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Abstract—Traditional research into the arts has almost always
been based around the subjective judgment of human critics. The
use of data mining tools to understand art has great promise as
it is objective and operational. We investigate the distribution
of music from around the world: geographical ethnomusicology.
We cast the problem as training a machine learning program
to predict the geographical origin of pieces of music. This is a
technically interesting problem as it has features of both classifi-
cation and regression, and because of the spherical geometry
of the surface of the Earth. Because of these characteristics
of the representation of geographical positions, most standard
classification/regression methods cannot be directly used. Two
applicable methods are K-Nearest Neighbors and Random forest
regression, which are robust to the non-standard structure of
data. We also investigated improving performance through use
of bagging. We collected 1,142 pieces of music from 73 coun-
tries/areas, and described them using 2 different sets of standard
audio descriptors using MARSYAS. 10-fold cross validation was
used in all experiments. The experimental results indicate that
Random forest regression produces significantly better results
than KNN, and the use of bagging improves the performance
of KNN. The best performing algorithm achieved a mean great
circle distance error of 3,113 km.

Keywords-geographical ethnomusicology; regression; random
forest regression;

I. INTRODUCTION

A. An objective approach to understanding art

We hold the philosophical position that we do not fully
understand a phenomenon unless we can make a machine
that reproduces it. The advantage of this approach to under-
standing a subject area is that it is objective and operational.
This approach contrasts strikingly with that of the traditional
approach, which has almost always been based around the
subjective judgment of human critics. Often great insight is
gained by this subjective approach, but it also has to be
granted that there are limitations to the results relying upon
the peculiarities of the listener.

We propose to extend the objective approach to understand-
ing phenomena to art - in this case, music. Specifically we will
use the success of predictive machine learning programs as a
measure of objective success in understanding a phenomenon.
This removes personal opinions and expectations in the listener
because all decisions are made by machine.

B. Geographical Ethnomusicology

The world contains a vast variety of types of music. This
music arose as the result of complex geographical, historical,

and prehistorical processes. One way to better understand
these processes is to analyse the current geographical dis-
tribution of music. The study of this distribution is termed
Geographical Ethnomusicology. The problem of determining
the geographical origin of a piece of music is complicated.
Musical forms are rarely pure. Over time they have influenced
each other, and many forms of music have travelled far from
their point of origin. The question we wish to answer is
given these complications, how well can a computer predict
the geographical origin of a piece of music? It could be
argued that unsupervised spatial clustering methods such as
Kohonen nets [1] would be best suited to such a task. However,
the problem with such clustering methods is that there is
generally no objective measure of success. We could find
groups of similar music in terms of the audio, but it would
not extract those features most suited to predicting a location.
This contrasts with supervised methods, where the labels on
known examples (classes or numbers) enable the objective
measuring of whether a method is working or not - does it
predict well or badly? As we know the geographical location
of origin of the music (to some degree) in our corpus we
should exploit this information. We therefore cast the problem
as that of training a machine learning program to be able to
predict the geographical origin of pieces of music, i.e. the
computer learns a functional relationship between the audio
content and its geographic origin on the globe. This predictive
task is possible to some extent by human musicologists.

C. The interesting structure of the data

We decided to cast the problem as a regression problem
(predicting a spherical coordinate, latitude and longitude)
rather than a classification problem (predicting a country/area).
The reasons for this are 1) There are a large number of
countries/areas and low number of examples per country/area.
2) There is a natural error metric - geographical distance from
true position. In a classification setting this would have to
be encoded separately in a cost matrix. This is analogous
to the case of a problem with three classes, when they can
unordered or ordered (class 2 is intermediate between classes
1 and 3), and in the ordered case you wish to make mistaking
an example of class 1 for class 2 less expensive than class 3.

The geographical position of countries/areas on the globe
makes the regression problem technically interesting, as it is
special two-dimensional manifold. The most straightforward
way of representing geographical position is via latitude and
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longitude. This however introduces complications: longitude
is discontinuous, and latitude/longitude grids of equal degree
size have different areas - larger as they approach the equator.
Therefore, most standard regression methods, such as linear
regression, cannot be directly used as they either predict
one real number, or they assume the predicted multiple real
numbers are independent.

In order to side-step these difficulties, we apply two methods
that are robust to the non-standard structure of the data:
K-Nearest Neighbors and Random forest regression. KNN
estimates label by computing the distance in the feature
space. Whereas, Random forest regression partitions the cases
based on the case label. Both methods implicitly utilize the
connections between the audio content and its geographical
position.

II. RELATED WORK

A large amount of research has been done on the devel-
opment of audio features (attributes) for the computational
analysis of music, e.g. [2]. These attributes relate closely to
how humans perceive music. One example is the spectral
centroid, which is mathematically simple and yet is strongly
correlated with human perception of ‘brightness’ in sound [3].

Audio attributes have typically been used to perform au-
tomatic classification and clustering to identify similar pieces
of music (for recommendation systems), e.g. to identify mood,
genre, emotive content, and various other purposes [4]. In addi-
tion to audio attributes other meta-data have been utilized, for
example, web searches and social tags, but also MIDI, score
reading and lyric mining [5]–[7]. Various machine learning and
statistical methods have been applied using these attributes:
Support Vector Machines, k-Nearest-Neighbor, Neural Nets
etc. with good success for certain applications [8]. How-
ever, surprisingly little computational work has been done
on computational ethnomusicology. Liu et al. which demon-
strated the applicability of music analysis techniques to non-
western music [9]. Gomez et al. applied machine learning
to discriminate between western and non-western music, and
also found some important features relating to the latitude
and longitude of origin of a piece [10]. Tzanetakis’ work on
computational ethnomusicology [11] sought to investigate the
potential application of music information retrieval (MIR) to
ethnomusicology.

Our problem is one of Spatial statistics [12]. This is the
branch of statistics that relates data values with their spatial
location. The most common applications are in statistical
geography but its use in epidemiology is also well-known. One
famous example is the early work of John Snow who in 1855
proved that cholera was waterborne through demonstrating
the occurrence of cholera was clustered around a particular
water pump. On a larger scale, geographic information systems
including global positioning systems in recent years have
created the discipline geospatial information studies wherein
large databases of geographic information are analysed using
geospatial relationships such as adjacency, containment and
distance. Our work can be considered part of the latter category

as a distance measure is the eventual output that is used to
measure success.

III. METHODS

A. The special structure of the data

The problem of predicting spherical coordinates is compli-
cated because of the special characteristics of the coordinate–
label. This label refers to a position on the surface of the earth,
which is represented by two values, latitude and longitude.
Latitude, denoted by φ, specifies the point is on the north
or south part of the earth. The value is from −90◦ to 90◦.
Longitude, denoted by λ, specifies the point is on the east or
west part of the earth. The value is from 0◦ at Prime Meridian
to +180◦ eastward, and to −180◦ westward.

The latitude/longitude representation has two characteris-
tics. The first characteristic is the discontinuity in longitude
values. The line which is opposite the Prime Meridian has
two longitude values, ±180◦. Therefore, the longitude of two
positions geographically near each other, may be significantly
different, one being positive and the other negative. The second
characteristic is the latitude/longitude grid is non–linear. The
area of grid unit near to the equator is much larger than the
one near the pole. This is illustrated in the standard Mercator
projection of the globe where countries near the poles are
unnaturally large. In general there is no perfect flat projection.
In considering the sparsity of our data, we choose a sphere
as an approximate representation for the globe, though with
more precision still it is an oblate spheroid with certain peaks
and troughs across the surface.

In order to deal with these difficulties we applied K-Nearest
Neighbor method and Random forest regression as regression
methods for the prediction of points on the Earth. These were
selected for their ability to do regression predicting data points
on the Earth using a latitude/longitude representation.

B. (Standard) K-Nearest Neighbor

A song is a two-tuple Si = (Fi, Li), where Fi =
(f i

1, f
i
2, · · · , f i

n) is a feature vector and Li = (φi, λi) is the
corresponding label. Let STr be the set of training data, and
STe be the set of test data.

For each test example, STe
j , the (standard) K-Nearest

Neighbor (KNN) method [13] computes the Euclidean dis-
tance between the test data STe

j and each of training data,
STr
i , in the full feature space, that is, D(STe

j , STr
i ) =√∑n

k=1(f
j
k − f i

k)
2. The predicted position of the test data

STe
j is the midpoint of K training data which are nearest to

the test data.
To calculate the geodesic midpoint, both latitude and lon-

gitude (φi, λi) in the top-K training data are converted to
Cartesian coordinates (xi, yi, zi). The average coordinates
(x̄, ȳ, z̄) are converted into the latitude and longitude (φp

j , λ
p
j )

for the midpoint.

φp
j = arctan 2(z̄,

√
x̄2 + ȳ2) (1)

λp
j = arctan 2(ȳ, x̄) (2)
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The results are measured by calculating the great circle
distance from the true position, LTe

j , to the predicted position,
Lp
j . The great circle distance d(LTe

j , Lp
j ) is

d(LTe
j , Lp

j ) = 2 ∗R ∗ arctan 2(√a,
√
1− a),

a = sin2(
φp
j − φTe

j

2
) + cosφp

j cosφ
Te
j sin2(

λp
j − λTe

j

2
),

(3)

where R = 6373.

C. Random KNN

The accuracy of (standard) K-Nearest Neighbor is degraded
by the presence of noisy or irrelevant or redundant features,
and could be affected by the skewed distribution of samples
from different countries/areas. We investigated two modifi-
cations of (standard) KNN [14]: (1) Computing the feature
distance for a subset of features, instead of all features. The
features are randomly and uniformly selected from the feature
space without replacement, in a way similar to that used
in Random Forests. (2) Use of bagging to select subsets
of examples. The training data is randomly and uniformly
selected from the original training set with replacement. These
approaches reduce the variance of the predictions.

Given a training set STr of size m, bagging generates
q new training sets {STr′1 , · · · , STr′q}, each of size m, by
sampling from STr uniformly with replacement. For each
new generated training data, suppose R features are randomly
selected. The Euclidean distance between the test data and
each of training data in the selected feature space is computed,
and the positions of K training data that are nearest to the
test data are selected. For all new generated training data, the
previous procedure is repeated, and then total q ∗K positions
are gathered together. From q ∗ K positions, the K most
frequent positions are selected, and the predicted position of
the test data is computed using Eq. 1 and Eq. 2.

D. Random forest regression

The Random Forest Regression (RFR) method is a process
of binary recursive partitioning [15]. A good tree will partition
data well, that is, the labels of data in a leaf node are similar to
each other. Let H(U) be the function that measures how close
the labels of data in the node U are. Assume node U is split
into UL and UR. The split can be evaluated by computing
how pure it will make the data in the child nodes, that is,

I(U,UL, UR) = H(U)−
∑

i∈L,R

H(U i). (4)

A larger I(U,UL, UR) value indicates that the split makes the
labels in the child nodes much purer. In constructing random
trees, on each “parent” node, a certain number of features are
randomly selected, we choose the one which yields the highest
I(U,UL, UR) value.

There are several ways to compute how close the data labels
are in one group. One option is to calculate the variance of
the labels of cases in the node U [16], that is,

Hvar(U) =
∑
i∈U

d(Li, L̄U )
2, (5)

where L̄U is the position of midpoint in the node U . A small
variance indicates that the positions tend to be very close.

Another option is to calculate the standard deviation of the
labels in the node U [17], that is,

Hsd(U) = |U |
√∑

i∈U d(Li, L̄U )2

|U | − 1
. (6)

The third option is to compute the absolute deviation of the
labels in the node U [18], that is,

Habs(U) =
∑
i∈U

|d(Li, L̄U )|. (7)

Computing the absolute deviation gives less weight to the
extreme cases. Thus it is more robust with respect to the
presence of outliers and skewed distributions [19].

IV. DATA PREPARATION

A. Music collection

Our corpus was built from a personal collection of 1,142
tracks covering 73 countries/areas. The music used is tradi-
tional, ethnic or ‘world’ only, as classified by the publishers
of the product on which it appears. We have not included any
Western music because its influence is global - what we seek
are the aspects of music that most influence location. Thus,
being able to specify a location with strong influence on the
music is central.

To determine the geographical location of origin we man-
ually collected the information from the CD sleeve notes,
and when this information was inadequate we searched other
information sources. There are most certainly other options as
demonstrated by Govaerts et. al. but these have varying levels
of accuracy and indeed their ground truth for the experiment
was ‘personal knowledge’ or ‘by looking up the origin’ [20].
We did not wish to confound the ability of the predictor with
incorrect location information. The location data is limited in
precision to the country/area of origin - we did not have the
time to try to find out more about each track.

The country/area of origin was determined by the artist’s or
artists’ main country/area of residence. Any track that had
ambiguous origin was removed from the dataset. We have
taken the position of the capital of the country (or the province
of the area) by latitude and longitude as the absolute point of
origin. The assumption here is that the political capital (or
province) is also the cultural capital (or province).

Fig. 1 shows the distribution of songs per country/area for
the 33 countries/areas with the most songs.

B. Audio features

The program MARSYAS [21] was used to extract audio
features from the wave files. We used the default MARSYAS
settings in single vector format (68 features) to estimate the
performance with basic timbal information covering the entire
length of each track. No feature weighting or pre-filtering
was applied. All numerical features (that is, all features) were
transformed to have a mean of 0, and a standard deviation
of 1. We also investigated the utility of adding chromatic
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Fig. 1. Partical sample of music distribution by country (or area).
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Fig. 2. Mean distance between the true and the predicted positions as
a function of K value with the default features (68) and the default with
chromatic features (116) respectively.

attributes. These describe the notes of the scale being used.
This is especially important as a distinguishing feature in ge-
ographical ethnomusicology. The chromatic features provided
by MARSYAS are 12 per octave - Western tuning, but it may
be possible to tell something from how similar to or different
from Western tuning the music is.

V. RESULTS

A. Experimental setup

We used data from all countries/areas with more than 10
tracks. In total 1059 tracks were used in the experiments. The
tracks from the same country/area are equally distributed in 10
groups. We utilized 10-fold cross-validation in all experiments.
Overall prediction accuracy was estimated by calculating the
mean error distance from true positions of 1059 tracks to their
corresponding predicted positions. The data is available free
online at https://sites.google.com/site/icdm2014music/.

Using the Random forest regression model 200 trees were
constructed. At each “parent” node, 13 features are randomly
selected, and 8 thresholds are set among the range of the
feature value. If the node contains less than 8 cases the node
was not split.

B. Prediction performance

We first assessed how large the mean distance was between
the true and the predicted positions. The average distance error
(Fig. 2) is from 3,100 km to 3,600 km. Using the default
MARSYAS features (68), the best predictive performance we
achieved was a 3,113.392 km mean distance when K is 5.
Using the default with the additional chromatic features (116),
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Fig. 3. Mean distance error as a function of K. The boxplot shows the
distribution of 1000 permutation test results.

the best predictive performance we achieved was 3,157 km
with K equal to 3.

We then investigated whether there is a predictive relation-
ship between the audio features and geographical locations
by comparing the results of permutation tests with results
of (standard) KNN and Random forest regression. In the
permutation test: for each track we randomly selected K
cases and computed the midpoint of K selected labels as the
predicted position, and then computed the mean error for the
whole tracks. The distribution of 1000 fold permutation test
results are shown (by using boxplot) in Fig. 3 in both feature
spaces. The empirical results (Fig. 3) indicate that the results
of both (standard) KNN and Random forest regression fall
outside the entire distribution. We can therefore conclude that
both types of methods produce significantly (P-value < 0.001)
better results than permutation tests. Thus we can infer that
there do exist a connection between the audio features and
geographical locations.

C. KNN vs RFR

We next compared the performance of (standard) KNN with
Random forest regression (Fig. 2). In both feature sets, the
(standard) KNN gave the worst results over the whole range
of K values. This may be because it takes all features into
account, and its performance can be degraded by the presence
of noisy or irrelevant or redundant features. The differences
between KNN results and Random forest regression results
are examined by using paired t-test. Their P-values related
to different K using 68 features are in Table I, which show
that three approaches in Random forest regression produce
significantly better results than KNN especially when K is
bigger than 5. The performance is similar when using 116
features.

The second worse results (Fig. 2) were produced by Ran-
dom forest regression with absolute deviation split criterion
Habs(U). This is probably because it gives less weights to
the outliers. Table I indicates that other two approaches in
Random forest regression produce significantly better results
than Random forest regression with absolute deviation when
K is larger than 1.

Random forest regression with variance split criterion
Hvar(U) and with standard deviation split criterion Hstd(U)
produced the best performance in both feature settings (Fig. 2).
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Fig. 4. Mean distance error as a function of K. The points are the results of
Random KNN. The number of random features selected are 20%, 40%, 60%,
80%, and 100%.

Again the reason for this is probably because these two
approaches give more weights to the outliers. The differences
between the results produced by these two approaches are not
significant (see. Table I).

Comparing Fig. 2a with Fig. 2b, we noticed that all ap-
proaches produce slightly better results when they use the 68
default features.

D. Random KNN vs RFR

We then compared the performance of Random KNN
with (standard) KNN and Random forest regression methods
(Fig. 4). 20%, 40%, 60% and 80% features were randomly
selected respectively from the feature space without replace-
ment, and their corresponding results are plotted using points
with different shape.

In both feature settings Random KNN gives better results
than the (standard) KNN (Fig. 4), but the results are worse than
the ones produced by Random forest regression approaches,
especially Random forest regression with the variance split
criterion. We also noticed that when Random KNN uses all
features, it still gives better results than the ones produced by
(standard) KNN.

E. Sorted feature KNN vs RFR

We compared the performance of Random forest regression
methods with KNN using selected features (Fig. 5). The
selected features were the ones that are used to split nodes
in constructing random forest, and are sorted based on the
selected frequency (this was done avoiding training on the
test set).

Since Random forest regression with variance criterion and
the one with standard deviation criterion produced similar
results, we here only show results of Random forest regression
with variance criterion and with absolute deviation criterion.
Overall, Random forest regression with variance criterion
produced better results than the ones produced by KNN
using sorted features. KNN using only the first 20% highly
selected features produces the worst results. However, when
the percentage of selected features increases the performance
is better than the (standard) KNN. The results on the default
and the chromatic features are analogous to the ones in Fig. 5.
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Fig. 5. Mean distance error as a function of K. The features are the default
68 features. The points are the results of KNN using a certain percentage of
sorted features.

(a) Taiwan (b) Greece

Fig. 6. Distribution of predicted positions of songs from two regions.

F. Performance by country/area

The algorithm performed much better on some coun-
tries/areas than others - even with the same number of tracks
available, suggesting that the music from some countries/areas
is more distinct than that from others. An additional problem
is the relative size of countries/areas.

We applied (Standard) KNN using the default features and
gave two examples to illustrate the distributions of predicted
positions of songs (Fig. 6). Fig. 6a shows the predicted loca-
tions of music from Taiwan. Among the 25 tracks which are
from Taiwan, 18 tracks are all correctly positioned precisely in
Taiwan area. The maximal distance from the predicted position
to the true position is 7,539.853 km, and the mean value is
1,019.651 km.

Fig. 6b shows the distribution of predicted locations of
Greek music. Among 47 Greek music, one fourth tracks (the
points in Cyan color) are predicted 200 km away from the
Greek capital (the blue point). From this it is clear that
the prediction range for a country/area can be quite tightly
distributed - the furthest estimate is 3,661.478 km but there is a
close cluster central to the image that reflects the more general
skew in the distribution of estimates for all countries/areas.

VI. DISCUSSION AND CONCLUSIONS

We have proposed an objective machine learning approach
to understanding music. We analyzed the geographical distri-
bution of music - geographical ethnomusicology. The problem
is of technical interest to data analysis task because of the spe-
cial characteristics of the representation of global geographical
positions. To deal with this we applied K-Nearest Neighbor
and Random forest regression methods for prediction.

We conclude the following from the experiments: (1) All
methods performed significantly better than the random null
model, which demonstrates there is a predictive relationship
between audio features and geographical locations; (2) The
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TABLE I
P VALUES OF PAIRED T-TEST. THE BOLD VALUES ARE THE ONES THAT ARE SMALLER THAN THE SIGNIFICANCE LEVEL (0.05).

K

1 3 5 7 9 11 13 15 17 19

RFR(var) ≤ RFR(std dev) 0.0388 0.48 0.103 0.888 0.8 0.13 0.445 0.031 0.157 0.005

RFR(var) ≤ RFR(abs dev) 0.004 0.0489 2.19e-05 0.009 0.009 1.99e-06 0.01 0.001 1.82e-06 4.21e-08

RFR(std dev) ≤ RFR(abs dev) 0.208 0.044 0.002 0.0007 0.0009 8.44e-05 0.0136 0.03 6.68e-05 0.0009

RFR(var) ≤ KNN 0.0045 0.0001 3.19e-06 2.37e-05 2.72e-07 3.49e-10 1.32e-09 1.5e-12 6.52e-13 4.2e-17

RFR(std dev) ≤ KNN 0.114 0.0002 8.46e-05 1.21e-07 2.03e-09 3.17e-09 1.96e-10 2.19e-10 3.53e-12 2.2e-12

RFR(abs dev) ≤ KNN 0.313 0.0186 0.0897 0.017 0.0007 0.007 1.19e-05 2.83e-06 0.00055 4.78e-05

three approaches of Random forest regression produced sig-
nificantly better results than KNN, especially with the variance
and standard deviation split criteria; (3) The use of bagging
improves the performance of KNN; (4) The best predictive
performance achieved has a mean great circle distance of 3,113
km.

There is much scope for further research and improvement
in prediction performance. With a larger corpus with both
more tracks from each country/area, and more countries/areas
represented, the prediction results will inevitably improve.
More geographical information could also be utilized. It would
be better to have access to the exact location of the origin of
the music, rather than just the capital or province, as most
countries, like China, have strong regional variations in style.
Some cultures change drastically over small areas, while some
are unchanged over large expanses, and this needs to integrated
in the prediction method.

The music could be better represented for computational
analysis. It is a truism within machine learning that the hard
part is getting the features correct, and with the correct features
almost any learning algorithm will work.

It is difficult to know how good our prediction results are
as there are no previously published related comparisons. It
would therefore be very interesting to compare the results
of the machine learning programs with that of human per-
formance in predicting musical origin. We suspect that the
machine learning methods are already quite competitive with
humans.
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