
Homework 04 Solutions

9/27/2021

1.
(1a)
We will use several facts from lecture. First, let W ∼ N(µ,Σ) be an arbitrary multivariate normal random
vector and A a matrix whose second dimension is the same as the length of W , so that AW is defined. Then
we have

AW ∼ N(Aµ,AΣAT ) (1)

Additionally, we have from lecture that

HXβ = Xβ (2)
(I −H)(I −H)T = (I −H)(I −H) = (I −H) (3)
y ∼ N(Xβ, σ2I) (4)

Let ŷ be the n× 1 column vector of fitted values.

ê = y − ŷ
= y −Hy
= (I −H)y
∼ N((I −H)Xβ, (I −H)σ2I(I −H)T ) (by facts (1) and (4))
= N(0, σ2(I −H)(I −H)T ) (by fact (2))
= N(0, σ2(I −H)) (by fact (3))

(1b)
(i)

In the intercept-only model, the design matrix X is an n× 1 matrix in which each entry is 1. This can be
used to derive the hat matrix H1:

XTX = [n]1×1 (the 1× 1 matrix whose only entry is n)
=⇒ (XTX)−1 = [1/n]1×1 (the 1× 1 matrix whose only entry is 1/n)

=⇒ X(XTX)−1XT = 1
n
XXT

= 1
n

1 . . . 1
... . . . ...
1 . . . 1


n×n

= H1 (by the definition of the hat matrix)

For any i in 1, 2, . . . , n, we derive ŷi by multiplying the ith row of H1 by the vector y. In other words, for the
intercept-only model, ŷi = 1

n

∑n
i=1 yi = ȳ for all i.
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(ii)

To avoid using ȳ to denote both a scalar and a vector, let’s immediately use the fact that H1y is equal to the
n× 1 vector

[
ȳ ȳ . . . ȳ

]T , as shown in the previous problem. Rewriting the covariance in vector form,
per the problem suggestion, we have:

Cov(y, ŷ) = 1
n

∑n

i=1
(yi − ȳ)(ŷi − ȳ)

= 1
n

(y −H1y)T (ŷ −H1y)

= 1
n

(y −H1y)T (Hy −H1y)

= 1
n

[(I −H1)y]T (H −H1)y

= 1
n
yT (I −H1)T (H −H1)y (since (AB)T = BTAT )

= 1
n
yT (H −H1 −HT

1 H +HT
1 H1)y

= 1
n
yT (H −H1H)y (since HT

1 = H1 and H1H1 = H1)

= 1
n
yT (H −H1)y (since H1H = HH1 = H1)

(iii)

Recall that the sample correlation is the standardized sample covariance, defined as

widehatCorr(y, ŷ) =
ˆCov(y, ŷ)√
σ̂2

yσ̂
2
ŷ

=
∑n

i=1(yi − ȳ)(ŷi − ȳ)√∑n
i=1(yi − ȳ)2∑n

i=1(ŷi − ȳ)2

= (y −H1y)T (ŷ −H1y)√
(y −H1y)T (y −H1y)(ŷ −H1y)T (ŷ −H1y)

= yT (H −H1)y√
yT (I −H1)T (I −H1)yyT (H −H1)T (H −H1)y

(using the previous problem)

=
√
yT (H −H1)y√

yT (I −H1)T (I −H1)y

=
√
yT (H −H1)y√
yT (I −H1)y

(using a version of fact (3))

=
√
SSreg

SST

=
√
R2 (by the definition of R2)

And therefore, R2 = Ĉorr(y, ŷ)2.

(1c)
The sample correlation is 0 iff the sample covariance is 0, so let’s just concern ourselves with the sample
covariance and not worry about the denominator in the correlation.
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Recall that the residuals sum to 0 by construction, which also means that their sample mean is 0. Hence:

ˆCov(ê, ŷ) = 1
n

n∑
i=1

(êi − 0)(ŷi − ȳ)

= 1
n

(ê)T (ŷ − ȳ)

= 1
n

(y − ŷ)T (ŷ − ȳ)

= 1
n

[(I −H)y]T (H −H1)y

= 1
n
yT (I −H)(H −H1)y (since (I −H)T = (I −H))

= 1
n
yT (H −H1 −HH +HH1)y

= 1
n
yT (H −H1 −H +H1)y (since HH1 = H1)

= 0

2. (Sheather, Ch 5, pp. 146–147, #1, with extra questions.)
(2a) Develop model to predict LATE from BILL.
Let’s start with a little EDA. . .
overdue <- read.table("overdue.txt",header=T)
str(overdue)

## 'data.frame': 96 obs. of 2 variables:
## $ LATE: int 16 47 22 47 47 21 44 27 19 48 ...
## $ BILL: int 79 264 97 289 288 100 250 140 97 299 ...

plot(LATE ~ BILL, data=overdue)
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From the scatter plot, it looks like regression is going to fail, because LATE is not a single-valued function of
BILL. Indeed, if we do a simple regression of LATE on BILL, we get
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round(summary(lm(LATE ~ BILL,data=overdue))$coefficients,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 51.98 5.96 8.72 0.00
## BILL -0.01 0.03 -0.40 0.69

and the coefficient on BILL is clearly not significantly different from zero.

Looking back at the problem statement, we also know that the first 48 observations are for residential
accounts, and the last 48 are for commercial accounts. Maybe this helps explain the structure we see above?

So, let’s create a dummy variable for “residential”, and colored the points according to this dummy variable.
overdue$residential <- c(rep(1,48),rep(0,48))
plot(LATE ~ BILL, data=overdue,col=residential + 1)
legend(250,30,legend=c("Residential","Commercial"),pch=1,col=c(2,1),cex=0.5)
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Much better: Now we clearly see that the two “branches” in the scatter plot correspond to the two types
of account, with different slopes and intercepts for each type of account. This suggests we should fit an
ANCOVA model with interactions:
lm.2a <- lm(LATE ~ BILL*residential, data=overdue)
print(coefs <- coef(lm.2a))

## (Intercept) BILL residential BILL:residential
## 101.7581844 -0.1909615 -99.5485607 0.3566445

plot(LATE ~ BILL, data=overdue,col=residential + 1)
abline(a=coefs[1], b=coefs[2],col=1)
abline(a=coefs[1]+coefs[3], b=coefs[2]+coefs[4],col=2)
legend(250,30,legend=c("Residential","Commercial"),pch=1,col=c(2,1),cex=0.5)
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The new scatter plot suggests that this may be pretty good model for the data.

(2b) Summary & Residual Diagnostics.
Here is the model summary and the set of four standard diagnostic plots:
summary(lm.2a)

##
## Call:
## lm(formula = LATE ~ BILL * residential, data = overdue)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.1211 -2.2163 0.0974 1.9556 8.6995
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 101.758184 1.198504 84.90 <2e-16 ***
## BILL -0.190961 0.006285 -30.38 <2e-16 ***
## residential -99.548561 1.694940 -58.73 <2e-16 ***
## BILL:residential 0.356644 0.008888 40.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.371 on 92 degrees of freedom
## Multiple R-squared: 0.9803, Adjusted R-squared: 0.9796
## F-statistic: 1524 on 3 and 92 DF, p-value: < 2.2e-16

par(mfrow=c(2,2))
plot(lm.2a)
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This seems like a pretty good model. The regression coefficients are all strongly significantly different from
zero, and the R2 = 0.98. Looking at the residual diagnostic plots, we see that the residuals are centered at
zero and show no vertical patterns; the QQ plot suggests that the residuals are approximately normal with
just 3 or 4 outliers, the Scale-Location plot is consistent with constant variance, and there aer no points with
Cook’s distance above 0.5. The points with high leverage are generally not outliers, and the points that are
outliers have modest leverage.

(2c) “Under 60 days or your money back?”
To think about the “Under 60 days or your money back!” slogan, let’s look at the final scatter plot with the
fitted regression model again, but with horizontal lines at 60, 90 and 100 days overlaid:
plot(LATE ~ BILL, data=overdue,col=residential + 1)
abline(a=coefs[1], b=coefs[2],col=1)
abline(a=coefs[1]+coefs[3], b=coefs[2]+coefs[4],col=2)
abline(h=60,col="Blue")
abline(h=90,col="Yellow")
abline(h=100,col="Green")
legend(250,30,legend=c("Residential","Commercial"),pch=1,col=c(2,1))
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It looks like 60 days is enough for residential accounts (even if we extrapolate a little to the right of the data
using the regression line), but we need up to 100 days for commercial accounts.

If we want the slogan to work for almost all collections, perhaps we should recommend

• "Under 90 days or your money back!" or perhaps

• "Under 100 days or your money back!"

since 90 days is enough for most collections, even commercial ones, and 100 days is enough for viturally all of
them.

On the other hand, if we can restrict the advertising to Residential accounts only, then “Under 60 days”
seems just fine: Based on this plot, we would expect virtually all Residential account to be collected in 60
days or less.

3. (Sheather, Ch 5, p. 147, #2.)
We begin with a little exploration, and finding a good model.
houston <- read.csv("HoustonChronicle.csv",header=T)
str(houston)

## 'data.frame': 122 obs. of 5 variables:
## $ District : chr "Alvin" "Alvin" "Angleton" "Angleton" ...
## $ X.Repeating.1st.Grade: num 4.1 5.8 7.1 6.7 7.3 2.6 8.2 2.3 12.5 0 ...
## $ X.Low.income.students: num 49.7 41.1 44.2 30.2 49.4 33.7 45.6 29.7 71.7 37.6 ...
## $ Year : int 2004 1994 2004 1994 2004 1994 2004 1994 2004 1994 ...
## $ County : chr "Brazoria" "Brazoria" "Brazoria" "Brazoria" ...
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cat("\n")

for (i in names(houston)) {
cat(i,"\n")
print(summary(houston[,i]))
cat("Number of unique values:",length(unique(houston[,i])),"\n\n")

}

## District
## Length Class Mode
## 122 character character
## Number of unique values: 61
##
## X.Repeating.1st.Grade
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 3.100 5.700 6.076 8.750 18.400
## Number of unique values: 77
##
## X.Low.income.students
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.20 27.15 41.35 41.88 53.02 98.10
## Number of unique values: 111
##
## Year
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1994 1994 1999 1999 2004 2004
## Number of unique values: 2
##
## County
## Length Class Mode
## 122 character character
## Number of unique values: 8

Apparently, there are only two “year” values: 1994 and 2004; so we will convert this to a factor variable,
just to make interpretation of the coefficients easier; and we make a scatterplot matrix (“pairs” plot) of all
of the variables except district. I’m also going to rename the two continuous variables to something more
suggestive, and re-order the variables, so that the “pairs” plot makes a little more sense.
houston$Year <- as.factor(houston$Year)
names(houston)[c(2,3)] <- c("Pct.Repeating.1st.Grade", "Pct.Low.income.students")
houston <- houston[,c(1,3,2,4,5)]
ggpairs(houston[,-1]) # there are too many districts for the plot, so we omit it
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Corr:
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There is some evidence in the “pairs” plots for all three of the hypotheses in parts (a), (b) and (c), but we
now fit regression and ANCOVA models to see which effects are “significant” (i.e. large enough that they are
not likely just due to noise in the data).

(3a) Low income associated with repeating first grade?
Let’s start with a simple regression of repeating first grade on low income
summary(lm.3a <- lm(Pct.Repeating.1st.Grade ~ Pct.Low.income.students,data=houston))

##
## Call:
## lm(formula = Pct.Repeating.1st.Grade ~ Pct.Low.income.students,
## data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9845 -2.5072 -0.4184 1.8505 11.1067
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.91419 0.83836 3.476 0.000709 ***
## Pct.Low.income.students 0.07550 0.01823 4.141 6.47e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.821 on 120 degrees of freedom
## Multiple R-squared: 0.125, Adjusted R-squared: 0.1177
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## F-statistic: 17.14 on 1 and 120 DF, p-value: 6.472e-05

par(mfrow=c(1,1))
plot(Pct.Repeating.1st.Grade ~ Pct.Low.income.students,data=houston)
abline(lm.3a)
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par(mfrow=c(2,2))
plot(lm.3a)
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This actually looks like a good regression; the summary shows a very significant increasing association
between percent of students repeating first grade and percent of students with low (family) incomes: the
coefficient on percent low income students is β̂1 = 0.07550, with SE(β̂1) = 0.01823. The effect seems rather
small, however—we expect an increase of only 0.08% of kids repeating first grade, for every 1% increase in
kids in poverty.

(3b) More students repeating first grade in 2004-2005 than in 1994-1995?
For this question, we will just regress repeating first grade on year
summary(lm.3b <- lm(Pct.Repeating.1st.Grade ~ Year,data=houston))

##
## Call:
## lm(formula = Pct.Repeating.1st.Grade ~ Year, data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.6787 -2.6537 -0.6262 2.5750 12.9262
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4738 0.5172 10.584 <2e-16 ***
## Year2004 1.2049 0.7314 1.647 0.102
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.039 on 120 degrees of freedom
## Multiple R-squared: 0.02212, Adjusted R-squared: 0.01397
## F-statistic: 2.714 on 1 and 120 DF, p-value: 0.1021

par(mfrow=c(1,1))
jy <- jitter(as.numeric(houston$Year)-1)
plot(Pct.Repeating.1st.Grade ~ jy,data=houston,xlab="Year (jittered)")
abline(lm.3b)
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par(mfrow=c(2,2))
plot(lm.3b)
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Again, this looks like a good regression model, in the sense that the assumptions underlying linear regression
are approximately satisfied1. However, the estimated coefficient on Year, β̂1 = 1.2 with SE(β̂1) = 0.73 is not
statistically significantly different from zero. From this we would conclude that there really is not enough
evidence to say that there are more students repeating first grade in the 2004 school year than in 1994 school
year.

(3c) Difference in the relationship of income with repeating between the two
school years?
Now let’s fit the interactive ANCOVA model. This will both help answer question (3c), and help us to
understand whether our answers to questions (3a) and (3b) need any additional elaboration.
summary(lm.3c <- lm(Pct.Repeating.1st.Grade ~ Pct.Low.income.students*Year,data=houston))

##
## Call:
## lm(formula = Pct.Repeating.1st.Grade ~ Pct.Low.income.students *
## Year, data = houston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.1606 -2.6121 -0.5576 1.7495 11.6014

1Remember, the clustering around different x values is just due to the fact that x is categorical. The important thing here is
that we don’t see any interesting patterns within or between those clusters.
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.27194 1.22347 2.674 0.00855 **
## Pct.Low.income.students 0.06080 0.03093 1.966 0.05167 .
## Year2004 -0.38956 1.76109 -0.221 0.82532
## Pct.Low.income.students:Year2004 0.01903 0.03949 0.482 0.63066
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.845 on 118 degrees of freedom
## Multiple R-squared: 0.1288, Adjusted R-squared: 0.1066
## F-statistic: 5.813 on 3 and 118 DF, p-value: 0.0009689

The summary shows that neither the main effect for Year, nor the interaction between low income and Year,
are significant in the model. This is illustrated in the scatterplot below: the regression lines for the two
categories (year=1994-1995 and year=2004-2005) are nearly identical. The residual diagnostic plots that
follow suggest that the modeling assumptions hold up fairly well here.
par(mfrow=c(1,1))
plot(Pct.Repeating.1st.Grade ~ Pct.Low.income.students,data=houston,

col=as.numeric(houston$Year))
coefs <- coefficients(lm.3c)
abline(a=coefs[1],b=coefs[2],col=1)
abline(a=coefs[1]+coefs[3],b=coefs[2]+coefs[4],col=2)
legend(78,18,legend=c("1994-1995","2004-2005"),pch=1,col=c(1,2),cex=0.5)
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par(mfrow=c(2,2))
plot(lm.3c)

13



4 6 8 10

−
10

0
10

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
521899

−2 −1 0 1 2

−
2

1
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q
521899

4 6 8 10

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
521899

0.00 0.04 0.08 0.12

−
2

1
3

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

0.5

Residuals vs Leverage

26

5218

We can also apply an F test using the ANOVA function in R to compare the full ANCOVA model in part (c)
with the models in parts (a) and (b).
anova(lm.3a,lm.3c)

## Analysis of Variance Table
##
## Model 1: Pct.Repeating.1st.Grade ~ Pct.Low.income.students
## Model 2: Pct.Repeating.1st.Grade ~ Pct.Low.income.students * Year
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 120 1751.9
## 2 118 1744.4 2 7.512 0.2541 0.7761

Since the F statistic testing H0: Pct.Repeating.1st.Grade ∼ Pct.Low.income.students vs HA:
Pct.Repeating.1st.Grade ∼ Pct.Low.income.students ∗ Year is nonsignificant (F = 0.2541, p = 0.7761),
we cannot reject the simpler model in part (a): If we are starting with Pct.Repeating.1st.Grade ∼
Pct.Low.income.students, there is really no need to add Year (let alone an interaction with Year) to the
model.
anova(lm.3b,lm.3c)

## Analysis of Variance Table
##
## Model 1: Pct.Repeating.1st.Grade ~ Year
## Model 2: Pct.Repeating.1st.Grade ~ Pct.Low.income.students * Year
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 120 1957.9
## 2 118 1744.4 2 213.52 7.2221 0.001099 **
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here the F statistic testing H0: Pct.Repeating.1st.Grade ∼ Year vs HA: Pct.Repeating.1st.Grade ∼
Pct.Low.income.students ∗ Year is highly significant (F = 7.2221, p = 0.001099), so we would reject the
simpler model in part (b): starting with Pct.Repeating.1st.Grade ∼ Year, we really do get a better model
by adding Pct.Low.income.students to the model.

Note that we cannot perform an F test like anova(lm.3a, lm.3b) directly2, since these models are
not nested. We can infer, informally, from the above tests though, that of all three models,
Pct.Repeating.1st.Grade ∼ Pct.Low.income.students seems to be the best. Thus, there is no dif-
ference between years in the way that low income is related to repeating first grade.

4. (course evaluations question from Gelman & Hill)
(4a)

beauty <- read.csv("ProfEvaltnsBeautyPublic.csv")
model1 <- lm(courseevaluation ~ btystdave + female, data = beauty)
model2 <- lm(courseevaluation ~ btystdave*female, data = beauty)
coef1 <- coef(model1) # Get model parameters
coef2 <- coef(model2) # Get model parameters

(i)

par(mfrow = c(1, 2), oma = c(2, 0, 1, 0), mar = c(4, 4, 1, 2))
# First model
plot(courseevaluation ~ btystdave, data = beauty)
abline(a = coef1["(Intercept)"], b = coef1["btystdave"], col = "red") # line for males
abline(a = coef1["(Intercept)"] + coef1["female"],

b = coef1["btystdave"], col = "blue") # line for females

# Second model
plot(courseevaluation ~ btystdave, data = beauty)
abline(a = coef2["(Intercept)"], b = coef2["btystdave"], col = "red") # line for males
abline(a = coef2["(Intercept)"] + coef2["female"],

b = coef2["btystdave"] + coef2["btystdave:female"], col = "blue") # line for females

legend(0.5, 2.6, legend = c("Males", "Females"),
col = c("red", "blue"), lty = c(1, 1), cex = 0.6)

The red lines represent the predicted values for males, and the blue lines represent predicted values for females.
In the first plot, the intercept for the red line is the (Intercept) coefficient, while the intercept for the blue
line is the (Intercept) coefficient plus the female coefficient. The slope for both lines is the btystdave
coefficient.

In the second plot, the intercept for the red line is the (Intercept) coefficient. The intercept for the blue line
again is the (Intercept) coefficient plus the female coefficient. The slope for the red line is the btystdave
coefficient, while the slope for the blue line is the btystdave coefficient plus the btystdave:female coefficient.

2There are ways to compare non-nested models, e.g. cross-validation, AIC, BIC, etc., but it doesn’t work with F tests or
likelihood ratio tests.
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Figure 1: Problem 2(a)i: Course evaluations against beauty ratings, with no interaction (left) and with an
interaction (right).
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(ii)

par(mfrow=c(2, 2), mar = c(4, 4.5, 2, 1))
plot(model1)
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Figure 2: Problem 2(a)ii: Diagnostic plots for the first model

In Figure 2, there don’t appear to be any worrying trends between the fitted values and the residuals. However,
the Q-Q plot shows some non-normality in the residuals, on the right side of the plot; and the bottom right
plot appears to show that the residuals are left skewed, as there are a good number of standardized residuals
with values below -2. This is apparent also looking back at the scatter plots in Figure 1.
par(mfrow=c(2, 2), mar = c(4, 4.5, 2, 1))
plot(model2)

Figure 3 for the second model, with the interaction effect, shows essentially the same results as for the first
model. It’s possible that the fit could be improved by transforming the predictor(s) and/or the outcome.

(iii)

summary(model1)

Here’s the summary for the first model with no interaction:

##
## Call:
## lm(formula = courseevaluation ~ btystdave + female, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
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Figure 3: Problem 2(a)ii: Diagnostic plots for the second model

## -1.87196 -0.36913 0.03493 0.39919 1.03237
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.09471 0.03328 123.03 < 2e-16 ***
## btystdave 0.14859 0.03195 4.65 4.34e-06 ***
## female -0.19781 0.05098 -3.88 0.00012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5373 on 460 degrees of freedom
## Multiple R-squared: 0.0663, Adjusted R-squared: 0.06224
## F-statistic: 16.33 on 2 and 460 DF, p-value: 1.407e-07

summary(model2)

Here’s the summary for the second model, which has the interaction:

##
## Call:
## lm(formula = courseevaluation ~ btystdave * female, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.83820 -0.37387 0.04551 0.39876 1.06764
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.10364 0.03359 122.158 < 2e-16 ***
## btystdave 0.20027 0.04333 4.622 4.95e-06 ***
## female -0.20505 0.05103 -4.018 6.85e-05 ***
## btystdave:female -0.11266 0.06398 -1.761 0.0789 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5361 on 459 degrees of freedom
## Multiple R-squared: 0.07256, Adjusted R-squared: 0.0665
## F-statistic: 11.97 on 3 and 459 DF, p-value: 1.471e-07

anova(model1, model2)

Here’s a partial F-test, computed with anova(model1, model2), where model1 is the model with
no interaction:

## Analysis of Variance Table
##
## Model 1: courseevaluation ~ btystdave + female
## Model 2: courseevaluation ~ btystdave * female
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 460 132.81
## 2 459 131.92 1 0.89124 3.101 0.07891 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The coefficient estimates for btystdave and female are quite large in both models with respect to their
estimated standard errors, which is reflected in the fact that their associated p-values are quite small: the
three stars (***) mark that they are less than 0.001. Notice that the estimates differ between the two models.
This is not surprising; in general, adding a new variable to a model will change the estimates of all the
coefficients, unless that new variable is completely uncorrelated with the previous variables. Since the “new”
variable here is an interaction between the other two variables, it is naturally correlated with those variables,
so we should expect the estimates to change.

The adjusted R2 values for both models are quite small, indicating that the predictors do not account for
much of the total variance. The addition of the interaction term did not increase the adjusted R2 by a
non-trivial amount.

The estimate of btystdave:female, the interaction term, is not significantly different from 0 at the conven-
tional α = 0.05 level. The actual magnitude of the estimate is also smaller than the main effect estimates.
The partial F-test here constitutes a test of the null hypothesis

H0 : β3 = 0

where β3 is the coefficient associated with btystdave:female. Hence, the p-value of the partial F-test that
is printed in the anova output is equivalent to the p-value of the t-test in the output of summary(model2),
namely, p = 0.0789.

Since we don’t have enough evidence to reject H0, and since the addition of the interaction term term did
not increase the adjusted R2, in the interest of parsimony, we may decide based on these results to exclude
the interaction term.
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(4b)
We don’t have a lot of formal tools available for variable selection at this stage, so the general approach
here is to think in real-world terms about what variables seem likely to be related to the outcome and see
what happens when they are included in the model. There’s no one correct approach or outcome here. In
addition to btystdave and female, let’s consider the variables age, minority, nonenglish, tenured, and
onecredit. First, let’s look at a pairs plot with courseevaluation:
cols <- c("minority", "nonenglish", "tenured", "onecredit")
beauty[, cols] <- lapply(beauty[, cols], as.factor)
ggpairs(beauty[, c("courseevaluation", "age", cols)])

Corr:
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Figure 4: Pairs plot for candidate predictors in 2(b)

The marginal distributions of each variable appear on the diagonal, while the top row and leftmost column give
different visualizations of the relationship between the course evaluation scores and the other five variables.
Among the candidate predictors, only onecredit shows a clear marginal relationship with courseevaluation,
but since these are marginal plots, that doesn’t mean the other variables won’t be informative to some
degree. There are very few one credit courses represented here (27 out of 463 rows), but nevertheless, let’s
try including it, along with the following sets of variables:

Model m1: onecredit
Model m2: onecredit, minority, nonenglish
Model m3: onecredit, minority, nonenglish, tenured, age

For each model, we’ll look at a model summary and diagnostic plots. We can also run an F-test comparing
the model from part 2(a)ii (aka model1) to the expanded model.
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Model m1

m1 <- lm(courseevaluation ~ btystdave + female + onecredit)

m1 <- lm(courseevaluation ~ btystdave + female + onecredit, data = beauty)
summary(m1)

##
## Call:
## lm(formula = courseevaluation ~ btystdave + female + onecredit,
## data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.82352 -0.34541 0.06084 0.38657 1.08122
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.05783 0.03287 123.438 < 2e-16 ***
## btystdave 0.16258 0.03103 5.240 2.45e-07 ***
## female -0.18832 0.04938 -3.814 0.000155 ***
## onecredit1 0.58513 0.10358 5.649 2.84e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5201 on 459 degrees of freedom
## Multiple R-squared: 0.127, Adjusted R-squared: 0.1213
## F-statistic: 22.25 on 3 and 459 DF, p-value: 1.804e-13

par(mfrow=c(2, 2), mar = c(4, 4.5, 2, 1))
plot(m1)

anova(model1, m1)

F-Test for model m1 vs. model1

## Analysis of Variance Table
##
## Model 1: courseevaluation ~ btystdave + female
## Model 2: courseevaluation ~ btystdave + female + onecredit
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 460 132.81
## 2 459 124.18 1 8.6326 31.909 2.838e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model m2

m2 <- lm(courseevaluation ~ btystdave + female + onecredit + minority + nonenglish)

m2 <- lm(courseevaluation ~ btystdave + female + onecredit + minority + nonenglish,
data = beauty)

summary(m2)

##
## Call:
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Figure 5: Diagnostic plots for model m1

## lm(formula = courseevaluation ~ btystdave + female + onecredit +
## minority + nonenglish, data = beauty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.84951 -0.33198 0.04644 0.37907 1.05533
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.08668 0.03327 122.833 < 2e-16 ***
## btystdave 0.16604 0.03063 5.422 9.59e-08 ***
## female -0.17418 0.04911 -3.546 0.000431 ***
## onecredit1 0.64133 0.10632 6.032 3.34e-09 ***
## minority1 -0.16479 0.07569 -2.177 0.029982 *
## nonenglish1 -0.24801 0.10523 -2.357 0.018859 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.513 on 457 degrees of freedom
## Multiple R-squared: 0.1546, Adjusted R-squared: 0.1453
## F-statistic: 16.71 on 5 and 457 DF, p-value: 3.586e-15

par(mfrow=c(2, 2), mar = c(4, 4.5, 2, 1))
plot(m2)
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Figure 6: Diagnostic plots for model m2

anova(model1, m2)

F-Test for model m2 vs. model1

## Analysis of Variance Table
##
## Model 1: courseevaluation ~ btystdave + female
## Model 2: courseevaluation ~ btystdave + female + onecredit + minority +
## nonenglish
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 460 132.81
## 2 457 120.25 3 12.556 15.906 7.475e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model m3

m3 <- lm(courseevaluation ~ btystdave + female + onecredit + minority + nonenglish)

m3 <- lm(courseevaluation ~ btystdave + female + onecredit + minority + nonenglish +
tenured + age, data = beauty)

summary(m3)

##
## Call:
## lm(formula = courseevaluation ~ btystdave + female + onecredit +
## minority + nonenglish + tenured + age, data = beauty)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8386 -0.3414 0.0501 0.3776 1.0619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.187474 0.138209 30.298 < 2e-16 ***
## btystdave 0.159636 0.032038 4.983 8.92e-07 ***
## female -0.182937 0.051959 -3.521 0.000474 ***
## onecredit1 0.640845 0.112170 5.713 2.01e-08 ***
## minority1 -0.168522 0.076030 -2.217 0.027151 *
## nonenglish1 -0.245503 0.106022 -2.316 0.021024 *
## tenured1 0.005034 0.056134 0.090 0.928583
## age -0.002068 0.002807 -0.737 0.461551
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5138 on 455 degrees of freedom
## Multiple R-squared: 0.1556, Adjusted R-squared: 0.1426
## F-statistic: 11.98 on 7 and 455 DF, p-value: 4.703e-14

par(mfrow=c(2, 2), mar = c(4, 4.5, 2, 1))
plot(m3)
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Figure 7: Diagnostic plots for model m3
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anova(model1, m3)

F-Test for model m3 vs. model1

## Analysis of Variance Table
##
## Model 1: courseevaluation ~ btystdave + female
## Model 2: courseevaluation ~ btystdave + female + onecredit + minority +
## nonenglish + tenured + age
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 460 132.81
## 2 455 120.10 5 12.706 9.627 9.498e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The diagnostics for all three models look reasonable, and they look fairly similar to the diagnostics for model1,
the model that we retained from part 2(a)iii. The F-tests comparing each model to the baseline model1 are
all highly significant. Summaries for models m1 and m2 each model show highly significant coefficients. In
model m3, however, the tests for tenured and age are non-significant, and the coefficient estimates are tiny.
Given these tiny estimates, it would be reasonable to drop these variables from the model and retain model
m2.

If we believe this model, then we can say that course evaluations bear at least a roughly linear relationship
to ratings of beauty, whether a person is female or male, whether a course is one credit or not, whether
the professor is a minority, and whether the professor is a native English speaker or not, with the sign and
magnitude of the estimated coefficients indicating the nature and strength of the relationships. It is tempting
to draw causal conclusions here, but we can’t really do that without checking some additional assumptions
which are beyond the scope of the problem. However, these patterns may at least be suggestive of causal
relationships, which we can subsequently go about testing more rigorously.

(end of solutions)
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