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Abstract 
The project focuses on the relationship between income per capita and other variables 

associated with the economic, health, and social well-being values in each county in the US. The 
file cdi.dat is taken from Kutneret al. (2005) and provides selected county demographic 
information (CDI) for 440 of the most populous counties in the United States. The project uses 
stepwise variable selection in both directions, and all subsets regression to build potentially best 
fitting models; diagnostic plots, AIC and BIC values, and some interpretation under social and 
economic context are used to select the best one as the final fitting model. Final selected 
variables are pct.unemp:region, pct.hs.grad:region, pct.below.pov:region, region, pop.18_34, 
pct.unemp, pct.below.pov, pct.bach.deg, log(doctors), log(land.area). For further exploration on 
this topic, the effect of region/state variable with other variables as interaction terms should be 
addressed, and some missing data should be collected and added on if possible to eliminate bias. 
 
Introduction 
 
Income is a factor that can reflect people's living quality, and thus the average income can be a 
factor that shows how well people live in a certain area, which is important in many social 
problems. The project mainly focuses on how income per capita was related to other variables 
associated with the county's economic, health, and social well-being like population, crimes, and 
education. And this research problem may give some perspectives on how to improve in any 
aspect to improve the income overall. The questions will be addressed related to the topic in this 
project are: 
1. Is there any relation between variables in datasets?  
2. How per-capita income was related to crime number, and does different regions of the country 
matter for this relationship? Is it better or more reasonable to use (number of 
crimes)/(population)? 
3. What is the best model predicting per-capita income from the other variables, which best 
reflects the social science and the meaning of the variables? 
4. Should we be worried about either the missing states or the missing counties?  
 
Data 
 
The file cdi.dat is taken from Kutneret al. (2005). The data provides selected county 
demographic information (CDI) for 440 of the most populous counties in the United States. Each 
line of the data set has an identification number with a county name and state abbreviation and 
provides information on 14 variables for a single county. Counties with missing data were 
deleted from the data set. The information generally pertains to the years 1990 and 1992. 
The variables we are going to use to build models are: 



 
We would not consider id and county as variables, because there is no duplicated value in these 
two variables, and they are more like identifiers for each row of dataset. 
For each numerical variable, we can see the summary in the table below: 

 
Table 2: numerical variables summary table 

For each categorical variable (state and region), we can see the summary in the tables below: 



Table 3: state summary     Table 4: region summary 

 
Then we can make histogram of each numeric variables to see the distribution: 

Plot 1: Distribution of variables 
 



 
 
We can see that land.area, pop, doctors, hosp.beds, crimes, and tot.income are skewed to right, 
thus transformation may need. 
 
 
Method 
 
At the beginning, we can apply log transformation on the heavily right-skewed variables: 
land.area, pop, doctors, hosp.beds, crimes, and tot.income. Tranformation is applied to put the 
tails in and make the distribution of these variables more normal.  
 
Firstly, we want to address the question that if we ignore all other variables, whether per-capita 
income should be related to crime number, and also that this relationship may be different in 
different regions of the country, which statistically means that if we will need to add interaction 
between region and crime number.  
Region variable is added as additive term or multiplication term to crimes variable. Then we can 
apply an ANOVA test to see which one fits the data best to decide if we need the interaction 
term. After noticing that per-capita income is total income/total population, we want to know if 
per-capita crime works better than total crime number in terms of using per-capita variable to 
predict per-capita variable. Thus, we separately add region and interaction term to the per-capita 
crimes as above. Then ANOVA test is applied to these models. The two best models selected 
from two sets of models are compared by diagnostic plots, AIC, BIC, and summary to choose the 
final one, which will indicate which one of crime number and per capita crime number will be 
used later. 
 
For the further selection of variables and models, total income and population are removed 
because per-capita income = total income/total population. Region and state are ignored at the 
beginning because they are hard to address as categorical values. For variable selection, all 
subsets method, and stepwise selection are used. Then the two models are compared by 
diagnostic plots, AIC, BIC values. Then it is compared with model with region term 
multiplicated. 
 
Results 
 
1. Is there any relation between variables in datasets?  
 
Appendix A: page 8 
From the correlation plot we can see that tot.income and pop are highly correlated, and they both 
are reasonably highly correlated with crimes, hosp.beds and doctors, and these three are also 
strongly correlated with each other.  
 
per.cap.income isn’t really highly correlated with anything, but it has some positive correlation 
with pct.hs.grad, pct.bach.deg and some negative correlation with pct.below.pov, pct.unemp. 
And pct.hs.grad, pct.bach.deg, pct.below.pov, and pct.unemp. are moderately correlated with 
each other. 



 
These correlations are expected. total income = per-capita income * population, so it is 
reasonable that they are correlated, and huge population in some way means that more people are 
criming, and also more people being doctors, and this county will need more beds in the hospital 
for this large amount of people. At the same time, more crimes means that more people are hurt, 
and thus more doctors and hospital beds needed. Also, per-capita income has positive correlation 
with pct.hs.grad, pct.bach.deg because people with high school or college education are more 
likely to get high income than those who do not complete at least 12 years of school. And per-
capita income has negative correlation with pct.below.pov, and pct.unemp because the increase 
of people with income below poverty level and people unemployed means that they are getting 
really low income. 
 
2. How per-capita income was related to crime number, and does different regions of the 
country matter for this relationship? Is it better or more reasonable to use (number of 
crimes)/(population)? 
 
Appendix B: page 10 
 
For the model comparison to check the significance of crime number on per-capita income, and 
the exploration of how region can affect the relationship between per-capita income and crime 
number, by the ANOVA test, we can know that we cannot reject that the model predicting per-
capita income by adding region and crimes is enough comparing to model with variable region 
times crimes, which means that dummy variable region produces only additive changes in 
log(per-capita income). For the set of models below, model 2 is selected. 

 
Appendix C: page 15 
 
Then, when per-capita crime is considered in the model, we get the same result that interaction 
between per-capita crime and region is also unnecessary. For the set of models below, model 2 is 
selected. 

 
 
Appendix D: page 15  



Then we come to the choice between total crime number (model 1) and per-capita crime (model 
2). For the diagnostic plots, the two sets of plots look quite similar. But model 1 has smaller AIC 
and BIC values. Overall, I will choose model 1, which means that I would like to use total crimes 
later. 

 
 
3. What is the best model predicting per-capita income from the other variables, which best 
reflects the social science and the meaning of the variables? 
 
Appendix E 
 
Then, we are going to do variable selection on all variables. 
 
Part 1: page 19 
 
Stepwise selection in both directions is used in, which iteratively adding and removing predictors 
in the predictive model to find the subset of variables in the data set resulting in the model that 
has lowest prediction error. And at this step we get the model: 
 

 



Part 2: page 20 
 
All subsets method is used, which tests all possible subsets of the set of potential independent 
variables. For the model that maximizes squared value and minimizes cp and BIC values, we get 
model with 8 variables, fit_8 : 

 
We get same models from this step.  
Then, region term is going to be considered. 
 
Part 3: page 21 
From the summary table below, we can see that, after removing the insignificant variables, 
pct.unemp:region, pct.hs.grad:region, pct.below.pov:region, region, pop.18_34, pct.unemp, 
pct.below.pov, pct.bach.deg, log(doctors), log(land.area) are the variables left significantly for 
the model with interaction of region. 



Finally we get the new model log(per.cap.income) ~ pct.unemp:region+ pct.hs.grad:region+ 
pct.below.pov:region+ region+ pop.18_34+ pct.unemp+ pct.below.pov+pct.bach.deg+ 
log(doctors)+log(land.area) 
 
Part 4: page 24 
We will compare the fit_8 model with this new model with region. 
ANOVA test:  

 
 
By the result of test, we can say that the null hypothesis that model without interaction with 
region is good enough can be rejected. Thus, we think choosing the new model is better. 

 

 
From BIC and AIC value of the two model, we can see that fit_8 has smaller BIC value but new 
model has smaller AIC value. 
From the two sets of diagnostic plots, we can find it is hard to choose based on those because 
they are similar.  
From the ANOVA test, and value comparisons above, I will choose new model with region as 
the final model selected. It has lower AIC value, though higher BIC value, but BIC value tends 
to choose simpler model. Also, from ANOVA test, we can see that the interaction term can make 
the performance of model better than before to an extent that we cannot accept that the models 
are quite similar by the p-value far less than 0.05. 
 
For the numeric variables, the positive correlation between y variable and doctors, pct.bach.deg, 
and the negative correlation between y variable and pct.below.pov can both fit the correlation 
plot and our expectation at the very beginning, which makes this model reasonable in both 
statiscal and social aspects. 



 
 
Discussion 
 
1. Is there any relation between variables in datasets?  
 
For the correlation between the variables, from the correlation plots we can see that tot.income 
and pop are highly correlated, and they both are reasonably highly correlated with crimes, 
hosp.beds and doctors, and these three are also strongly correlated with each other.  
 
per.cap.income isn’t really highly correlated with anything, but it has some positive correlation 
with pct.hs.grad, pct.bach.deg and some negative correlation with pct.below.pov, pct.unemp. 
And pct.hs.grad, pct.bach.deg, pct.below.pov, and pct.unemp. are moderately correlated with 
each other. 
These correlations are expected. total income = per-capita income * population, so it is 
reasonable that they are correlated, and huge population in some way means that more people are 
criming, and also more people being doctors, and this county will need more beds in the hospital 
for this large amount of people. At the same time, more crimes means that more people are hurt 
and thus more doctors and hospital beds needed. Also, per-capita income has positive correlation 
with pct.hs.grad, pct.bach.deg because people with high school or college education are more 
likely to get high income than those who do not complete at least 12 years of school. And per-
capita income has negative correlation with pct.below.pov, and pct.unemp because the increase 
of people with income below poverty level and people unemployed means that they are getting 
really low income. 
 



2. How per-capita income was related to crime number, and does different regions of the 
country matter for this relationship? Is it better or more reasonable to use (number of 
crimes)/(population)? 
 
From the two ANOVA test, we can know that total crime number and region are significant 
variables for per-capita income, which means that per-capita income has relationship with both 
of them. Also, as the interaction term is not significant, each region results in different additive 
change on per-capita income. And I think using total crime numbers instead of per-capita crime 
is better for predicting the per-capita income after comparing the diagnostic plots, summaries, 
AIC, and BIC values of two models.  
 
3. What is the best model predicting per-capita income from the other variables, which best 
reflects the social science and the meaning of the variables? 
 
And the final model I select is

 
For the numeric variables, the positive correlation between y variable and doctors, pct.bach.deg, 
and the negative correlation between y variable and pct.below.pov can both fit the correlation 
plot and our expectation at the very beginning, which makes this model reasonable in both 
statiscal and social aspects. 
 
4. Should we be worried about either the missing states or the missing counties?  
 
There is also an important problem is that there are missing states and missing counties in the 
datasets (48/51 states and 373/3000 counties appear in the dataset). We should be care about it 
because there are too many missing states such that there might be many other variables that are 
significant in these states and might be considered as not valued in this project. Also, the missing 
data can result in some missing information in the state and region variable, which might be 
biased under what we have now. 
 
Strengths: 
Estimated coefficients have the expected sign. 
The model is confirmed by stepwise and All subsets procedures. 
Variables are either in their original scale, or are transformed by logarithm or power, and final 
model is concise, which makes explaining the models to people good at social science & 
economics but not statistics easier. 
Weakness: 
The residual diagnostic plots are just OK. 
Do not have time on exploring deeply on state, and other variables can result in different slopes 
for variables predicting the per-capita income.  
 
Thus, in the future research on this same topic, how state variable can interactively change per-
capita income with other variables should be concerned, and some missing data should be 
collected and added on if possible. 



 
 
Reference 
Kutner, M.H., Nachtsheim, C.J., Neter, J. and Li, W. (2005) Applied Linear Statistical Models. 
5th Edition, McGraw-Hill, Irwin, New York. 



Code Appendix

Appendix A: Data summary and EDA

cdi <- read.table("cdi.dat")
#View(cdi)

#colnames(cdi)

The distribution of each numeric variable and the statistics are shown below.

attach(cdi)
table <- matrix(c(summary(land.area),
summary(pop),
summary(pop.18_34),
summary(pop.65_plus),
summary(doctors),
summary(hosp.beds),
summary(crimes),
summary(pct.hs.grad),
summary(pct.bach.deg),
summary(pct.below.pov),
summary(pct.unemp),
summary(per.cap.income),
summary(tot.income)), ncol = 6, byrow = TRUE)
detach(cdi)

Make a table or tables showing appropriate summary statistics for each variable in the data

set. Note that summary statistics for continuous variables will be di�erent from the summary

statistics for categorical variables.

rownames(table)<-c("land.area", "pop", "pop.18_34", "pop.65_plus", "doctors", "hosp.beds", "crimes", "pct.hs.grad", "pct.bach.deg", "pct.below.pov","pct.unemp", "per.cap.income", "tot.income")

colnames(table) <- c("Min.", "1st Qu.", "Median","Mean", "3rd Qu.", "Max.")
table

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## land.area 15.0 451.250 656.50 1.041411e+03 946.750 20062.0
## pop 100043.0 139027.250 217280.50 3.930109e+05 436064.500 8863164.0
## pop.18_34 16.4 26.200 28.10 2.856841e+01 30.025 49.7
## pop.65_plus 3.0 9.875 11.75 1.216977e+01 13.625 33.8
## doctors 39.0 182.750 401.00 9.879977e+02 1036.000 23677.0
## hosp.beds 92.0 390.750 755.00 1.458627e+03 1575.750 27700.0
## crimes 563.0 6219.500 11820.50 2.711162e+04 26279.500 688936.0
## pct.hs.grad 46.6 73.875 77.70 7.756068e+01 82.400 92.9
## pct.bach.deg 8.1 15.275 19.70 2.108114e+01 25.325 52.3
## pct.below.pov 1.4 5.300 7.90 8.720682e+00 10.900 36.3
## pct.unemp 2.2 5.100 6.20 6.596591e+00 7.500 21.3
## per.cap.income 8899.0 16118.250 17759.00 1.856148e+04 20270.000 37541.0
## tot.income 1141.0 2311.000 3857.00 7.869273e+03 8654.250 184230.0

1



The frequency of each unique value of the two categorical variables are shown below.

library(dplyr)

##
## Attaching package: ’dplyr’

## The following objects are masked from ’package:stats’:
##
## filter, lag

## The following objects are masked from ’package:base’:
##
## intersect, setdiff, setequal, union

table_1 <- data.frame(summary(as.factor(cdi$state)))
table_1 <- table_1 %>% rename(frequency=summary.as.factor.cdi.state..)
table_1

## frequency
## AL 7
## AR 2
## AZ 5
## CA 34
## CO 9
## CT 8
## DC 1
## DE 2
## FL 29
## GA 9
## HI 3
## ID 1
## IL 17
## IN 14
## KS 4
## KY 3
## LA 9
## MA 11
## MD 10
## ME 5
## MI 18
## MN 7
## MO 8
## MS 3
## MT 1
## NC 18
## ND 1
## NE 3
## NH 4
## NJ 18
## NM 2
## NV 2

2



## NY 22
## OH 24
## OK 4
## OR 6
## PA 29
## RI 3
## SC 11
## SD 1
## TN 8
## TX 28
## UT 4
## VA 9
## VT 1
## WA 10
## WI 11
## WV 1

table_2 <- data.frame(summary(as.factor(cdi$region)))
table_2 <- table_2 %>% rename(frequency=summary.as.factor.cdi.region..)
table_2

## frequency
## NC 108
## NE 103
## S 152
## W 77

id and county are not included because each row has a unique value for both of them, thus useless for the
analysis.

Indicate where (in which variables) there is missing data (NA’s), if any, how much there is (in

each variable) and why it might be there.

#is.na(cdi)

There is no missing data (NA’s).

Make some appropriate descriptive EDA plots to illustrate any important features of the

variables or possible important relationships among them.

attach(cdi)
par(mfrow=c(2,2))
hist(land.area)
hist(pop)
hist(pop.18_34)
hist(pop.65_plus)
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Histogram of doctors
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Histogram of pct.bach.deg
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Histogram of tot.income
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We can see that per.cap.income, land.area, pop, doctors, hosp.beds, crimes, and tot.income are highly
skewed to right, thus we may need to apply log transformation to them to put the tails in.

library("corrplot")

## corrplot 0.90 loaded

corr <- cor(cdi[4:16])
corrplot(corr, method = "circle")
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From the correlation plot above, we can see that the dots are dark means that the corresponding two
variables are highly correlated, so when the highly correlated variables occur in the same model, we will
need to consider if there is any confounding variables or missing variables that may mislead the model.
These correlations are expected. total income = per-capita income * population, so it is reasonable that
they are correlated, and huge population in some way means that more people are criming, and also more
people being doctors, and this county will need more beds in the hospital for this large amount of people.
At the same time, more crimes means that more people are hurt and thus more doctors and hospital beds
needed. Also, per-capita income has positive correlation with pct.hs.grad, pct.bach.deg because people with
high school or college education are more likely to get high income than those who do not complete at
least 12 years of school. And per-capita income has negative correlation with pct.below.pov, and pct.unemp
because the increase of people with income below poverty level and people unemployed means that they are
getting really low income.

Appendix B: How crimes and region are related to per-capita crime

Build a regression model that predicts per-capita income from crime rate and region of

the country. Should there be any interactions in the model? What does your model say

about the relationship between per- capita income and crime rate? Do your answers change,

depending on whether you use number of crimes, or “per-capita crime” = (number of

crimes)/(population) as a crime rate measure? If so, which one best answers the question?

Why? Show the fitted model results and explain your answer to these questions in terms of

those results.

hist(log(cdi$crimes))
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Histogram of log(cdi$crimes)
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Histogram of log(cdi$per.cap.income)
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Log transformation is applied to crimes and per.cap.income.

fit <- lm(log(per.cap.income)~log(crimes), data = cdi)
fit1 <- lm(log(per.cap.income)~log(crimes)+region, data = cdi)
summary(fit)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes), data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.75042 -0.11569 -0.02976 0.09597 0.74498
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.295146 0.083764 110.97 < 2e-16 ***
## log(crimes) 0.053858 0.008758 6.15 1.75e-09 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1986 on 438 degrees of freedom
## Multiple R-squared: 0.07948, Adjusted R-squared: 0.07738
## F-statistic: 37.82 on 1 and 438 DF, p-value: 1.752e-09
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summary(fit1)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes) + region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68757 -0.10557 -0.01422 0.08905 0.78946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.188431 0.079812 115.125 < 2e-16 ***
## log(crimes) 0.066695 0.008421 7.920 2.00e-14 ***
## regionNE 0.104458 0.025531 4.091 5.11e-05 ***
## regionS -0.086983 0.023618 -3.683 0.00026 ***
## regionW -0.055280 0.028167 -1.963 0.05033 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1854 on 435 degrees of freedom
## Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
## F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

For this original model, we can see that log(crimes) is a significant variable for per.capita.income, and each
percent increase of crime leads to about 5 percent increase of per.capita.income. Then we check if the model
becomes better with interaction term in the model.

fit2<-lm(log(per.cap.income)~log(crimes)+region+(log(crimes):region), data = cdi)
summary(fit2)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes) + region + (log(crimes):region),
## data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68552 -0.10418 -0.01444 0.08302 0.79755
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.33677 0.14579 64.044 < 2e-16 ***
## log(crimes) 0.05064 0.01566 3.233 0.00132 **
## regionNE -0.18407 0.21515 -0.856 0.39272
## regionS -0.19717 0.21211 -0.930 0.35312
## regionW -0.31439 0.24465 -1.285 0.19947
## log(crimes):regionNE 0.03122 0.02311 1.351 0.17749
## log(crimes):regionS 0.01211 0.02228 0.544 0.58696
## log(crimes):regionW 0.02727 0.02523 1.081 0.28028
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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##
## Residual standard error: 0.1855 on 432 degrees of freedom
## Multiple R-squared: 0.2073, Adjusted R-squared: 0.1945
## F-statistic: 16.14 on 7 and 432 DF, p-value: < 2.2e-16

It seems that r squared value does not change a lot with interaction term. Then we use anova test to check
H0: fit1(no interaction term) is enough or Ha: reject H0 so that we will need an interaction term.

anova(fit, fit1, fit2)

## Analysis of Variance Table
##
## Model 1: log(per.cap.income) ~ log(crimes)
## Model 2: log(per.cap.income) ~ log(crimes) + region
## Model 3: log(per.cap.income) ~ log(crimes) + region + (log(crimes):region)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 17.271
## 2 435 14.949 3 2.32194 22.4823 1.523e-13 ***
## 3 432 14.872 3 0.07678 0.7434 0.5266
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Thus, we can know that model with region as an interaction term is not better than region as a additive
term. And we will choose model 2 in this case.

Appendix C: How per-capita crime and region are related to per-capita crime

cdi["per.capita.crime"] = cdi$crimes/cdi$pop

hist(cdi$per.capita.crime)
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Histogram of cdi$per.capita.crime
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We can see that the per.capita.crime is highle right skewed, so we may apply a log transformation on it,
and it looks better now.

hist(log(cdi$per.capita.crime))
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Histogram of log(cdi$per.capita.crime)
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fit <- lm(log(per.cap.income)~log(per.capita.crime), data = cdi)
fit3 <- lm(log(per.cap.income)~log(per.capita.crime)+region, data = cdi)
summary(fit3)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.capita.crime) + region,
## data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65832 -0.11431 -0.01548 0.10838 0.75657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.93628 0.06934 143.303 < 2e-16 ***
## log(per.capita.crime) 0.04243 0.02148 1.975 0.04885 *
## regionNE 0.11457 0.02760 4.151 3.99e-05 ***
## regionS -0.07456 0.02624 -2.841 0.00471 **
## regionW -0.02426 0.03002 -0.808 0.41952
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1974 on 435 degrees of freedom
## Multiple R-squared: 0.09645, Adjusted R-squared: 0.08814
## F-statistic: 11.61 on 4 and 435 DF, p-value: 5.776e-09
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fit4 <- lm(log(per.cap.income)~log(per.capita.crime)+region+(log(per.capita.crime):region), data = cdi)
summary(fit4)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.capita.crime) + region +
## (log(per.capita.crime):region), data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65410 -0.11829 -0.01708 0.10399 0.76628
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.91177 0.10503 94.367 <2e-16 ***
## log(per.capita.crime) 0.03454 0.03327 1.038 0.300
## regionNE 0.21007 0.17165 1.224 0.222
## regionS -0.10137 0.16072 -0.631 0.529
## regionW 0.07689 0.26753 0.287 0.774
## log(per.capita.crime):regionNE 0.02924 0.05232 0.559 0.577
## log(per.capita.crime):regionS -0.01104 0.05554 -0.199 0.843
## log(per.capita.crime):regionW 0.03495 0.09268 0.377 0.706
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.198 on 432 degrees of freedom
## Multiple R-squared: 0.09773, Adjusted R-squared: 0.08311
## F-statistic: 6.685 on 7 and 432 DF, p-value: 1.575e-07

anova(fit, fit3, fit4)

## Analysis of Variance Table
##
## Model 1: log(per.cap.income) ~ log(per.capita.crime)
## Model 2: log(per.cap.income) ~ log(per.capita.crime) + region
## Model 3: log(per.cap.income) ~ log(per.capita.crime) + region + (log(per.capita.crime):region)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 18.697
## 2 435 16.952 3 1.74465 14.8407 3.263e-09 ***
## 3 432 16.928 3 0.02408 0.2048 0.893
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We can see that for model per.cap.income ~ log(per.capita.crime) + region, we also do not need to add the
interaction term as the p-value is 0.89 > 0.05.

Appendix D: Choose between total crime number and per-capita crime

par(mfrow = c(2,2))
plot(fit1)
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par(mfrow = c(2,2))
plot(fit3)
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AIC(fit1, fit3)

## df AIC
## fit1 6 -227.4746
## fit3 6 -172.1347

BIC(fit1, fit3)

## df BIC
## fit1 6 -202.9539
## fit3 6 -147.6140

To decide which one of fit 1 and fit 3, apart from the summary of two models, we will also need to check the
diagnostic plots for them. Based on the summary, we can see that the r squared value is larger for model
1, per.cap.income ~ log(crimes) + region, than model 3, per.cap.income ~ log(per.capita.crime) + region,
and also the log(per.capita.crime) is not a significant variable in model 3. For the diagnostic plots, residuals
vs.fitted plot for model 1 looks good as there is no pattern and the mean is at about 0; there are some
points o� the line at the sides; there is a slightly upward pattern in the scale-location plot; there is no points
with both high residuals and high leverage. For model 3, the plots are quite similar with those of model
1, except that points on residuals and scale-location plots are roughly clustered into three groups, so that
maybe regions a�ect the model more for this one. Also, when comparing their AIC values and BIC values,
we can see that fit 1 has both lower AIC value and BIC value, which makes it better than fit 3. Overall, I
will choose model 1 for its lower AIC and BIC values and higher r squared value.
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Appendix E: Variable selection process

Use methods we have discussed in class and/or methods from Sheather Chapters 5, 6 & 7

(including, as needed: transformations, interactions, variable selection, residual analysis, fit

indices, etc.) to find the multiple regression model predicting per-capita income from the

other variables.

(1) Stepwise selection

We can see that per.cap.income, land.area, pop, doctors, hosp.beds, crimes, pct.bach.deg, pct.below.pov,
pct.unemp, and tot.income are highly skewed to right, thus we may need to apply log transformation to them
to put the tails in. Also, pct.hs.grad is somehow skewed to the left, so we apply a power transformation of
degree 2 to it. Also, as per capita income = total income/population, and we also can see the high correlation
among them in the correlation plot. Thus, I decide to remove these two features. Here I also exclude the
variable state and region, and I will process with these categorical variables later in the process. Now I jsut
want to know how these numerical variables perform in the model.

fit_all <- lm(log(per.cap.income) ~ (log(land.area)+log(doctors)+log(hosp.beds)+log(crimes)+pct.bach.deg+pct.below.pov+pct.unemp+pct.hs.grad + pop.18_34 + pop.65_plus), data = cdi)

summary(fit_all)

##
## Call:
## lm(formula = log(per.cap.income) ~ (log(land.area) + log(doctors) +
## log(hosp.beds) + log(crimes) + pct.bach.deg + pct.below.pov +
## pct.unemp + pct.hs.grad + pop.18_34 + pop.65_plus), data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35561 -0.04712 -0.00846 0.04522 0.27681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.313312 0.108644 94.927 < 2e-16 ***
## log(land.area) -0.035641 0.004825 -7.386 7.95e-13 ***
## log(doctors) 0.052055 0.012502 4.164 3.79e-05 ***
## log(hosp.beds) 0.016215 0.012008 1.350 0.1776
## log(crimes) -0.004066 0.007831 -0.519 0.6039
## pct.bach.deg 0.015712 0.001027 15.305 < 2e-16 ***
## pct.below.pov -0.024945 0.001303 -19.138 < 2e-16 ***
## pct.unemp 0.011130 0.002186 5.091 5.34e-07 ***
## pct.hs.grad -0.004738 0.001086 -4.363 1.61e-05 ***
## pop.18_34 -0.015542 0.001306 -11.897 < 2e-16 ***
## pop.65_plus -0.003309 0.001371 -2.413 0.0162 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.08168 on 429 degrees of freedom
## Multiple R-squared: 0.8475, Adjusted R-squared: 0.8439
## F-statistic: 238.4 on 10 and 429 DF, p-value: < 2.2e-16
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library(car)

## Loading required package: carData

##
## Attaching package: ’car’

## The following object is masked from ’package:dplyr’:
##
## recode

Here we start doing a variable selection by stepwise selection and all subsets selection and make a comparison.

library(leaps)
library(MASS)

##
## Attaching package: ’MASS’

## The following object is masked from ’package:dplyr’:
##
## select

step_model <- stepAIC(fit_all, direction = "both", trace = FALSE)
summary(step_model)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(land.area) + log(doctors) +
## pct.bach.deg + pct.below.pov + pct.unemp + pct.hs.grad +
## pop.18_34 + pop.65_plus, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35756 -0.04551 -0.00543 0.04844 0.27399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.3159666 0.1025858 100.559 < 2e-16 ***
## log(land.area) -0.0364935 0.0047728 -7.646 1.36e-13 ***
## log(doctors) 0.0626053 0.0041029 15.259 < 2e-16 ***
## pct.bach.deg 0.0152149 0.0009242 16.462 < 2e-16 ***
## pct.below.pov -0.0246144 0.0012631 -19.488 < 2e-16 ***
## pct.unemp 0.0107688 0.0021696 4.963 9.99e-07 ***
## pct.hs.grad -0.0046579 0.0010843 -4.296 2.15e-05 ***
## pop.18_34 -0.0153488 0.0012988 -11.818 < 2e-16 ***
## pop.65_plus -0.0027664 0.0012978 -2.132 0.0336 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.08167 on 431 degrees of freedom
## Multiple R-squared: 0.8468, Adjusted R-squared: 0.8439
## F-statistic: 297.7 on 8 and 431 DF, p-value: < 2.2e-16
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From the stepwise selction, model we can is log(per.cap.income) ~ log(land.area) + log(doctors) +
log(pct.bach.deg) + log(pct.below.pov) + log(pct.unemp) + pop.18_34 + pct.hs.grad + pop.65_plus.

(2) All subsets selection

all_subsets <- regsubsets(log(per.cap.income) ~ log(land.area)+log(doctors)+log(hosp.beds)+log(crimes)+pct.bach.deg+pct.below.pov+pct.unemp+pct.hs.grad + pop.18_34 + pop.65_plus, data = cdi, really.big = TRUE)

cdi_sum <- summary(all_subsets)
data.frame(

adj_r2 = which.max(cdi_sum$adjr2),
cp = which.min(cdi_sum$cp),
bic = which.min(cdi_sum$bic)

)

## adj_r2 cp bic
## 1 8 8 7

coef(all_subsets, 1:8)

## [[1]]
## (Intercept) pct.bach.deg
## 9.42153388 0.01828273
##
## [[2]]
## (Intercept) log(doctors) pct.below.pov
## 9.48447189 0.09381497 -0.02919999
##
## [[3]]
## (Intercept) log(doctors) pct.bach.deg pct.below.pov
## 9.422105059 0.070869806 0.007533288 -0.024073152
##
## [[4]]
## (Intercept) log(doctors) pct.bach.deg pct.below.pov pop.18_34
## 9.73156229 0.06434105 0.01245298 -0.02031627 -0.01420342
##
## [[5]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 10.00506798 -0.03733574 0.06324794 0.01197955 -0.01957811
## pop.18_34
## -0.01490014
##
## [[6]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 9.90343798 -0.04021183 0.06286862 0.01341559 -0.02138922
## pct.unemp pop.18_34
## 0.01290540 -0.01409166
##
## [[7]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 10.222495041 -0.035674062 0.060676872 0.015385301 -0.024278371
## pct.unemp pct.hs.grad pop.18_34
## 0.010603691 -0.004406396 -0.013900201
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##
## [[8]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 10.315966592 -0.036493494 0.062605267 0.015214937 -0.024614405
## pct.unemp pct.hs.grad pop.18_34 pop.65_plus
## 0.010768825 -0.004657948 -0.015348817 -0.002766377

For the reason that bic tends to select simple model, we choose the model with eight variables.

fit_8 <- lm(log(per.cap.income) ~ log(land.area) + log(doctors) + pct.bach.deg + pct.below.pov +pct.unemp +pct.hs.grad+ pop.18_34 + pop.65_plus, data = cdi)
summary(fit_8)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(land.area) + log(doctors) +
## pct.bach.deg + pct.below.pov + pct.unemp + pct.hs.grad +
## pop.18_34 + pop.65_plus, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35756 -0.04551 -0.00543 0.04844 0.27399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.3159666 0.1025858 100.559 < 2e-16 ***
## log(land.area) -0.0364935 0.0047728 -7.646 1.36e-13 ***
## log(doctors) 0.0626053 0.0041029 15.259 < 2e-16 ***
## pct.bach.deg 0.0152149 0.0009242 16.462 < 2e-16 ***
## pct.below.pov -0.0246144 0.0012631 -19.488 < 2e-16 ***
## pct.unemp 0.0107688 0.0021696 4.963 9.99e-07 ***
## pct.hs.grad -0.0046579 0.0010843 -4.296 2.15e-05 ***
## pop.18_34 -0.0153488 0.0012988 -11.818 < 2e-16 ***
## pop.65_plus -0.0027664 0.0012978 -2.132 0.0336 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.08167 on 431 degrees of freedom
## Multiple R-squared: 0.8468, Adjusted R-squared: 0.8439
## F-statistic: 297.7 on 8 and 431 DF, p-value: < 2.2e-16

From the selection of both methods, we can see that we get same variables from them. Then, we will need
to consider the how can the variable indicating the regions can a�ect the model and prediction.

(3) Interaction with region

fit_region <- lm(log(per.cap.income) ~ (log(land.area) + log(doctors) + pct.bach.deg + pct.below.pov +pct.unemp +pct.hs.grad+ pop.18_34+pop.65_plus)*region, data = cdi)
summary(fit_region)

##
## Call:
## lm(formula = log(per.cap.income) ~ (log(land.area) + log(doctors) +
## pct.bach.deg + pct.below.pov + pct.unemp + pct.hs.grad +
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## pop.18_34 + pop.65_plus) * region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.239497 -0.042518 -0.002899 0.038705 0.315955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.1550994 0.3077758 32.995 < 2e-16 ***
## log(land.area) -0.0355230 0.0155258 -2.288 0.022654 *
## log(doctors) 0.0548293 0.0094485 5.803 1.32e-08 ***
## pct.bach.deg 0.0140191 0.0029305 4.784 2.41e-06 ***
## pct.below.pov -0.0233702 0.0038627 -6.050 3.30e-09 ***
## pct.unemp 0.0176067 0.0051819 3.398 0.000747 ***
## pct.hs.grad -0.0026649 0.0034861 -0.764 0.445055
## pop.18_34 -0.0150740 0.0028317 -5.323 1.69e-07 ***
## pop.65_plus -0.0012483 0.0050165 -0.249 0.803614
## regionNE 0.4813749 0.3863061 1.246 0.213451
## regionS -0.0552517 0.3396107 -0.163 0.870843
## regionW 1.3969067 0.4575796 3.053 0.002417 **
## log(land.area):regionNE -0.0050730 0.0204207 -0.248 0.803932
## log(land.area):regionS -0.0058664 0.0177783 -0.330 0.741589
## log(land.area):regionW 0.0136894 0.0185229 0.739 0.460306
## log(doctors):regionNE 0.0001267 0.0135190 0.009 0.992526
## log(doctors):regionS 0.0042557 0.0116550 0.365 0.715198
## log(doctors):regionW -0.0046667 0.0132947 -0.351 0.725759
## pct.bach.deg:regionNE 0.0060237 0.0040533 1.486 0.138025
## pct.bach.deg:regionS -0.0015550 0.0032102 -0.484 0.628384
## pct.bach.deg:regionW 0.0069577 0.0036552 1.903 0.057687 .
## pct.below.pov:regionNE -0.0009949 0.0052677 -0.189 0.850294
## pct.below.pov:regionS 0.0068718 0.0042992 1.598 0.110736
## pct.below.pov:regionW -0.0167523 0.0055989 -2.992 0.002941 **
## pct.unemp:regionNE -0.0063048 0.0075950 -0.830 0.406962
## pct.unemp:regionS -0.0243492 0.0068439 -3.558 0.000418 ***
## pct.unemp:regionW -0.0192087 0.0070270 -2.734 0.006541 **
## pct.hs.grad:regionNE -0.0033331 0.0044706 -0.746 0.456373
## pct.hs.grad:regionS 0.0023152 0.0038518 0.601 0.548134
## pct.hs.grad:regionW -0.0185423 0.0046646 -3.975 8.33e-05 ***
## pop.18_34:regionNE -0.0060991 0.0042036 -1.451 0.147582
## pop.18_34:regionS -0.0008273 0.0034566 -0.239 0.810970
## pop.18_34:regionW 0.0030516 0.0048005 0.636 0.525342
## pop.65_plus:regionNE -0.0076628 0.0063347 -1.210 0.227119
## pop.65_plus:regionS 0.0009166 0.0052822 0.174 0.862326
## pop.65_plus:regionW 0.0037008 0.0064632 0.573 0.567239
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.07573 on 404 degrees of freedom
## Multiple R-squared: 0.8765, Adjusted R-squared: 0.8658
## F-statistic: 81.92 on 35 and 404 DF, p-value: < 2.2e-16

From the summary table above, we can see that, after removing the insignificnat variables, pct.unemp:region,
pct.hs.grad:region, pct.below.pov:region, region, pop.18_34, pct.unemp, pct.below.pov, pct.bach.deg,
log(doctors), log(land.area) are the variables left significant for the new model with interaction of region. Here
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we get the new model log(per.cap.income) ~ pct.unemp:region+ pct.hs.grad:region+ pct.below.pov:region+
region+ pop.18_34+ pct.unemp+ pct.below.pov+pct.bach.deg+ log(doctors)+log(land.area)

fit_region_new <- lm(log(per.cap.income) ~ pct.unemp:region+pct.hs.grad:region+ pct.below.pov:region+ region+ pop.18_34+ pct.unemp+ pct.below.pov+pct.bach.deg+ log(doctors)+log(land.area), data = cdi)
summary(fit_region_new)

##
## Call:
## lm(formula = log(per.cap.income) ~ pct.unemp:region + pct.hs.grad:region +
## pct.below.pov:region + region + pop.18_34 + pct.unemp + pct.below.pov +
## pct.bach.deg + log(doctors) + log(land.area), data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.294186 -0.043597 -0.001583 0.037667 0.311609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2421239 0.2176557 47.057 < 2e-16 ***
## regionNE -0.0520070 0.2707173 -0.192 0.847750
## regionS -0.0389718 0.2383516 -0.164 0.870199
## regionW 1.3910484 0.3408962 4.081 5.38e-05 ***
## pop.18_34 -0.0149347 0.0010897 -13.705 < 2e-16 ***
## pct.unemp 0.0197400 0.0046254 4.268 2.44e-05 ***
## pct.below.pov -0.0252029 0.0032612 -7.728 8.12e-14 ***
## pct.bach.deg 0.0156310 0.0009715 16.090 < 2e-16 ***
## log(doctors) 0.0572284 0.0040082 14.278 < 2e-16 ***
## log(land.area) -0.0381738 0.0053996 -7.070 6.51e-12 ***
## pct.unemp:regionNE -0.0129841 0.0070423 -1.844 0.065929 .
## pct.unemp:regionS -0.0231138 0.0061365 -3.767 0.000189 ***
## pct.unemp:regionW -0.0217357 0.0065225 -3.332 0.000937 ***
## regionNC:pct.hs.grad -0.0043532 0.0024515 -1.776 0.076501 .
## regionNE:pct.hs.grad -0.0025848 0.0020257 -1.276 0.202657
## regionS:pct.hs.grad -0.0032007 0.0014122 -2.266 0.023936 *
## regionW:pct.hs.grad -0.0185005 0.0027800 -6.655 8.88e-11 ***
## regionNE:pct.below.pov -0.0015170 0.0046143 -0.329 0.742493
## regionS:pct.below.pov 0.0070185 0.0035199 1.994 0.046808 *
## regionW:pct.below.pov -0.0137920 0.0051811 -2.662 0.008066 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.07692 on 420 degrees of freedom
## Multiple R-squared: 0.8675, Adjusted R-squared: 0.8615
## F-statistic: 144.8 on 19 and 420 DF, p-value: < 2.2e-16

(4) Model selection

anova(fit_8, fit_region_new)

## Analysis of Variance Table
##
## Model 1: log(per.cap.income) ~ log(land.area) + log(doctors) + pct.bach.deg +
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## pct.below.pov + pct.unemp + pct.hs.grad + pop.18_34 + pop.65_plus
## Model 2: log(per.cap.income) ~ pct.unemp:region + pct.hs.grad:region +
## pct.below.pov:region + region + pop.18_34 + pct.unemp + pct.below.pov +
## pct.bach.deg + log(doctors) + log(land.area)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 431 2.8748
## 2 420 2.4853 11 0.38947 5.9835 4.306e-09 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

ANOVA test is made bwteen the model selected by all subsets and the model with interaction of region.
By the result of test, we can say that the null hypothesis that model without interaction with region is
good enough can be rejected. Thus, we think choosing the fit_region+new model is better. Several other
comparisons are also made between the two models to find the best one.

BIC(fit_8, fit_region_new)

## df BIC
## fit_8 10 -904.0206
## fit_region_new 21 -901.1215

AIC(fit_8, fit_region_new)

## df AIC
## fit_8 10 -944.8883
## fit_region_new 21 -986.9437

From BIC and AIC value of the two model, we can see that fit_8 has smaller BIC value but fit-region_new
has smaller AIC value.

par(mfrow = c(2,2))
plot(fit_8)
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par(mfrow = c(2,2))
plot(fit_region_new)
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From the two sets of diagnostic plots, we can find it is hard to choose based on those. Both resduals vs.fitted
plots and scale-location plots has a slight upward concavity patterns shown. And from both normal q-q
plots, we can see that they all have some points o� the line at the very right side, which also corresponds
to the residuals vs.leverage plots that they both have no points with either high residuals or high leverage,
but no point with both high residuals and high leverage. They have quite similar r squared values and it is
also hard to choose based on this single value. from the ANOVA test, and value comparisons above, I will
choose fit_region_new as the final model selected. It has lower AIC value, though higher BIC value, but
BIC value tends to choose simpler model. Also, from ANOVA test, we can see that the interaction term can
make the performance of model better than before to an extent that we cannot accept that the models are
quite similar by the p-value far less than 0.05.

(5) Model with state

all_subsets_state <- regsubsets(log(per.cap.income) ~ log(land.area)+log(doctors)+log(hosp.beds)+log(crimes)+pct.bach.deg+pct.below.pov+pct.unemp+pct.hs.grad + pop.18_34 + pop.65_plus+region+state, data = cdi, really.big = TRUE)

## Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax, force.in =
## force.in, : 3 linear dependencies found

## Reordering variables and trying again:

cdi_sum <- summary(all_subsets_state)
data.frame(

adj_r2 = which.max(cdi_sum$adjr2),
cp = which.min(cdi_sum$cp),
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bic = which.min(cdi_sum$bic)
)

## adj_r2 cp bic
## 1 9 9 9

coef(all_subsets_state, 1:9)

## [[1]]
## (Intercept) pct.bach.deg
## 9.42153388 0.01828273
##
## [[2]]
## (Intercept) log(doctors) pct.below.pov
## 9.48447189 0.09381497 -0.02919999
##
## [[3]]
## (Intercept) log(doctors) pct.bach.deg pct.below.pov
## 9.422105059 0.070869806 0.007533288 -0.024073152
##
## [[4]]
## (Intercept) log(doctors) pct.bach.deg pct.below.pov pop.18_34
## 9.73156229 0.06434105 0.01245298 -0.02031627 -0.01420342
##
## [[5]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 10.00506798 -0.03733574 0.06324794 0.01197955 -0.01957811
## pop.18_34
## -0.01490014
##
## [[6]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 10.00988950 -0.03700469 0.06250060 0.01215494 -0.01956914
## pop.18_34 stateUT
## -0.01501832 -0.30594763
##
## [[7]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 9.96456492 -0.03222361 0.06117849 0.01208768 -0.01900949
## pop.18_34 stateNJ stateUT
## -0.01452636 0.11574866 -0.30098690
##
## [[8]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 10.04080958 -0.04091209 0.05799269 0.01205856 -0.01896206
## pop.18_34 stateCA stateNJ stateUT
## -0.01475241 0.08467020 0.11660717 -0.29429494
##
## [[9]]
## (Intercept) log(land.area) log(doctors) pct.bach.deg pct.below.pov
## 10.03919588 -0.04102795 0.05756553 0.01201238 -0.01857332
## pop.18_34 stateCA stateCT stateNJ stateUT
## -0.01474387 0.08713006 0.10785995 0.12053000 -0.29161335
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From this selection that linear model with state and region considered, we can find some state with specific
meaning or are special to this model, like CA, CT, NJ, UT.
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