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Abstract 

This study seeks to understand the association between per capita income and the demographic variables 

with a county’s economic, health, and social well-being to explore the wealth gap. The data consists of 14 

characteristics for 440 individual counties in the U.S based on information from 1990 to 1992. 

Exploratory data analysis is performed to determine the pairwise relationships between the given 

variables and address concerns about missing values. Additionally, regression modeling is utilized to 

model per capita income and the relationship between income, crime, and region. The exploratory data 

analysis found unsurprising relationships between the variables and that the missing values limited the 

scope of the research to areas with large populations. Then, the regression modeling found that a county’s 

geographical region does not affect the wealth gap since the region does not affect the positive association 

between per capita income and crime, even when crime per capita is used. Additionally, the final model 

for per capita income found that uneducated and rural areas with fewer job opportunities are at risk of low 

incomes.  

Introduction 

As the wage gap increases in the United States, it is becoming increasingly important to determine what 

factors contribute to the economic disparity to address the issues. One way to tackle this problem is to 

investigate the relationship between a person’s income and the quality of their surroundings, such as their 

county. Looking at per capita income in a county is essential because it provides more specific variables 

that could potentially affect the wealth gap. Therefore, this study aims to learn how per capita income is 

related to other variables associated with the county’s economic, health, and social well-being. Since this 

goal requires a comprehensive analysis, four sets of questions are addressed.  

1.) Demographic Relationships – What are the pairwise relationships between the demographic 

variables in the dataset?  
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2.) Income, Crime, and Region – There is a theory that, if all other variables are ignored, per-capita 

income should be related to the crime rate. This relationship may differ in different country regions 

(Northeast, Northcentral, South, and West). Does the data support this theory? Does the relationship 

change if the number of crimes, or (number of crimes)/(population), is included in the analysis?  

3.) Modeling Per-capita Income – Find the best model predicting per-capita income from the other 

variables. 

4.) Missingness – Should we be worried about either the missing states or the missing counties? Why or 

why not?  

Data 

The data set for this study includes selected county demographic information (CDI) for 440 of the most 

populous counties in the United States from Kutner et al. (2005).  The original data is from the Geospatial 

and Statistical Data Center at the University of Virginia. Each county has an identification number, along 

with the county’s name and state abbreviation. For each of the counties, there is information on fourteen 

demographic variables from 1990 to 1992. Of the fourteen variables, thirteen contain numeric data, and 

the remaining variable includes the county’s region. A complete list of the variables and their definitions 

is in Table 1. The counties included in this dataset come from 48 states with 337 unique county names. 

The states that are excluded in the data are Alaska, Iowa, and Wyoming. Some county names, like 

Jefferson, occur in multiple states. However, when the county and state are considered together, there are 

440 unique combinations. Most counties are in the south, and the least number of counties are in the west 

for the region variable. There are no missing values in the dataset since any county with missing data was 

excluded before the analysis.  
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Table 1: Variable definitions for CDI data from Kutner et al. (2005). Original source: Geospatial and 

Statistical Data Center, University of Virginia.  

 

Table 2: Descriptive statistics for the continuous variables.  

 

The descriptive statistics for the continuous variables outlined in Table 2 show no apparent 

abnormalities in the data. However, many continuous variables such as land area, population, doctors, 

hospital beds, crimes, total income, and per capita income have a substantially higher mean than the 
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median.  The plot of histograms in Figure 1 supports this idea by showing how land area, population, 

doctors, hospital beds, crimes, total income, and per capita income have right-skewed distributions. The 

remaining variables also have skewness to them but are not as extreme as the variables already 

mentioned. 

 

Figure 1: Histograms of the continuous variables. 
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Methods 

Recall that this study seeks to answer four sets of questions to analyze the relationship between average 

income and county characteristics. The methods for each set of questions are outlined here: 

1. Demographic Relationships 

The first question asks for the pairwise relationships between the variables in the dataset. For this 

question, pairwise correlations and scatterplots with the response variable were calculated to explore the 

connections for all the predictor variables. The state and county variables are excluded from this analysis 

section because there are too many categories to make a reasonable conclusion.   

2. Crime, Income, and Region 

The next batch of questions pertains to the relationship between crime, income, and region. The first 

question asks if the relationship between crime and income differs based on the area. The best method to 

answer this question is to build a regression model since it directly translates with interaction terms. 

Recall that the data indicates that transformations are necessary to meet the linear model assumptions. 

Therefore, preliminary shifts will need to be applied to the data to make the models valid.  

Three regression models will be built to determine the relationship between income, crime, and region. 

The first model acts as a baseline with per capita income as the response and crime as the sole predictor. 

Next, the county’s region is added to the previous model to determine if it is significant to predict per 

capita income. Then, a third model is created with the same parameters as the second model, plus their 

interaction terms. Finally, an ANOVA test compares the three models and determines which model best 

predicts per capita income. If the model with the interaction terms is the best, then there is evidence that 

the relationship between crime and income is dependent on the region.  

The second goal is to see if the relationship between crime and income changes if crime per capita is used 

instead of crime. The analysis framework outlined in the previous paragraph will be performed again with 
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the crime per capita variable for this task. Afterward, there will be two final models, the best model with 

the crime per capita variable and the optimal model with the given crime variable. Finally, a comparison 

is made between the two final models by their coefficients, diagnostic plots, and summary regression 

statistics. If these two models are significantly different, then there is evidence that the relationship 

between crime and income depends on the crime metric used in the models.  

3. Modeling Per-capita Income 

This part of the study aims to build the best model that predicts per capita income using the demographic 

variables available in the dataset. For this study, ‘best model’ means a compromise between meeting the 

statistical assumptions, reflecting the social science behind the variables, relaying the data, and finding a 

model that can be easily explained to a non-statistician.  

The first step in the modeling process is to find optimal transformations for the predictors if a shift is 

necessary. The Box-Cox method calculates the initial benchmark transformations, but the final changes 

will be simple, consistent, and interpretable functions that make each predictor as close to normal as 

possible. After the best transformations are identified, the variance inflation factors will be checked to see 

if any underlying relationships between the variables need to be excluded from the model building 

process. Next, three variable selection methods will be used to determine potential candidates for the final 

model: stepwise, best subset, and LASSO. In all three methods, the Bayes information criterion (BIC) 

will be used as the selection criterion since the focus of this study is to find the ‘true’ model for income 

per capita (Sheather 2009).  For the LASSO method, the choice of lambda will be determined by cross-

validation.  

The region variable is excluded from the model building process in all three methods since its categorical 

attribute can skew the variable selection methods. Nevertheless, the first-order interaction terms with the 

region variable and all possible two-way interactions terms will be considered after identifying a model to 

see if they improve the model fit. Once the best model is found for each selection method, the three final 
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models will be compared using diagnostic plots, summary regression statistics, and context to determine 

the overall best model.  

4. Missingness 

Finally, this section of the study will address any concern over the lost data present in the dataset. 

Specifically, the missing values will be analyzed by comparing the sample against the population to see if 

any important features are excluded from the data.  

Results 

1. Demographic Relationships – What are the pairwise relationships between the demographic variables 

in the dataset?  

 

Figure 2: Correlation plot of the continuous variables. 

The correlation plot in Figure 2 shows that there are several linear relationships among the variables. To 

start, total income and population have a high positive correlation, and these two variables are also highly 
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correlated with crime, hospital beds, and doctors. Additionally, crime, hospital beds, and doctors have 

strong positive correlations with each other. These results are unsurprising since they all are related to an 

area’s population. In contrast, only a couple of variables have negative associations between them. For 

example, the percentage of people below poverty and the rate of high school graduates have a negative 

relationship. This result makes sense because people who graduate from high school tend to have more 

job opportunities and avoid extreme poverty. While these relationships were foreseeable, the presence of 

high correlations between the predictor variables demonstrates that there may be some issues with 

multicollinearity during the model fitting process. 

 

Figure 3: Scatterplots of the predictor variables against the response variable per capita income. 
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Interestingly, the response variable, per capita income, is not strongly correlated with any other variable. 

This result is supported by the scatterplots presented in Figure 3. Only a few scatterplots show a weak 

linear relationship between the response and the predictors, which indicates that additional work is needed 

to meet the modeling assumptions. The skewed distribution also confirms a wealth gap since a small 

fraction of the counties has a significantly higher income than the majority.  

2. Crime, Income, and Region  

The data indicated that the per capita income and crime variables were severely left-skewed, meaning that 

a log transformation would be needed to meet the assumptions for a regression model. After shifting per 

capita income and crime, three regression models were built to evaluate the relationship between income, 

region, and crime. Each model contained income per capita as the response variable and crime as one of 

the predictors. The variation in the model came from the region variable, with one model containing the 

interaction terms for both region and crime. The ANOVA test concluded that the relationship between 

income and crime does not change based on the region because the test returned a p-value that is well 

over 0.05 for the model with the interaction terms (Appendix Part E, pg. 27). The best model contained 

income per capita, crime, and region. More specifically, the model indicated that for every 1% increase in 

U.S. crimes, we expect a 0.07% increase in per-capita income, on average. Additionally, the four regions 

have different baseline per-capita incomes (Table 2). Therefore, the best model indicates that the 

magnitude of salary varies with a region and crime in the U.S., but the positive association is the same.  

Table 2: Summary statistics for the final model that predicts per capita income from crimes and region. 
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The results were very similar when the above modeling process was applied with the crime per capita 

variable. Once again, the ANOVA test concluded that the best model did not include the interaction terms 

since the p-value for the model with the interaction terms was well over 0.05 (Appendix, pg. 31). The best 

model also had the income per capita, crime rates, and region variables, but the coefficients differed 

slightly. More specifically, for every 1% increase in U.S. per-capita crime, there is an associated 0.04% 

increase in per-capita income (Table 3). Again, the salary level varied with region, but the connection 

between crime and income remained the same. Thus, both models agree that crime and income have a 

relationship that does not depend on the region. 

Table 3: Summary statistics for the final model that predicts per capita income from per capita crime and 

region.  

 

The final two models both included income per capita, region, and crime/per capita crime. The diagnostic 

plots and summary regression statistics are similar between the model with the original crime variable and 

the model with crime per capita (Appendix Part E, pg. 27). Therefore, the relationship between crime and 

income does not depend on the crime metric used in the models. This result suggests that location is not 

contributing to the wealth gap since wealthier areas will experience more crime than poorer locations in 

every region in the country.  

3. Modeling Per-capita Income 

The focus of the model selection process was on finding the best model to explain income per capita from 

the county’s demographic qualities. At the beginning of the model-building process, the skewed data 

needed to be transformed to meet the linear model assumptions. The Box-Cox method indicated that 



12 
 

many variables had ideal transformations that were unreasonable to interpret (Appendix Part F, pg. 34). 

For example, the optimal power for the land area variable was around -0.05, which is not easy to interpret, 

even for statisticians. Additionally, some variables could have been transformed in multiple ways to reach 

the normal distribution. Overall, the transformation that was the best balance between statistics and 

context was the log transformation applied to the land area, population, doctors, hospital beds, crimes, 

total income, and per capita income variables (Appendix Part F, pg. 35). Then, two variables had a high 

variance inflation factor: population and total income. This collinearity was an intuitive result because 

both are a function of the response variable. Consequently, both variables were removed from model 

consideration since multicollinearity interferes with the validity of the model.  

In the variable selection process, the best subset, LASSO, and stepwise selection methods returned the 

same model with seven variables. However, their coefficients were relatively small, and some variables 

appeared to have the wrong sign (Table 4). None of the diagnostic plots or regression statistics indicated 

any variable was causing the problem (Appendix Part F, pg. 37). Thus, the region variable with 

corresponding interaction terms was added to the model to see if the coefficients could be improved. 

After fitting the interaction terms to the model, the signs of the variables did not change, the diagnostic 

plots were the same, and the regression statistics were comparable to the model without the interaction 

terms (Appendix Part F, pg. 39). An ANOVA test was also performed along with calculating the BIC 

value for the model. The ANOVA test concluded that the interaction terms should be included in the 

model since the p-value for the model with the interaction terms is significantly less than 0.05. However, 

the BIC value favored the model without the interaction terms, and the model with the interaction terms 

still did not change the signs for the two variables of concern.  

Similarly, all possible two-way interaction terms were separately added to the model to see if they could 

add value. There were two significant interaction terms, and the BIC value was much lower for the model 

with the interaction terms, which suggests that they made be critical to the model (Appendix Part H, pg. 

44). However, the coefficients for the interaction terms are so small that the interpretation was impractical 
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to the study, and they did not significantly improve the r-squared value (𝑅2 = 0.87). Therefore, no 

interaction terms were included in the final model since they complicate its interpretation and do not add 

much value. The final model contains seven variables which are listed with their summary statistics in 

Table 4.  

Even though the selection methods returned the same model, the final model’s diagnostic plots and 

summary regression statistics were evaluated to see how well the model fit the data. The diagnostic plots 

showed the residuals were random, normally distributed, consistently varied, and had no outliers or high 

leverage points. All of which indicates that the model is valid and a good fit for the data. Additionally, the 

summary regression statistics demonstrate that the final model has predictive power. The r-squared value 

was high (𝑅2 = 0.85), the standard error was small in context (𝑆𝐸 = 0.082), all the coefficients were 

significant to the model, and the BIC metric was low (𝐵𝐼𝐶 =  −905.45). Therefore, the best model is 

statistically valid and can effectively predict per capita income. 

Table 4: Summary statistics for the final model that predicts per capita income. 
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The variable’s coefficients in the final model have the following interpretations: 

• Land Area – For every 1% increase in a county’s land area, there is a 0.04% decrease in 

expected per-capita income. This association makes sense because larger counties are less 

populated, which leads to less revenue overall. 

• Percent Population 18-34 – For every one percentage point increase in the percentage of people 

aged 18 to 34, there is a 1% decrease in the expected per-capita income. This result aligns with 

the expectations that younger adults make less as they start their careers. 

• Doctors – For every 1% increase in the number of doctors in a county, the expected per-capita 

income increases by about 0.06%. This result makes sense because doctors and medical personnel 

are high-paying jobs. 

• Percent High School Graduate – For every one percentage point increase in the percentage of 

people with high school degrees, the expected per capita income increases by less than 1%. This 

result aligns with the expectations that people with high school degrees have more job 

opportunities and more income. 

• Percent Bachelor Degree – For every one percentage point increase in the percentage of people 

with a bachelor’s degree, the expected per capita income increases by 2%. This result aligns with 

the expectations that people with college degrees have more job opportunities and, therefore, 

more income. 

• Percent Below Poverty – For every one percentage point increase in the percentage of people in 

poverty, there is a 2% drop in the expected per capita income. This result is intuitive since people 

who are in poverty have low incomes. 

• Percent Unemployment – For every one percentage point increase in the unemployment rate, 

there is a 1% increase in the expected per capita income. This result is surprising since we would 

think that unemployed people have less income than employed people.  
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The final model suggests several interesting relationships with per capita income. For one, the presence of 

both education variables indicates that more resources should be devoted to schools since these variables 

have positive associations with per capita income. The number of doctors is also positively connected to 

the response, implying that areas with higher-paying jobs or medical resources increase per capita 

income. However, the model also concluded that a higher unemployment rate grows per capita income. 

While this seems incorrect, the generous unemployment benefits may be skewing this variable. Most 

unemployed people may receive government compensation that provides them with a consistent and 

reasonable income. A deeper investigation beyond the scope of this study is needed to confirm this 

theory. Additionally, the size of the area has a negative association with per capita income which suggests 

that rural areas are at an economic disadvantage. Finally, areas with a large percentage of younger adults 

tend to have less income. This result indicates that younger adults with less stable income are more 

vulnerable to economic disparity. 

4. Missingness  

Finally, the missing counties and states in the study are evaluated to see if any patterns could cause an 

issue to the analysis. The concern stems from the sampling method since it only included the most 

populous counties in the country. Recall that 48 states and 440 individual counties are included in the data 

set. There are 50 states in the U.S., plus the District of Columbia. From this list, three states are missing 

from the dataset: Alaska, Iowa, and Wyoming. The data includes 440 of the 3000 counties in the U.S. 

Because of the sampling method, the number of counties is not evenly distributed among the states. More 

specifically, California has the most counties, which aligns with the state’s large population. There are 

also seven states with only one county, but they are all much smaller states in size.  

The glaring pattern to these missing values is the exclusion of rural or sparse areas. This exclusion limits 

the study’s implications because it is unreasonable to assume that rural or less populated areas have the 

same demographics as urban or more populated counties. Therefore, the missing values are problematic 

and indicate that the findings for this analysis are limited to counties with a large population.  
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Table 5: Descriptive statistics for the state and county variables. 

 

Discussion 

The purpose of this study was to investigate the relationships between per capita income and county 

characteristics. The investigation was broken down into four sections with individual methods. In the first 

section, an exploratory data analysis found several unsurprising relationships between the variables. 

However, per capita income had many skewed relationships with the other variables. This result confirms 

the presence of a wealth gap and informed potential multicollinearity issues for the model. The next part 

of the analysis utilized regression models to determine the relationship between crime, region, and per 

capita income. The final model suggests that crime and income have a positive association when all other 

variables are constant. It also implies that location is not contributing to the wealth gap because the 

connection between crime and income does not change based on the region, even when the crime variable 

is transformed into crime per capita. Next, an optimal model was built to predict per capita income. After 

testing three selection methods, the best model included seven variables listed in Table 3. Finally, the 

missing values were analyzed to see if their exclusion could negatively influence the study. Descriptive 

analysis showed that only the states and counties with high populations were included in the dataset. 

Therefore, the results of this research can only be extended to areas with a high population.  

Overall, the analysis has shown several relationships with per capita income and suggested several 

possible explanations for the country’s wealth gap at a county level. This evidence can be helpful to those 

trying to implement solutions to the wealth gap in specific areas of the country.  
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The study has several strengths, including an interpretable model agreed upon by three modeling selection 

techniques. Also, the model’s explicit validity and substantial predictive power support the implications 

behind the study. However, there are several areas for further analysis and improvement. While it was 

hypothesized that the positive association between unemployment and per capita income could be 

explained by government aid, further investigation should confirm the relationship. Additionally, there 

were not enough resources to fully consider the state variable. Individual state policy could explain the 

model’s variability, so it would be valuable to see this variable utilized in the future. Finally, it would be 

constructive to analyze a larger dataset, especially for less populated or rural areas. Even though the 

research in this study implemented valid methods for variable selection, the model may overfit the data 

since it was the only data used to create it. More data would allow for cross-validation, which would help 

create a generalizable model.  
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Technical Appendix

Part A - Data Processing

head(data)

## id county state land.area pop pop.18_34 pop.65_plus doctors
## 1 1 Los_Angeles CA 4060 8863164 32.1 9.7 23677
## 2 2 Cook IL 946 5105067 29.2 12.4 15153
## 3 3 Harris TX 1729 2818199 31.3 7.1 7553
## 4 4 San_Diego CA 4205 2498016 33.5 10.9 5905
## 5 5 Orange CA 790 2410556 32.6 9.2 6062
## 6 6 Kings NY 71 2300664 28.3 12.4 4861
## hosp.beds crimes pct.hs.grad pct.bach.deg pct.below.pov pct.unemp
## 1 27700 688936 70.0 22.3 11.6 8.0
## 2 21550 436936 73.4 22.8 11.1 7.2
## 3 12449 253526 74.9 25.4 12.5 5.7
## 4 6179 173821 81.9 25.3 8.1 6.1
## 5 6369 144524 81.2 27.8 5.2 4.8
## 6 8942 680966 63.7 16.6 19.5 9.5
## per.cap.income tot.income region
## 1 20786 184230 W
## 2 21729 110928 NC
## 3 19517 55003 S
## 4 19588 48931 W
## 5 24400 58818 W
## 6 16803 38658 NE

dim(data)

## [1] 440 17

str(data)

## ’data.frame’: 440 obs. of 17 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ county : chr "Los_Angeles" "Cook" "Harris" "San_Diego" ...
## $ state : chr "CA" "IL" "TX" "CA" ...
## $ land.area : int 4060 946 1729 4205 790 71 9204 614 1945 880 ...
## $ pop : int 8863164 5105067 2818199 2498016 2410556 2300664 2122101 2111687 1937094 1852810 ...
## $ pop.18_34 : num 32.1 29.2 31.3 33.5 32.6 28.3 29.2 27.4 27.1 32.6 ...
## $ pop.65_plus : num 9.7 12.4 7.1 10.9 9.2 12.4 12.5 12.5 13.9 8.2 ...
## $ doctors : int 23677 15153 7553 5905 6062 4861 4320 3823 6274 4718 ...
## $ hosp.beds : int 27700 21550 12449 6179 6369 8942 6104 9490 8840 6934 ...
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## $ crimes : int 688936 436936 253526 173821 144524 680966 177593 193978 244725 214258 ...
## $ pct.hs.grad : num 70 73.4 74.9 81.9 81.2 63.7 81.5 70 65 77.1 ...
## $ pct.bach.deg : num 22.3 22.8 25.4 25.3 27.8 16.6 22.1 13.7 18.8 26.3 ...
## $ pct.below.pov : num 11.6 11.1 12.5 8.1 5.2 19.5 8.8 16.9 14.2 10.4 ...
## $ pct.unemp : num 8 7.2 5.7 6.1 4.8 9.5 4.9 10 8.7 6.1 ...
## $ per.cap.income: int 20786 21729 19517 19588 24400 16803 18042 17461 17823 21001 ...
## $ tot.income : int 184230 110928 55003 48931 58818 38658 38287 36872 34525 38911 ...
## $ region : chr "W" "NC" "S" "W" ...

# Change id to character for ease
data$id <- as.character(data$id)

ID is a numeric variable by default. This doesn’t make sense for our analysis so it is changed to a character
variable.

Part B - Data Description and Tables

cont_var <- unlist(lapply(data, is.numeric))
cont_table <- as.data.frame(apply(data[,cont_var], 2, summary))

# Splitting the continuous and integer variables since they all can't fit on one table
percent_var <- c('pop.18_34','pop.65_plus','pct.hs.grad','pct.bach.deg',

'pct.below.pov','pct.unemp')
integer_var <- c('pop','doctors','hosp.beds','crimes','tot.income')

percent_table <- cont_table[,which((names(cont_table) %in% percent_var)==TRUE)]
percent_table <- percent_table %>% mutate_if(is.numeric, ~round(., 1))

integer_table <- cont_table[,which((names(cont_table) %in% percent_var)==FALSE)]
integer_table <- integer_table %>% mutate_if(is.numeric, ~round(., 1))

# Region
# Only extract the values with the sum so that we can say 'total'
cross <- table(data$region)
region_table <- as.vector(addmargins(cross))
region_df <- data.frame(c('NC','NE','S','W','Total'),region_table)
colnames(region_df) <- c('Region','Freq')

# State and county
unique_state <- length(unique(data$state))
popular_state <- data %>%
group_by(state) %>%
summarise(n = n()) %>%
top_n(1,n)

popular_state_stat <- paste(popular_state$state,'with',popular_state$n,'counties.',sep = " ")

unpopular_state <- data %>%
group_by(state) %>%
summarise(n = n()) %>%
filter(n == 1)
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excluded_states <- toString(setdiff(state.abb,data$state))

state_df <- data.frame(c('Total States', 'State with the Most Counties','Number of States with 1 County', 'Excluded States'),c(unique_state, popular_state_stat, dim(unpopular_state)[1],excluded_states))
colnames(state_df) <- c('Statistic', 'Value')

popular_county <- data %>%
group_by(county) %>%
summarise(n = n()) %>%
group_by(n) %>%
summarize(count = n())

most_popular_county <- data %>%
group_by(county) %>%
summarise(n = n()) %>%
group_by(n) %>%
filter(n > 3)

unique_county <- length(unique(data$county))
sample_county <- c('...', '...' , '...' , 'Cumberland, Jackson, Lake', 'Washington', 'Montgomery', 'Jefferson')

county_df <- data.frame(popular_county,sample_county)
colnames(county_df) <- c('Number of States','Total Counties','County')

# Add a total bar so unique counties are shown
county_df <- county_df %>% adorn_totals("row")

cdinumeric <- data[,-c(1,2,3,17)] ## get rid of id, county, state and (for now) region
#apply(cdinumeric,2,function(x) c(summary(x),SD=sd(x))) %>% as.data.frame %>% t() %>%
# round(digits=2) %>% kbl(booktabs=T,caption=" ") %>% kable_classic()

# kableExtra::kbl(percent_table, caption = "Descriptive statistics for the continuous variables that are percents.", booktabs = T, linesep = "") %>%
# kableExtra::kable_styling(latex_options = "HOLD_position") %>%
# kableExtra::kable_classic() %>%
# kableExtra::row_spec(6, hline_after = TRUE)
#
# kableExtra::kbl(integer_table, caption = "Descriptive statistics for the continuous variables that are not percents.", booktabs = T, linesep = "") %>%
# kableExtra::kable_styling(latex_options = "HOLD_position") %>%
# kableExtra::kable_classic() %>%
# kableExtra::row_spec(6, hline_after = TRUE)

kableExtra::kbl(region_df, caption = "Descriptive statistics for the region variable.", booktabs = T, linesep = "") %>%
kableExtra::kable_styling(latex_options = "HOLD_position") %>%
kableExtra::kable_classic() %>%
kableExtra::row_spec(5, bold=T)
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Table 1: Descriptive statistics for the region variable.

Region Freq
NC 108
NE 103
S 152
W 77
Total 440

kableExtra::kbl(state_df, caption = "Descriptive statistics for the state variable.", booktabs = T, linesep = "") %>%
kableExtra::kable_styling(latex_options = "HOLD_position") %>%
kableExtra::kable_classic()

Table 2: Descriptive statistics for the state variable.

Statistic Value
Total States 48
State with the Most Counties CA with 34 counties.
Number of States with 1 County 7
Excluded States AK, IA, WY

kableExtra::kbl(county_df, caption = "Descriptive statistics for the county variable.", booktabs = T, linesep = "") %>%
kableExtra::kable_styling(latex_options = "HOLD_position") %>%
kableExtra::kable_classic()

Table 3: Descriptive statistics for the county variable.

Number of States Total Counties County
1 334 ...
2 23 ...
3 10 ...
4 3 Cumberland, Jackson, Lake
5 1 Washington
6 1 Montgomery
7 1 Jefferson
Total 373 -

There are 48 states; Arkansas, Idaho, and Wyoming are the only excluded states. 48 categories is too much
for it to be useful to the dataset. Therefore, this variable will be excluded from the analysis.

There are 373 unique counties, with some county names repeated several times in different states. If you
combine state and county together, you will get 440 unique values which corresponds to the number of rows.
Again, 373 categories is too much for it to be useful in the dataset. Therefore, this variable will be excluded
from the analysis.

Region only has four unique values and it’s fairly evenly distributed among the four regions. Therefore, it
will be considered in the data analysis.
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Part C - Missing Values

unlist(lapply(data, function(x){sum(is.na(x))}))

## id county state land.area pop
## 0 0 0 0 0
## pop.18_34 pop.65_plus doctors hosp.beds crimes
## 0 0 0 0 0
## pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income
## 0 0 0 0 0
## tot.income region
## 0 0

There are no missing values in the data since counties with missing values were removed prior to analysis.

Part D - Descriptive EDA

Since we have determined which variables will be useful to the model - we will condense the data to the
variables were are interested in.

viz_data <- data[,-c(1,2,3)] # get rid of id, state, and count for the visualizations

ggplot(gather(viz_data[,-c(14)]), aes(value)) +
geom_boxplot()+
facet_wrap(~key, scales = 'free')
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ggplot(gather(viz_data[,-c(14)]), aes(value)) +
geom_histogram(bins = 25) +

facet_wrap(~key, scales = "free") +
theme(axis.text.x = element_text(angle = 40, hjust=1))+
xlab("")+
ylab("")

23



tot.income

per.cap.income pop pop.18_34 pop.65_plus

pct.bach.deg pct.below.pov pct.hs.grad pct.unemp

crimes doctors hosp.beds land.area

0
50000

100000

150000

10000
20000

30000 0

2500000

5000000

7500000 20 30 40 50 10 20 30

10 20 30 40 50 0 10 20 30 50 60 70 80 90 5 10 15 20

0e+00

2e+05

4e+05

6e+05 0
5000

10000
15000

20000
25000 0

10000
20000 0

5000
10000

15000
20000

0

100

200

0

25

50

75

0

20

40

60

80

0

50

100

150

0

20

40

60

0

20

40

60

80

0

50

100

150

200

250

0

20

40

60

0

50

100

150

0

50

100

150

200

250

0

10

20

30

40

50

0

25

50

75

0

50

100

150

200

It looks from the histograms like the variables that will really need attention (because they are severely right-
skewed) are land.area, pop, doctors, hosp.beds, crimes, and tot.income, and maybe per.cap.income.

We can look at QQ plots to determine if the other variables would be worth transforming.
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X2 <- stack(data[,cont_var])

ggplot(X2, aes(sample = values)) +
stat_qq() +
stat_qq_line() +
facet_wrap( ~ ind, scales = 'free')
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Then we can look at a correlation plot to visualize the relationships between the variables

m <- cor(data[,cont_var])
corrplot(m, method="color", type="upper",tl.col="black")
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We can make the following conclusions from the correlation matrix:

• tot.income and pop are highly correlated (no surprise there)

• both are reasonably highly correlated with crimes, hosp.beds and doctors

• the three variables crimes, hosp.beds and doctors seem strongly correlated with one another

• per.cap.income isn’t really highly correlated with anything, but the best possibilities seem to
be pct.hs.grad, pct.bach.deg (postively correlated with per.cap.income) and pct.below.pov,
pct.unemp (negatively correlated with per.cap.income); all four of these variables are moderately
highly correlated with one another

These observations suggest that we may run into multi-collinearity problems when we start fitting models,
but there is also some hope that we can make a good model for per.cap.income.

Now we turn to scatter plots, but we are just going to concentrate on relationships with per.cap.income:

## I'm not sure how I'd do this directly with ggplot...

scatter.builder <- function(df,yvar="per.cap.income") {
result <- NULL
y.index <- grep(yvar,names(df))
for (xvar in names(df)[-y.index]) {

d <- data.frame(xx=df[,xvar],yy=df[,y.index])
if(mode(df[,xvar])=="numeric") {

p <- ggplot(d,aes(x=xx,y=yy)) + geom_point() +
ggtitle("") + xlab(xvar) + ylab(yvar) +
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theme(axis.text.x = element_text(angle = 40, hjust=1))
} else {

p <- ggplot(d,aes(x=xx,y=yy)) + geom_boxplot(notch=F) +
ggtitle("") + xlab(xvar) + ylab(yvar) +
theme(axis.text.x = element_text(angle = 40, hjust=1))

}
result <- c(result,list(p))
}
return(result)

}

grid.arrange(grobs=scatter.builder(viz_data))

The best possibilities for predicting per.cap.income are the same variables we identified from the cor-
relation matrix: pct.hs.grad, pct.bach.deg,pct.below.pov, and pct.unemp. The last plot shows how
per.cap.income varies across the four regions of the country. There is a lot of overlap in the boxplots, but
the Northeast and the West seem to be doing a little better than the North Central and South regions.

Part E - Crime, Income, and Region

Build a regression model that predicts per-capita income from crime rate and region of the country. Should
there be any interactions in the model? What does your model say about the relationship between per-
capita income and crime rate? Do your answers change, depending on whether you use number of crimes,
or “per-capita crime” = (number of crimes)/(population) as a crime rate measure? If so, which one best
answers the question? Why? Show the fitted model results and explain your answer to these questions in
terms of those results

raw_crime_model <- lm(log(per.cap.income) ~ log(crimes), data = data)
nointer_model <- lm(log(per.cap.income) ~ log(crimes) + region, data = data)
inter_model <- lm(log(per.cap.income) ~ log(crimes)*region, data = data)

anova(raw_crime_model, nointer_model, inter_model)

## Analysis of Variance Table
##
## Model 1: log(per.cap.income) ~ log(crimes)
## Model 2: log(per.cap.income) ~ log(crimes) + region
## Model 3: log(per.cap.income) ~ log(crimes) * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 17.271
## 2 435 14.949 3 2.32194 22.4823 1.523e-13 ***
## 3 432 14.872 3 0.07678 0.7434 0.5266
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

There should not be an interaction term in the model because the ANOVA test returned a p-value
that is well over 0.05 for the interactions terms which means that they should not be added to
the model. Additionally, the coefficients for the interaction terms were insignificant when they
were fitted to the model which also indicates that they should not be included in the model.
Also, the model that include crime and region is the best at predicting income per capita.
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Figure 1: Scatter Plots with y = per.cap.income
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summary(nointer_model)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes) + region, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68757 -0.10557 -0.01422 0.08905 0.78946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.188431 0.079812 115.125 < 2e-16 ***
## log(crimes) 0.066695 0.008421 7.920 2.00e-14 ***
## regionNE 0.104458 0.025531 4.091 5.11e-05 ***
## regionS -0.086983 0.023618 -3.683 0.00026 ***
## regionW -0.055280 0.028167 -1.963 0.05033 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1854 on 435 degrees of freedom
## Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
## F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

par(mfrow = c(2,2))
plot(nointer_model)
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The model says that there is a positive linear relationship between income per capita income and
crime rates when the region is constant. More specifically, the crime rate variable’s coefficient
is significant with a p-value well below 0.05. This result indicates that crime rate has a linear
relationship with income per capita. Then, the positive coefficient value for crime rate shows
that the linear relationship between income per capita and crime is positive. More specifically
for every 1% increase in US crimes, we expect a 0.07% increase in per-capita income, on average.

Different regions of the country have different baseline per-capita incomes however: In the NC
region, the baseline salary is , and in the W it is All of these region baselines are, according to
the model, significantly different from the NC baseline.

Therefore, according to the model, the level of salary varies with region in the US, but the way
it is related to crime does not. .

Create the new crime per capita variable

data_prob1 <- data
data_prob1$per.capita.crime <- data_prob1$crime/data_prob1$pop

crime_cap_model <- lm(log(per.cap.income) ~ log(per.capita.crime), data = data_prob1)
nointer_model_pcc <- lm(log(per.cap.income) ~ log(per.capita.crime) + region, data = data_prob1)
inter_model_pcc <- lm(log(per.cap.income) ~ log(per.capita.crime)*region, data = data_prob1)

anova(crime_cap_model, nointer_model_pcc, inter_model_pcc)
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## Analysis of Variance Table
##
## Model 1: log(per.cap.income) ~ log(per.capita.crime)
## Model 2: log(per.cap.income) ~ log(per.capita.crime) + region
## Model 3: log(per.cap.income) ~ log(per.capita.crime) * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 18.697
## 2 435 16.952 3 1.74465 14.8407 3.263e-09 ***
## 3 432 16.928 3 0.02408 0.2048 0.893
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Once again, there should not be an interaction term in the model because the ANOVA test
returned a p-value that is well over 0.05 for the interactions terms which means that they should
not be added to the model. Also, the model that include crime per capita and region is the best
at predicting income per capita.

summary(nointer_model_pcc)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.capita.crime) + region,
## data = data_prob1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65832 -0.11431 -0.01548 0.10838 0.75657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.93628 0.06934 143.303 < 2e-16 ***
## log(per.capita.crime) 0.04243 0.02148 1.975 0.04885 *
## regionNE 0.11457 0.02760 4.151 3.99e-05 ***
## regionS -0.07456 0.02624 -2.841 0.00471 **
## regionW -0.02426 0.03002 -0.808 0.41952
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1974 on 435 degrees of freedom
## Multiple R-squared: 0.09645, Adjusted R-squared: 0.08814
## F-statistic: 11.61 on 4 and 435 DF, p-value: 5.776e-09

par(mfrow = c(2,2))
plot(nointer_model_pcc)
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If we want to statistically compare the best models in both scenarios (raw crime and crime per capita) we
need to use AIC or BIC because the two best models are not nested models.

AIC(nointer_model,nointer_model_pcc)

## df AIC
## nointer_model 6 -227.4746
## nointer_model_pcc 6 -172.1347

BIC(nointer_model,nointer_model_pcc)

## df BIC
## nointer_model 6 -202.9539
## nointer_model_pcc 6 -147.6140

round(summary(nointer_model)$coef,3) %>%
round(digits=4) %>% kbl(booktabs=T,caption=" ") %>% kable_classic()

round(summary(nointer_model_pcc)$coef,3) %>%
round(digits=4) %>% kbl(booktabs=T,caption=" ") %>% kable_classic()

The relationship between crime and income per capita is similar when the transformed crime rate
is fit to income. Again, the crime rate variable’s coefficient is significant with a p-value well below
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Table 4:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.188 0.080 115.125 0.00
log(crimes) 0.067 0.008 7.920 0.00
regionNE 0.104 0.026 4.091 0.00
regionS -0.087 0.024 -3.683 0.00
regionW -0.055 0.028 -1.963 0.05

Table 5:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.936 0.069 143.303 0.000
log(per.capita.crime) 0.042 0.021 1.975 0.049
regionNE 0.115 0.028 4.151 0.000
regionS -0.075 0.026 -2.841 0.005
regionW -0.024 0.030 -0.808 0.420

0.05. This result indicates that crime rate has a linear relationship with income per capita. Then,
the positive coefficient value for crime rate shows that the linear relationship between income
per capita and crime is positive. More specifically, for every 1% increase in US per-capita crime,
there is an associated 0.04% increase in per-capita income. Again, the level of salary varies with
region, but not the way it varies with crime, according to the model.

From a statistical perspective, the original crime variable is the best variable to answer the
question because it produces a valid model to predict per capita income. More specifically, the
diagnostic plots and summary regression statistics are better in the model with the original crime
variable than the model with crime per capita. In the diagnostic plots, the model with crime
per capita has distinct groups in the residuals and several potential high leverage values. This
result indicates that the model does not meet the assumptions for linear modeling. In contrast,
the residuals in the model with the original crime variable have no pattern that are centered
at 0, approximately normally distributed, constant variance, and only a handful of potential
high leverage values. This result indicates that the model does meet the model assumptions
for linear modeling and therefore is a better model than the model with crime per capita. The
summary regression statistics also agree with this conclusion since the r-squared value and variable
significance’s are better for the model with the original crime variable. Lastlty, BIC and AIC
agree that the model with region and crime is the best model since they have the lowest values.

However, this conclusion does not make sense contextually since the crime per capita variable has
the same standardization as income per capita. In other words, crime per capita eliminates the
possible confounding effect that population can have on crime and describes crime relative to the
area’s population (more dense places have more crime since there are more people). Therefore,
the crime per capita variable is the best variable to answer the question.

Part F - Transformations and VIF

Use methods we have discussed in class and/or methods from Sheather Chapters 5, 6 & 7 (including, as
needed: transformations, interactions, variable selection, residual analysis, fit indices, etc.) to find the
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multiple regression model predicting per-capita income from the other variables, that makes the “best”
tradeoff between the following criteria:

• Reflects the social science and the meaning of the variables • Satisfies modeling assumptions • Clearly
indicated by the data • Can be explained to someone who is more interested in social, economic and health
factors than in mathematics and statistics.

# Power transformations suggested by BoxCox
unlist(lapply(data[,cont_var], function(x){powerTransform(x)$roundlam}))

## land.area.x pop.x pop.18_34.x pop.65_plus.x
## 0.0000000 -0.5000000 0.0000000 0.0000000
## doctors.x hosp.beds.x crimes.x pct.hs.grad.x
## -0.2174773 -0.1541052 -0.1307109 3.0719249
## pct.bach.deg.x pct.below.pov.x pct.unemp.x per.cap.income.x
## 0.0000000 0.1817562 0.0000000 -0.5000000
## tot.income.x
## -0.5000000

# Applying log transformations to the data
data_trans <- viz_data
log_trans <- c('crimes','hosp.beds','doctors','land.area','pop','tot.income','per.cap.income')

for (tmp in log_trans) {
loc <- grep(paste("ˆ",tmp,"$",sep=""),names(data_trans))
data_trans[,loc] <- log(data_trans[,loc])
names(data_trans)[loc] <- paste("log.",names(data_trans)[loc],sep="")

}
#data_trans$pct.hs.grad <- data_trans$pct.hs.gradˆ3 # only left skewed variable

ggplot(gather(data_trans[,-c(14)]), aes(value)) +
geom_histogram(bins = 25)+
facet_wrap(~key, scales = 'free')
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vif(lm(log.per.cap.income ~., data = data_trans[,c(-1,-2,-3)]))

## GVIF Df GVIF^(1/(2*Df))
## pop.65_plus 1.529781 1 1.236843
## log.doctors 18.068402 1 4.250694
## log.hosp.beds 11.278397 1 3.358332
## log.crimes 9.557573 1 3.091533
## pct.hs.grad 4.482986 1 2.117306
## pct.bach.deg 4.033704 1 2.008408
## pct.below.pov 4.136517 1 2.033843
## pct.unemp 2.143984 1 1.464235
## log.tot.income 13.788017 1 3.713222
## region 2.889704 3 1.193463

We ran the initial VIFs before variable selection to ensure that there was no underlying relationship in the
data. From the VIFs, we found that log.pop and log.tot.income need to be excluded from consideration,
since per.cap.income is a deterministic function of them (so if they are included, no other predictors can
possibly matter, and so I won’t learn anything about what is associated with per.cap.income).

# Disregard state, county, tot.income (because of VIF), and region since it is categorical
#data_region <- data_trans[,c(-14)] # need region for the interactions model

# Disregard region since it messes with the variable selection methods and pop and income
log_data_cont <- data_trans[,c(-2,-13,-14)]
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Part G - All Subsets

# Including region produces more variables in the final model
all.subsets <- regsubsets(log.per.cap.income ~., data = log_data_cont, nvmax = 10)
#subsets(all.subsets)
reg_summary <- summary(all.subsets)

reg_summary$bic

## [1] -257.5260 -502.4302 -572.5538 -682.8532 -732.1894 -761.5908 -772.0715
## [8] -770.5990 -766.2235 -760.4131

min(reg_summary$bic)

## [1] -772.0715

print(best.model <- which.min(reg_summary$bic))

## [1] 7

coef(all.subsets,best.model)

## (Intercept) log.land.area pop.18_34 log.doctors pct.hs.grad
## 10.222495041 -0.035674062 -0.013900201 0.060676872 -0.004406396
## pct.bach.deg pct.below.pov pct.unemp
## 0.015385301 -0.024278371 0.010603691

reg_summary$which[best.model,]

## (Intercept) log.land.area pop.18_34 pop.65_plus log.doctors
## TRUE TRUE TRUE FALSE TRUE
## log.hosp.beds log.crimes pct.hs.grad pct.bach.deg pct.below.pov
## FALSE FALSE TRUE TRUE TRUE
## pct.unemp
## TRUE

tmp <- log_data_cont[,reg_summary$which[best.model,][-1]]
best_subset_model <- lm(log.per.cap.income ~ .,data=tmp)
summary(best_subset_model)

##
## Call:
## lm(formula = log.per.cap.income ~ ., data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.34147 -0.04886 -0.00538 0.04818 0.26969
##
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## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2224950 0.0931210 109.776 < 2e-16 ***
## log.land.area -0.0356741 0.0047767 -7.468 4.53e-13 ***
## pop.18_34 -0.0139002 0.0011113 -12.508 < 2e-16 ***
## log.doctors 0.0606769 0.0040183 15.100 < 2e-16 ***
## pct.hs.grad -0.0044064 0.0010823 -4.071 5.56e-05 ***
## pct.bach.deg 0.0153853 0.0009246 16.641 < 2e-16 ***
## pct.below.pov -0.0242784 0.0012583 -19.294 < 2e-16 ***
## pct.unemp 0.0106037 0.0021771 4.871 1.56e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.082 on 432 degrees of freedom
## Multiple R-squared: 0.8452, Adjusted R-squared: 0.8427
## F-statistic: 336.9 on 7 and 432 DF, p-value: < 2.2e-16

par(mfrow = c(2,2))
plot(best_subset_model)
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All the predictors have coefficients significantly different from zero and the diagnostic plots look really good.
However, most of the coefficients are small, and some seem to have the wrong sign (e.g. pct.hs.grad and
pct.unemp). We need to rule out what is causing this weird affect.
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vif(best_subset_model)

## log.land.area pop.18_34 log.doctors pct.hs.grad pct.bach.deg
## 1.131867 1.416145 1.379671 3.763103 3.269565
## pct.below.pov pct.unemp
## 2.241555 1.691280

Variance inflation is good since none of the variance inflation factors are above 5.

Maybe the marginal plots will tell us if a specific variable is causing the problem?

mmps(best_subset_model)
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No - all the marginal plots looks good. We don’t seem to be missing any important transformations,
interactions, etc.

One last thing to try is to see if interaction with region helps in any way.

tmp <- cbind(tmp,region=data_trans$region)
subset_region <- lm(log.per.cap.income ~ .*region,data=tmp)
summary(subset_region)

##
## Call:
## lm(formula = log.per.cap.income ~ . * region, data = tmp)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -0.250782 -0.042332 -0.002298 0.040559 0.313570
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.1244260 0.2826240 35.823 < 2e-16 ***
## log.land.area -0.0364187 0.0151355 -2.406 0.016564 *
## pop.18_34 -0.0147940 0.0026043 -5.681 2.55e-08 ***
## log.doctors 0.0544169 0.0093221 5.837 1.08e-08 ***
## pct.hs.grad -0.0024773 0.0034110 -0.726 0.468088
## pct.bach.deg 0.0140833 0.0029254 4.814 2.09e-06 ***
## pct.below.pov -0.0237085 0.0036234 -6.543 1.81e-10 ***
## pct.unemp 0.0180393 0.0048923 3.687 0.000257 ***
## regionNE 0.3243992 0.3577081 0.907 0.365004
## regionS -0.0345856 0.3131668 -0.110 0.912116
## regionW 1.5043946 0.4226868 3.559 0.000416 ***
## log.land.area:regionNE -0.0037179 0.0201435 -0.185 0.853656
## log.land.area:regionS -0.0047582 0.0174155 -0.273 0.784825
## log.land.area:regionW 0.0151234 0.0181871 0.832 0.406154
## pop.18_34:regionNE -0.0024780 0.0036873 -0.672 0.501939
## pop.18_34:regionS -0.0008777 0.0030680 -0.286 0.774970
## pop.18_34:regionW 0.0014122 0.0040925 0.345 0.730220
## log.doctors:regionNE -0.0046251 0.0132571 -0.349 0.727359
## log.doctors:regionS 0.0043337 0.0114401 0.379 0.705019
## log.doctors:regionW -0.0034863 0.0131576 -0.265 0.791173
## pct.hs.grad:regionNE -0.0037529 0.0044150 -0.850 0.395813
## pct.hs.grad:regionS 0.0021198 0.0037853 0.560 0.575790
## pct.hs.grad:regionW -0.0190188 0.0045881 -4.145 4.13e-05 ***
## pct.bach.deg:regionNE 0.0069429 0.0040312 1.722 0.085776 .
## pct.bach.deg:regionS -0.0015774 0.0032000 -0.493 0.622328
## pct.bach.deg:regionW 0.0071026 0.0036374 1.953 0.051541 .
## pct.below.pov:regionNE -0.0014134 0.0050896 -0.278 0.781381
## pct.below.pov:regionS 0.0072764 0.0040739 1.786 0.074827 .
## pct.below.pov:regionW -0.0161639 0.0054271 -2.978 0.003071 **
## pct.unemp:regionNE -0.0083596 0.0073758 -1.133 0.257720
## pct.unemp:regionS -0.0249396 0.0065867 -3.786 0.000176 ***
## pct.unemp:regionW -0.0201466 0.0067713 -2.975 0.003101 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.0759 on 408 degrees of freedom
## Multiple R-squared: 0.8747, Adjusted R-squared: 0.8652
## F-statistic: 91.91 on 31 and 408 DF, p-value: < 2.2e-16

A handful of the interaction terms seem to be statistically significant. Therefore, the interaction terms that
have at least one significant variable between the three regions.

best_subset_region_inter <- update(subset_region,. ~ . - region:log.land.area - region:pop.18_34 - region:log.doctors)
summary(best_subset_region_inter)

##
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## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp + region + pct.hs.grad:region + pct.bach.deg:region +
## pct.below.pov:region + pct.unemp:region, data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.268015 -0.043459 -0.002511 0.039967 0.313939
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.125260 0.251582 40.246 < 2e-16 ***
## log.land.area -0.034569 0.005376 -6.430 3.50e-10 ***
## pop.18_34 -0.015404 0.001087 -14.170 < 2e-16 ***
## log.doctors 0.055342 0.004034 13.720 < 2e-16 ***
## pct.hs.grad -0.002503 0.003151 -0.794 0.427456
## pct.bach.deg 0.014208 0.002108 6.741 5.24e-11 ***
## pct.below.pov -0.023634 0.003351 -7.054 7.30e-12 ***
## pct.unemp 0.017787 0.004783 3.719 0.000228 ***
## regionNE 0.219429 0.302526 0.725 0.468661
## regionS -0.062648 0.276125 -0.227 0.820627
## regionW 1.629351 0.357633 4.556 6.86e-06 ***
## pct.hs.grad:regionNE -0.003640 0.003876 -0.939 0.348271
## pct.hs.grad:regionS 0.002014 0.003539 0.569 0.569690
## pct.hs.grad:regionW -0.018916 0.004204 -4.499 8.85e-06 ***
## pct.bach.deg:regionNE 0.005905 0.002618 2.256 0.024611 *
## pct.bach.deg:regionS -0.001298 0.002321 -0.559 0.576352
## pct.bach.deg:regionW 0.006326 0.002620 2.415 0.016183 *
## pct.below.pov:regionNE -0.002435 0.004647 -0.524 0.600488
## pct.below.pov:regionS 0.007137 0.003686 1.937 0.053482 .
## pct.below.pov:regionW -0.015224 0.005169 -2.945 0.003407 **
## pct.unemp:regionNE -0.007967 0.007255 -1.098 0.272761
## pct.unemp:regionS -0.024668 0.006377 -3.868 0.000127 ***
## pct.unemp:regionW -0.019757 0.006603 -2.992 0.002935 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.07545 on 417 degrees of freedom
## Multiple R-squared: 0.8735, Adjusted R-squared: 0.8668
## F-statistic: 130.9 on 22 and 417 DF, p-value: < 2.2e-16

par(mfrow = c(2,2))
plot(best_subset_region_inter)
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The signs of the variables we were worried about have not changed. The diagnostic plots and regression
statistics are also comparable. Let’s use ANOVA to see if they should be included in the model and look at
BIC and AIC.

anova(best_subset_model,subset_region)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ (log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## region) * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 408 2.3502 24 0.55491 4.0139 2.307e-09 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

AIC(best_subset_model,subset_region)

## df AIC
## best_subset_model 9 -942.274
## subset_region 33 -987.542
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BIC(best_subset_model,subset_region)

## df BIC
## best_subset_model 9 -905.4931
## subset_region 33 -852.6784

The ANOVA test concludes that the interaction terms should be included in the model since the p-value for
the model with the interaction terms is significantly less than 0.05. This result aligns with the AIC value
which is lower for the model with the interaction terms. However, the BIC value favored the model without
the interaction terms and the model with the interaction terms still didn’t change the signs for the two
variables that we were concerned with. Plus, the diagnostic plots and regression statistics are so similar to
the model without the interaction terms. Since interaction terms complicate the interpretation of the model,
it’s better to exclude them since they don’t provide enough value for their inclusion to be worth it.

formula(best_subset_model)

## log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp

round(summary(best_subset_model)$coef,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.22 0.09 109.78 0
## log.land.area -0.04 0.00 -7.47 0
## pop.18_34 -0.01 0.00 -12.51 0
## log.doctors 0.06 0.00 15.10 0
## pct.hs.grad 0.00 0.00 -4.07 0
## pct.bach.deg 0.02 0.00 16.64 0
## pct.below.pov -0.02 0.00 -19.29 0
## pct.unemp 0.01 0.00 4.87 0

cat("\nR2 = ",summary(best_subset_model)$r.squared)

##
## R2 = 0.8451621

cat("\nR2adj = ",summary(best_subset_model)$adj.r.squared)

##
## R2adj = 0.8426532

Therefore, the final best subset model contains 7 variables which have the following interpretation.

• For every 1% increase in a county’s land area, there is a 0.04% decrease in expected per-capita income.
(We might conjecture that this could be due to an urban-rural contrast: rural counties tend to be
bigger than urban ones).

• For every 1% increase in the number of doctors in a county, the expected per-capita income increases by
about 0.06%. That makes sense; doctors are well-paid and could be big contributors to the per-capita
average income.

• Percent of the population that are high school graduates doesn’t have much effect, except in the South,
where a one percentage point increase in hs graduates induces an expected 2% decrease in per-capita
income.
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Part H - Stepwise

stepwise_model <- stepAIC(lm(log.per.cap.income ~., data = log_data_cont), direction = 'both', k = log(dim(log_data_cont)[1]), trace = FALSE)
summary(stepwise_model)

##
## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp, data = log_data_cont)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.34147 -0.04886 -0.00538 0.04818 0.26969
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2224950 0.0931210 109.776 < 2e-16 ***
## log.land.area -0.0356741 0.0047767 -7.468 4.53e-13 ***
## pop.18_34 -0.0139002 0.0011113 -12.508 < 2e-16 ***
## log.doctors 0.0606769 0.0040183 15.100 < 2e-16 ***
## pct.hs.grad -0.0044064 0.0010823 -4.071 5.56e-05 ***
## pct.bach.deg 0.0153853 0.0009246 16.641 < 2e-16 ***
## pct.below.pov -0.0242784 0.0012583 -19.294 < 2e-16 ***
## pct.unemp 0.0106037 0.0021771 4.871 1.56e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.082 on 432 degrees of freedom
## Multiple R-squared: 0.8452, Adjusted R-squared: 0.8427
## F-statistic: 336.9 on 7 and 432 DF, p-value: < 2.2e-16

par(mfrow = c(2,2))
plot(stepwise_model)
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stepwise_2way <- stepAIC(stepwise_model,scope=list(lower = ~ 1, upper = ~ .ˆ2),
k=log(dim(log_data_cont)[1]), ## BIC penalty.
trace=F)

round(summary(stepwise_2way)$coef,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.59 0.39 19.62 0.00
## log.land.area -0.01 0.01 -0.50 0.62
## pop.18_34 0.07 0.01 5.69 0.00
## log.doctors 0.06 0.00 14.34 0.00
## pct.hs.grad 0.03 0.00 5.70 0.00
## pct.bach.deg 0.02 0.00 8.16 0.00
## pct.below.pov -0.02 0.00 -20.58 0.00
## pct.unemp 0.01 0.00 4.68 0.00
## pop.18_34:pct.hs.grad 0.00 0.00 -6.76 0.00
## log.land.area:pct.bach.deg 0.00 0.00 -2.61 0.01

cat("\nR2 = ",summary(stepwise_2way)$r.squared)

##
## R2 = 0.8610085
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cat("\nR2adj = ",summary(stepwise_2way)$adj.r.squared)

##
## R2adj = 0.8580994

BIC(stepwise_2way)

## [1] -940.8246

BIC(stepwise_model)

## [1] -905.4931

Yay the stepwise method returns the same model as the best subset method! We will make the same
conclusions about the interaction terms. The 2 way interaction terms had two significant variables and the
BIC is significantly lower with the interaction terms in the model. But they both have such a small effect
on the response that they are not worth adding to the model. The r-squared value is also not much higher.

Part I - Lasso

# Lasso removes more variables
x <- as.matrix(dplyr::select(log_data_cont, !c(log.per.cap.income))) # remove region since it's a factor
result <- cv.glmnet(x,log_data_cont$log.per.cap.income, alpha = 1)
# plot(result)
c(lambda.1se=result$lambda.1se,lambda.min=result$lambda.min)

## lambda.1se lambda.min
## 0.0071209158 0.0001891378

cbind(coef(result),coef(result,s=result$lambda.1se), coef(result,s=result$lambda.min))

## 11 x 3 sparse Matrix of class "dgCMatrix"
## s1 s1 s1
## (Intercept) 9.875925612 9.875925612 10.288836619
## log.land.area -0.031268512 -0.031268512 -0.035715268
## pop.18_34 -0.011588479 -0.011588479 -0.015364277
## pop.65_plus . . -0.003027088
## log.doctors 0.058875529 0.058875529 0.051964486
## log.hosp.beds . . 0.014479819
## log.crimes . . -0.002419004
## pct.hs.grad . . -0.004537077
## pct.bach.deg 0.011473211 0.011473211 0.015567203
## pct.below.pov -0.019785910 -0.019785910 -0.024753098
## pct.unemp 0.005210995 0.005210995 0.010950352
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Table 6:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.222 0.093 109.776 0
log.land.area -0.036 0.005 -7.468 0
pop.18_34 -0.014 0.001 -12.508 0
log.doctors 0.061 0.004 15.100 0
pct.hs.grad -0.004 0.001 -4.071 0
pct.bach.deg 0.015 0.001 16.641 0
pct.below.pov -0.024 0.001 -19.294 0
pct.unemp 0.011 0.002 4.871 0

# Also tested with region
# lasso_model <- lm(log.per.cap.income ~ log.land.area + log.doctors + pct.bach.deg + pct.below.pov + pct.unemp, data = log_data_cont)
# summary(lasso_model)
#
# par(mfrow = c(2,2))
# plot(lasso_model)

Yay the Lasso method also agrees with the best subset model! We will make the same conclusions about the
interaction terms.

Part J - Final Model

formula(best_subset_model)

## log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp

round(summary(best_subset_model)$coef,3) %>%
round(digits=4) %>% kbl(booktabs=T,caption=" ") %>% kable_classic()

Part K - Tradeoffs

No matter what you do, you are likely to be unhappy with some or all of these criteria; the better you make
one criterion, the worse another is likely to get. So you will have to find a compromise or tradeoff between
these criteria. Explain how you decided to make the tradeoff(s) you made.

The focus of the model selection process was on finding a model that could be used for inference
and interpretation since that is the focus of the research questions. This goal resulted in many
tradeoffs that favored simplicity over accuracy.

To start, there were many variables that had an ideal transformation that was an unreasonable
power to interpret. For example, the optimal power for land area was found to be around -0.05,
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which is not easy to interpret to business collaborators. In order to still try and meet the model
assumptions, the best common transformation was performed on the variables. Additionally,
some variables can be transformed multiple ways to reach the normal distribution. But to
keep the interpretation simple, the same transformations were chosen so that only two types
of transformations were applied to the data.

Then, there were two variables that had a high variance inflation factor: population and total
income. It makes sense that these two variables were accounting for the same variance since they
both account for the population of the area. Consequently, one of the variables was removed from
model consideration since the multicollinearity interferes with the interpretation of the model.
Since the response is already a measure of income, the total income variable was removed.

Next, interactions terms were tested to see if region should be included in the final model. Even
though they complicate the model, the weren’t too many to make the interpretation too difficult.

Also, the state and county variables were not considered in the model since there are so many
possible categories between them it was not useful to the model. It might be useful to see if they
improve the model at all in the future.

Finally, in the variable selection process a tradeoff was made while choosing the selection criterion.
BIC was chosen as the selection criterion since the research question is geared towards selecting
the ‘true’ model over prediction which is better for AIC.
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