
36-617: Applied Linear Models
Fall 2021

HW01 – Solutions

1. Sheather, Ch 2, p. 38, #1

First, we read in the data, take a look at it, and plot it (Figure 1) to make sure it looks like
the data in the book.

> data <- read.csv("playbill.csv")

> str(data,width=72,strict.width = "cut")

'data.frame': 18 obs. of 3 variables:

$ Production : chr "42nd Street" "Avenue Q" "Beauty and Beast" "Bom"..

$ CurrentWeek: int 684966 502367 594474 529298 570254 319959 579126 ..

$ LastWeek : int 695437 498969 598576 528994 562964 282778 583177 ..

> plot(CurrentWeek ~ LastWeek, xlab="Gross Box Office Receipts Previous Week ($)",

+ ylab="Gross Box Office Receipts Current Week ($)",data=data)
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Figure 1: Scatter Plot of Gross Box Office Receipts

And, let’s go ahead and run the regression of CurrentWeek on LastWeek:
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> boxoffice.reg <- lm(CurrentWeek ~ LastWeek, data=data)

> summary(boxoffice.reg)

Call:

lm(formula = CurrentWeek ~ LastWeek, data = data)

Residuals:

Min 1Q Median 3Q Max

-36926 -7525 -2581 7782 35443

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.805e+03 9.929e+03 0.685 0.503

LastWeek 9.821e-01 1.443e-02 68.071 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18010 on 16 degrees of freedom

Multiple R-squared: 0.9966, Adjusted R-squared: 0.9963

F-statistic: 4634 on 1 and 16 DF, p-value: < 2.2e-16

Now, on to the parts of the exercise:

(a) Find a 95% confidence interval for the slope of the regression model, β1. Is 1 a plausible
value for β1? Give a reason to support your answer.

A reasonable “back of the envelope” 95% interval is just “Estimate ± 2SE”. . . We can
record the necessary estimates of β̂1 and S E(β̂1) in a small data frame ests as follows.
Note that β̂0 and S E(β̂0) are in the first row, first two columns, and β̂1 and S E(β̂1) are
in the second row.

> print(ests <- coefficients(summary(boxoffice.reg)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6804.8860355 9.929318e+03 0.6853327 5.029432e-01

LastWeek 0.9820815 1.442723e-02 68.0714024 3.866450e-21

This leads to the “back of the envelope” CI

> ests[2,1] + c(-1,1)*2*ests[2,2]

[1] 0.953227 1.010936

An “exact” CI would use the exact cutoff for the appropriate t-distribution. In this case,
there are n = 18 observations and 2 β’s, so d f = 18 − 2 = 16. . . We have to get the
appropriate upper cutoff of the t distribution for a 95% CI

> (tscore <- qt(1-0.025,16))
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[1] 2.119905

which leads to the “exact” CI:

> ests[2,1] + c(-1,1)*tscore*ests[2,2]

[1] 0.9514971 1.0126658

(“exact” in quotes here because it assumes we know that the regression errors (εi’s) really
are iid N(0, σ2). . . )

Finally, 1 is a plausible value for β1 since it is in the confidence interval (either the crude
or the “exact” one!). Equivalently, one could construct a hyothesis test for H0 : β1 = 1 vs
a two-sided alternative. The t statistic would be

β̂1 − 1
S E(β̂1)

=
0.9821 − 1

0.0144
= −1.24

and the two-sided p-value would be 2*(1-pt(abs(-1.24),16)), which is 0.23. Since
this is greater than a “usual” level like 0.01 or 0.05, it suggests there is not enough
evidence to reject H0 : β1 = 1.

(b) Test the null hypothesis H0 : β0 = 10000 against a two-sided alternative. Interpret your
result.

This is pretty easy, given our previous work. The t-statistic we want is

β̂0 − 10000
S E(β̂0)

=
6804.886 − 10000

9929.3178
= −0.32

The two-sided p-value is 2*(1-pt(abs(-0.32,16))), which is 0.75, and again we do
not have enough evidence to reject H0 : β0 = 10000.

Interpretation: The regression model we have fitted is

CurrentWeek = β0 + β1LastWeek + ε

so that β̂0 is the estimated value of the current week’s receipts, given that last week’s
receipts were $0; maybe we can think of this as the receipts for a play’s opening week.
If so, then the hypothesis test says that $10,000 is a plausible level of receipts for the
opening week of a play.

(But on the other hand $0 is also a plausible value, as we can see from the ests table
above [the p-value for the test of H0 : β0 = 0 from the table is 0.5029]). The problem, in
some sense, is that S E(β̂0) is so large than very many different values are plausible here.)

(c) Use the fitted regression model to estimate the gross box office results for the current
week (in $) for a production with $400,000 in gross box office the previous week. Find
a 95% prediction interval for the gross box office results for the current week (in $) for
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a production with $400,000 in gross box office the previous week. Is $450,000 a feasible
value for the gross box office results in the current week, for a production with $400,000
in gross box office the previous week? Give a reason to support your answer.

This is easy to get with the predict command in R:

> predict(boxoffice.reg,

+ newdata=data.frame(Production="",CurrentWeek=0,LastWeek=400000),

+ interval="prediction")

fit lwr upr

1 399637.5 359832.8 439442.2

so that the interval is (359832.8, 439442.2). Since $450,000 is not in this interval, it
is not likely to be feasible to expect $450,000 in gross receipts for the current week, for
a production whose previous week’s gross receipts were $400,000.

(d) Some promoters of Broadway plays use the prediction rule that next week’s gross box
office results will be equal to this week’s gross box office results. Comment on the appro-
priateness of this rule.

Since we could not reject H0 : β1 = 1 in part (1a), and we could not reject H0 : β0 = 0
in the table ests above, it is at least plausible that the true relationship has β0 = 0 and
β1 = 1, i.e.

CurrentWeek = 0 + 1 · LastWeek + ε .

This would make the rule of thumb that next week’s gross receipts approximately equal
this week’s gross receipts at least plausible.

(Some caveats: (1) Obviously this doesn’t work in the first week of a Broadway show;
and (2) This rule of thumb could work in the middle of the run of the show, but toward
the end eventually you run out of people intertested in seeing the show, and the receipts
have to go down again.)

2. Sheather, Ch 2, pp. 41–42, #5. In Figure 2 we have plotted Y vs x1 on the left, and Y vs
x2 on the right. Fitted regression lines for regressing Y on x1 (Model 1) and regressing Y on
x2 (Model 2) are also shown. For which model is RSS greater, and for which model is SSreg

greater?

RS S =
∑n

i=1(ŷi−yi)2 measures the sum of the squared vertical distances between the regression
line and the actual data points. Since the vertical scale in the two plots in Figure 2 is the
same, and the number of data points is the same (same Y) we can visually see that RSS for
Model 1 will be smaller than RSS for Model 2.

Next we observe that S YY =
∑n

i=1(yi − y)2 is the same for both scatter plots, and

S YY = S S Reg + RS S (∗)

Therefore, since RSS for Model 1 is smaller than RSS for Model 2, it follows that SSReg for
Model 1 will be larger than SSReg for Model 2.
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Figure 2: Scatter plots and least-squares lines

Among the 4 options given in Sheather, we would choose

(d) RSS for model 1 is less than RSS for model 2, while SSreg for model 1 is greater than
SSreg for model 2.

(Another way to see this is to see that R2 is larger for Model 1 than for Model 2, and since
R2 = S S Reg/S YY then SSReg must be larger for Model 1; using (∗) again, it follows that RSS
is smaller for Model 1.)

3. Sheather, Ch 2, p. 42 #6

Show that S YY = S S Reg + RS S (note: S YY = S S T ; BJ uses S YY and Sheather uses S S T).
To do this, Sheather suggests first showing that

∑n
i=1(yi − ŷi)(ŷi − y) = 0.

(a) Show that (yi − ŷi) = (yi − y) − β̂1(xi − x).

(yi − ŷi) = (yi − y) + (y − ŷi)

= (yi − y) + (y − (β̂0 + β̂1xi))

= (yi − y) + (y − ((y − β̂1x) + β̂1xi)) (since β̂0 = y − β̂1x)

= (yi − y) − β̂1(xi − x) (after regrouping and cancelling terms)

(b) Show that (ŷi − y) = β̂1(xi − x).

(ŷi − y) = (ŷi − yi) + (yi − y)

= −((yi − y) − β̂1(xi − x)) + (yi − y) (from part (a))

= β̂1(xi − x)) (after rearranging and cancelling terms)
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(c) Using the fact that β̂1 =
S XY
S XX , show that

∑n
i=1(yi − ŷi)(ŷi − y) = 0.

Substituting in our identities from (a) and (b) for (yi − ŷi) and (ŷi − y), we have

n∑
i=1

(yi − ŷi)(ŷi − y) =
n∑

i=1

[
(yi − y) − β̂1(xi − x)

] [
β̂1(xi − x)

]
= β̂1

n∑
i=1

(yi − y)(xi − x) − (β̂1)2
n∑

i=1

(xi − x)2

=

(S XY
S XX

)
S XY −

(S XY
S XX

)2
S XX

=
S XY2

S XX
−

S XY2

S XX
= 0

Finally, we show that S YY = S S Reg + RS S :

S YY =

n∑
i=1

(yi − y)2

=

n∑
i=1

[
(yi − ŷi) + (ŷi − y)

]2

=

n∑
i=1

[
(yi − ŷi)2 + 2(yi − ŷi)(ŷi − y) + (ŷi − y)2

]
= RS S + 2

n∑
i=1

(yi − ŷi)(ŷi − y) + S S Reg

= RS S + S S Reg

since by part (c),
∑n

i=1(yi − ŷi)(ŷi − y) = 0. Thus, S YY = RS S + S S Reg = S S Reg + RS S .

4. [Gelman & Hill (2007), Ch 3, #3] In this exercise you will simulate two variables that are
statistically independent of each other to see what happens when we run a regression of one
on the other.

(a) First generate 1000 data points from a normal distribution with mean 0 and standard
deviation 1 by typing var1 <- rnorm(1000,0,1) in R. Generate another variable in
the same way (call it var2). Run a regression of one variable on the other. Is the slope
coefficient statistically significant?

> var1 <- rnorm(1000,0,1)

> var2 <- rnorm(1000,0,1)

> bozo <- lm(var2 ~ var1)

> summary(bozo)
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Call:

lm(formula = var2 ~ var1)

Residuals:

Min 1Q Median 3Q Max

-2.8559 -0.7363 -0.0107 0.7402 3.6052

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.008008 0.032224 -0.249 0.804

var1 0.004314 0.032501 0.133 0.894

Residual standard error: 1.019 on 998 degrees of freedom

Multiple R-squared: 1.765e-05, Adjusted R-squared: -0.0009843

F-statistic: 0.01762 on 1 and 998 DF, p-value: 0.8944

We can see from the coefficient table above that β̂1 = 0.004, S E(β̂1) = 0.033, the t-statistic
for testing H0 : β1 = 0 is t = β̂1/S E(β̂1) = 0.133, and the p-value is p = 0.894. With such
a large p-value, we do not have enough evidence to reject H0 : β1 = 0, and so the slope
is not statistically significant.

(b) Now run a simulation repeating this process 100 times. This can be done using a loop.
From each simulation, save the z-score (the estimated coefficient of var1 divided by its
standard error). If the absolute value of the z-score exceeds 2, the estimate is statistically
significant. Here is code to perform the simulation1:

z.scores <- rep (NA, 100)

for (k in 1:100) {

var1 <- rnorm (1000,0,1)

var2 <- rnorm (1000,0,1)

fit <- lm (var2 ~ var1)

z.scores[k] <- coef(fit)[2]/se.coef(fit)[2]

}

How many of these 100 z-scores are statistically significant?
Note that the function se.coef used in the code above depends on the arm library, which
we haven’t talked about in class yet. You could use this exact code if you first install the
arm package and run the command library(arm) before running this code.
However, we can also just use coefficients(summary()) to get the pieces we need, as
we have done in earlier exercises in this assignment. So the code we will run is this:

> z.scores <- rep (NA, 100)

> for (k in 1:100) {

1We have initialized the vector of z-scores with missing values (NAs). Another approach is to start with z.scores

<- numeric(length=100), which would initialize with a vector of zeroes. In general, however, we prefer to initialize
with NAs, because then when there is a bug in the code, it sometimes shows up as NAs in the final results, alerting us
to the problem
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+ var1 <- rnorm (1000,0,1)

+ var2 <- rnorm (1000,0,1)

+ fit <- lm (var2 ~ var1)

+ ests <- coefficients(summary(fit))

+ z.scores[k] <- ests[2,1]/ests[2,2]

+ }

The degrees of freedom for the t-statistic would be 1000 − 2 = 998, so the t-distribution
is essentially indistinguishable from the normal. So we can use the back-of-the-envelope
calculation that whenever the z score calculated in the code above is greater that 2 in
absolute value, it is significant at the 0.05 level. So to count the significant z scores we
just calculate

> sum(abs(z.scores)>=2)

[1] 4

If we want to use the exact normal cutoff for a level 0.05 two-sided test of H0 : β1 = 0,
we should use 1.96 instead of 2:

> sum(abs(z.scores)>=1.96)

[1] 5

(c) Is your answer to (b) what you expected? Why or why not?
Either answer in part (b) is about what we’d expect. For a level 0.05 test, we expect 5%
false positives. 5% of 100 is 5, and we are getting 4 or 5 false positives (depending on
whether we use the back-of-the-envelope cutoff or the “exact” cutoff).

5. Sheather, Ch 2, pp 42–43, #7

A statistics professor has been involved in a collaborative research project with two ento-
mologists. The statistics part of the project involves fitting regression models to large data
sets. Together they have written and submitted a manuscript to an entomology journal. The
manuscript contains a number of scatter plots with each showing an estimated regression line
(based on a valid model) and associated individual 95% confidence intervals for the regres-
sion function at each x value, as well as the observed data. A referee has asked the following
question:

I don’t understand how 95% of the observations fall outside the 95% CI as depicted
in the figures.

Briefly explain how it is entirely possible that 95% of the observations fall outside the 95% CI
as depicted in the figures.

[Note: this is not as “brief” an answer as expected by the problem statement, since I want
to explain more carefully what is going on. The main thing that I want you to be able to say
comes at the end below.]

There is a difference between a 95% interval for values from the population and a 95% interval
for estimates of the mean. For example, here I have simulated 100 values from a normal
distribution N(0, 25) with mean µ = 0, variance σ2 = 25
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> x.values <- rnorm(100,0,5)

and we can expect that 95% of the values will be between −1.96σ and +1.96σ. Indeed,

> sum(abs(x.values)<=1.96*5)

[1] 94

which is about right (we expected 95 of the 100 values to be in this interval).

A 95% interval for the mean, however, is much narrower:

> est <- mean(x.values)

> se <- sd(x.values)/sqrt(100-1)

> est + c(-1,1)*1.96*se

[1] -1.098594 1.044443

The interval (−1.96 · σ, 1.96 · σ) = (−9.8, 9.8) expresses how much variation we expect to
see in a sample from the population of x values distributed N(0, σ2). The interval (−1.96 ·
σ̂/
√

n − 1, 1.96 · σ̂/
√

n − 1) = (−1.0986, 1.0444) expresses how much variation we expect to see
in a sample of estimates x of the mean µ, which are distributed N(0, σ2/100). Smaller variance,
smaller confidence interval; the number of values in the sample inside this smaller interval is
only

> sum(abs(x.values)<=1.96*se)

[1] 12

88% of the sample values in this particular simulation are outside the interval for the mean
(which is fine, because they are not means!).

[Here’s the main thing. . . ]

The same thing is going on with 95% CI’s for the regression function at each x.

The CI’s for the regression are for the means E[y]x] = β0+β1x at each x, not for the individual
observations y associated with that x. We know that

y ∼ N(β0 + β1x, σ2)

while the CI for E[y|x] is based on

ŷ ∼ N
β0 + β1x,

1
n
+

(Xi − X)2

S XX

σ2


which has smaller variance and so will produce a narrower CI. The CI expresses variation we
expect to see in estimates of E[y|x], which is less than the variation we would see in individual
observations y associated with that x, as shown in Figure 3 on page 10.
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Figure 3: Regression with 95% CI’s for the regression line at each x shown in grey.
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