting the smoothing spline regression problem
(1.1), and next we turn to applications in Gaussian process regression.

5.1. Smoothing spline regression. Recall that the solution to the smoothing
spline regression problem (1.1) can be expressed as (2.5) where (α?, β?) is a solution
to the system of equations (1.3). Rearranging (1.3) yields the equivalent system of
equations

FTM−1λ Fβ? = FTM−1λ y

Mλα
? = y − Fβ?.

The matrix Mλ = Σ + nλI can be factorized as Mλ = LLT using Algorithm 4.3 in
O(p2n) flops, and we can also compute B = L−1F and the “thin” QR factorization
B = QR, where Q ∈ Rn×p and R ∈ Rp×p, in O(p2n) flops. This allows us to reduce
(1.3) to

Rβ? = QTL−1y(5.1)

LTα? =
(
I −QQT

)
L−1y,(5.2)

and hence we can solve for (α?, β?) in O(p2n) flops. The resulting spline interpolates
the points (x1, ŷ1), . . . , (xn, ŷn), where ŷ = Σα? + Fβ? = y − nλα?.
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The GCV objective (2.8) involves the matrix-vector product (I−H(λ))y and the
trace of I −H(λ), where H(λ) is the influence matrix (2.7). Using the factorizations
Mλ = LLT and L−1F = QR, we may rewrite I −H(λ) as

I −H(λ) = nλ
(
M−1λ −M−1λ F

(
FTM−1λ F

)−1
FTM−1λ

)
= nλL−T

(
I −QQT

)
L−1.(5.3)

Moreover, (I −H(λ))y = nλα? and

tr(I −H(λ)) = nλ
(

tr
(
M−1λ

)
−
∥∥L−TQ∥∥2

F

)
.

The term tr(M−1λ ) can be evaluated in O(p3n) flops using Algorithms 4.4 and 4.5,
and it requires O(p2n) flops to compute L−TQ and its Frobenius norm. We note that
in finite precision, Algorithm 4.4 should be avoided when λ is small: the generator
representation of the inverse Cholesky factor becomes unfavorable from a numerical
point of view when λ approaches zero (see Remark 4.2). An alternative when λ is
small is to compute tr(M−1λ ) as

∑n
i=1 ‖L−1ei‖2 in O(pn2) flops using Algorithm C.3.

To evaluate the GML objective (2.9), we note that it can be expressed as

GML(λ) =
yT (I −H(λ))y

nλ
[
det(Mλ)−1 det

(
FTM−1λ F

)−1
det (FTF )

]1/(n−p)
∝ yT (I −H(λ))y

nλ det (Mλ)
−1/(n−p)

det
(
FTM−1λ F

)−1/(n−p) ,(5.4)

as shown in Appendix B. Using the fact that (I−H(λ))y = nλα? and the factorizations
Mλ = LLT and L−1F = QR, the expression (5.4) can be simplified as

yTα? det(L)2/(n−p) det(R)2/(n−p),(5.5)

which is readily evaluated in O(n) flops.

5.2. Gaussian process regression. The semiseparable structure of Σ also has
applications in Gaussian process regression. As an example, we consider the following
generalization of the observation model (2.6):

g(t) =

p∑
k=1

θkφk(t) + νX(t), t ∈ [a, b],(5.6a)

yi = Lig + εi, i = 1, . . . ,m,(5.6b)

where X(t) is a zero-mean Gaussian process with covariance function K1
p, the func-

tionals L1, . . . ,Lm are bounded and linear, and θ ∼ N (0, γI) and ε ∼ N (0, σ2I).
Moreover, we will assume that θ and X(t) are independent. It is easy to see that
the model (2.6) is obtained as a special case of (5.6) if we let m = n and define
Lig = g(ti) for i = 1, . . . , n. We note that the model (5.6) is closely related to the
so-called general smoothing spline regression problem [20]

minimize J̃ (f) ≡ 1

m

n∑
i=1

(yi − Lif)2 + λ

∫ b

a

∣∣∣f (p)(t)∣∣∣2 dt,
where the functional J̃ is defined on W 2

p [a, b].
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As a special case of (5.6), we will focus on an observation model with γ = 0
(implying that θ = 0) and discrete observations

Lig =

n∑
j=1

Aijg(tj), i = 1, . . . ,m,

where tj ∈ [a, b] for j = 1, . . . , n, and Aij is the (i, j) entry of a given matrix A ∈
Rm×n. The vector of observations can then be expressed as

y = Ax+ ε,(5.7)

where the jth entry of x ∈ Rn is xj = g(tj), and hence x ∼ N (0, ν2Σ) where the (i, j)
entry of Σ is given by K1

p(ti, tj). It follows that the posterior distribution of x is given
by

x | y, σ, ν ∼ N
(
σ−2Σw|yA

T y,Σw|y
)
,

where Σw|y = (ν−2Σ−1 + σ−2ATA)−1. The posterior mean σ−2Σw|yA
T y can also be

expressed as x̂ = ν2Σα? where

α? =
(
σ2I + ν2AΣAT

)−1
y.(5.8)

Moreover, the covariance function K1
p is an RK for H1, and the function

ĝ(t) = ν2
n∑
i=1

α?iK1
p(ti, t), t ∈ [a, b],

interpolates the points (ti, x̂i) for i = 1, . . . , n.
The hyperparameters ν and σ can be estimated by maximizing the likelihood

function associated with the marginal distribution

y | σ, ν ∼ N
(
0, σ2I + ν2AΣAT

)
.

Expressing the covariance matrix as ν2(AΣAT +mλI) with λ = σ2/(mν2), the neg-
ative log-likelihood (up to an additive constant) may be expressed as

ψ(λ, ν | y) = ν−2yT
(
AΣAT +mλI

)−1
y + log det

(
AΣAT +mλI

)
−m log(ν−2)

(5.9)

with domain domψ = R++ × R++. Note that ψ(λ, ν | y) is strictly convex with
respect to ν−2. Taking the derivative with respect to ν−2 and setting it equal to zero
yields

ν2 =
yT (AΣAT +mλI)−1y

m
,

and by substituting this expression for ν2 in (5.9), we obtain the univariate function

ψ̃(λ | y) = m log
(
yT
(
AΣAT +mλI

)−1
y
)

+ log det
(
AΣAT +mλI

)
+m.(5.10)

Minimizing (5.10) yields an estimate of λ, and a local minimum can be found using,
e.g., Newton’s method or a derivative-free method such as golden section search. We
note that the positivity condition λ > 0 can be handled implicitly by means of a
change of variables, e.g., by substituting eµ for λ with µ ∈ R.
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We now discuss how the semiseparable structure of Σ can be used to reduce the
computational cost of estimating the hyperparameters (λ, ν) and the cost of computing
α?. We will assume that a < t1 < t2 < · · · < tn < b such that Σ is positive definite
and can be factorized as Σ = LLT in O(p2n) flops using Algorithm 4.2. We will also
assume that the rank of A is r = min(m,n), i.e., A has full rank. In the special
case where A = I, the estimation problem can be solved in O(p3n) flops using the
algorithms from section 4, as outlined in subsection 5.1. More generally, the matrix
B = AL can be computed in O(mnp) flops by exploting the structure of L, and a
“thin” singular value decomposition B = USV T can be computed in O(max(m,n)r2)
flops where U ∈ Rm×r, S = diag(σ1, . . . , σr), and V ∈ Rn×r; see, e.g., [6]. We start
by considering the case where m ≤ n. This implies that r = m and

AΣAT +mλI = BBT + rλI = U(S2 + rλI)UT .(5.11)

Letting ỹ = UT y, which can be computed in O(r2) flops, we can express (5.10) as

ψ̃(λ | y) = r log

(
r∑
i=1

ỹ2i
σ2
i + rλ

)
+

r∑
i=1

log
(
σ2
i + rλ

)
+ r,(5.12)

and hence the complexity of evaluating ψ̃ is O(r). Furthermore, using (5.11), we have
that

ν2 =
ỹT
(
S2 + rλI

)2
ỹ

r
, α? =

1

ν2
U
(
S2 + rλI

)−1
ỹ.

Interestingly, minimizing (5.12) can be viewed as minimizing the ratio of the geometric
mean (GM) to the harmonic mean (HM) of the sequence (σ2

i +rλ)/ỹ2i for i = 1, . . . , r,
i.e., (5.12) satisfies

exp
(
ψ̃(λ | y)

)
∝

(∏r
i=1

σ2
i+rλ

ỹ2i

)1/r
(∑r

i=1
ỹ2i

σ2
i+rλ

)−1 ,
provided that ỹi 6= 0 for i = 1, . . . , n. The GM-HM inequality implies that the GM-
to-HM ratio is greater than or equal to 1. Moreover, the arithmetic mean of a positive
sequence is an upper bound on its GM, and this leads to the following upper bound:(∏r

i=1
σ2
i+rλ

ỹ2i

)1/r
(∑r

i=1
ỹ2i

σ2
i+rλ

)−1 ≤ ∑r
i=1

(
σ2
i + rλ

)
/ỹ2i

r
(∑r

i=1
ỹ2i

σ2
i+rλ

)−1 .(5.13)

The HM is a concave function on Rn++, and hence the upper bound is a quasicon-
vex function of λ. However, it is not clear if the left-hand side of (5.13) is itself a
quasiconvex function of λ.

Next, we consider the case where m ≥ n. We then have r = n and

(AΣAT +mλI)−1 =
1

mλ

(
I −B

(
mλI +BTB

)−1
BT
)

=
1

mλ

(
I − US

(
mλI + S2

)−1
SUT

)
,(5.14)

which follows from the Woodbury identity and the decompositionB = USV T . Letting
ỹ = UT y, which can be computed in O(mn) flops, we can express (5.10) as

ψ̃(λ | y) = m log

(
‖y‖22 −

r∑
i=1

ỹ2i σ
2
i

σ2
i +mλ

)
−

r∑
i=1

log

(
mλ

σ2
i +mλ

)
+m,
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which has evaluation complexity O(r). Finally, using (5.14), we arrive at

ν2 =
‖y‖22 − ỹTS(mλ+ S2)−1Sỹ

m2λ
, α? =

1

mλν2
(
y − US(mλI + S2)−1Sỹ

)
.

Thus, the computational cost of estimating the hyperparameters and computing α?

is therefore at most O(max(m,n)r2), regardless of m and n. Note that without
exploiting the structure of Σ, the computational bottleneck is either forming and
factorizing AΣAT (which costs O(rmax(m,n)2 + m3) flops) or forming and factor-
izing B = AL (which costs O(n3 + mn2 + max(m,n)r2) flops). Consequently, if the
semiseparable structure of Σ is ignored, the computational cost is O(mn2) instead of
O(r2 max(m,n)).

5.3. Kernel warping. New kernel functions can be constructed from the spline
kernel κp by means of a technique known as kernel warping. Specifically, by introduc-
ing a transformation η : I → [0, 1] where I is a subset of R, we can construct a new
kernel as

K̃(s, t) = κp(η(s), η(t)), s, t ∈ I.
An example of such a transformation is the monotonic transformation η(t) = e−ρt,
defined on I = [0,∞) and with parameter ρ > 0, which yields the so-called stable
spline kernel [12]

κssp (s, t; ρ) = κp
(
e−ρs, e−ρt

)
, s, t ∈ [0,∞).(5.15)

The stable spline kernel was introduced in the context of system identification as a
way to construct a prior that ensures stability of a dynamic system. Corollary 3.7,
combined with the monotonicity of the transformation t 7→ e−ρt, implies that the
kernel matrix Kss

p (ρ) generated by the stable spline kernel κssp (s, t; ρ) and a mono-
tonic sequence t1, . . . , tn inherits the semiseparable structure of the spline kernel.
In other words, Kss

p (ρ) is an extended generator representable semiseparable matrix
with semiseparability rank p, and hence Kss

p (ρ) = S(U, V ) for some U, V ∈ Rn×p. We
note that for a general transformation η (not necessarily monotonic) and a sequence

t1, . . . , tn, the warped kernel K̃ generates an extended generator representable matrix
with semiseparability rank p up to a symmetric permutation. We note that a recent
example of the use of kernel warping to derive new kernels from the spline kernel can
be found in [5].

We now outline how the algorithms from section 4 can be useful for Gaussian
process regression using a warped version of the spline kernel as covariance function.
As an example, we will consider an instance of the Gaussian linear model (5.7) where
the covariance matrix associated with x is ν2Kss

p (ρ) instead of ν2Σ. Moreover, we
will treat the parameter ρ as an unknown that should be estimated along with ν and
λ. Eliminating ν from the likelihood function, we arrive at

ψ̃(λ, ρ | y) = m log

(
yT

(
AKss

p (ρ)AT +mλI
)−1

y

)
+ log det

(
AKss

p (ρ)AT +mλI
)
+m,

which can be evaluated in O(max(m,n)r2) flops using the same approach as in sub-
section 5.2. Moreover, the partial derivatives of ψ̃ with respect to λ and ρ can be
expressed as

∂

∂λ
ψ̃(λ, ρ | y) = −m2 ‖c̃‖22

yT c̃
+m tr

(
C−1

)
,

∂

∂ρ
ψ̃(λ, ρ | y) = −m

c̃TA
dKss

p (ρ)

dρ AT c̃

yT c̃
+ tr

(
C−1

dKss
p (ρ)

dρ

)
,
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where C = AKss
p (ρ)AT+mλI and c̃ = C−1y. The derivative of the stable spline kernel

with respect to the parameter ρ is itself a semiseparable function with semiseparability
rank 2p− 1. To see this, note that for s ≥ t, Theorem 3.3 implies that

d

dρ
κssp (s, t; ρ) =

p−1∑
k=0

(−1)k

(p− 1− k)!(p+ k)!

d

dρ
e−ρ(p+k)se−ρ(p−1−k)t

= −
p−1∑
k=0

(−1)k((p+ k)s+ (p− 1− k)t)e−ρ(p+k)se−ρ(p−1−k)t

(p− 1− k)!(p+ k)!
.

It is easy to check that the right-hand side is a sum of 2p−1 multiplicatively separable
terms (since (p− 1− k)t vanishes when k = p− 1), and by the symmetry of κssp , the

derivative d
dρκ

ss
p is therefore semiseparable with semiseparability rank at most 2p− 1.

Consequently, d
dρK

ss
p (ρ) may be represented as

d

dρ
Kss
p (ρ) = S(Ũ , Ṽ ), Ũ , Ṽ ∈ Rn×(2p−1),

and hence tr(C−1
dKss

p (ρ)

dρ ) can be computed in O(mnp) flops given a singular value

decomposition B = USV T , where B = AL and Kss
p (ρ) = LLT . We note that in the

special case where A = I, Algorithms 4.4 and 4.6 can be used to evaluate the trace
of (Kss

p (ρ) + nλI)−1 d
dρK

ss
p (ρ) in O(p3n) flops without forming the matrix product.

6. Numerical example. To illustrate the efficiency of the algorithms derived
in this paper, we now compare the execution time for solving (1.3) and computing ŷ
when p = 2 using (i) Reinsch’s algorithm [13] and (ii) the semiseparable structure of
the spline kernel, as outlined in subsection 5.1. We implemented both algorithms in
MATLAB in an attempt to make a fair comparison. Our implementation of Reinsch’s
algorithm is based on sparse matrices and MATLAB’s built-in sparse Cholesky fac-
torization. The implementation of our algorithm is based on Algorithms 4.3 and C.3,
both of which we implemented as MATLAB MEX files written in C using a row-major
representation of the generators U , V , and W . Table 1 shows the average execution
time in milliseconds as a function of n and based on b107/nc repetitions. We used
λ = 10−9, and for each value of n, we generated a problem instance with observations

xi =
i− 1

n− 1
, yi = cos(2πxi) + 0.3 sin(10πxi) + εi, i = 1, . . . , n,

where ε1, . . . , εn are realizations of a zero-mean Gaussian random variable with stan-
dard deviation 0.1. The results confirm that the complexity is linear in n for both

Table 1
Average execution time in milliseconds.

n Reinsch Semiseparable Ratio
1000 0.78 0.23 3.4
2000 1.59 0.39 4.0
4000 2.99 0.81 3.7
8000 7.29 1.54 4.7

16000 15.47 2.97 5.2
32000 32.55 6.15 5.3
64000 70.29 13.10 5.4

D
ow

nl
oa

de
d 

11
/2

3/
21

 to
 1

28
.2

37
.8

2.
10

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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algorithms, and while our algorithm is roughly three to five times faster than Rein-
sch’s algorithm, we note that an implementation of Reinsch’s algorithm based on band
storage and suitable LAPACK routines would likely improve its performance.

7. Conclusions. We have shown that the spline kernel of order p is a semisepa-
rable function with semiseparability rank p. Building on this result, we have construc-
ted efficient, recursive algorithms for key computations that arise in smoothing spline
regression, Gaussian process regression, and related hyperparameter estimation prob-
lems. The complexity of these algorithms grows linearly with the number of knots,
and hence they match the complexity of the best, known algorithms for smoothing
spline regression such as Reinsh’s algorithm [13, 14]. More importantly, Theorem 4.1
and the algorithms derived in section 4 are not limited to kernel matrices generated by
the spline kernel, so their potential reach may extend beyond that of existing methods
for smoothing spline regression.

A natural next step would be to extend our results to tensor-product splines
defined on d-dimensional rectilinear grids. In two dimensions, a tensor-product spline
would result in a kernel matrix that can be expressed as a Kronecker product of two
rank structured matrices. A potential application of this is spatial-temporal modeling
where it may be natural to assume that the spatial and temporal dimensions are
separable.

Appendix A. Proof of Theorem 3.3.

Proof. Recall the definition of the spline kernel (3.2). This can also be expressed
as

κp(s, t) =

∫ min(s,t)

0

φp(s;u)φp(t;u) du, s, t ∈ [0, 1],(A.1)

where φk(t;u) = (t−u)k−1

(k−1)! for k integral and positive, and we define φ1(t; t) = 1. To

simplify the notation when u = 0, we define φk(t) = φk(t; 0).
We start by noting that for p = 1, we have κ1(s, t) = min(s, t). For p ≥ 2, we

may use integration by parts combined with the fact that

d

du
φk(t;u) =

{
−φk−1(t;u), k ≥ 2,

0, k = 1,

to express (A.1) as

κp(s, t) =

[
−φp(s;u)φp+1(t;u)

]min(s,t)

u=0

−
∫ min(s,t)

0

φp−1(s;u)φp+1(t;u) du .

Expanding the integral on the right-hand side by repeated use of integration by parts,
we arrive at the expression

κp(s, t) =

p−1∑
k=0

(−1)k
[
−φp−k(s;u)φp+1+k(t;u)

]min(s,t)

u=0

,

which for s ≥ t simplifies to

κp(s, t) =

p−1∑
k=0

(−1)kφp−k(s)φp+1+k(t), s ≥ t.
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Using the fact that κp(s, t) = κp(t, s) and the definition of φk, we arrive at

κp(s, t) =

p−1∑
k=0

(−1)k

(p− 1− k)!(p+ k)!
(st)p−1−k min(s, t)2k+1, s, t ∈ [0, 1],(A.2)

which holds for p ≥ 1.

Appendix B. Generalized likelihood function. We now consider the sto-
chastic process defined in subsection 2.3 and derive the generalized likelihood function
associated with the conditional distribution of y given the parameters λ, ν, and γ.
We have that

y | λ, ν, γ ∼ N
(
0, ν2Mλ + γFFT

)
,

and we are interested in the case where γ → ∞, corresponding to an improper prior
on the parameter vector θ. The negative log-likelihood function may be expressed as

ψ(λ, ν, γ | y) =
1

2
yT
(
ν2Mλ + γFFT

)−1
y +

1

2
log det

(
ν2Mλ + γFFT

)
+
n

2
log(2π),

and it is easy to check that its limit as γ →∞ is unbounded. The standard approach
to this problem is to project y onto the nullspace of FT . Specifically, if we let w =
QT2 y, where Q2 is obtained from the QR factorization (2.10), we may consider the
conditional distribution

w | λ, ν2 ∼ N
(
0, ν2QT2MλQ2

)
and the corresponding negative log-likelihood function

ψ(λ, ν | w) =
ν−2

2
wT
(
QT2MλQ2

)−1
w +

1

2
log det

(
QT2MλQ2

)
+
n− p

2
log(ν2) +

n

2
log(2π).

(B.1)

Setting the derivative with respect to ν−2 equal to zero and solving for ν2 yields the
optimality condition

ν2 =
wT
(
QT2MλQ2

)−1
w

n− p
,

and using this expression in (B.1), we arrive at the one-dimensional profile

ψ̃(λ | w) =
1

2
log det

(
QT2MλQ2

)
+
n− p

2
log
(
wT
(
QT2MλQ2

)−1
w
)

+ ζ,(B.2)

where ζ is a constant. It is easy to check that the function GML(λ), defined in (2.9),
is proportional to exp(ψ̃(λ | w)).

The function (B.2) may be rewritten as

ψ̃(λ | y) =
1

2
log det(Mλ) det

(
FTM−1λ F

)
+
n− p

2
log
(
λ−1yT (I −H(λ)) y

)
+ ζ̃,

(B.3)

where ζ̃ is a constant. To see this, first note that Schur’s determinant identity implies
that

det

([
ν2Mλ F
−FT γ−1I

])
= det(ν2Mλ) det

(
γ−1I + ν−2FTM−1λ F

)
.(B.4)
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Now, by applying the similarity transformation

[
Q 0
0 I

]T [
ν2Mλ F
−FT γ−1I

] [
Q 0
0 I

]
=

ν
2QT1MλQ1 ν2QT1MλQ2 R1

ν2QT2MλQ1 ν2QT2MλQ2 0

−RT1 0 γ−1I

 ,
where Q =

[
Q1 Q2

]
is the QR factorization (2.10) of F , we obtain an equivalent

expression by applying Schur’s determinant identity to the (2, 2) block of the right-
hand side, i.e.,

det

([
ν2Mλ F
−FT γ−1I

])
= det

(
ν2QT2MλQ2

)
det

([
C R1

−RT1 γ−1I

])
= det

(
ν2QT2MλQ2

)
det(C) det

(
γ−1I +RT1 C

−1R1

)
,(B.5)

where

C = ν2QT1MλQ1 − ν2QT1MλQ2

(
QT2MλQ2

)−1
QT2MλQ1.

Equating (B.4) and (B.5), and taking the limit as γ →∞, we arrive at

det
(
QT2MλQ2

)
= det(Mλ) det

(
FTM−1λ F

)
det(FTF )−1,(B.6)

where det(FTF ) = det(RT1 R1). Finally, to show that wT (QT2MλQ2)−1w ∝ λ−1yT (I−
H(λ))y, first note that the Woodbury identity implies that(

ν2Mλ + γFFT
)−1

= ν−2
(
M−1λ −M−1λ F

(
ν2γ−1Ip + FTM−1λ F

)−1
FTM−1λ

)
,

and hence

lim
γ→∞

(
ν2Mλ + γFFT

)−1
= ν−2

(
M−1λ −M−1λ F

(
FTM−1λ F

)−1
FTM−1λ

)
=
ν−2

nλ
(I −H(λ)).(B.7)

Moreover, it is staightforward (but tedious) to show that

lim
γ→∞

(
QT

(
ν2Mλ + γFFT

)
Q
)−1

= ν−2
[
0 0

0
(
QT2MλQ2

)−1] ,
and this implies that

lim
γ→∞

Q
(
QT (ν2Mλ + γFFT )Q

)−1
QT = ν−2Q2

(
QT2MλQ2

)−1
QT2 .(B.8)

Combining (B.7) and (B.8), we conclude that

wT
(
QT2MλQ2

)−1
w = (nλ)−1yT (I −H(λ))y.

Appendix C. Additional algorithms. Given the Cholesky factorization K +
D = LLT where L = tril(UWT ,−1) + diag(c) with U,W ∈ Rn×p and c ∈ Rn++, the
matrix-vector products Lx, LTx, L−1x, and L−Tx can be evaluated in O(pn) flops
using Algorithms C.1 to C.4.
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Algorithm C.1. Triangular product (Lx).

Input: x ∈ Rn, U,W ∈ Rn×p, and c ∈ Rn++ such that L = tril(UWT ,−1) + diag(c)
Output: y = Lx

Initialization: z ← 0
for k = 1, . . . , n do
yk ← ckxk + uTk z
z ← z + wkxk

end for

Algorithm C.2. Adjoint triangular product (LTx).

Input: x ∈ Rn, U,W ∈ Rn×p, and c ∈ Rn++ such that L = tril(UWT ,−1) + diag(c)
Output: y = LTx

Initialization: z ← 0
for k = n, . . . , 1 do
yk ← ckxk + wTk z
z ← z + ukxk

end for

Algorithm C.3. Forward substitution (solve Lx = b).

Input: b ∈ Rn, U,W ∈ Rn×p, and c ∈ Rn++ such that L = tril(UWT ,−1) + diag(c)
Output: x = L−1b

Initialization: z ← 0
for k = 1, . . . , n do
xk ← (bk − uTk z)/ck
z ← z + wkxk

end for

Algorithm C.4. Backward substitution (solve LTx = b).

Input: b ∈ Rn, U,W ∈ Rn×p, and c ∈ Rn++ such that L = tril(UWT ,−1) + diag(c)
Output: x = L−T b

Initialization: z ← 0
for k = n, . . . , 1 do
xk ← (bk − wTk z)/ck
z ← z + ukxk

end for
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