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Abstract

We address several questions related to the association between average income per person and
a county’s economic, health and social well being. We examine data on countys’ demographic
information (Kutner et al.), using exploratory data analyses and a variety of techniques in linear
regression and optimal variable selection. We find that the total crime rate and the region variable
are fairly related to per-capita income, and that the best model involves non-collinear significant
variables such as the number of doctors, percentage of bachelor degrees, percentage of unemployment
as well as some interaction terms with region. Some missing observations in counties and states could
be a cause for concern that needs to be addressed further, and it would be worthwhile in the future
to explore two-way interaction terms, as well as obtain additional data for cross-validation.

Introduction

There are numerous indicators that social economists use to measure prosperity and wealth across
the world, and one such widely used metric is the Per Capita Income, measuring the average income
per person in a given state or region. Income inequality across US counties is a widely known issue
(Sommeiller, et al. 2016), and it would be useful to understand the factors that might a↵ect this
disparity across the di↵erent counties. A county’s prosperity can be influenced by various economic,
health, and social factors. The goal of this paper is to investigate the relationship between average
income per person and variables associated with a county’s economic, health and social well-being,
as well as find an optimal regression model that can explain the associations.

In particular, we will:

• Explore the relationship between each individual pair of variables

• Examine how crime rates and region a↵ects per-capita income

• Find the best model to predict per-capita income from the full list of variables

• Examine whether the missing states and counties from the data is a cause for concern
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Data

The data is taken from Kutner et al. (2005): It provides selected county demographic information
(CDI) for 440 of the most populous counties in the United States. Each line of the data set has
an identification number with a county name and state abbreviation and provides information on
14 variables for a single county. Counties with missing data were deleted from the data set. The
information generally pertains to the years 1990 and 1992. The definitions of the variables are given
in Table 1. The total number of observations is 440, and there are no observed ”NA” values across
the dataset.

Table 1: Variable definitions for CDI data from Kutner et al. (2005)

The summary statistics of the quantitative variables are given in Table 2.
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Table 2: Summary statistics for quantitative variables

Figure 1 below shows a box plot of per-capita income across the di↵erent regions. The median
per-capita income across the 4 regions show slight variation.

Figure 1: Per-capita income per region

The histogram distributions of each quantitative variable is shown in Figure 2. The figure shows
that our response variable per.cap.income is slightly skewed to the right, and most of the other
predictor variables are severely right-skewed as well.

Out of the 3 categorical variables county, state, and region, we only used the region variable.
The reason for this was because the combination of county and state represented one observation
of each unique county, adding up to 440, the total number of rows in the dataset. A large number
of unique values would not be useful for data analysis, and it was a reasonable decision to leave out
county and state from consideration.
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Figure 2: Histogram distributions of quantitative variables

Methods

Below we will outline the methods used for each research questions defined in the introduction
section.

1. Relationship between each individual pair of variables

A correlation heatmap was used to explore the correlation between all quantitative variables, and
deduce whether multicollinearity was an issue in the dataset. Box plots were also used to determine
the relationship between categorical and quantitative variables.

2. Examine how crimes and region a↵ects per-capita income

In order to evaluate the theory that per-capita income is related to crime rate, and that this relation-
ship may vary in di↵erent regions of the country, we built regression models to predict per.cap.income
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from crimes and region. We used logarithmic transformations of the response variable per.cap.income
and the quantitative predictor crimes, and further considered models with the additive region vari-
able, as well as the interactions between crimes and region.

We evaluated the validity of the models through residual diagnostic plots, and assessed the
significance of each coe�cients in order to come up with an optimal combination of the crimes and
region predictors. F tests (ANOVA) as well as the AIC and BIC values were used to compare the
fits of di↵erent models.

In addition, we also attempted to replace the crimes variable with per-capita crime rate given
by crimes/pop to observe if there was any change in model fit.

3. Finding the best model to predict per-capita income

The histogram plots for all 13 quantitative variables (including response variable and predictors),
were evaluated to assess whether transformations were needed or not. The variables that were highly
skewed and needed logarithmic transformations were:

• per.cap.income (Response variable)

• land.area

• pop

• doctors

• hosp.beds

• crimes

• pct.below.pov

• tot.income

Only the logarithmic transformations were used, not only because some of the variables had slight
skewdness, but also because logarithmic transformations tend to be easier to interpret in terms of
percentage-change concepts. Considering the audience of this analysis, the more untransformed the
variables are, the easier it will be to comprehend about the models presented in this report.

Also note that the predictor variables log.pop and log.tot.income were dropped from the analysis,
since our response variable log.per.cap.income is a deterministic function of both predictors. More
specifically, per.cap.income = tot.income/pop.

We also looked at the Variance Inflation Factors (VIF) for each of the predictors to assess the
severity of multicollinearity when all predictors were considered. Consequently, variable selection
methods such as all-subsets, stepwise and LASSO regression were used to choose the optimal subset
of quantitative variables that produced the best fitting model. The ”best” model was one that
satisfied key modeling assumptions as well as being interpretable in the context of social science and
economics.

The categorical variable region was later added back to determine its significance in predicting
per-capita income. Both additive terms and interactions terms were considered. If any coe�cient
indicator for region or its interaction terms seemed important, then we chose to keep the whole set
of interaction variables.

Finally, F tests (ANOVA) and AIC / BIC values were used to compare the fits of models with
di↵erent variable subsets. We evaluated the validity of the models through residual diagnostic plots,
and assessed the significance of each coe�cients through model summaries.
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4. Addressing the missing counties and states

We used simple exploratory data analysis on the county, state and region variables to find out whether
the missing observations would cause any problems. Exploring the di↵erence in composition of these
variables as well as some intelligent conjecture would be able to help address this problem further.

Results

Below are the results for each of the research questions defined in the introduction section.

1. Relationship between each individual pair of variables

The correlation matrix heatmap on Figure 3 below suggests that:

Figure 3: Correlation matrix heatmap

6



• tot.income and pop are highly correlated. This is expected because the response variable
per.cap.income is a deterministic function of pop and tot.income.

• both tot.income and pop are also highly correlated with crimes, hosp.beds and doctors

• pct.hs.grad and pct.bach.deg have moderately high correlation, and this is expected because a
person is more likely to hold a bachelor’s degree if he/she also graduated from high school.

• Although not a very strong correlation, pct.hs.grad and pct.bach.deg are negatively correlated
to pct.unemp, which makes sense because people who graduated from high school as well as
those who hold a bachelor’s degree are less likely to be unemployed.

• hosp.beds and doctors are strongly correlated with one another. This is expected because the
more doctors / physicians you have in a county, the more hospital beds you would expect to
see.

These observations indicate that multicollinarity might be a problem that we would need to
address further.

In Figure 2, we looked at the boxplot of per-capita income across each region, and noticed that
the median and inter-quartile range of per-capita income was fairly di↵erent across the 4 regions.
This suggested that the categorical variable region could potentially be important in predicting
per-capita income.

2. Examine how crimes and region a↵ects per-capita income

We considered a total of 3 regression models using the log-transformed variables log.per.cap.income
and log.crimes, and the interactions with the region variable (details in page 7 and 8 in Technical
Appendix).

2.1 Base model with only crimes variable

The base regression model involving log.per.cap.income and log.crimes had the estimated regression
coe�cients,

log.per.cap.income = 0.054 · log.crimes+ 9.29 (1)

As seen in page 8 of the Technical Appendix, the coe�cient for log.crimes was statistically significant
with a low p value, and the R squared value was 0.079. A unit percentage increase in total crimes
led to roughly a 0.054% increase in per-capita income.

2.2 Model with additive region variable

The regression model involving log.per.cap.income, log.crimes, and the additive region variable had
the estimated regression coe�cients,

log.per.cap.income = 0.067 · log.crimes+0.1 ·regionNE�0.09 ·regionS�0.06 ·regionW +9.19 (2)

Page 8 of the Technical Appendix shows us that all of the coe�cients were statistically signifi-
cant with low enough p values, and the R squared value increased significantly to 0.2032. A unit
percentage increase in total crimes led to roughly a 0.067% increase in per-capita income.
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2.3 Model with additive region and interaction terms

Our third regression model added interaction terms between the variables region and log.crimes.
Page 8 and 9 of the Technical Appendix shows that only the coe�cient for log.crimes was statistically
significant, while all other variables had high p values. The R squared value was roughly similar to
our previous additive model with a value of 0.2073. A unit percentage increase in total crimes led
to roughly a 0.051% increase in per-capita income.

The residual diagnostic plots in page 9 and 10 of the Technical Appendix suggested that all
models were fairly valid, conforming to the key assumptions of linear regression. But they also
had some minor limitations such as non-normality of the residuals and some influential points that
needed further inspection.

Introducing the region variable in the second and third model significantly increased the R
squared value, suggesting that region would be an important variable to keep. In Table 3, the F test
was performed on the three models to justify whether the interaction terms were e↵ective or not.
The second model with additive region, but without interactions turned out to be doing the best
with a very low p value.

Table 3: F test (ANOVA)

Overall, the three models suggested that there is a positive correlation between per-capita income
and crime rate.

2.4 Per-capita crimes

We also substituted the log.crimes variable with log(per-capita crimes) and fit the three identical
regression models in 2.1, 2.2 and 2.3. Page 11 and 12 in the Technical Appendix shows that the R
squared values for all three models decreased significantly and the residual standard errors showed
an overall increase. Further, the log.per.capita.crimes predictor was no longer as significant in the
new three models as log.crimes was in the original three models.

The residual diagnostic plots in page 13 and 14 of the Technical Appendix showed little di↵erences
compared to the original three models, suggesting that the new models with per-capita crimes were
fairly valid as well.

We also used AIC and BIC values to compare between each of the second models (additive region
without interactions) using raw log.crime and log.per.capita.crime. The results in page 15 of the
Technical Appendix show that the model with raw crimes had smaller AIC and BIC values (smaller
the better), therefore suggesting that transforming crimes into per-capita crimes was not a good
idea.
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3. Finding the best model to predict per-capita income

Figure 4 shows the histogram plots for quantitative variables after the logarithmic transformations
were applied. It can be observed that a lot of the skewness have improved. Further, the correlation
heatmap after logarithmic transformation shown in Page 17 of the Technical Appendix, suggested
that the correlations between transformed variables remained relatively similar, but a bit stronger.

Figure 4: Histogram distributions of quantitative variables after transformation

To start o↵, we fitted a full model including all the quantitative variables plus the region cate-
gorical variable (note that id, county, state, pop and tot.income were excluded). Pages 17 and 18 of
the Technical Appendix shows the coe�cient summary of this full model. The resulting R squared
value was 0.8394, meaning that 83.94% of the total variability of the response variable was explained
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by the model. Some predictors were statistically significant with low p values, while some were not.
Further, predictors like pct.hs.grad and pct.unemp even seemed to have the wrong coe�cients with
opposite signs.

Table 4 shows the VIF for each predictor variables. The full model su↵ered from multicollinearity,
where some predictors had large VIFs that exceeded 5. In particular, log.doctors and log.hosp.beds
had VIFs of 15.3 and 12.1 respectively. log.crimes also turned out to have a high VIF of 6.24. The
problem of multicollinearity suggested that optimal variable selection methods were needed.

Table 4: VIF for each predictor variables

3.1 Variable selection - All Subsets

We will now look at the results for the all-subsets variable selection method. The all-subsets method
eventually chose 6 variables that gave the lowest BIC value of -747.68 (more details on page 18, 19,
and 20 of the Technical Appendix).

In Table 5, we can see the coe�cient summary of the model using the 6 variables chosen. The
R squared value turned out to be 0.834, and all coe�cients were statistically significant with low p
values. But at the same time, the coe�cient estimates seemed to be quite small in magnitude.

Table 5: Coe�cient summary for all-subsets

In page 20 of the Technical Appendix, we can see that none of the chosen 6 predictors had an
excessively large VIF, signaling that multicollinearity was no longer an issue.

The residual diagnostic plots for the all-subsets model in page 21 of the Technical Appendix
suggested that the model was valid, except for a minor limitation that the left and right tails of the
Normal Q-Q plot were a little bit heavy.

The standardized residual plots against each of the predictors in page 21 of the Technical Ap-
pendix showed that the residuals for all plots were relatively randomly scattered, further suggesting
the validity of the model.
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The added variable plots and marginal plots is shown in page 22 and 23 of the Technical Appendix
respectively. And they both further add to the fact that the chosen predictors were appropriate and
that the model was valid.

3.2 Variable selection - stepwise BIC

We now look at the results for the stepwise variable selection method. Note that BIC is the infor-
mation criteria used.

The selection procedure as well as the BIC value at each step can be seen in page 24 and 25
of the Technical Appendix. Table 6 shows the coe�cient summary of the variables chosen by the
stepwise method.

Table 6: Coe�cient summary for stepwise

We can see that stepwise method chose the same subset of variables as the all-subsets method
did. All predictors had coe�cients that were statistically significant with low p values.

3.3 Variable selection - LASSO regression

We now look at the results for the LASSO regression (more details in page 27, 28 and 29 of the
Technical Appendix). Note that we chose to use the � value of lambda.1se, which is 1 standard
deviation larger than the best � value found through cross-validation, since it could protect against
capitalization on chance.

Table 7 shows the variable subset chosen by LASSO regression and their coe�cient summaries.
All variables except pop.65 plus had statistically significant coe�cients with low p values. The full
summary table from Page 30 of the Technical Appendix shows that the R squared value was 0.829,
which was not too di↵erent from the all-subsets and stepwise models.

Table 7: Coe�cient summary for LASSO
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The only di↵erence between the all-subsets method and LASSO regression was that all-subsets
model chose to include pct.unemp rather than pop.65 plus which LASSO regression did. Page 31
of the Technical Appendix shows the F test (ANOVA) result suggesting that the all-subsets model
with pct.unemp turned out to be a better choice.

3.4 Adding back the region variable

After figuring out the optimal subset of variables through the chosen variable selection methodologies,
the categorical variable region was brought back to be considered as additive and interaction terms.

Page 31 and 32 of the Technical Appendix shows the coe�cient summary of adding the additive
region variable as well as all possible interaction terms with the existing quantitative variables.
We decided to keep the entire group of interaction terms if any of the indicators for the specific
categorical variable was statistically significant. If none were significant, we dropped the whole
group of interactions.

Table 8 below shows the resulting model with the added region variables and selected interaction
terms. All the main e↵ects and interaction terms that involve region have at least one significant
term. The R squared value slightly increased to 0.851.

Table 8: Additive region and some interaction terms added to all-subsets model

To further justify the use of the region variable and the chosen interaction terms, the F test
(ANOVA) was performed on three models (details in page 33 and 34 of the Technical Appendix).
The model in Table 8 was statistically significant with a very low p value, and was better than the
base all-subsets model as well as the all-subsets model with only the additive region variable.
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Furthermore, in page 34 of the Technical Appendix, the model with some chosen interaction
terms turned out to have lower AIC values than the base all-subsets model, while the BIC value was
opposite in result. This is interpretable since BIC tends to favor simpler models , while AIC favors
more complex models in theory.

3.5 Interpreting the final model

The chosen final model was the all-subsets model with some chosen interaction terms as shown
previously in Table 8. Although more complex than the base model, the categorical variable region
was proven to be fairly important as we saw when interpreting Figure 2. The interaction terms
were also not too di�cult to interpret, given that they simply indicate the quantitative variables
interacting with di↵erent parts of the region (NC, NE, S, W). The F test and AIC values also
suggested that the interaction terms were valuable when predicting per-capita income.

Along with the final model’s coe�cient summary in Table 8, we also looked at diagnostic plots
produced in Figure 5 below, and saw that the model was fairly valid since it conformed to the key
assumption of constant error variance, but had heavy right and left tails similar to the base all-
subsets model. There was also a specific high leverage outlier point that needed further inspection.

Figure 5: Residual diagnostic plots for final model

We also looked at the plot of Y (log.per.cap.income) vs the fitted values Ŷ produced in Figure
6. We could see that the straight-line fit to this plot (displayed as a dashed line) provides a fairly
good fit, although not perfect. This further suggests that the model is valid.
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Figure 6: Plot of Y vs Ŷ

Finally, we attempted to interpret some of the resulting coe�cients of the final model in Table
8:

• For every 1% increase in a county’s land area, there is a 0.03% decrease in expected per-capita
income. (This could be due to an urban-rural contrast: rural counties tend to be bigger than
urban counties).

• For every 1 percentage point increase in the percent of the population aged 18–34, there is an
expected 2% drop in per-capita income. (This could be because 18–34 year olds are not at
peak earning capacity yet and so their lower incomes drags down the per-capita income).

• For every 1% increase in the number of doctors in a county, the expected per-capita income
increases by about 0.06% (This could be because doctors are well-paid and could be big
contributors to the per-capita income).

• For every 1 percentage point increase in the percent of people with bachelors degree, there
is an expected 1% increase in per-capita income (This could be because a bachelor’s degree
can make a person more employable, thereby increasing earning potential and contribution to
per-capita income).

• In the main e↵ect for region, and in several of the interactions for region, each of the 4 regions
show slight variation, but does not show significant deviation from each other.
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4. Addressing the missing counties and states

It can be argued that the missing states and counties can be a cause for concern as our data may
not be fully representative of the whole population. In our data, only 440 counties (including those
that have duplicate county names in di↵erent states) were considered out of approximately 3,000
counties in the US. Furthermore, the frequency table for the state variable in page 1 of the technical
appendix suggests that 3 states (Alaska, Iowa and Wyoming) were excluded from the dataset.

Upon looking at some online resources on county population [4], we found that the top 100 most
populous counties were included as a subset in our data. Even though there was no clear statement
on how the dataset was sampled, we could hypothesize that Kutner simply chose to include the 440
most populous counties.

Page 1 of the technical appendix also shows the frequency table of the region variable. Most
counties turned out to be in the South region, while the least were in the West. There could have
been lack of sampling in the West and over-sampling in the South. Another reason for this could
be that the land areas of counties are just larger in the West (fewer counties to sample from), while
the land area of counties are smaller in the South (more counties that cover similar land areas). But
overall, the imbalance in samples between the 4 region categories was not too large.

Given the fact that region, state and county are all categorical variables of similar nature but at
di↵erent scale levels, it can be argued that the more aggregated region variable is already a fairly
good predictor with relatively balanced sample sizes. Thus, including more granular variables like
county and state would be unnecessary. Our main argument would be that the missing observations
would not be a big cause for concern when trying to obtain a general big picture of predictors that
a↵ect per-capita income.

Discussion

Below are the recap of our findings for each of the research questions.

1. Relationship between each individual pair of variables

The correlation heatmap suggested that there were several variables that were correlated, hinting a
potential problem of multicollinearity. We also found that per-capita income was quite varied across
the 4 di↵erent regions defined by the region variable.

2. Examine how crimes and region a↵ects per-capita income

In order to assess the theory that per-capita income is related to crime rate, and that this relationship
may vary in di↵erent regions of the country, we looked at 3 di↵erent models including additive and
interaction terms with the region variable.

The coe�cient summaries of the three models indicated a positive correlation between per-capita
income and total crimes. The log transformations on both variables allowed us to interpret that a
unit percentage increase in total crime led to roughly a 0.06% increase in per-capita income. All
three models were also fairly valid, but in the end, the second model (additive region variable without
interactions) turned out to be the best model.

We also attempted to see if changing the crimes variable to per-capita crimes helped in any
way. This would allow per-capita crimes to be in the same comparable scale as per-capita income,
thereby leading to better interpretability. However, this resulted in a significant decrease in R
squared value, as well as an increase in the AIC and BIC values, suggesting that the trade-o↵
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between interpretability and model fit was not equal enough to justify using per-capita crimes in
place of the raw crimes.

Lastly, the interaction terms in the models did not turn out to be significant. This would mean
that the relationship between per-capita income and crimes did not vary significantly in di↵erent
regions of the country. However, the additive region variables were individually significant enough
to be valuable in the model given none of the interaction terms were involved.

3. Finding the best model to predict per-capita income

Logarithmic transformations on certain variables improved a lot of the problems of skewness, while
keeping correlations between variables roughly unchanged. We also attempted to maintain easy in-
terpretability of the variables by only applying logarithmic transformations when absolutely needed,
while keeping as many untransformed variables as possible. This facilitates explaining the models
to anyone who is interested in the social science and economics field but less knowledgeable about
technical matters.

However, the problem of multicollinearity remained, and we used three di↵erent variable selection
methodologies - all subsets, stepwise, and LASSO regression - to counter this. All three methods
produced similar optimal subsets of significant variables that generated a minimum value of BIC.
But through the F-test of overall significance, we were able to find out that the variable subset
chosen by all-subset and stepwise regression produced the best model.

All three methods chose to exclude pop.65 plus, since it would probably have been highly cor-
related to its counterpart variable pop.18 34. It was also understandable that log.hosp.beds was
eliminated in all three methods due to its high collinearity with log.doctors. The one variable that
was unexpectedly eliminated from all three methods was log.crimes, because in our second research
question we saw that the variable was pretty significant in predicting per-capita income. This implies
that when other variables are involved, log.crimes becomes relatively insignificant.

The final best model was chosen after adding back the region variable, as it was previously
hypothesized to be an important indicator of per-capita income. With the additive term and some
chosen interaction terms added in, the final model gave an R squared value of 0.851, meaning that
roughly 85.1% of the total variance of per-capita income was explained by the model.

Noticing the improvement in model fit through not only the R squared value but also the AIC
and BIC values, we were able to deduce that keeping some interaction terms were justifiable. We
figured that the resulting trade-o↵ of added complexity did not severely impact the interpretability
of the model, since the interaction terms simply corresponded to the di↵ering relationship between
the quantitative variables and per-capita income in di↵erent regions.

The final model turned out to be moderately parsimonious, and most of the estimated coe�cients,
except for pct.unemp had expected signs (plus / minus).

4. Addressing the missing counties and states

In our exploratory data analysis, we found that 3 states (Alaska, Iowa and Wyoming) were excluded
from the observations, and that only 440 counties out of approximately 3,000 total counties in the
US were included. Through preliminary research, it was hypothesized that the 440 observations
were the top 440 most populous counties in the US.

Because the region variable captured a more aggregated view of counties and states (of similar
categorical nature), our analysis assumed that the missing values were not a big cause for concern.
The key argument here was that the missing observations would be unnecessary when trying to
obtain a big picture on variables that a↵ect per-capita income.
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Limitations and future work

An opposing argument that can be made to Research Question 4 is that the missing states and
counties could in fact contain important information, thus making our entire analysis biased, and
create an unrealistic picture of variables that a↵ect per-capita income. Since we are only working
with a certain sample of a population, there is always the possibility that the data is biased and not
representative of the entire 3,000 counties of population.

However, this problem would be mitigated if the 440 samples in the dataset were selected ran-
domly. If given additional time, we could possibly investigate further on how exactly the CDI data
(Kutner et al. (2005)) was collected, focusing on the sampling methods for the selected counties. It
would also be wise to compare the summary statistics of the given dataset with that of the overall
population to see if there are any large deviations in results.

Another evident limitation in a lot of the models explored in this analysis was that the residual
diagnostic plots were never perfect. The slight curves in the center of the residual plots as well as the
heavy right and left tails of the Q-Q plot suggested that further improvements in the model can be
made. In the future, we would look into the two-way interaction terms between quantitative variables
and consider more complex models that can improve the validity of the model. The usefulness of
interaction terms with the region variable is an evidence that there could be unidentified interaction
terms with the potential to enhance the model.

If given additional time, we could also further explore the state variable, since some of the
relationship between these demographic variables and per-capita income might be explainable in
terms of varying economic policy from one state to the next. However, states have perfect collinearity
with region, and if we were to use state as a categorical variable in our models, it would only make
sense to exclude the region variable.

Finally, it would be useful to have additional observations to use as test sets to compare some of
the models we found. We are using reasonable methods for variable selection, but since our entire
dataset is in fact our training sample, there is a big possibility for overfitting noise in the data. If
we were able to cross-validate on some new data, we might be able to better compare and determine
the best models in terms of prediction error.
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Technical Appendix

Lee, Woo Chan

10/15/2021

Research question 1

Below are the summary statistics for all continuous variables in the dataset.

# Summary statistics of continuous variables

cdi_cat <- cdi %>%
dplyr::select(state, region, county)

cdi_con <- cdi[,-c(1,2,3,17)]## get rid of id, county, state and (for now)
apply(cdi_con,2,function(x) c(summary(x),SD=sd(x))) %>%

as.data.frame %>% t() %>%
round(digits=2) %>%
kbl(booktabs=T,caption=" ") %>%
kable_classic()

#summary(cdi_con)

Below is the summary statistics for the categorical variable region.

table(cdi$region)

##
## NC NE S W
## 108 103 152 77

Below is the frequency table for the state variable.

table(cdi$state)

##
## AL AR AZ CA CO CT DC DE FL GA HI ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC
## 7 2 5 34 9 8 1 2 29 9 3 1 17 14 4 3 9 11 10 5 18 7 8 3 1 18
## ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV
## 1 3 4 18 2 2 22 24 4 6 29 3 11 1 8 28 4 9 1 10 11 1

Below is the table of region vs state.
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Table 1:

Min. 1st Qu. Median Mean 3rd Qu. Max. SD

land.area 15.0 451.25 656.50 1041.41 946.75 20062.0 1549.92

pop 100043.0 139027.25 217280.50 393010.92 436064.50 8863164.0 601987.02

pop.18_34 16.4 26.20 28.10 28.57 30.02 49.7 4.19

pop.65_plus 3.0 9.88 11.75 12.17 13.62 33.8 3.99

doctors 39.0 182.75 401.00 988.00 1036.00 23677.0 1789.75

hosp.beds 92.0 390.75 755.00 1458.63 1575.75 27700.0 2289.13

crimes 563.0 6219.50 11820.50 27111.62 26279.50 688936.0 58237.51

pct.hs.grad 46.6 73.88 77.70 77.56 82.40 92.9 7.02

pct.bach.deg 8.1 15.28 19.70 21.08 25.33 52.3 7.65

pct.below.pov 1.4 5.30 7.90 8.72 10.90 36.3 4.66

pct.unemp 2.2 5.10 6.20 6.60 7.50 21.3 2.34

per.cap.income 8899.0 16118.25 17759.00 18561.48 20270.00 37541.0 4059.19

tot.income 1141.0 2311.00 3857.00 7869.27 8654.25 184230.0 12884.32

table(cdi$state, cdi$region)

##
## NC NE S W
## AL 0 0 7 0
## AR 0 0 2 0
## AZ 0 0 0 5
## CA 0 0 0 34
## CO 0 0 0 9
## CT 0 8 0 0
## DC 0 0 1 0
## DE 0 2 0 0
## FL 0 0 29 0
## GA 0 0 9 0
## HI 0 0 0 3
## ID 0 0 0 1
## IL 17 0 0 0
## IN 14 0 0 0
## KS 4 0 0 0
## KY 0 0 3 0
## LA 0 0 9 0
## MA 0 11 0 0
## MD 0 0 10 0
## ME 0 5 0 0
## MI 18 0 0 0
## MN 7 0 0 0
## MO 8 0 0 0
## MS 0 0 3 0
## MT 0 0 0 1
## NC 0 0 18 0
## ND 1 0 0 0
## NE 3 0 0 0
## NH 0 4 0 0
## NJ 0 18 0 0
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## NM 0 0 0 2
## NV 0 0 0 2
## NY 0 22 0 0
## OH 24 0 0 0
## OK 0 0 4 0
## OR 0 0 0 6
## PA 0 29 0 0
## RI 0 3 0 0
## SC 0 0 11 0
## SD 1 0 0 0
## TN 0 0 8 0
## TX 0 0 28 0
## UT 0 0 0 4
## VA 0 0 9 0
## VT 0 1 0 0
## WA 0 0 0 10
## WI 11 0 0 0
## WV 0 0 1 0

The table below indicates that there are no observed “NA” values in any of the columns. This is because the

data was cleaned beforehand by the instructor.

# Find NA values

contains_any_na <- sapply(cdi, function(x) any(is.na(x)))
print(contains_any_na)

## id county state land.area pop
## FALSE FALSE FALSE FALSE FALSE
## pop.18_34 pop.65_plus doctors hosp.beds crimes
## FALSE FALSE FALSE FALSE FALSE
## pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income
## FALSE FALSE FALSE FALSE FALSE
## tot.income region
## FALSE FALSE

From the histogram below, we can see that our response variable per.cap.income is a little bit skewed to the

right, but still relatively normally distributed.
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Below shows the box plot of per capita income in the 4 regions. The median from the North East region

is the highest, and also has the largest Interquartile Range. Overall, there seems to be some di�erence in

median per capita income between all 4 regions.

cdi$region <- factor(cdi$region)
boxplot(cdi$per.cap.income ~ cdi$region, ylab = "Per Capita Income", xlab="Region", main="Boxplot for Per Capita Income per Region")
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We can also look below at the histogram distribution of other predictor variables. We can observe that there

are severely skewed variables like land.area, pop, doctors, hosp.beds, crimes and tot.income.
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Below is a scatter plot matrix to identify overall relationships between the variables.
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Below is the correlation matrix heatmap to understand if there are any correlations between the predictors.The

observations suggest that we may run into multi-collinearity problems when we start fitting models.

## Warning in type.convert.default(X[[i]], ...): �as.is� should be specified by the
## caller; using TRUE

## Warning in type.convert.default(X[[i]], ...): �as.is� should be specified by the
## caller; using TRUE
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Research question 2

Interaction term vs additive term (region variable)

I fit below the ordinary model, the additive model and the interaction model with crimes and region.

income_fit1 <- lm(log(per.cap.income) ~ log(crimes), cdi)
income_fit2 <- lm(log(per.cap.income) ~ log(crimes) + region, cdi)
income_fit3 <- lm(log(per.cap.income) ~ log(crimes)*region, cdi )
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Below is the summary of the 3 models.

summary(income_fit1)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes), data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.75042 -0.11569 -0.02976 0.09597 0.74498
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.295146 0.083764 110.97 < 2e-16 ***
## log(crimes) 0.053858 0.008758 6.15 1.75e-09 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.1986 on 438 degrees of freedom
## Multiple R-squared: 0.07948, Adjusted R-squared: 0.07738
## F-statistic: 37.82 on 1 and 438 DF, p-value: 1.752e-09

summary(income_fit2)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes) + region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68757 -0.10557 -0.01422 0.08905 0.78946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.188431 0.079812 115.125 < 2e-16 ***
## log(crimes) 0.066695 0.008421 7.920 2.00e-14 ***
## regionNE 0.104458 0.025531 4.091 5.11e-05 ***
## regionS -0.086983 0.023618 -3.683 0.00026 ***
## regionW -0.055280 0.028167 -1.963 0.05033 .
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.1854 on 435 degrees of freedom
## Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
## F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

summary(income_fit3)

##
## Call:
## lm(formula = log(per.cap.income) ~ log(crimes) * region, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68552 -0.10418 -0.01444 0.08302 0.79755
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.33677 0.14579 64.044 < 2e-16 ***
## log(crimes) 0.05064 0.01566 3.233 0.00132 **
## regionNE -0.18407 0.21515 -0.856 0.39272
## regionS -0.19717 0.21211 -0.930 0.35312
## regionW -0.31439 0.24465 -1.285 0.19947
## log(crimes):regionNE 0.03122 0.02311 1.351 0.17749
## log(crimes):regionS 0.01211 0.02228 0.544 0.58696
## log(crimes):regionW 0.02727 0.02523 1.081 0.28028
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.1855 on 432 degrees of freedom
## Multiple R-squared: 0.2073, Adjusted R-squared: 0.1945
## F-statistic: 16.14 on 7 and 432 DF, p-value: < 2.2e-16

Below are the residual plots for the three models to assess validity.
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Overall, all three models seem to be fairly valid especially since they conform to the key

assumption for linear regression of constant error variance, but they do have some limitations

as well.

To really justify the use of the additive and interaction terms, I will be taking a look at the F-tests to

compare the models.

## Analysis of Variance Table
##
## Model 1: log(per.cap.income) ~ log(crimes)
## Model 2: log(per.cap.income) ~ log(crimes) + region
## Model 3: log(per.cap.income) ~ log(crimes) * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 17.271
## 2 435 14.949 3 2.32194 22.4823 1.523e-13 ***
## 3 432 14.872 3 0.07678 0.7434 0.5266
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Per capita crimes

I will first make a new column describing “per-capita crimes”.

cdi <- cdi %>%
mutate(

per.cap.crimes = crimes / pop
)

Next, I will fit the 3 models (with additive, with interaction terms ) again:

income_fit4 <- lm(log(per.cap.income) ~ log(per.cap.crimes), cdi)
income_fit5 <- lm(log(per.cap.income) ~ log(per.cap.crimes) + region, cdi)
income_fit6 <- lm(log(per.cap.income) ~ log(per.cap.crimes)*region, cdi )

Below are the summaries of the three models

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.cap.crimes), data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7058 -0.1242 -0.0221 0.1066 0.7210
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.73510 0.05908 164.765 <2e-16 ***
## log(per.cap.crimes) -0.02417 0.01959 -1.233 0.218
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## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.2066 on 438 degrees of freedom
## Multiple R-squared: 0.003461, Adjusted R-squared: 0.001186
## F-statistic: 1.521 on 1 and 438 DF, p-value: 0.2181

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.cap.crimes) + region,
## data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65832 -0.11431 -0.01548 0.10838 0.75657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.93628 0.06934 143.303 < 2e-16 ***
## log(per.cap.crimes) 0.04243 0.02148 1.975 0.04885 *
## regionNE 0.11457 0.02760 4.151 3.99e-05 ***
## regionS -0.07456 0.02624 -2.841 0.00471 **
## regionW -0.02426 0.03002 -0.808 0.41952
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.1974 on 435 degrees of freedom
## Multiple R-squared: 0.09645, Adjusted R-squared: 0.08814
## F-statistic: 11.61 on 4 and 435 DF, p-value: 5.776e-09

##
## Call:
## lm(formula = log(per.cap.income) ~ log(per.cap.crimes) * region,
## data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65410 -0.11829 -0.01708 0.10399 0.76628
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.91177 0.10503 94.367 <2e-16 ***
## log(per.cap.crimes) 0.03454 0.03327 1.038 0.300
## regionNE 0.21007 0.17165 1.224 0.222
## regionS -0.10137 0.16072 -0.631 0.529
## regionW 0.07689 0.26753 0.287 0.774
## log(per.cap.crimes):regionNE 0.02924 0.05232 0.559 0.577
## log(per.cap.crimes):regionS -0.01104 0.05554 -0.199 0.843
## log(per.cap.crimes):regionW 0.03495 0.09268 0.377 0.706
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.198 on 432 degrees of freedom
## Multiple R-squared: 0.09773, Adjusted R-squared: 0.08311
## F-statistic: 6.685 on 7 and 432 DF, p-value: 1.575e-07
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Below is the residual diagnostic plots for the three fitted models.
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Below we compare the AIC and BIC values between Model 2 and Model 5.

AIC(income_fit2, income_fit5)

## df AIC
## income_fit2 6 -227.4746
## income_fit5 6 -172.1347

BIC(income_fit2, income_fit5)

## df BIC
## income_fit2 6 -202.9539
## income_fit5 6 -147.6140

My final model would use per.cap.crimes and not include any interaction terms.

Research question 3

I have dropped the id, county and state column and will be focusing on the rest of the 13 predictor variables.

cdi_new <- read.table("/Users/lee14257/Desktop/CMU MSP/Applied Linear Models/HW/hw06/cdi.dat") %>%
as_tibble() %>%
dplyr::select(c(-id, -county, -state)) %>%
dplyr::select(per.cap.income, everything())

Transformations of variables

# Transform the variables

cdi_transformed <- cdi_new

skewed.vars <- c("per.cap.income","land.area", "pop", "doctors", "hosp.beds", "crimes", "tot.income","pct.below.pov")

for (tmp in skewed.vars) {
loc <- grep(paste("ˆ",tmp,"$",sep=""),names(cdi_transformed))
cdi_transformed[,loc] <- log(cdi_transformed[,loc])
names(cdi_transformed)[loc] <- paste("log.",names(cdi_transformed)[loc],sep="")

}

Below we see the histogram plot for the variables after undergoing transformations. A lot of the skewings

have improved.
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Below is the correlation matrix of the transformed variables.

## Warning in type.convert.default(X[[i]], ...): �as.is� should be specified by the
## caller; using TRUE

## Warning in type.convert.default(X[[i]], ...): �as.is� should be specified by the
## caller; using TRUE
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Fitting best model

Below we fit a full model including all the variables including the region categorical variable (changed to factor).

cdi_transformed <- cdi_transformed %>%
dplyr::select(-log.pop, -log.tot.income)

full_cdi_model1 <- lm(log.per.cap.income ~ ., data = cdi_transformed)
summary(full_cdi_model1)

##
## Call:
## lm(formula = log.per.cap.income ~ ., data = cdi_transformed)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -0.36144 -0.04299 -0.00126 0.04709 0.30283
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.190127 0.117672 86.598 < 2e-16 ***
## log.land.area -0.036627 0.005606 -6.533 1.84e-10 ***
## pop.18_34 -0.011184 0.001430 -7.823 4.11e-14 ***
## pop.65_plus 0.001334 0.001427 0.934 0.35060
## log.doctors 0.036404 0.013732 2.651 0.00833 **
## log.hosp.beds 0.024767 0.013912 1.780 0.07575 .
## log.crimes 0.006864 0.009263 0.741 0.45913
## pct.hs.grad -0.002179 0.001130 -1.927 0.05462 .
## pct.bach.deg 0.012531 0.001097 11.424 < 2e-16 ***
## log.pct.below.pov -0.206448 0.013262 -15.566 < 2e-16 ***
## pct.unemp 0.005502 0.002432 2.262 0.02418 *
## regionNE -0.002301 0.013158 -0.175 0.86128
## regionS -0.027867 0.012760 -2.184 0.02952 *
## regionW 0.007510 0.016292 0.461 0.64507
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.08409 on 426 degrees of freedom
## Multiple R-squared: 0.8394, Adjusted R-squared: 0.8345
## F-statistic: 171.3 on 13 and 426 DF, p-value: < 2.2e-16

Multicollinearity and VIF

Below is the Variance Inflation Factors (VIF) for each of the predictors.

## log.land.area pop.18_34 pop.65_plus log.doctors
## 1.4826 2.2287 2.0155 15.3220
## log.hosp.beds log.crimes pct.hs.grad pct.bach.deg
## 12.0950 6.2380 3.9041 4.3764
## log.pct.below.pov pct.unemp regionNE regionS
## 3.0729 2.0074 1.9315 2.2908
## regionW
## 2.3844

Variable Selection - All Subsets

After removing region from the data, we end up with 10 total predictor variables along with the response

variable log.per.cap.income. We fit the new model below without region.

region_var <- cdi_transformed$region

cdi_transformed <- cdi_transformed %>%
dplyr::select(-region)
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names(cdi_transformed)

## [1] "log.per.cap.income" "log.land.area" "pop.18_34"
## [4] "pop.65_plus" "log.doctors" "log.hosp.beds"
## [7] "log.crimes" "pct.hs.grad" "pct.bach.deg"
## [10] "log.pct.below.pov" "pct.unemp"

# Fit new model with the existing variables

full_cdi_model2 <- lm(log.per.cap.income ~ ., data=cdi_transformed)

All subsets

Below are the results for all subsets. In the plot, the dark squares indicate which variables are in the model

that has the BIC values on the left. The darker the squares, the better the model.

all_subsets_1 <- regsubsets(log.per.cap.income ~ ., data=cdi_transformed,nvmax=10)
plot(all_subsets_1)
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All subsets method chose 6 variables that gave the lowest BIC. Below are the coe�cient values for the chosen

variables.

all_subsets_1.summary <- summary(all_subsets_1)
all_subsets_1.summary$bic

## [1] -284.6733 -593.3658 -624.5119 -697.5023 -739.1367 -747.6815 -746.1704
## [8] -741.1124 -735.3797 -729.2930

tmp <- cdi_transformed %>% dplyr::select(-log.per.cap.income)
min(all_subsets_1.summary$bic)
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## [1] -747.6815

print(best.model <- which.min(all_subsets_1.summary$bic))

## [1] 6

coef(all_subsets_1,best.model)

## (Intercept) log.land.area pop.18_34 log.doctors
## 10.095545110 -0.036212594 -0.012026824 0.067772351
## pct.bach.deg log.pct.below.pov pct.unemp
## 0.010523423 -0.197474797 0.008109587

cdi_transformed_allsubsets <- tmp[,all_subsets_1.summary$which[best.model,][-1]]

all_subsets_model <- lm(log.per.cap.income ~ log.land.area + pop.18_34 +
log.doctors + pct.bach.deg + log.pct.below.pov +
pct.unemp, data=cdi_transformed)

summary(all_subsets_model)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.095545110 0.0516863528 195.323225 0.000000e+00
## log.land.area -0.036212594 0.0048198661 -7.513195 3.336311e-13
## pop.18_34 -0.012026824 0.0011883729 -10.120413 9.445833e-22
## log.doctors 0.067772351 0.0041934269 16.161567 2.586913e-46
## pct.bach.deg 0.010523423 0.0008860605 11.876641 2.352204e-28
## log.pct.below.pov -0.197474797 0.0100936858 -19.564191 1.560595e-61
## pct.unemp 0.008109587 0.0021194105 3.826341 1.492036e-04

Let us take another look at the VIF for each variables. None of the variables seem to have an excessively

large value.

vif(all_subsets_model)

## log.land.area pop.18_34 log.doctors pct.bach.deg
## 1.0778 1.5145 1.4052 2.8085
## log.pct.below.pov pct.unemp
## 1.7505 1.4990

Below are the residual diagnostic plots.
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Below is the standardized residual plots against each of the predictor variables.

## The following objects are masked from cdi_transformed (pos = 3):
##
## log.crimes, log.doctors, log.hosp.beds, log.land.area,
## log.pct.below.pov, log.per.cap.income, pct.bach.deg, pct.hs.grad,
## pct.unemp, pop.18_34, pop.65_plus
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Below is the added variable plot.

## The following objects are masked from cdi_transformed (pos = 3):
##
## log.crimes, log.doctors, log.hosp.beds, log.land.area,
## log.pct.below.pov, log.per.cap.income, pct.bach.deg, pct.hs.grad,
## pct.unemp, pop.18_34, pop.65_plus

## The following objects are masked from cdi_transformed (pos = 4):
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## log.crimes, log.doctors, log.hosp.beds, log.land.area,
## log.pct.below.pov, log.per.cap.income, pct.bach.deg, pct.hs.grad,
## pct.unemp, pop.18_34, pop.65_plus
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Below is the marginal plot.
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Variable Selection - Stepwise Regression

Below is the Stepwise Regression in both directions (backward elimination and forward selection) using

BIC as the information criterion.

# Stepwise

n=dim(cdi)[1]
stepwise_BIC_cdi <- stepAIC(full_cdi_model2, direction = "both", k=log(n))

## Start: AIC=-2117.47
## log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus +
## log.doctors + log.hosp.beds + log.crimes + pct.hs.grad +
## pct.bach.deg + log.pct.below.pov + pct.unemp
##
## Df Sum of Sq RSS AIC
## - log.crimes 1 0.00000 3.0715 -2123.6
## - pop.65_plus 1 0.00228 3.0738 -2123.2
## - pct.hs.grad 1 0.00693 3.0785 -2122.6
## - log.hosp.beds 1 0.02872 3.1003 -2119.5
## <none> 3.0715 -2117.5
## - log.doctors 1 0.08411 3.1557 -2111.7
## - pct.unemp 1 0.08441 3.1560 -2111.6
## - log.land.area 1 0.31856 3.3901 -2080.1
## - pop.18_34 1 0.46483 3.5364 -2061.6
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## - pct.bach.deg 1 0.88030 3.9518 -2012.7
## - log.pct.below.pov 1 2.23344 5.3050 -1883.1
##
## Step: AIC=-2123.55
## log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus +
## log.doctors + log.hosp.beds + pct.hs.grad + pct.bach.deg +
## log.pct.below.pov + pct.unemp
##
## Df Sum of Sq RSS AIC
## - pop.65_plus 1 0.00247 3.0740 -2129.3
## - pct.hs.grad 1 0.00693 3.0785 -2128.7
## - log.hosp.beds 1 0.02908 3.1006 -2125.5
## <none> 3.0715 -2123.6
## - pct.unemp 1 0.08492 3.1565 -2117.6
## + log.crimes 1 0.00000 3.0715 -2117.5
## - log.doctors 1 0.10550 3.1770 -2114.8
## - log.land.area 1 0.32228 3.3938 -2085.7
## - pop.18_34 1 0.46596 3.5375 -2067.5
## - pct.bach.deg 1 0.88809 3.9596 -2017.9
## - log.pct.below.pov 1 2.26551 5.3371 -1886.5
##
## Step: AIC=-2129.29
## log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## log.hosp.beds + pct.hs.grad + pct.bach.deg + log.pct.below.pov +
## pct.unemp
##
## Df Sum of Sq RSS AIC
## - pct.hs.grad 1 0.00720 3.0812 -2134.3
## - log.hosp.beds 1 0.03324 3.1073 -2130.6
## <none> 3.0740 -2129.3
## + pop.65_plus 1 0.00247 3.0715 -2123.6
## + log.crimes 1 0.00020 3.0738 -2123.2
## - pct.unemp 1 0.08620 3.1602 -2123.2
## - log.doctors 1 0.10338 3.1774 -2120.8
## - log.land.area 1 0.32972 3.4037 -2090.5
## - pop.18_34 1 0.70581 3.7798 -2044.4
## - pct.bach.deg 1 0.88757 3.9616 -2023.8
## - log.pct.below.pov 1 2.26830 5.3423 -1892.2
##
## Step: AIC=-2134.34
## log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## log.hosp.beds + pct.bach.deg + log.pct.below.pov + pct.unemp
##
## Df Sum of Sq RSS AIC
## - log.hosp.beds 1 0.03221 3.1134 -2135.9
## <none> 3.0812 -2134.3
## + pct.hs.grad 1 0.00720 3.0740 -2129.3
## + pop.65_plus 1 0.00274 3.0785 -2128.7
## + log.crimes 1 0.00018 3.0810 -2128.3
## - log.doctors 1 0.10822 3.1894 -2125.2
## - pct.unemp 1 0.11531 3.1965 -2124.3
## - log.land.area 1 0.37266 3.4539 -2090.2
## - pop.18_34 1 0.71435 3.7956 -2048.7
## - pct.bach.deg 1 0.99368 4.0749 -2017.4
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## - log.pct.below.pov 1 2.67750 5.7587 -1865.3
##
## Step: AIC=-2135.86
## log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
##
## Df Sum of Sq RSS AIC
## <none> 3.1134 -2135.9
## + log.hosp.beds 1 0.03221 3.0812 -2134.3
## + pop.65_plus 1 0.00694 3.1065 -2130.8
## + pct.hs.grad 1 0.00617 3.1073 -2130.6
## + log.crimes 1 0.00000 3.1134 -2129.8
## - pct.unemp 1 0.10527 3.2187 -2127.3
## - log.land.area 1 0.40588 3.5193 -2088.0
## - pop.18_34 1 0.73646 3.8499 -2048.5
## - pct.bach.deg 1 1.01423 4.1277 -2017.9
## - log.doctors 1 1.87809 4.9915 -1934.3
## - log.pct.below.pov 1 2.75216 5.8656 -1863.3

anova(all_subsets_model, stepwise_BIC_cdi)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 433 3.1134
## 2 433 3.1134 0 0

Below are the predictor variables that the stepwise procedure selected. We can see that stepwise regression

using BIC chose the same variables as the all subsets method did.

summary(stepwise_BIC_cdi)

##
## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## log.doctors + pct.bach.deg + log.pct.below.pov + pct.unemp,
## data = cdi_transformed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36433 -0.04268 -0.00228 0.04802 0.29399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.0955451 0.0516864 195.323 < 2e-16 ***
## log.land.area -0.0362126 0.0048199 -7.513 3.34e-13 ***
## pop.18_34 -0.0120268 0.0011884 -10.120 < 2e-16 ***
## log.doctors 0.0677724 0.0041934 16.162 < 2e-16 ***
## pct.bach.deg 0.0105234 0.0008861 11.877 < 2e-16 ***
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df AIC BIC

all_subsets_model 8 -913.7973 -881.1031

stepwise_BIC_cdi 8 -913.7973 -881.1031

stepwise_BIC_cdi_interactions 18 -1067.1890 -993.6271

## log.pct.below.pov -0.1974748 0.0100937 -19.564 < 2e-16 ***
## pct.unemp 0.0081096 0.0021194 3.826 0.000149 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.0848 on 433 degrees of freedom
## Multiple R-squared: 0.8341, Adjusted R-squared: 0.8318
## F-statistic: 362.7 on 6 and 433 DF, p-value: < 2.2e-16

cat("\nR2 = ",summary(stepwise_BIC_cdi)$r.squared)

##
## R2 = 0.8340571

cat("\nR2adj = ",summary(stepwise_BIC_cdi)$adj.r.squared)

##
## R2adj = 0.8317576

Now lets look at a model using stepwise BIC with two way interaction terms considered.

stepwise_BIC_cdi_interactions <- stepAIC(full_cdi_model2,scope=list(lower = ~ 1, upper = ~ .ˆ2),
k=log(dim(cdi_transformed)[1]), ## BIC penalty.
trace=F)

comparison <- cbind(
AIC(all_subsets_model,stepwise_BIC_cdi,stepwise_BIC_cdi_interactions),
BIC(all_subsets_model,stepwise_BIC_cdi,stepwise_BIC_cdi_interactions))
comparison <- comparison[,-3]
names(comparison) <- c("df","AIC","BIC")
comparison %>% kbl(booktabs=T) %>% kable_classic()

round(summary(stepwise_BIC_cdi_interactions)$coef,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.78 0.36 32.35 0.00
## log.land.area 0.10 0.03 3.03 0.00
## pop.18_34 -0.03 0.01 -5.24 0.00
## pop.65_plus -0.03 0.00 -10.01 0.00
## log.doctors -0.05 0.03 -1.68 0.09
## log.hosp.beds 0.00 0.02 0.04 0.97
## pct.hs.grad -0.02 0.00 -8.38 0.00
## pct.bach.deg 0.02 0.00 5.02 0.00
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## log.pct.below.pov -0.65 0.12 -5.21 0.00
## pct.unemp 0.01 0.00 5.12 0.00
## pop.65_plus:pct.bach.deg 0.00 0.00 9.71 0.00
## pct.hs.grad:log.pct.below.pov 0.01 0.00 8.02 0.00
## pct.bach.deg:log.pct.below.pov 0.00 0.00 -4.03 0.00
## log.land.area:log.pct.below.pov -0.04 0.01 -3.86 0.00
## log.land.area:pct.bach.deg 0.00 0.00 -2.61 0.01
## pop.18_34:log.doctors 0.00 0.00 2.61 0.01
## log.hosp.beds:log.pct.below.pov 0.02 0.01 2.47 0.01

cat("\nR2 = ",summary(stepwise_BIC_cdi_interactions)$r.squared)

##
## R2 = 0.8881038

cat("\nR2adj = ",summary(stepwise_BIC_cdi_interactions)$adj.r.squared)

##
## R2adj = 0.8838713

Although there is a decrease in AIC and BIC as well as increase in R squared value, I would still be disinclined

to include the interaction terms, since the improvement is pretty small compared to all the variables and

interaction terms added to the model. It would be worth to discuss this with the social scientist, but would

also be hard to explain the meaning behind these interaction terms.

Variable Selection - LASSO regression

Let us try another variable selection method called LASSO regression. Note that the variable region was

removed since LASSO cannot make use of categorical variables.

set.seed(1000)
#cdi_transformed_num <- cdi_transformed %>%

#dplyr::select(-region)

#mutate(region = as.numeric(region))

x.full_cdi <- as.matrix(cdi_transformed[,-1])
y.full_cdi <- as.matrix(cdi_transformed[,1])
fit.lasso_cdi <- glmnet(x.full_cdi, y.full_cdi)

The plot shows how many non-zero variables are in the model at the top. So at a log Lambda of -4, the

model has 5 variables.

plot(fit.lasso_cdi, xvar="lambda", label=T)
abline(h=0, lty=2)
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Below is the plot of MSE vs Log Lambda.

result_cdi <- cv.glmnet(x.full_cdi, y.full_cdi)
plot(result_cdi)
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I will be using lambda.1se of 0.0097, which is the value of lambda that is one SE larger than lambda.min,

since it can protect against capitalization on chance.

c(lambda.1se = result_cdi$lambda.1se, lambda.min = result_cdi$lambda.min)

## lambda.1se lambda.min
## 0.009740676 0.002003182

Below we can see the variable selection results using LASSO and the lambda value I chose (lambda.1se) vs

lambda.min.

tmp <- cbind(coef(result_cdi, s=result_cdi$lambda.min), coef(result_cdi, s=result_cdi$lambda.1se))
dimnames(tmp)[[2]] <- c("lambda(minMSE)","lambda(minMSE+1se)")
tmp

## 11 x 2 sparse Matrix of class "dgCMatrix"
## lambda(minMSE) lambda(minMSE+1se)
## (Intercept) 10.0271525139 10.0272981586
## log.land.area -0.0325044714 -0.0242271305
## pop.18_34 -0.0107392687 -0.0081926462
## pop.65_plus 0.0007238627 0.0001013881
## log.doctors 0.0506163765 0.0629713628
## log.hosp.beds 0.0180587422 .
## log.crimes . .
## pct.hs.grad . .
## pct.bach.deg 0.0105312491 0.0078837697
## log.pct.below.pov -0.2003705751 -0.1885968546
## pct.unemp 0.0063668044 .
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Below is the summary of the resulting model using variables selected from LASSO.

full_cdi_model_lasso <- lm(log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus + log.doctors +
pct.bach.deg + log.pct.below.pov, data = cdi_transformed)

summary(full_cdi_model_lasso)

##
## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## pop.65_plus + log.doctors + pct.bach.deg + log.pct.below.pov,
## data = cdi_transformed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36564 -0.04698 -0.00367 0.04932 0.30155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.1116202 0.0628428 160.903 < 2e-16 ***
## log.land.area -0.0337191 0.0049006 -6.881 2.10e-11 ***
## pop.18_34 -0.0116315 0.0014289 -8.140 4.24e-15 ***
## pop.65_plus 0.0014938 0.0013571 1.101 0.272
## log.doctors 0.0673303 0.0043416 15.508 < 2e-16 ***
## pct.bach.deg 0.0096519 0.0008668 11.135 < 2e-16 ***
## log.pct.below.pov -0.1911802 0.0100990 -18.931 < 2e-16 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.0861 on 433 degrees of freedom
## Multiple R-squared: 0.8289, Adjusted R-squared: 0.8266
## F-statistic: 349.7 on 6 and 433 DF, p-value: < 2.2e-16

Let us now compare the predictors selected from stepwise method and LASSO.

## # A tibble: 10 x 3
## Variables stepwise_final LASSO
## <chr> <int> <int>
## 1 log.land.area 1 1
## 2 pop.18_34 1 1
## 3 pop.65_plus 0 1
## 4 log.doctors 1 1
## 5 log.hosp.beds 0 0
## 6 log.crimes 0 0
## 7 pct.hs.grad 0 0
## 8 pct.bach.deg 1 1
## 9 log.pct.below.pov 1 1
## 10 pct.unemp 1 0
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allsubset_lasso_common_model<-lm(log.per.cap.income ~ log.land.area + pop.18_34 +
log.doctors + pct.bach.deg +

log.pct.below.pov, cdi_transformed)

We can notice that the all subsets and LASSO regression chose the same 5 variables (log.land.area, pop.18_34,
log.doctors, pct.bach.deg, log.pct.below.pov), except for the fact that LASSO chose to additionally include the

predictor pop.65_plus, while our final stepwise regression model chose pct.unemp instead. We can quickly

perform an ANOVA F test on the models to see which one is the most significant.

anova(allsubset_lasso_common_model, all_subsets_model, full_cdi_model_lasso)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
## Model 3: log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus +
## log.doctors + pct.bach.deg + log.pct.below.pov
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 434 3.2187
## 2 433 3.1134 1 0.105273 14.641 0.0001492 ***
## 3 433 3.2097 0 -0.096292
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Adding back region

Lastly, we can check if adding back the region variable helps in any way. We will be keeping the categorical

variable if any indicators for the categorical variable is statistically significant.

* Keep: region, region:pct.below.pov, region:pct.unemp

• Drop: region:log.land.area, region:pop.18_34, region:log.doctors, region:pct.bach.deg

cdi_transformed_allsubsets <- cbind(cdi_transformed_allsubsets, log.per.cap.income = cdi_transformed$log.per.cap.income)
tmp <- cbind(cdi_transformed_allsubsets,region=cdi$region)
all_subsets_model_with_region <- lm(log.per.cap.income ~ .*region,data=tmp)
summary(all_subsets_model_with_region)

##
## Call:
## lm(formula = log.per.cap.income ~ . * region, data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33212 -0.04534 -0.00384 0.04414 0.34554
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.9858194 0.1251014 79.822 < 2e-16 ***
## log.land.area -0.0230428 0.0153531 -1.501 0.13416
## pop.18_34 -0.0127476 0.0028646 -4.450 1.11e-05 ***
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## log.doctors 0.0537441 0.0091796 5.855 9.77e-09 ***
## pct.bach.deg 0.0112314 0.0023924 4.695 3.64e-06 ***
## log.pct.below.pov -0.1554738 0.0250420 -6.209 1.31e-09 ***
## pct.unemp 0.0146486 0.0050548 2.898 0.00396 **
## regionNE 0.1183333 0.1870451 0.633 0.52732
## regionS 0.3339204 0.1555420 2.147 0.03239 *
## regionW -0.1049334 0.1831194 -0.573 0.56694
## log.land.area:regionNE -0.0198535 0.0197240 -1.007 0.31474
## log.land.area:regionS -0.0182742 0.0178437 -1.024 0.30638
## log.land.area:regionW -0.0007866 0.0187013 -0.042 0.96647
## pop.18_34:regionNE -0.0012844 0.0040299 -0.319 0.75010
## pop.18_34:regionS -0.0025245 0.0033247 -0.759 0.44811
## pop.18_34:regionW 0.0044403 0.0044363 1.001 0.31746
## log.doctors:regionNE 0.0068329 0.0133119 0.513 0.60802
## log.doctors:regionS 0.0105406 0.0116884 0.902 0.36769
## log.doctors:regionW 0.0209585 0.0130712 1.603 0.10961
## pct.bach.deg:regionNE 0.0031476 0.0032855 0.958 0.33862
## pct.bach.deg:regionS -0.0012692 0.0027056 -0.469 0.63923
## pct.bach.deg:regionW 0.0003701 0.0032104 0.115 0.90827
## log.pct.below.pov:regionNE -0.0211976 0.0366029 -0.579 0.56282
## log.pct.below.pov:regionS -0.0067038 0.0297971 -0.225 0.82210
## log.pct.below.pov:regionW -0.0914301 0.0412887 -2.214 0.02735 *
## pct.unemp:regionNE -0.0036546 0.0077360 -0.472 0.63688
## pct.unemp:regionS -0.0313720 0.0066655 -4.707 3.44e-06 ***
## pct.unemp:regionW 0.0018297 0.0062413 0.293 0.76954
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.08054 on 412 degrees of freedom
## Multiple R-squared: 0.8576, Adjusted R-squared: 0.8482
## F-statistic: 91.87 on 27 and 412 DF, p-value: < 2.2e-16
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Thus we arrive at the following model. All the main e�ects and interaction terms that involve region have at

least one significant term and the R squared (0.85) and residual standard error did not change too much.

all_subsets_model_with_some_region <- update(all_subsets_model_with_region,
. ~ . - region:log.land.area -

region:pop.18_34 - region:log.doctors -
region:pct.bach.deg)

summary(all_subsets_model_with_some_region)

##
## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## log.doctors + pct.bach.deg + log.pct.below.pov + pct.unemp +
## region + log.pct.below.pov:region + pct.unemp:region, data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37137 -0.04631 -0.00436 0.04248 0.35086
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.001e+01 6.595e-02 151.841 < 2e-16 ***
## log.land.area -3.423e-02 5.498e-03 -6.227 1.15e-09 ***
## pop.18_34 -1.295e-02 1.167e-03 -11.095 < 2e-16 ***
## log.doctors 6.597e-02 4.133e-03 15.960 < 2e-16 ***
## pct.bach.deg 1.079e-02 8.874e-04 12.157 < 2e-16 ***
## log.pct.below.pov -1.668e-01 1.944e-02 -8.579 < 2e-16 ***
## pct.unemp 1.569e-02 4.266e-03 3.678 0.000265 ***
## regionNE 1.172e-01 5.038e-02 2.326 0.020509 *
## regionS 1.503e-01 4.669e-02 3.218 0.001388 **
## regionW 1.525e-01 6.177e-02 2.468 0.013972 *
## log.pct.below.pov:regionNE -3.723e-02 2.658e-02 -1.401 0.162087
## log.pct.below.pov:regionS -1.069e-05 2.294e-02 0.000 0.999628
## log.pct.below.pov:regionW -7.733e-02 3.459e-02 -2.235 0.025919 *
## pct.unemp:regionNE -7.459e-03 6.964e-03 -1.071 0.284734
## pct.unemp:regionS -2.835e-02 5.543e-03 -5.114 4.78e-07 ***
## pct.unemp:regionW -5.860e-04 5.418e-03 -0.108 0.913929
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.08119 on 424 degrees of freedom
## Multiple R-squared: 0.851, Adjusted R-squared: 0.8457
## F-statistic: 161.5 on 15 and 424 DF, p-value: < 2.2e-16

Now lets compare the allsubsets model with 6 variables, and our model with region interaction terms added.

Below are the results for F-test, AIC and BIC values. The results show that it is worth to add these terms

rather than the base model.

# ANOVA

all_subsets_model_add_region <- lm(log.per.cap.income ~ log.land.area + pop.18_34 +
log.doctors + pct.bach.deg + log.pct.below.pov +
pct.unemp + region, data=tmp)

anova(all_subsets_model, all_subsets_model_add_region, all_subsets_model_with_some_region)
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## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp + region
## Model 3: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.bach.deg + log.pct.below.pov + pct.unemp + region + log.pct.below.pov:region +
## pct.unemp:region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 433 3.1134
## 2 430 3.0760 3 0.03739 1.8905 0.1305
## 3 424 2.7952 6 0.28082 7.0994 3.2e-07 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

# AIC comparison

AIC(all_subsets_model, all_subsets_model_add_region, all_subsets_model_with_some_region)

## df AIC
## all_subsets_model 8 -913.7973
## all_subsets_model_add_region 11 -913.1134
## all_subsets_model_with_some_region 17 -943.2351

# BIC comparison

BIC(all_subsets_model, all_subsets_model_add_region, all_subsets_model_with_some_region)

## df BIC
## all_subsets_model 8 -881.1031
## all_subsets_model_add_region 11 -868.1589
## all_subsets_model_with_some_region 17 -873.7599

The all_subsets_model_with_some_region seems to be the optimal choice here.

Final model with region variable and assessing validity of model

The summary of my final model (with region) can be seen below.

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.014 0.066 151.841 0.000
## log.land.area -0.034 0.005 -6.227 0.000
## pop.18_34 -0.013 0.001 -11.095 0.000
## log.doctors 0.066 0.004 15.960 0.000
## pct.bach.deg 0.011 0.001 12.157 0.000
## log.pct.below.pov -0.167 0.019 -8.579 0.000
## pct.unemp 0.016 0.004 3.678 0.000
## regionNE 0.117 0.050 2.326 0.021
## regionS 0.150 0.047 3.218 0.001
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## regionW 0.152 0.062 2.468 0.014
## log.pct.below.pov:regionNE -0.037 0.027 -1.401 0.162
## log.pct.below.pov:regionS 0.000 0.023 0.000 1.000
## log.pct.below.pov:regionW -0.077 0.035 -2.235 0.026
## pct.unemp:regionNE -0.007 0.007 -1.071 0.285
## pct.unemp:regionS -0.028 0.006 -5.114 0.000
## pct.unemp:regionW -0.001 0.005 -0.108 0.914

##
## R2 = 0.8510172

##
## R2adj = 0.8457466

Below are the residual diagnostic plots.
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Below is the plot of Y_hat vs Y.
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