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Abstract

We address the question of how average income per person was related to other variables
associated with the county’s economic, health and social well-being. We examine data on the
county demographic information (CDI) for 440 of the most populous counties in the United States
selected by Kutner et al. (2005). From our analysis, it appears the correlations came in a group
of five and were all strongly correlated with each other, which consist of crimes, population, total
income, doctors and hospital beds. Besides, the percent of population that have high school degree
are highly correlated with the percent of population that are below poverty level, and the percent
of population aged 18–34 is also highly negatively correlated with the percent of population aged
65 or older. More job opportunities, more well-paid jobs, higher education and better social well-
being are essential for increasing average per-capita income in a county. Also there does existed
a relationship between income per person and the geographic features and the composition of
population of the county, including region and land area. Since our data and analysis only cover
373 counties, the study in this paper was also limited by the size of the data set.

1 Introduction

Per-capita income has always been a topic of high concern among economists, statisticians and ordinary
people, which may be influenced many factors. How will average income per person be related with
economic, health and social well-being?

In this paper, we have been asked to explore the relationships between average per-capita income
and county’s economic, health, social Well-being, and predict it from all the influence factors. Rela-
tionships may vary depending on the geographical scope of the study, and the emphasis may also vary.
Particularly, we are focusing on the counties.

In addition to answering the main question posed above, we will address the following questions:

• Is there any relationships between all the influence factors? If so, how they effect each other?

• Is there a relationship between per-capita income and crime rate? And how does this relationship
differentiate in different regions of the country?

• Is there a best model predicting per-capita income from the other variables? If so, what is that?

• Since we only cover 373 of approximately 3000 counties in the US, will the accuracy of the study
affected by the missing counties? Why or why not?

2 Data

The data for this study is taken from Kutner et al. (2005). It provides selected county demographic
information (CDI) for 440 of the most populous counties in the United States, and the information
generally pertains to the years 1990 and 1992. The reader should refer to Kutner et al. (2005) for
definitions, eligibility, inclusion/exclusion criteria, and so forth. See the relationships between all
variables in Figure 1.
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Variable
Number

Variable Name Description

1 Identification num-
ber

1–440

2 County County name
3 State Two-letter state abbreviation
4 Land area Land area (square miles)
5 Total population Estimated 1990 population
6 Percent of popula-

tion aged 18–34
Percent of 1990 CDI population aged 18–34

7 Percent of popula-
tion 65 or older

Percent of 1990 CDI population aged 65 or old

8 Number of active
physicians

Number of professionally active non federal physicians dur-
ing 1990

9 Number of hospital
beds

Total number of beds, cribs, and bassinets during 1990

10 Total serious crimes Total number of serious crimes in 1990, including murder,
rape, robbery, aggravated assault, burglary, larceny-theft,
and motor vehicle theft, as reported by law enforcement
agencies

11 Percent high school
graduates

Percent of adult population (persons 25 years old or older)
who completed 12 or more years of school

12 Percent bachelor’s
degrees

Percent of adult population (persons 25 years old or older)
with bachelor’s degree

13 Percent below
poverty level

Percent of 1990 CDI population with income below poverty
level

14 Percent unemploy-
ment

Percent of 1990 CDI population that is unemployed

15 Per capita income Per-capita income (i.e. average income per person) of 1990
CDI population (in dollars)

16 Total personal in-
come

Total personal income of 1990 CDI population (in millions
of dollars)

17 Geographic region Geographic region classification used by the US Bureau of
the Census, NE (northeast region of the US), NC (north-
central region of the US), S (southern region of the US),
and W (Western region of the US)

Table 1: Definitions of All variables.
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Figure 1: Scatterplot matrix of CDI(county demographic information).

In all, 440 of the most populous counties’ CDI in the United States are represented in the data
available to us, and the variables were defined in the following Table 1:

In Figure 1 we show the relationships between all of the quantitative variables in the data. Some of
them appear to be linearly correlated with the response variable per-capita income, and the distribution
of some quantitative variables is highly skewed (Appendix 1), indicating transformation. Table 2 and
Table 3 provide us with a quick summaries of the numeric variables and character variables we will
be using in this paper.

3 Methods

First, we did the visual comparison of exploratory scatter plots and histograms to check univariable
distributions, using the R language and environment for statistical computing (R Core Team, 2017).
And in order to identify any relationships may exist between all the influence factors, we have also
examined the raw data in cdi.dat using exploratory scatter plots ( see Figure 1) and a correlation
plot. We used logarithm transformation on some variables to overcome non-linearity and skewness of
variable distribution. Detailed analysis can be found in Appendix 1.

Then, to address the question about whether per-capita income is related to crime rate, and how
this relationship may be different in different regions of the country, we used three multiple regression
models. This analysis can tell us about the existence of the relationship and the effect of region, after
controlling for all the other predictor variables. After that, by replacing the number of crimes with
per-capita crimes, we examined whether different scales of a variable affect its influence on predictor
variable, and we compared two best models selected using AIC and BIC. Detailed R analyses can be
found in Appendix 2 (pg.9).

Next, we considered multiple regression models, also in R, to fit the best model predicting per-capita
income from all the other variables except population and total income, which are two deterministic
factors for per-capita income. And we converted land area, doctors, hospital beds, crimes and total
income into per-capita scales for better interpretation. For further model selection, we first chose a
best model with all possible subsets method by comparing AIC, AICc and BIC; then, another best
model was chosen from step-wise regression; lastly, based on LASSO regression and cross-validation
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Numeric Variables
Variables Min. Median Mean Max.

id 1.0 220.5 220.5 440.0
land.area 15.0 656.5 1041.4 20062.0

pop 100043 217280 393011 8863164
pop.18.34 16.40 28.10 28.57 49.70

pop.65.plus 3.000 11.750 12.170 33.800
doctors 39.0 401.0 988.0 23677.0

hosp.beds 92.0 755.0 1458.6 27700.0
pct.hs.grad 46.60 77.70 77.56 92.90

pct.bach.deg 8.10 19.70 21.08 52.30
pct.below.pov 1.400 7.900 8.721 36.300

pct.unemp 2.200 6.200 6.597 21.300
per.cap.income 8899 17759 18561 37541

tot.income 1141 3857 7869 184230

Table 2: Summary for Numeric Variables.

Character variables
NC NE S W

Freq 108 103 152 77

Table 3: Summary for Character Variables.

using mean-squared prediction error, we had another best model.
We examined case-wise residual plots, marginal model plots, partial-regression and a likelihood ratio

test to select the best model. That model is used to interpret the effects of the predictor variables
and to estimate per-capita income with county’s economic, health, social Well-being. This final model
also tells us about the effect of each individual predictor variable, after controlling for all the other
predictor variables. Details of these analyses in R can be found in Appendices 3, 4 and 5.

Finally, to answer the fourth question, no analysis was conducted and discussion points were made
in the discussion section of this paper.

4 Results

4.1 Exploratory Plots and Transformation

First, from the histograms of the distribution of raw data (see the distribution plot in Appendix 1,
pg.3) and Table 2, we found that land area, population, doctors, hospital beds, crimes ,total income
need transformation, since they are severely right-skewed.

In the correlation matrix (See Figure 2), it suggests that we may run into multi-collinearity problems
when we start fitting models. In Figure 2, the correlations came in a group of five and were all strongly
positively correlated with each other, which consist of crimes, population, total income, doctors and
hospital beds. Besides, the percent of population that have high school degree are highly negatively
correlated with the percent of population that are below poverty level, and the percent of population
aged 18–34 is also highly negatively correlated with the percent of population aged 65 or older. Other
than that, three variables, including the percent of population have bachelor’s degree, the percent of
population that have high school degree and per-capita income, are moderately positively correlated
with each other.

To address heavy skewing and potential leverage and influence issues, we only took the logarithms
of the variables we identified earlier, and we also consider logarithms transformation for per-capita
income. As we can see from Figure 3, the skewing seems to have largely been brought under control
after transformation.

We also consider logarithms transformation for per ca-pita income. As we can see from Figure 3,
the skewing seems to have largely been brought under control after transformation.
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Figure 2: Correlation Matrix of CDI(county demographic information).

Figure 3: Scatterplot matrix of Transformed CDI(county demographic informations).
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Estimate Std. Error t value Pr(> |t|)
β0 :(Intercept) 9.94 0.07 143.30 0.00

β1 :log(per.cap.crimes) 0.04 0.02 1.98 0.05
β2 :regionNE 0.11 0.03 4.15 0.00
β3 :regionS -0.07 0.03 -2.84 0.00
β3 :regionW -0.02 0.03 -0.81 0.42

Table 4: Estimated coefficients for model(5).

4.2 Relationship between Per Capita Income and Crime Rate

Since logarithms cleaned up a lot of the skewing in the data, we will only use log-transformed variables
from now on for regression. For the income and each version of crime variables, there are essentially
three models to think about.

First, for log.per.cap.income and log.crimes, the three models to consider are:

log(per.cap.income) = β0 + β1 ∗ log(crimes) (1)

log(per.cap.income) = β0 + β1 ∗ log(crimes) + β2 ∗ region (2)

log(per.cap.income) = β0 + β1 ∗ log(crimes) + β2 ∗ region+ β3 ∗ log(crimes) ∗ region (3)

In order to compare this with a model involving “per capita crime”, we have to construct a new
variable, and we will look at the same three models with this new variable.

log(per.cap.income) = β0 + β1 ∗ log(per.cap.crimes) (4)

log(per.cap.income) = β0 + β1 ∗ log(per.cap.crimes) + β2 ∗ region (5)

log(per.cap.income) = β0+β1∗log(per.cap.crimes)+β2∗region+β3∗log(per.cap.crimes)∗region (6)

We compared all 6 models with AIC or BIC, and from that, we get the result: the second model
(named as ”ancova.02” in Appendix 2) has both the lowest AIC and the lowest BIC values (Appendix
2, pg.9). However, there is an argument that per capita crime is more comparable to, or at least on
the same scale as, per capita income. Thus, for better interpretation, we finally decide on the model
(5).

Table 4 gives the estimated coefficients for model (5) along with standard errors and the usual
t-test for testing whether each coefficient is significantly different from zero. All across the US, for
every 1% increase in per capita crime, there is an associated 0.04% increase in per capita income. And
the regional baseline salaries are: NC: $20,743.74, NE: $23,155.79, S: $19,341.34, and W: $20,332.99.
All but the W region have baselines that are, according to the model, significantly different from the
NC baseline. So, according to the model (5), the level of salary varies with region in the US, but the
way it is related to crime does not.

4.3 Regression Analysis

Since there are 373 counties and 48 states in our data set, which means too many levels for a categorical
variable. Thus, to make the analysis simpler, we will not consider the specific geographic identifiers
like: ”county” and ”state”, instead we will only use 4 different regions in ”Geographic region” as
4 dummy variables for identifying. Per capita variables are more comparable to, or at least on the
same scale as, per capita income, so we will convert land area, doctors, hospital beds, crimes and
total income into per capita scales. And we took population and total income out of consideration for
regression and per capita income is a deterministic function of them. And there are three methods we
will be using for model selection, including all subsets, step-wise regression and LASSO.
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First in all subsets regression, by locating the model with the lowest BIC, we found the best model 7
in all subsets regression.

log(per.cap.incom) =β0 + β1 ∗ log(per.cap.land.area) + β2 ∗ pop.18 34

+ β3 ∗ pop.65 plus+ β4 ∗ log(per.cap.doctors)

+ β5 ∗ pct.hs.grad+ β6 ∗ pct.bach.deg
+ β7 ∗ pct.below.pov + β8 ∗ pct.unemp

(7)

All the predictors have coefficients significantly different from zero. However, most of the coefficients
are small, and some seem to have the wrong sign (e.g. pct.hs.grad and pct.unemp) (Appendix 3, pg.15).

Next, we added the interaction with region. Following the rule: when selecting categorical variables,
if any indicator in a category seems important, then we will keep the whole category; or if none of
them seem important, then we shall drop the categorical variable, we found another best model 8.
After checking VIFs and diagnostics, and comparing to the best BIC model 7 that we obtained from
subsets without the region term (Appendix 4, pg.23), we arrive at the final model 8 with interaction
of region.

log(per.cap.income) =β0 + β1 ∗ log(per.cap.land.area) + β2 ∗ pop.18 34

+ β3 ∗ pop.65 plus+ β4 ∗ log(per.cap.doctors)

+ β5 ∗ pct.hs.grad+ β6 ∗ pct.bach.deg
+ β7 ∗ pct.below.pov + β8 ∗ pct.unemp
+ β9 ∗ region+ β10 ∗ (log(per.cap.land.area) : region)

+ β11 ∗ (log(per.cap.doctors) : region) + β12 ∗ (pct.hs.grad : region)

+ β13 ∗ (pct.below.pov : region) + β14 ∗ (pct.unemp : region)

(8)

Table 5 gives the estimated coefficients for model (8) along with standard errors and the usual
t-test for testing whether each coefficient is significantly different from zero.

As seen above, for every 1% increase in a county’s per capita land area, there is a 0.05% decrease in
expected per capita income. However, in South and West, a one percentage point increase in county’s
per capita land area induces an expected 0.01% and 0.03% increase in per capita income. For every 1%
increase in per capita doctors in a county, the expected per capita income increases by about 0.05%.
For all regions, increase in the number of per capita doctors induces increase in per capita average
income, especially in West, where a one percentage point increase in per capita doctors induces an
expected 0.12% increase in per capita income.

For every 1 percentage point increase in the percent of the population aged 18-34, there is an
expected 2% drop in per capita income. However, percent of the population that are 65 years old and
over doesn’t have much effect on per capita income.

Percent of the population that are high school graduates doesn’t have much effect, except in the
West, where a one percentage point increase in high school graduates induces an expected 2% decrease
in per capita income.

And for every 1% increase in percent of the population that have a bachelor’s degree, there is a
1% increase in expected per capita income. For every 1% increase in percent of percent below poverty
level, there is a 2% decrease in expected per capita income.

And in the main effect for region, and in several of the interactions for region, the West shows up
as deviating significantly from the North Central part of the US.

Then, we used two stepwise regressions, including AIC and BIC. And in the stepwise regression
using the BIC criterion, we actually found the model that is exactly the same as the all-subsets model 8
(Appendix 4, pg.23). We also explored 2-way interactions briefly, and both AIC and BIC like models
with some interactions, as we can see in Table 6. However, the model is just getting too complicated
to explain to someone.

In conclusion, we shall stick with the model found by all-subsets and stepAIC with a BIC penalty,
and we will once again be led to model 8 we found based on the all-subsets, which is most interesting
and interpretable.
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Estimate Std. Error t value Pr(> |t|)
β0 :(Intercept) 10.27 0.28 36.06 0.00

β1 :log.per.cap.land.area -0.05 0.01 -5.86 0.00
β2 :pop.18 34 -0.02 0.00 -11.93 0.00
β3 :pop.65 plus 0.00 0.00 -1.33 0.19

β4 :log.per.cap.doctors 0.05 0.02 3.10 0.00
β5 :pct.hs.grad 0.00 0.00 -1.14 0.25
β6 :pct.bach.deg 0.01 0.00 15.14 0.00
β7 :pct.below.pov -0.02 0.00 -6.03 0.00
β8 :pct.unemp 0.02 0.00 3.72 0.00
β9 :regionNE -0.03 0.40 -0.08 0.93
β10 :regionS 0.32 0.32 1.00 0.32
β11 :regionW 2.49 0.42 5.91 0.00

β12 :log.per.cap.land.area:regionNE -0.01 0.01 -0.88 0.38
β13 :log.per.cap.land.area:regionS 0.01 0.01 1.19 0.24
β14 :log.per.cap.land.area:regionW 0.03 0.01 2.23 0.03
β15 :log.per.cap.doctors:regionNE 0.01 0.03 0.23 0.82
β16 :log.per.cap.doctors:regionS 0.03 0.02 1.46 0.15
β17 :log.per.cap.doctors:regionW 0.12 0.03 3.98 0.00

β18 :pct.hs.grad:regionNE 0.00 0.00 0.43 0.67
β19 :pct.hs.grad:regionS 0.00 0.00 0.04 0.96
β20 :pct.hs.grad:regionW -0.02 0.00 -4.59 0.00

β21 :pct.below.pov:regionNE 0.00 0.01 -0.89 0.38
β22 :pct.below.pov:regionS 0.00 0.00 0.78 0.44
β23 :pct.below.pov:regionW -0.02 0.01 -3.54 0.00
β24 :pct.unemp:regionNE -0.01 0.01 -1.30 0.19
β25 :pct.unemp:regionS -0.02 0.01 -2.64 0.01
β26 :pct.unemp:regionW -0.02 0.01 -2.51 0.01

Table 5: Estimated coefficients for model(8).

df AIC BIC
all.subsets.final.model 10 -940.5743 -899.7065

stepwise.bic 10 -940.5743 -899.7065
stepwise.aic 11 -942.0976 -897.1431

stepwise.bic.2-way-inter 16 -1047.7658 -982.3774
stepwise.aic.2-way-inter 23 -1082.1848 -988.1890

Table 6: Models Comparison with AIC and BIC.
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The last variable selection method we’ll consider is the LASSO. And there is not such an obvious
place to cut the shrinkage plot (Figure 7 in Appendix 4, pg.25), to help determine what variables should
be kept in the model. Using cross-valiation, we got the model which minimizes 10-fold cross-validation
error contains all 10 predictors. The model 9 that is 1 SE has 2 less variable than the model that we
first saw with all-subsets regression.

log(per.cap.incom) =β0 + β1 ∗ log(per.cap.land.area) + β2 ∗ pop.18 34

+ β4 ∗ log(per.cap.doctors) + β5 ∗ pct.hs.grad
+ β6 ∗ pct.bach.deg + β7 ∗ pct.below.pov
+ β8 ∗ pct.unemp

(9)

Though F-test prefers the model that is 1 SE based on LASSO, both AIC and BIC prefers the
original model based on the all-subsets regression (Appendix 5, pg.24). So for better interpretation
and the integrality of the model, we will settle on the very first model 8 we got based on the all-subsets
regression.

5 Discussion

Though in the initial exploratory data analysis, we did not see severe skewness in per ca-pita income,
however, we still consider logarithms transformation for per ca-pita income. There is because we
can explain the logarithms in terms of percent-change concepts, which makes the model easier to be
understood.

From the correlation plot (See Figure 2), it is clear that several variables are highly correlated
with each other. Then correlations came in a group of five and were all positively correlated with
each other, which consist of crimes, population, total income, doctors and hospital beds. A reasonable
person would expect a strong correlation between total income and population and between population
and crimes. And larger population also means more medical resources, indicating higher number of
doctors and hospital beds, which are also highly correlated.

Besides, the percent of population that have high school degree are negatively correlated with the
percent of population that are below poverty level, implying the those graduates from high school are
less likely to be in poverty in the future. And it is natural to say that if the percent of population
aged 18–34 in a county is higher, the the percent of population aged 65 or older is lower.

That is just common sense that higher education leads to higher income, which is also proved
in later regression analysis. This explains why the percent of population have bachelor’s degree, the
percent of population that have high school degree and per capita income, are moderately positively
correlated with each other. And maybe we could say people who have high school degree are more
likely to go to pursues her/his bachelor’s degree.

When comparing total crimes and and crime rate to predict per capita income, total crimes seems
to be a better option. However, it is not convincing enough, since: 1) every county has different
population, which may influence the total crimes; 2) per capita crime is more comparable to, or at
least on the same scale as, per capita income. Thus, we settled on the model using crime rate with
region included. And the region of the United States where the county resides in is likely to have an
impact on per capita income.

In our regression analysis, average per capita income is positively correlated with per capita doctors
in a county and the percent of the population that have a bachelor’s degree. All make perfect sense,
since doctors are well-paid jobs, and higher education usually means higher income. Average per capita
income is negatively correlated with county’s per capita land area, the percent of the population aged
18-34 and the percent of percent below poverty level. We might conjecture that this is because 18-34
year old are not at peak earning capacity yet and so perhaps their lower incomes drags down the per
capita average.

Overall, the percent of the population that are high school graduates doesn’t have much effect,
except in the West. Though, we did not have a very good explanation for this, and the same story is
for the percent of the population that are 65 years old and over.

As discussed above, our results are basically consistent with common sense. More job opportunities,
more well-paid jobs, higher education and better social well-being are essential for increasing average
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per capita income in a county. The composition of population has some effects on average per capita
income in a county, but this mostly is due to the income gap between various populations. Since we
also took regions into consideration, it shows in our analysis that in several of the interactions for
region, the West shows up as deviating significantly from the North Central part of the US.

To address the final question about missing counties in the data set, it should be a bit worrying
that we did not consider them into the model. Our study is limited since the data only covers 373
counties, and it would be very useful to have additional data to compare some of the models we found.
Since 440 counties that were used in the study are the 440 largest countries in the United States, other
2500 smaller counties are not likely to be representative. That is because smaller counties usually have
smaller populations, fewer medical resources, fewer educational resources and different population
composition. Instead, in a more complete data set, the data from the 440 largest counties might even
become outliers. And this definitely needs further research.

We are using reasonable methods for variable selection, but since it is all within-sample, which
means our entire data set is our training sample, there is ample room for over fitting noise in the data.
Moreover, some of our inferences about which variables to leave in or take out may be based on overly
optimistic standard error estimates. For example, the coefficient on percent unemployment seems to
go the wrong way, and the coefficient on percent high school graduates is quite small, statistically
and practically (it remains in the model because there is a noticeable interaction that it participates
in). If we were able to cross-validate on some new or hold-out data, we might be able to better
distinguish what the best model is, because we are able to analyze prediction error. Besides, the fact
that stepwise regression found some well-fitting models with interactions between continuous variables
suggests exploring those more complex models in the future.

Also just to simplify our analysis, we did not explore the state variable at all. Some of the rela-
tionship between these demographic variables and per capita income might be explainable in terms of
varying economic policy from one state to another.
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Appendix 1. Initial Data Exploration & Transformation

Read the data in, get a general sense of the variables, and make a “pairs” plot (scatterplot matrix) of the
numerical variables.

# loading the needed packages
library(Hmisc)
library(arm)
library(corrplot)
library(dplyr)
library(car)
library(alr3)
library(MASS)
library(leaps)
library(glmnet)
library(tidyverse)
library(kableExtra)
library(GGally)
library(grid)
library(gridExtra)
library(ggplotify)
library(reshape2)

cdi <- read.table("cdi.dat") %>% data.frame()

# Check to see how many unique values each variable has
apply(cdi,2,function(x) {length(unique(x))}) %>%
kbl(booktabs=T,col.names="unique values",caption=" ") %>%
kable_classic(full_width=F)
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Table 1:

unique values
id 440
county 373
state 48
land.area 384
pop 440
pop.18_34 149
pop.65_plus 137
doctors 360
hosp.beds 391
crimes 437
pct.hs.grad 223
pct.bach.deg 220
pct.below.pov 155
pct.unemp 97
per.cap.income 436
tot.income 428
region 4

There are two category of variables in data, we divided them into numeric and categorical variables for a
more refined look.

cdinumeric <- cdi[,-c(1,2,3,17)]

# Summary Statistics for Numeric Variables
apply(cdinumeric,2,function(x){c(summary(x),SD=sd(x))}) %>% as.data.frame %>% t() %>%
round(digits=2) %>% kbl(booktabs=T,caption=" ") %>% kable_classic()

There are several variables with Mean substantially larger than Median (land.area, pop, doctors,
hosp.beds, crimes, per.cap.income, and total.income), indicating possible right-skewing.

tmp <- rbind(with(cdi,table(region)))
row.names(tmp) <- "Freq"

# Summary Statistics for Character Variables (Region) which we will be using
tmp %>% kbl(booktabs=T,caption=" ") %>% kable_classic(full_width=F)

Then, we will look at the variables with a scatterplot matrix and histograms for each variable.

Univariable distributions:

# histograms for all numeric predictor variables
ggplot(gather(cdinumeric), aes(value)) +

geom_histogram(bins = 30) +
facet_wrap(~key, scales = 'free_x')
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Table 2:

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
land.area 15.0 451.25 656.50 1041.41 946.75 20062.0 1549.92
pop 100043.0 139027.25 217280.50 393010.92 436064.50 8863164.0 601987.02
pop.18_34 16.4 26.20 28.10 28.57 30.02 49.7 4.19
pop.65_plus 3.0 9.88 11.75 12.17 13.62 33.8 3.99
doctors 39.0 182.75 401.00 988.00 1036.00 23677.0 1789.75
hosp.beds 92.0 390.75 755.00 1458.63 1575.75 27700.0 2289.13
crimes 563.0 6219.50 11820.50 27111.62 26279.50 688936.0 58237.51
pct.hs.grad 46.6 73.88 77.70 77.56 82.40 92.9 7.02
pct.bach.deg 8.1 15.28 19.70 21.08 25.33 52.3 7.65
pct.below.pov 1.4 5.30 7.90 8.72 10.90 36.3 4.66
pct.unemp 2.2 5.10 6.20 6.60 7.50 21.3 2.34
per.cap.income 8899.0 16118.25 17759.00 18561.48 20270.00 37541.0 4059.19
tot.income 1141.0 2311.00 3857.00 7869.27 8654.25 184230.0 12884.32

Table 3:
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Freq 108 103 152 77
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As we can see, land.area, pop, tot.income, doctors, hosp.beds, crimes and maybe per.cap.income
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are severely skewed, which are the same variables that we identified from above. Thus, we need to consider
transformations of the these 7 predictor variables.

Bivariate relationships:

Heatmap of the correlation matrix with a large number of variables

co <- cor(cdinumeric)
corrplot::corrplot(co, order = "hclust", tl.col="black")

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

po
p.

65
_p

lu
s

la
nd

.a
re

a
pc

t.b
el

ow
.p

ov

pc
t.u

ne
m

p

pe
r.c

ap
.in

co
m

e

pc
t.h

s.
gr

ad

pc
t.b

ac
h.

de
g

po
p.

18
_3

4

cr
im

es
po

p

to
t.i

nc
om

e

do
ct

or
s

ho
sp

.b
ed

s

pop.65_plus

land.area

pct.below.pov

pct.unemp

per.cap.income

pct.hs.grad

pct.bach.deg

pop.18_34

crimes

pop

tot.income

doctors

hosp.beds

Figure 1: Heat Map of Correlatons Among Variables

The correlation plot suggests that we may run into multi-collinearity problems. Now, we will look at the
scatterplot matrix of the data.

# make a plot with all predictor variables
cdi2 <- data.frame(cdinumeric, region=cdi$region)

# scatter plots with `per.cap.income`
scatter.builder <- function(df,yvar="per.cap.income") {

result <- NULL
y.index <- grep(yvar,names(df))
for (xvar in names(df)[-y.index]) {
d <- data.frame(xx=df[,xvar],yy=df[,y.index])
if(mode(df[,xvar])=="numeric") {
p <- ggplot(d,aes(x=xx,y=yy)) + geom_point() +
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ggtitle("") + xlab(xvar) + ylab(yvar)
} else {

p <- ggplot(d,aes(x=xx,y=yy)) + geom_boxplot(notch=F) +
ggtitle("") + xlab(xvar) + ylab(yvar)

}
result <- c(result,list(p))
}
return(result)

}

grid.arrange(grobs=scatter.builder(cdi2))

We are going to take the logarithms of the variables that we identified earlier, to address heavy skewing and
potential leverage and influence issues. The reason for using logarithms is that the transformed variables
can be explained to the social scientist in terms of percent-change concepts.

cdilogs <- cdi2

skewed.vars <- c("land.area", "pop", "doctors", "hosp.beds", "crimes", "tot.income", "per.cap.income")

for (tmp in skewed.vars) {
loc <- grep(paste("^",tmp,"$",sep=""),names(cdilogs))
cdilogs[,loc] <- log(cdilogs[,loc])
names(cdilogs)[loc] <- paste("log.",names(cdilogs)[loc],sep="")

}

Then, we start fitting the first model.

# regression
fit <- lm(per.cap.income ~ ., data = cdi2)
summary(fit)

##
## Call:
## lm(formula = per.cap.income ~ ., data = cdi2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7592.2 -879.1 -67.3 763.8 7714.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.887e+04 2.107e+03 13.703 < 2e-16 ***
## land.area 7.795e-02 6.267e-02 1.244 0.214279
## pop -1.689e-02 1.364e-03 -12.377 < 2e-16 ***
## pop.18_34 -2.525e+02 2.640e+01 -9.566 < 2e-16 ***
## pop.65_plus -3.430e+01 2.635e+01 -1.302 0.193646
## doctors -5.458e-01 2.175e-01 -2.509 0.012464 *
## hosp.beds 9.254e-01 1.522e-01 6.081 2.67e-09 ***
## crimes 1.082e-02 3.273e-03 3.307 0.001025 **
## pct.hs.grad -1.107e+02 2.352e+01 -4.708 3.40e-06 ***
## pct.bach.deg 3.624e+02 1.975e+01 18.347 < 2e-16 ***
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Figure 2: Scatter Plots with y = per.cap.income
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## pct.below.pov -3.380e+02 2.945e+01 -11.479 < 2e-16 ***
## pct.unemp 1.631e+02 4.606e+01 3.542 0.000441 ***
## tot.income 7.251e-01 5.921e-02 12.246 < 2e-16 ***
## regionNE 2.461e+02 2.432e+02 1.012 0.312099
## regionS -3.727e+02 2.292e+02 -1.626 0.104739
## regionW -2.157e+02 2.875e+02 -0.750 0.453528
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1598 on 424 degrees of freedom
## Multiple R-squared: 0.8502, Adjusted R-squared: 0.8449
## F-statistic: 160.5 on 15 and 424 DF, p-value: < 2.2e-16

Then, we will check the diagnostic plots

par(mfrow=c(2,2))
plot(fit)

10000 20000 30000

−
50

00

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
206

2

437

−3 −2 −1 0 1 2 3

−
4

0
4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q−Q

2

206
437

10000 20000 30000

0.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
2206

437

0.0 0.2 0.4 0.6 0.8

−
6

0
4

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance
1
0.5

Residuals vs Leverage

6

2

14

Both summary and the diagnostic plots look pretty great, except a little concave in standardized residuals
against fitted value.

# marginal model plot for y and fitted values
par(mfrow=c(1,1))
m1 <- lm(cdi2$per.cap.income~fit$fitted.values)
mmp(m1,fit$fitted.values,xlab="Fitted Values",key=NULL)
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The marginal model plot for y and fitted values looks good, though there is departure in the left tail. Thus,
we also consider transformation for per.cap.income.

# inverse response plot for the data
inverseResponsePlot(fit,key=TRUE)
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## 1 0.8997968 919453119
## 2 -1.0000000 1511669678
## 3 0.0000000 1051021057
## 4 1.0000000 921021431

As we can see in the plot, 𝜆 = 0, which corresponds to natural logarithms provides a very good fit, as its
fitted line is very close the optimal 𝜆 = −0.11’s. Thus, for better interpretation of the model, we choose
natural logarithm transformation for y.

Let’s check the transformed data.

# histogram of transformed data
hist.builder <- function(df) { ## creates a list of graphs

result <- NULL
for (var in names(df)) {
d <- data.frame(dd=df[,var])
if(mode(df[,var])=="numeric") {
p <- ggplot(d,aes(x=dd)) + geom_histogram(bins = 30) +

ggtitle(var) + xlab("")
} else {

p <- ggplot(d,aes(x=dd)) + geom_bar() +
ggtitle(var) + xlab("")

}
result <- c(result,list(p))
}
return(result)

}

grid.arrange(grobs=hist.builder(cdilogs))

# Correlations after log transformations
co <- cor(cdilogs[,-grep("region",names(cdilogs))])
corrplot::corrplot(co, order = "hclust", tl.col="black")

# Scatterplots after log transformations
grid.arrange(grobs=scatter.builder(cdilogs,"log.per.cap.income"))

Except for log.pop, the skewing seems to have largely been brought under control.

Appendix 2. Analysis of Relationship between Per ca-pita income and Crime
Rate

For log.per.cap.income and log.crimes, the six models to consider are:

ancova.01 <- lm(log.per.cap.income ~ log.crimes,data=cdilogs)

ancova.02 <- lm(log.per.cap.income ~ log.crimes + region,data=cdilogs)

ancova.03 <- lm(log.per.cap.income ~ log.crimes * region,data=cdilogs)
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Figure 3: Histograms after log transformations
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Figure 5: Scatterplots after log transformations
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df AIC BIC
ancova.01 3 -169.9466 -157.6863
ancova.02 6 -227.4746 -202.9539
ancova.03 9 -223.7402 -186.9593
ancova.04 3 -135.0340 -122.7737
ancova.05 6 -172.1347 -147.6140
ancova.06 9 -166.7601 -129.9792

# regression model with per-capita crime
attach(cdi2)
log.per.cap.crimes <-log(crimes) - log(pop)
detach()

ancova.04 <- lm(log.per.cap.income ~ log.per.cap.crimes,data=cdilogs)

ancova.05 <- lm(log.per.cap.income ~ log.per.cap.crimes + region,data=cdilogs)

ancova.06 <- lm(log.per.cap.income ~ log.per.cap.crimes * region,data=cdilogs)

We could compare all 6 models with AIC or BIC. In this case, we get the same result: the additive model
ancova.02 has both the lowest AIC and the lowest BIC values.

# table comparing all 6 models with AIC or BIC
data.frame(AIC=AIC(ancova.01,ancova.02,ancova.03,ancova.04,ancova.05,ancova.06),
BIC=BIC(ancova.01,ancova.02,ancova.03,ancova.04,ancova.05,ancova.06))[,-3] %>%
kbl(booktabs=T,col.names=c("df","AIC","BIC")) %>% kable_classic(full_width=F)

However, there is an argument that per-capita crime is more comparable to, or at least on the same scale
as, per-capita income, so we will briefly look at the second-best model, model 5 (anova.05), to see how it
compares to model 2 (ancova.02):

oldmar <- par()$mar

par(mfrow=c(2,4))

par(mar=c(2,2,2,2))

invisible(lapply(list(ancova.02,ancova.05),
function(x) plot(x,cex.main=0.5)))

par(mar=oldmar)

Both the diagnostic plots don’t show much, except that the QQ plot suggests both the left and the right
tails are a bit longer than expected for the normal distribution. Thus, for better interpretation, we finally
decide on the model 5.

formula(ancova.05)

## log.per.cap.income ~ log.per.cap.crimes + region
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Figure 6: Residual diagnostics for all 2 ANCOVA models, in order: ancova.02, ancova.05
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round(coef(summary(ancova.05)),2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.94 0.07 143.30 0.00
## log.per.cap.crimes 0.04 0.02 1.98 0.05
## regionNE 0.11 0.03 4.15 0.00
## regionS -0.07 0.03 -2.84 0.00
## regionW -0.02 0.03 -0.81 0.42

Appendix 3. Regression Analysis – All Subsets(without Regions)

Per-capita variables are more comparable to, or at least on the same scale as, per-capita income. So, we will
convert land area, doctors, hospital beds, crimes and total income into per ca-pita scales.

# conversion for the data
cdiperlogs <- cdi2

loc <- grep(paste("^","pop","$",sep=""), names(cdiperlogs))
cdiperlogs[,loc] <- log(cdiperlogs[,loc])
names(cdiperlogs)[loc] <- paste("log.",names(cdiperlogs)[loc],sep="")

loc <- grep(paste("^", "per.cap.income","$",sep=""), names(cdiperlogs))
cdiperlogs[,loc] <- log(cdiperlogs[,loc])
names(cdiperlogs)[loc] <- paste("log.",names(cdiperlogs)[loc],sep="")

vars <- c("land.area", "doctors", "hosp.beds", "crimes", "tot.income")

for (tmp in skewed.vars) {
loc <- grep(paste("^",tmp,"$",sep=""),names(cdiperlogs))
cdiperlogs[,loc] <- log(cdiperlogs[,loc]) - cdilogs$log.pop
names(cdiperlogs)[loc] <- paste("log.per.cap.",names(cdiperlogs)[loc],sep="")

}

# take log.pop and log.tot.income out of consideration
omit <- c(grep("log.pop",names(cdilogs)),grep("log.tot.income",names(cdilogs)))
cdilogred <- cdiperlogs[,-omit]

# First, work *without* the `region` variable
cdilogred.cont <- cdilogred[,-grep("region",names(cdilogred))]
names(cdilogred.cont)

## [1] "log.per.cap.land.area" "pop.18_34" "pop.65_plus"
## [4] "log.per.cap.doctors" "log.per.cap.hosp.beds" "log.per.cap.crimes"
## [7] "pct.hs.grad" "pct.bach.deg" "pct.below.pov"
## [10] "pct.unemp" "log.per.cap.income"

By finding the model with the lowest BIC, we found the best model.

all.subsets.01 <- regsubsets(log.per.cap.income ~ ., data=cdilogred.cont,nvmax=10)

# coefficients and standard errors for the best model
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all.subsets.01.summary <- summary(all.subsets.01)
best.model <- which.min(all.subsets.01.summary$bic)

tmp <- cdilogred.cont[,all.subsets.01.summary$which[best.model,][-1]]
all.subsets.01.final.model <- lm(log.per.cap.income ~ .,data=tmp)
summary(all.subsets.01.final.model)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.785892327 0.142120643 75.892510 1.623250e-251
## log.per.cap.land.area -0.042512925 0.004017583 -10.581717 2.035599e-23
## pop.18_34 -0.016109168 0.001306346 -12.331471 3.902227e-30
## pop.65_plus -0.004040904 0.001384429 -2.918824 3.697586e-03
## log.per.cap.doctors 0.087212905 0.010349063 8.427131 5.350058e-16
## pct.hs.grad -0.004522402 0.001087721 -4.157687 3.880188e-05
## pct.bach.deg 0.014868243 0.000958610 15.510211 1.984929e-43
## pct.below.pov -0.025183140 0.001329506 -18.941728 1.177048e-58
## pct.unemp 0.012980498 0.002197574 5.906739 7.087581e-09

All the predictors have coefficients significantly different from zero. However, most of the coefficients are
small, and some seem to have the wrong sign (e.g. pct.hs.grad and pct.unemp). Next, we will check VIFs
and residual diagnostics…

vif(all.subsets.01.final.model)

## log.per.cap.land.area pop.18_34 pop.65_plus
## 1.417494 1.953668 1.991357
## log.per.cap.doctors pct.hs.grad pct.bach.deg
## 2.159546 3.794826 3.509152
## pct.below.pov pct.unemp
## 2.498192 1.720401

par(mfrow=c(2,2))
# diagnostics for the best all subsets model
plot(all.subsets.01.final.model)
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None of the VIFs seem excessively large, and the diagnostic plots don’t show much, except that the QQ plot
suggests both the left and the right tails are a bit longer than expected for the normal distribution.

We can also look at marginal model plots, to see if we are missing a transformation, interaction, etc.

mmps(all.subsets.01.final.model)
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The marginal model plots look very good – the blue data-based curves line up well with the red model-based
curves.

Appendix 3. Regression Analysis – All Subsets(with Regions)

# add regions into regression
tmp <- cbind(tmp,region=cdilogred$region)
all.subsets.01.final.with.region <- lm(log.per.cap.income ~ .*region,data=tmp)
summary(all.subsets.01.final.with.region)

##
## Call:
## lm(formula = log.per.cap.income ~ . * region, data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.243581 -0.043603 -0.000872 0.040701 0.295427
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.135880 0.375175 27.016 < 2e-16 ***
## log.per.cap.land.area -0.051212 0.009442 -5.424 1.01e-07 ***
## pop.18_34 -0.014841 0.002811 -5.279 2.13e-07 ***
## pop.65_plus 0.001018 0.005243 0.194 0.846093
## log.per.cap.doctors 0.044700 0.018788 2.379 0.017815 *
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## pct.hs.grad -0.002202 0.003450 -0.638 0.523774
## pct.bach.deg 0.014946 0.002924 5.111 4.95e-07 ***
## pct.below.pov -0.022998 0.003912 -5.879 8.67e-09 ***
## pct.unemp 0.018630 0.005028 3.705 0.000241 ***
## regionNE 0.598161 0.511699 1.169 0.243105
## regionS 0.317762 0.423040 0.751 0.453006
## regionW 2.749818 0.561496 4.897 1.41e-06 ***
## log.per.cap.land.area:regionNE 0.002252 0.013452 0.167 0.867157
## log.per.cap.land.area:regionS 0.009275 0.012258 0.757 0.449697
## log.per.cap.land.area:regionW 0.039681 0.013379 2.966 0.003197 **
## pop.18_34:regionNE -0.006445 0.004235 -1.522 0.128830
## pop.18_34:regionS -0.001493 0.003409 -0.438 0.661732
## pop.18_34:regionW 0.002727 0.004663 0.585 0.558987
## pop.65_plus:regionNE -0.009749 0.006618 -1.473 0.141503
## pop.65_plus:regionS -0.002213 0.005518 -0.401 0.688669
## pop.65_plus:regionW -0.006832 0.006995 -0.977 0.329256
## log.per.cap.doctors:regionNE 0.009289 0.031949 0.291 0.771392
## log.per.cap.doctors:regionS 0.034939 0.024605 1.420 0.156377
## log.per.cap.doctors:regionW 0.119386 0.037063 3.221 0.001380 **
## pct.hs.grad:regionNE -0.003461 0.004415 -0.784 0.433613
## pct.hs.grad:regionS 0.001959 0.003807 0.514 0.607216
## pct.hs.grad:regionW -0.019334 0.004587 -4.215 3.09e-05 ***
## pct.bach.deg:regionNE 0.005030 0.004053 1.241 0.215308
## pct.bach.deg:regionS -0.002642 0.003201 -0.825 0.409608
## pct.bach.deg:regionW 0.003287 0.003677 0.894 0.371858
## pct.below.pov:regionNE -0.001206 0.005302 -0.228 0.820138
## pct.below.pov:regionS 0.005633 0.004404 1.279 0.201588
## pct.below.pov:regionW -0.020050 0.005598 -3.582 0.000383 ***
## pct.unemp:regionNE -0.007415 0.007575 -0.979 0.328233
## pct.unemp:regionS -0.022264 0.006929 -3.213 0.001417 **
## pct.unemp:regionW -0.018451 0.006889 -2.678 0.007699 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07476 on 404 degrees of freedom
## Multiple R-squared: 0.8797, Adjusted R-squared: 0.8692
## F-statistic: 84.37 on 35 and 404 DF, p-value: < 2.2e-16

Follow a rule of thumb is: if any indicator for a categorical variable seems important (e.g. a statistically
significant coefficient), then keep the whole categorical variable. If none of them seem important, then drop
the variable. The same thing works for interactions with categorical variables. Thus, the final model will be:

all.subsets.01.final.with.some.region <- update(all.subsets.01.final.with.region,
. ~ . - region:pop.65_plus - region:pop.18_34 - region:pct.bach.deg)

summary(all.subsets.01.final.with.some.region)

##
## Call:
## lm(formula = log.per.cap.income ~ log.per.cap.land.area + pop.18_34 +
## pop.65_plus + log.per.cap.doctors + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + region + log.per.cap.land.area:region +
## log.per.cap.doctors:region + pct.hs.grad:region + pct.below.pov:region +
## pct.unemp:region, data = tmp)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -0.258132 -0.045038 -0.001107 0.040222 0.295175
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2679794 0.2847552 36.059 < 2e-16 ***
## log.per.cap.land.area -0.0499873 0.0085299 -5.860 9.46e-09 ***
## pop.18_34 -0.0154108 0.0012915 -11.933 < 2e-16 ***
## pop.65_plus -0.0018873 0.0014218 -1.327 0.185117
## log.per.cap.doctors 0.0482811 0.0155591 3.103 0.002047 **
## pct.hs.grad -0.0028499 0.0024993 -1.140 0.254832
## pct.bach.deg 0.0149133 0.0009848 15.143 < 2e-16 ***
## pct.below.pov -0.0225437 0.0037358 -6.035 3.55e-09 ***
## pct.unemp 0.0181418 0.0048832 3.715 0.000231 ***
## regionNE -0.0328403 0.3970457 -0.083 0.934121
## regionS 0.3236732 0.3242043 0.998 0.318689
## regionW 2.4940100 0.4221170 5.908 7.23e-09 ***
## log.per.cap.land.area:regionNE -0.0104496 0.0118883 -0.879 0.379924
## log.per.cap.land.area:regionS 0.0135607 0.0114089 1.189 0.235280
## log.per.cap.land.area:regionW 0.0268791 0.0120422 2.232 0.026145 *
## log.per.cap.doctors:regionNE 0.0062279 0.0272072 0.229 0.819057
## log.per.cap.doctors:regionS 0.0307224 0.0210523 1.459 0.145233
## log.per.cap.doctors:regionW 0.1193144 0.0299993 3.977 8.23e-05 ***
## pct.hs.grad:regionNE 0.0013270 0.0030688 0.432 0.665654
## pct.hs.grad:regionS 0.0001180 0.0026485 0.045 0.964471
## pct.hs.grad:regionW -0.0162969 0.0035498 -4.591 5.86e-06 ***
## pct.below.pov:regionNE -0.0044605 0.0050367 -0.886 0.376340
## pct.below.pov:regionS 0.0032457 0.0041796 0.777 0.437865
## pct.below.pov:regionW -0.0194333 0.0054923 -3.538 0.000448 ***
## pct.unemp:regionNE -0.0097674 0.0074850 -1.305 0.192644
## pct.unemp:regionS -0.0177148 0.0067103 -2.640 0.008606 **
## pct.unemp:regionW -0.0170169 0.0067854 -2.508 0.012529 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07595 on 413 degrees of freedom
## Multiple R-squared: 0.873, Adjusted R-squared: 0.865
## F-statistic: 109.2 on 26 and 413 DF, p-value: < 2.2e-16

Now, we will quickly check VIFs and diagnostics.

vif(all.subsets.01.final.with.some.region)

## GVIF Df GVIF^(1/(2*Df))
## log.per.cap.land.area 7.460742e+00 1 2.731436
## pop.18_34 2.229411e+00 1 1.493121
## pop.65_plus 2.452456e+00 1 1.566032
## log.per.cap.doctors 5.699395e+00 1 2.387341
## pct.hs.grad 2.339401e+01 1 4.836735
## pct.bach.deg 4.324473e+00 1 2.079537
## pct.below.pov 2.303039e+01 1 4.798999
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## pct.unemp 9.918770e+00 1 3.149408
## region 1.985483e+09 3 35.452294
## log.per.cap.land.area:region 9.879657e+04 3 6.799187
## log.per.cap.doctors:region 2.069430e+07 3 16.569464
## pct.hs.grad:region 1.037548e+08 3 21.677109
## pct.below.pov:region 9.128360e+03 3 4.571571
## pct.unemp:region 1.689729e+04 3 5.065661

par(mfrow=c(2,2))
plot(all.subsets.01.final.with.some.region)
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Then compare to the best BIC model that we obtained from stepwise without the region term.

# comparison
anova(all.subsets.01.final.model,all.subsets.01.final.with.some.region)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.per.cap.land.area + pop.18_34 + pop.65_plus +
## log.per.cap.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp
## Model 2: log.per.cap.income ~ log.per.cap.land.area + pop.18_34 + pop.65_plus +
## log.per.cap.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp + region + log.per.cap.land.area:region + log.per.cap.doctors:region +
## pct.hs.grad:region + pct.below.pov:region + pct.unemp:region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 431 2.9031
## 2 413 2.3825 18 0.52057 5.0133 2.38e-10 ***
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC(all.subsets.01.final.model,all.subsets.01.final.with.some.region)

## df AIC
## all.subsets.01.final.model 10 -940.5743
## all.subsets.01.final.with.some.region 28 -991.5268

BIC(all.subsets.01.final.model,all.subsets.01.final.with.some.region)

## df BIC
## all.subsets.01.final.model 10 -899.7065
## all.subsets.01.final.with.some.region 28 -877.0971

The anova (F test) and AIC really like the model with the region terms in it. On the other hand, BIC
prefers the simpler model. Finally, we will examine the table of estimated coefficients again for the model
with some region terms in it.

formula(all.subsets.01.final.with.some.region)

## log.per.cap.income ~ log.per.cap.land.area + pop.18_34 + pop.65_plus +
## log.per.cap.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp + region + log.per.cap.land.area:region + log.per.cap.doctors:region +
## pct.hs.grad:region + pct.below.pov:region + pct.unemp:region

round(summary(all.subsets.01.final.with.some.region)$coef,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.27 0.28 36.06 0.00
## log.per.cap.land.area -0.05 0.01 -5.86 0.00
## pop.18_34 -0.02 0.00 -11.93 0.00
## pop.65_plus 0.00 0.00 -1.33 0.19
## log.per.cap.doctors 0.05 0.02 3.10 0.00
## pct.hs.grad 0.00 0.00 -1.14 0.25
## pct.bach.deg 0.01 0.00 15.14 0.00
## pct.below.pov -0.02 0.00 -6.03 0.00
## pct.unemp 0.02 0.00 3.72 0.00
## regionNE -0.03 0.40 -0.08 0.93
## regionS 0.32 0.32 1.00 0.32
## regionW 2.49 0.42 5.91 0.00
## log.per.cap.land.area:regionNE -0.01 0.01 -0.88 0.38
## log.per.cap.land.area:regionS 0.01 0.01 1.19 0.24
## log.per.cap.land.area:regionW 0.03 0.01 2.23 0.03
## log.per.cap.doctors:regionNE 0.01 0.03 0.23 0.82
## log.per.cap.doctors:regionS 0.03 0.02 1.46 0.15
## log.per.cap.doctors:regionW 0.12 0.03 3.98 0.00
## pct.hs.grad:regionNE 0.00 0.00 0.43 0.67
## pct.hs.grad:regionS 0.00 0.00 0.04 0.96
## pct.hs.grad:regionW -0.02 0.00 -4.59 0.00
## pct.below.pov:regionNE 0.00 0.01 -0.89 0.38
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df AIC BIC
all.subsets.01.final.model 10 -940.5743 -899.7065
step.result.01.aic 11 -942.0976 -897.1431
step.result.01.bic 10 -940.5743 -899.7065
step.result.02.aic 23 -1082.1848 -988.1890
step.result.02.bic 16 -1047.7658 -982.3774

## pct.below.pov:regionS 0.00 0.00 0.78 0.44
## pct.below.pov:regionW -0.02 0.01 -3.54 0.00
## pct.unemp:regionNE -0.01 0.01 -1.30 0.19
## pct.unemp:regionS -0.02 0.01 -2.64 0.01
## pct.unemp:regionW -0.02 0.01 -2.51 0.01

Appendix 4. Regression Analysis – Stepwise Regression

Two models in stepwsie regression respectively using AIC and BIC.

stepwise.base <- lm(log.per.cap.income ~ .,data=cdilogred.cont)

## try to duplicate all-subsets with BIC
step.result.01.bic <- stepAIC(stepwise.base,

scope=list(lower = ~ 1, upper = ~ .),
k=log(dim(cdilogred.cont)[1]),
trace=F)

## now try with AIC
step.result.01.aic <- stepAIC(stepwise.base,

scope=list(lower = ~ 1, upper = ~ .),
k=2,
trace=F)

Well, we will explore the models with 2-way interactions briefly.

step.result.02.bic <- stepAIC(stepwise.base,scope=list(lower = ~ 1, upper = ~ .^2),
k=log(dim(cdilogred.cont)[1]), ## BIC penalty.
trace=F)

step.result.02.aic <- stepAIC(stepwise.base,scope=list(lower = ~ 1, upper = ~ .^2),
k=2, ## AIC penalty.
trace=F)

comparison <- cbind(
AIC(all.subsets.01.final.model, step.result.01.aic, step.result.01.bic,

step.result.02.aic, step.result.02.bic),
BIC(all.subsets.01.final.model, step.result.01.aic, step.result.01.bic,

step.result.02.aic, step.result.02.bic))
comparison <- comparison[,-3]
names(comparison) <- c("df","AIC","BIC")
comparison %>% kbl(booktabs=T) %>% kable_classic()
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# compare the R2 of two models with interactions

# step.result.02.bic
cat("\nR2 = ",summary(step.result.02.bic)$r.squared)

##
## R2 = 0.8819856

cat("\nR2adj = ",summary(step.result.02.bic)$adj.r.squared)

##
## R2adj = 0.8780981

# step.result.02.aic
cat("\nR2 = ",summary(step.result.02.aic)$r.squared)

##
## R2 = 0.8942832

cat("\nR2adj = ",summary(step.result.02.aic)$adj.r.squared)

##
## R2adj = 0.8889721

Although both interactions models produced big jumps in AIC and BIC (much bigger than 10), the im-
provement in 𝑅2 and 𝑅2

𝑎𝑑𝑗 is pretty small (less than 0.01), for all the terms that have been added to the
models.

Thus, we will stick with the best model found by all-subsets and stepAIC with a BIC penalty, then my
conclusions about adding interactions with region will also be the same.

Appendix 5. Regression Analysis – LASSO

# shrinkage plot for LASSO
loc <- grep("log.per.cap.income",names(cdilogred.cont))

y <- cdilogred.cont[,loc]

X <- apply(as.matrix(cdilogred.cont[,-loc]),2,function(x) rescale(x,"full"))

Xnames <- dimnames(X)[[2]]

lasso.result <- glmnet(X,y)

plot(lasso.result,xvar="lambda",xlim=c(-9,0))

abline(h=0,lty=2)

legend('bottomright',lty=1,col=1:length(Xnames),legend=Xnames,cex=0.5)
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Figure 7: LASSO Variable Trace Plot.

There is not such an obvious place to cut the shrinkage plot to help determine what variables should be kept
in the model.

# cross-valiation
cv.lasso.result <- cv.glmnet(X,y)

plot(cv.lasso.result)
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c(lambda.1se=cv.lasso.result$lambda.1se,lambda.min=cv.lasso.result$lambda.min)

## lambda.1se lambda.min
## 0.0049081710 0.0002278171

tmp <- cbind(coef(cv.lasso.result,s=cv.lasso.result$lambda.min),
coef(cv.lasso.result,s=cv.lasso.result$lambda.1se)
)

dimnames(tmp)[[2]] <- c("lambda(minMSE)","lambda(minMSE+1se)")

tmp

## 11 x 2 sparse Matrix of class "dgCMatrix"
## lambda(minMSE) lambda(minMSE+1se)
## (Intercept) 9.80695459 9.806955e+00
## log.per.cap.land.area -0.09536780 -1.039554e-01
## pop.18_34 -0.13561396 -1.062918e-01
## pop.65_plus -0.03218231 .
## log.per.cap.doctors 0.08463289 7.547924e-02
## log.per.cap.hosp.beds 0.01086566 .
## log.per.cap.crimes 0.01693974 .
## pct.hs.grad -0.06164630 -4.805525e-05
## pct.bach.deg 0.23126382 1.888050e-01
## pct.below.pov -0.24313646 -1.881889e-01
## pct.unemp 0.06221462 4.221509e-02

It’s interesting to note that the model which minimizes 10-fold cross-validation error contains all 10 predictors
(or sometimes 9—log.crimes can get left out—depending on the random folds). The model that is 1 SE has
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2 less variable, which is pop.65_plus and pct.hs.grad than the model that we got based on the all-subsets
regression.

Now let’s compare these two models:

lasso.1se.model <- lm(log.per.cap.income ~ log.per.cap.land.area + pop.18_34
+ log.per.cap.doctors + pct.bach.deg + pct.below.pov + pct.unemp,
data = cdilogred.cont)

anova(all.subsets.01.final.model,lasso.1se.model)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.per.cap.land.area + pop.18_34 + pop.65_plus +
## log.per.cap.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp
## Model 2: log.per.cap.income ~ log.per.cap.land.area + pop.18_34 + log.per.cap.doctors +
## pct.bach.deg + pct.below.pov + pct.unemp
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 431 2.9031
## 2 433 3.0592 -2 -0.1561 11.588 1.254e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC(all.subsets.01.final.model,lasso.1se.model)

## df AIC
## all.subsets.01.final.model 10 -940.5743
## lasso.1se.model 8 -921.5292

BIC(all.subsets.01.final.model,lasso.1se.model)

## df BIC
## all.subsets.01.final.model 10 -899.7065
## lasso.1se.model 8 -888.8350

summary(lasso.1se.model)

##
## Call:
## lm(formula = log.per.cap.income ~ log.per.cap.land.area + pop.18_34 +
## log.per.cap.doctors + pct.bach.deg + pct.below.pov + pct.unemp,
## data = cdilogred.cont)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37735 -0.04922 -0.00842 0.05191 0.27781
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2333158 0.0850955 120.257 < 2e-16 ***
## log.per.cap.land.area -0.0465305 0.0040070 -11.612 < 2e-16 ***
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## pop.18_34 -0.0142544 0.0011372 -12.535 < 2e-16 ***
## log.per.cap.doctors 0.0769568 0.0097474 7.895 2.41e-14 ***
## pct.bach.deg 0.0134659 0.0008268 16.288 < 2e-16 ***
## pct.below.pov -0.0216248 0.0011146 -19.402 < 2e-16 ***
## pct.unemp 0.0144028 0.0021723 6.630 1.00e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08405 on 433 degrees of freedom
## Multiple R-squared: 0.8369, Adjusted R-squared: 0.8347
## F-statistic: 370.4 on 6 and 433 DF, p-value: < 2.2e-16

summary(all.subsets.01.final.model)

##
## Call:
## lm(formula = log.per.cap.income ~ ., data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35918 -0.04920 -0.00401 0.04835 0.27154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.7858923 0.1421206 75.893 < 2e-16 ***
## log.per.cap.land.area -0.0425129 0.0040176 -10.582 < 2e-16 ***
## pop.18_34 -0.0161092 0.0013063 -12.331 < 2e-16 ***
## pop.65_plus -0.0040409 0.0013844 -2.919 0.0037 **
## log.per.cap.doctors 0.0872129 0.0103491 8.427 5.35e-16 ***
## pct.hs.grad -0.0045224 0.0010877 -4.158 3.88e-05 ***
## pct.bach.deg 0.0148682 0.0009586 15.510 < 2e-16 ***
## pct.below.pov -0.0251831 0.0013295 -18.942 < 2e-16 ***
## pct.unemp 0.0129805 0.0021976 5.907 7.09e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08207 on 431 degrees of freedom
## Multiple R-squared: 0.8453, Adjusted R-squared: 0.8424
## F-statistic: 294.3 on 8 and 431 DF, p-value: < 2.2e-16

Though F-test prefers the model that is 1 SE based on LASSO, both AIC and BIC prefers the original
model based on the all-subsets regression. All the coeffiecients for variables in both 2 model are statistically
significant. So for better interpretation and the integrality of the model, we will settle on the very first model
we got based on the all-subsets regression.
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