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Abstract

We try to analyze the relation between demographic variables and per-capita
income for a select sample of counties. The data is obtained from Kutner et al. (2005)
and has demographic data for 440 counties across 48 states. We perform linear model
variable selection methods to define the set of variables that bests fits the data. The
best model was selected using the all subsets method for variable selection, and it
results in a good fit for predicting per-capita income, but may be missing enough
data for a robust prediction.
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1 Introduction

Income is a great matter of interest for social sciences. It helps understand the quality

of life for people, but can also help understand the implications for the area they live in.

Estimating income based on demographic characteristics can help understand the context

that drives its variations. We are interested in analyzing how these social and geographic

characteristics have influence in per-capita income at the county level. Using per-capita in-

come helps reduce variation as it represents the income of the average citizen for the county.

Using data from Kutner et al. (2005), we want to analyze the influence that demographic

variables have on the per-capita income of counties. Also, we are interested in whether

the region where a county is located has some influence in this outcome. We make some

sense of the relations between all the variables, test a theory that crimes and region make a

good fit for predicting per-capita income, and look for a model to predict per-capita income

based on the rest of the demographic variables.

The questions we want to answer are:

• Which variables seem to be related?

• Can crime or crime rate and region be a good set of predictors for per-capita income?

• How does a good fitting model for per-capita income looks based on a combination

of the variables from the data?

• Does having a small set of counties from the total number of counties in the US

matter for the model?
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2 Data

The data was obtained from Kutner et al. (2005), which contains county demographic in-

formation(CDI) for 440 counties across the country from 1990-1992. The data includes

geographic information as well as numerical variables related to the population’s charac-

teristics. Some histograms are shown in Figure 1 to make sense of the distributions of each

numerical variable and determine for the further sections if transformations are needed for

them. Also, Tables 1 and 2 show some characteristics of the string and numeric variables,

respectively.

The variables and their definitions, according to Kutner et al. 2005 are as follows:

• id - Identification number, ranging from 1 to 440

• county - County name

• state - State name

• land.area - Land area (square miles)

• pop.18.34 - Percent of CDI aged 18 to 34

• pop.65.plus - Percent of CDI aged 65 or older

• doctors - Number of professionally active nonfederal physicians during 1990

• hosp.beds - Total number of beds, cribs, and bassinets during 1990

• crimes - Total number of serious crimes in 1990, including murder, rape, robbery,

aggravated assault, burglary, larceny-theft, and motor vehicle theft, as reported by

law enforcement agencies
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• pct.hs.grad - Percent of adult population (persons 25 years old or older) who com-

pleted 12 or more years of school

• pct.bac.deg - Percent of adult population (persons 25 years old or older) with bach-

elor’s degree

• pct.below.pov - Percent of 1990 CDI population with income below poverty level

• pct.unemp - Percent of 1990 CDI population that is unemployed

• per.cap.income - Per-capita income of 1990 CDI population (in dollars)

• tot.income - Total personal income of 1990 CDI population (in millions of dollars)

• region - Geographic region classification used by the US Bureau of the Cen- sus, NE

(northeast region of the US), NC (north-central region of the US), S (southern region

of the US), and W (Western region of the US)

Variable Unique Values NA Values

county 373 0.00

state 48 0.00

region 4 0.00

county/state 440 0.00

Table 1: Number of unique text variables and NA values
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Figure 1: Distributions of the numeric variables

Variable Min Mean Median Max NAs

crimes 563.00 27111.62 11820.50 688936.00 0

doctors 39.00 988.00 401.00 23677.00 0

hosp.beds 92.00 1458.63 755.00 27700.00 0

land.area 15.00 1041.41 656.50 20062.00 0

pct.bach.deg 8.10 21.08 19.70 52.30 0

pct.below.pov 1.40 8.72 7.90 36.30 0

pct.hs.grad 46.60 77.56 77.70 92.90 0

pct.unemp 2.20 6.60 6.20 21.30 0

per.cap.income 8899.00 18561.48 17759.00 37541.00 0

pop 100043.00 393010.92 217280.50 8863164.00 0

pop.18 34 16.40 28.57 28.10 49.70 0

pop.65 plus 3.00 12.17 11.75 33.80 0

tot.income 1141.00 7869.27 3857.00 184230.00 0

Table 2: Summary for the numeric variables
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3 Methods

3.1 Relations between variables

The relation between the variables was analyzed with a correlation matrix between all of

the numeric variables. As a 13×13 matrix may take too long to analyze and find relations,

a correlation matrix heatmap was also used. This plot shows a divergent color scale for the

values of the matrix, which makes it easy to find which variables are highly correlated and

in which direction.

3.2 The influence of crime on predicting per-capita income

To test the question of whether crimes (or crime rate, which is the number of crimes divided

by the total population for each county) and region can explain per-capita income, a linear

regression with and without interaction for both variables was used. The same process was

done for crime rate and region and their results were compared.

3.3 Finding the best model

The selection of the model that best predicts per-capita income according to the needs of

the study used multiple statistical analyses and model selection methods. The first step

was using the plots from Figure 1 as a reference to determine that some variables need

a transformation to work correctly in the linear model. Also, taking into account the

correlations plot, some variable selection was done based on the Variance Inflation Factor

(VIF) to help the regression meet the no collinearity assumption needed for a regression to
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work correctly. As the remaining variables were still not easy to interpret as a whole and

the possibility that some of them were not relevant for the model, some model selection

procedures were used. These methods help to choose the variables that make the best fit for

the model. The procedures that were used are: stepwise selection, testing all subsets, and

LASSO regression. Stepwise selection consists on starting with the full (or empty) model

and then removing (or adding) one variable at a time testing by a preselected criteria,

usually the Akaike Selection Criterion (Sheather (2009)); testing all subsets, as the name

suggests, finds the best model testing the regression results for all possible combinations

of variables; and LASSO performs the regression penalizing for the size of the coefficients.

Each procedure was run independently and their results were compared to analyze their

similarities and then choose the model that made the most sense based on them.

3.4 Validity of the sample

The last question is answered using mostly exploratory data analysis over the dataset and

some lookup at the results of the 1990 US Census. It is developed in the results and

addressed in the discussion.

4 Results

4.1 Relations between variables

First, to see how the variables relate to each other, a correlation matrix is used to make

a correlation plot. Figure 2 shows the relations between each combination of variables in

a two-color scale in a way that the intensity and color of the cell will tell the sign and

magnitude of the correlation.
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Figure 2: Correlation plot of the variables

We can see that some variables are highly correlated to population and total income. These

variables are crimes, hospital beds, and doctors. Other sets of variables that have high cor-

relations are the percentage of high school graduates, bachelor’s degree holders, percentage

below poverty levels, and percentage of unemployment. These values could bring collinear-

ity problems to the linear models that use these variables and should be analyzed to choose

if any of them should be omitted.

4.2 The influence of crime on predicting per-capita income

To address the question of whether crime(or crime rate) is related to per-capita income

and the relation is different across regions, linear models using crime with and without
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interaction with region are used. The model with interactions doesn’t seem to add new

information as their p-values are not statistically significant and the coefficients for the

other variables don’t change, as shown in Table 1. It is suggested to keep the model

without interactions. The selected model is:

per.capita.income ∼ β0 + β1crimes+ β2region+ ε

Also, the model with crime rate with and without interaction with region was calculated.

First, it is important to notice that for both models, the crime rate variable is not sta-

tistically significant. Just as in the first model, adding interactions does not add relevant

information to the model since all of the interactions are not statistically significant. This

model was the following:

per.capita.income ∼ β0 + β1crime rate+ β2region+ ε

The difference between the two models is that for the second, crimes are divided by the

total population which may be having some influence on the dynamic between the variables

as per-capita income is already divided by the total population. The diagnostic plots for

the model including crimes are shown in the Appendix (page 28). They may have some

issues with some observations as the Q-Q plot has some skewed values in the right tail and

also some high influence points that have high leverage and are outliers for the standardized

residuals. These two points are the Los Angeles County in California and Kings County in

New York, which are not surprising to have some extreme values for both crime rate and

per-capita income.
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Without interactions With interactions

crimes 0.009∗∗ 0.014

(0.003) (0.008)

region: NC 18106.910∗∗∗ 18004.776∗∗∗

(378.438) (409.242)

region: NE 20392.947∗∗∗ 20578.242∗∗∗

(387.980) (401.869)

region: S 17246.353∗∗∗ 16948.446∗∗∗

(325.170) (383.090)

region: W 17964.083∗∗∗ 17948.240∗∗∗

(458.849) (488.476)

crimes × region: NE/NC -0.013

(0.010)

crimes × region: S/NC 0.006

(0.011)

crimes × region: W/NC -0.004

(0.009)

R-squared 0.959 0.959

N 440 440

Significance: ∗ ∗ ∗ : p < 0.001; ∗∗ : p < 0.01;

∗ : p < 0.05

Table 3: Influence of crimes and regions in per-capita income
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4.3 Finding the best model

To help the model perform adequately, all numeric variables were tested to check if they

needed transformations. A transformation is usually needed if a variable is skewed and not

meeting the normality assumption. If the suggested power transformation was lower than

1/3, a log transformation was used. Most of the variables needed some kind of transfor-

mation according to the tests, as shown in Table 6 (Appendix, page 20). Also, the county

variable was omitted since its purpose was to identify each observation, just as the ID

variable already did.

As there are 48 unique states in the sample, each had on average around 10 or 11 observa-

tions, which could be not enough to make good inferences and fitting. The state variables

were omitted and the region variable was kept since it was already part of the question

for the Section 4.2 models and the 110 average observations for each category should be

enough for the model to make a good fit.

Other variables that showed collinearity problems were population, crimes, and tot.income.

This should probably raise some flags for any social scientist: why would anyone omit the

two variables that are directly related to the response variable? It is possible to argue that

these two variables are already the ones that generate the response variable, and using

only them could give an almost perfect fit. This is a valid point that should be addressed

reminding that this would lead to overfitting and the model would not be useful for further

analysis of prediction. The variables were omitted to avoid potential overfitting.

Finally, the regressions for all possible models were tried: all the variables, stepwise selec-

tion, all subsets, and LASSO (Sheather (2009)). A comparison of the coefficients for the
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models is available in Table 7(Appendix, page 22). A first impression is that the three

methods drop the hospital beds variable. The all subsets model also drops the population

65 or older and the LASSO model the percentage of high school graduates and region.

Since the all subsets model is using one of the regions, it is assumed that all of them should

be considered. As region is considered an important variable for this model and the LASSO

model is discarding it, this variable selection is not considered. It is important to notice in

Table 7 that using the variables selected by LASSO and adding the region variable would

be a similar outcome to the stepwise selection model since the coefficient for pct.hs.grad is

small. The next step is to compare the all subsets and stepwise selection models. Using

analysis of variance to compare the models, the all subsets models is favored and selected.

Considering some potential improvement, the region variable was interacted with every

other numeric variable to test if any interaction produced coefficients that could still help

the model. Three variables had significant interaction terms with region: pct.hs.grad3,

log(pct.below.pov), and log(pct.unemp). The interaction between region and pct.hs.grad3

was finally discarded as the size of its coefficients were small compared to all the other co-

efficients. The new model was compared to the no-interactions model through an analysis

of variance and it showed to have some improvement, as in Appendix (pages 35 and 36).

The selected model is the following.

log(per.capita.income) ∼ β0 + β1 log(land.area) + β2pop.18 34−1/3 + β3 log(doctors)

+ β4pct.hs.grad3 + β5 log(pct.bach.deg) + β6 log(pct.below.pov)

+ β7 log(pct.unemp) + β8crime˙rate1/3 + β9region
+β10 log(pct.below.pov)∗region+β11 log(pct.unemp)∗region+ε

The summary statistics for this model are shown in Table 4 and its diagnostics plots in the

Appendix(page 36).
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To understand Table 4, it is worth remembering that the model tries to predict per-capita

income, which as shown in Appendix (page 27) was transformed with the logarithm op-

eration. From the results shown in Table 4, most results are easy to interpret, as the

variables have log-transformations too. This is the case for land.area, doctors, pct.bach.deg,

pct.below.pov, and pct.unemp, where a 1% increase for each variable, keeping everything

else constant, will be translated to a 1% increase on per-capita income. For the rest of

the variables, for which a power transformation was done, the interpretation is more com-

plex. Given that per-capita income was transformed with the logarithm operation, one unit

change of either pop.18 34−1/3, pct.hs.grad3, or crime rate1/3, will translate to a βi×100%

change in per-capita income. For the interaction terms, if the coefficient is significant, then

the interaction coefficient is added to the corresponding variable coefficient according to the

region. In the case of the region variable, the selection of any of the regions with significant

coefficients will be added to the Intercept.

From the diagnostic plots for this model, shown in the Appendix(page 36), there appear

to be some observations that do not follow the normal distribution in the right side of the

Q-Q plot, but besides that, the model looks like a good fit: the residuals vs fitted plot don’t

have a distinguishable pattern, the scale-location plot looks like the variance is constant,

and there are no high influence points on the data.

4.4 Validity of the sample

One of our questions was whether having just one small sample of the 3000 counties of the

US could be a problem for the model. Considering that according to the 1990 US Census

(U.S. Census Bureau (2000)), there were almost 250 million people living in the US at

that time, which means roughly a 70% of the population is represented in the dataset.
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Now, looking at the dataset, the minimum value for the counties’ population is 100,000.

With this information, we can calculate the average population of the remaining counties,

which will be close to 30,000 people. Considering that the average county for the data has

a population of almost 400,000, the data may not give a good model for low populated

counties and the predictions would not be expected to be accurate. On the other hand,

the missing states are Iowa, Arkansas, and Wyoming, which are low populated states.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.94500 0.16034 49.55237 0.00000

log(land.area) -0.03088 0.00555 -5.56059 0.00000

pop.18 34−1/3 3.38190 0.31819 10.62869 0.00000

log(doctors) 0.05060 0.00498 10.16779 0.00000

pct.hs.grad3† -0.00000 0.00000 -5.15240 0.00000

log(pct.bach.deg) 0.32187 0.02634 12.21817 0.00000

log(pct.below.pov) -0.20354 0.02004 -10.15691 0.00000

log(pct.unemp) 0.10491 0.02588 4.05436 0.00006

crime rate1/3 0.29428 0.09907 2.97048 0.00314

regionNE 0.10468 0.07984 1.31118 0.19051

regionS 0.26921 0.06263 4.29879 0.00002

regionW 0.16637 0.06808 2.44371 0.01495

log(pct.below.pov):regionNE -0.03068 0.02653 -1.15653 0.24812

log(pct.below.pov):regionS -0.02285 0.02287 -0.99906 0.31834

log(pct.below.pov):regionW -0.09979 0.03474 -2.87199 0.00428

log(pct.unemp):regionNE -0.03745 0.04765 -0.78587 0.43239

log(pct.unemp):regionS -0.15896 0.03572 -4.44970 0.00001

log(pct.unemp):regionW 0.01373 0.03859 0.35589 0.72210

† This variable had a coefficient sized 10−7

Table 4: Coefficient information for the selected model
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5 Discussion

The goal of this study was to analyze the influence of demographic and geographic variables

in the per-capita income of a selected number of counties from the U.S. To do this, a variable

selection regression model was used, which chose the following model:

log(per.capita.income) ∼ β0 + β1 log(land.area) + β2pop.18 34−1/3 + β3 log(doctors)

+ β4pct.hs.grad3 + β5 log(pct.bach.deg) + β6 log(pct.below.pov)

+ β7 log(pct.unemp) + β8crime˙rate1/3 + β9region
+β10 log(pct.below.pov)∗region+β11 log(pct.unemp)∗region+ε

5.1 Relations between variables

The data set contains two principal groups of variables: those related to population

(pop.18.34, pop.65˙plus, doctors, hosp.beds, and crimes) and those related to labor and

education (pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, and per.capita.income).

Because of these relations, it made sense that there would exist some medium to high

correlation between some of them. The first group, for which doctors; hospital beds; and

crimes have high correlations, makes sense because they usually grow as the population

increases either because more populations mean more need for hospital beds and doctors

or because higher concentrations of people increase the possibility of crimes. The second

group, for which percentage below poverty levels; percentage of bachelors degree holders;

percentage of high school graduates; and percentage of unemployment have high correla-

tions, makes sense too because of the implications of education of labor and education in

the outcome of a population’s income. The high correlations for these variables did create

some problems of multicollinearity for the regressions and must be taken into account for

future works.
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5.2 The influence of crime on predicting per-capita income

The relation between crimes and per-capita income was evident from the correlations plot

and it would be expected that a linear model between them and regions will have a good

fit. The selected model, which is

per.capita.income ∼ β0 + β1crimes + β2region + ε

that predicts per capita income based on crime rate and region with no interactions, shows

that the number of crimes and the region are good predictors for per-capita income ac-

counting for almost 96% of its variability. While it may seem like a good fit and no other

variables may be needed to predict per-capita income, it would be interesting to first an-

alyze the possibility that variation in crimes is not the cause of variation on per-capita

income, but the opposite. If per-capita income is the cause for an increase in crimes, this

model would become invalid, so it is worth analyzing if this is the correct approach for

it. Considering additional variables, just as it is done in Sections 4.3 and 5.3 can help

understand the influence that additional variables have when predicting per-capita income

besides the number of crimes.

5.3 Finding the best model

While the final model was selected through a series of steps that helped to find the most

adequate combination of explanatory variables, it is important to remind that the other

models were almost as good and had similar coefficients for most of the shared variables,

as seen on Table 7.
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The model has a lot of potential for improvement, especially towards an easier to interpret

result. It may be the case that power transformations help the model become a good fit

but at the cost of not being able to easily explain the relations between the variables. For

future works, it would be worth taking into account the interpretability needs before ap-

plying the suggested Box-Cox transformations suggested by the software. Also, it would

be convenient to analyze further the differences between each models’ selections and the

reason for the variables being included or omitted since they may be important to the

people that are interested in the model.

Finally, as suggested in Section 5.4, this model could become a better prediction for per-

capita income if the data included more counties, especially those with low population

density, to understand the true relation between the variables.

5.4 Validity of the sample

Considering the size of the sample of counties that are in the data (440 counties), it could

be worth noting that the model may not work for predicting counties with low density of

population as there are no counties with these characteristics in the data. The missing

states should not be a problem for the model at the moment because they do not have

highly populated cities, which could be the reason for them not being in the sample.

For future research, it would be useful to find a sample of small counties in order to make

the model better and suitable for a more robust prediction, following the guidelines for

county selection, it would be worth trying to replicate the small county sample given the

original requirements.
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A results

Without interactions With interactions

crime rate 5773.202 4379.070

(7520.413) (15893.507)

region: NC 18006.045ˆ*** 18077.294ˆ***

(537.039) (895.208)

region: NE 20360.741ˆ*** 20406.331ˆ***

(493.620) (641.617)

region: S 17078.598ˆ*** 17066.941ˆ***

(618.848) (975.221)

region: W 17971.122ˆ*** 17407.303ˆ***

(637.921) (1770.432)

crime rate × region: NE/NC 288.387

(20184.661)

crime rate × region: S/NC 1558.919

(20556.112)

crime rate × region: W/NC 10655.542

(32322.408)

R-squared 0.958 0.958

N 440 440

Significance: ∗ ∗ ∗ : p < 0.001; ∗∗ : p < 0.01;

∗ : p < 0.05

Table 5: Influence of crimes and regions in per-capita income
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Variable powerTransform

1 land.area 0.00

2 pop -0.58

3 pop.18 34 -0.39

4 pop.65 plus -0.01

5 doctors -0.22

6 hosp.beds -0.15

7 crimes -0.13

8 pct.hs.grad 3.07

9 pct.bach.deg -0.03

10 pct.below.pov 0.18

11 pct.unemp -0.11

12 per.cap.income -0.37

13 tot.income -0.44

14 crime rate 0.38

15 per.cap.income3 1.11

Table 6: Suggested power transformations
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Variable Regression StepAIC All.subsets LASSO

1 (Intercept) 8.2796428896 8.2920091903 8.1939523851 8.6391085734

2 land.area -0.0350811881 -0.0345393452 -0.0351289003 -0.0299777874

3 pop.18 34 2.5296098723 2.5335347541 3.1569371942 1.8170547929

4 pop.65 plus 0.0444645424 0.0468898414 0.0503655355

5 doctors 0.0403910313 0.0491431016 0.0508781315 0.0604100936

6 hosp.beds 0.0103636165

7 pct.hs.grad -0.0000003493 -0.0000003476 -0.0000003308

8 pct.bach.deg 0.3205310002 0.3155843119 0.3053851622 0.1983124214

9 pct.below.pov -0.2434105672 -0.2403550928 -0.2309455770 -0.2071189339

10 pct.unemp 0.0638065575 0.0629141347 0.0541136732 0.0428964430

11 regionNE -0.0262517681 -0.0270360269

12 regionS -0.0511571376 -0.0532674234 -0.0486149747

13 regionW 0.0008576372 -0.0041652627

14 crime rate 0.2892592844 0.2994169182 0.3317425153 0.0563003953

Table 7: Comparison between variable selection models
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Figure 3: Diagnostic plots for the all subsets model
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Appendix B

cdi <- read.table("/Users/Stefano_1/Documents/CMU/Applied Linear Models/Projects/cdi.dat")

For the character variables, we will only display the number of distinct values.

chars <- apply(cdi[,unlist(lapply(cdi, is.character))], 2, function(x)length(unique(x)))
chars_na <- apply(cdi[,unlist(lapply(cdi, is.character))], 2, function(x)sum(is.na(x)))

county.states <- data.frame(variable = "county/state",
unique.values = length(unique(paste0(cdi$county, "-", cdi$state))),
na.values = 0)

chars_df <- data.frame(variable = names(chars),
unique.values = unname(chars),
na.values = unname(chars_na)) %>%

bind_rows(county.states)

Table 1: Categorical variables and their total unique values

variable unique.values na.values
county 373 0
state 48 0
region 4 0
county/state 440 0

For the rest of the variables, we will show the minimum, mean, median and maximum of each column, and
also the count of missing values (NAs). We will leave the id column out of the summary as it has 440 distinct
values and its summary won’t be useful.

sum_nas <- function(x){sum(is.na(x))}

num_vars <- cdi %>%
select_if(negate(is.character)) %>%
pivot_longer(!id) %>%
dplyr::select(-id) %>%
group_by(name) %>%
summarise_all(list(min = min,

mean = mean,
median = median,
max = max,
NAs = sum_nas))

Table 2: Summary of numerical varaibles

name min mean median max NAs
crimes 563.0 27111.62 11820.50 688936.0 0
doctors 39.0 988.00 401.00 23677.0 0
hosp.beds 92.0 1458.63 755.00 27700.0 0
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name min mean median max NAs
land.area 15.0 1041.41 656.50 20062.0 0
pct.bach.deg 8.1 21.08 19.70 52.3 0
pct.below.pov 1.4 8.72 7.90 36.3 0
pct.hs.grad 46.6 77.56 77.70 92.9 0
pct.unemp 2.2 6.60 6.20 21.3 0
per.cap.income 8899.0 18561.48 17759.00 37541.0 0
pop 100043.0 393010.92 217280.50 8863164.0 0
pop.18_34 16.4 28.57 28.10 49.7 0
pop.65_plus 3.0 12.17 11.75 33.8 0
tot.income 1141.0 7869.27 3857.00 184230.0 0

From the histograms, we can see that some of the variables need some kind of transformation in order to
work correctly when a regression is performed with them on it. It is worth noting that the variables that
are not percentages or divided by total population tend to be less skewed right than the variables that are
just a single measurement. Also, since some of these variables are calculated dividing by population, it is
expected that some of them will be correlated to population.

par(mfrow = c(3,5))

for(i in names(cdi)[2:17]){
if(is.character(cdi[[i]])){next}
hist(cdi[[i]], main = i, xlab = "")

}

#savePlot("/Users/Stefano_1/Documents/CMU/Applied Linear Models/Projects/vars_hists",
# type = "png")

From the correlations plot, we can see that indeed, some variables are highly correlated to population, but
they are not the ones that we initially expected. These variables are: crimes, hospital beds, doctors, and total
income, which make sense because they usually grow as population increases either because more populations
means more need for hospital beds and doctor or because higher concentrations of people increases the
possibility of crimes.

cor <- cor(cdi[, -c(2,3,17)])

ggcorrplot(cor, type = "lower")
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Figure 1: Scatter plots of response variable and each predictor.
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# ggsave(ggcorrplot(cor, type = "lower"), "/Users/Stefano_1/Documents/CMU/Applied Linear Models/Projects/corrplot.png")

This models were fitted for Sections 4.2 and 5.2

cdi$crime_rate <- cdi$crimes/cdi$pop

powerTransform(cdi$crimes)

## Estimated transformation parameter
## cdi$crimes
## -0.1307109

powerTransform(cdi$per.cap.income)

## Estimated transformation parameter
## cdi$per.cap.income
## -0.3683365

powerTransform(cdi$crime_rate)

## Estimated transformation parameter
## cdi$crime_rate
## 0.3776893
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#cdi$per.cap.income3 <- cdi$per.cap.incomeˆ(-1/3)
cdi$per.cap.income3 <- log(cdi$per.cap.income)

reg1 <- lm(per.cap.income ~ crimes + region - 1, data = cdi)

summary(reg1)

##
## Call:
## lm(formula = per.cap.income ~ crimes + region - 1, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9661.0 -2260.7 -618.3 1650.0 19492.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## crimes 8.915e-03 3.188e-03 2.797 0.00539 **
## regionNC 1.811e+04 3.784e+02 47.846 < 2e-16 ***
## regionNE 2.039e+04 3.880e+02 52.562 < 2e-16 ***
## regionS 1.725e+04 3.252e+02 53.038 < 2e-16 ***
## regionW 1.796e+04 4.588e+02 39.150 < 2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3866 on 435 degrees of freedom
## Multiple R-squared: 0.9591, Adjusted R-squared: 0.9586
## F-statistic: 2038 on 5 and 435 DF, p-value: < 2.2e-16

reg1.2 <- lm(per.cap.income ~ crimes + region + crimes:region - 1, data = cdi)

summary(reg1.2)

##
## Call:
## lm(formula = per.cap.income ~ crimes + region + crimes:region -
## 1, data = cdi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8582.4 -2225.2 -676.2 1563.4 19504.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## crimes 1.361e-02 7.882e-03 1.726 0.0851 .
## regionNC 1.800e+04 4.092e+02 43.995 <2e-16 ***
## regionNE 2.058e+04 4.019e+02 51.206 <2e-16 ***
## regionS 1.695e+04 3.831e+02 44.241 <2e-16 ***
## regionW 1.795e+04 4.885e+02 36.743 <2e-16 ***
## crimes:regionNE -1.272e-02 9.677e-03 -1.314 0.1895
## crimes:regionS 6.348e-03 1.136e-02 0.559 0.5765
## crimes:regionW -4.295e-03 9.486e-03 -0.453 0.6509
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## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3861 on 432 degrees of freedom
## Multiple R-squared: 0.9595, Adjusted R-squared: 0.9587
## F-statistic: 1278 on 8 and 432 DF, p-value: < 2.2e-16

par(mfrow = c(2,2))
plot(reg1, which = 1)
plot(reg1, which = 2)
plot(reg1, which = 3)
plot(reg1, which = 5)
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The code for the second set of models is included but not run since it was found to not be useful.

reg2 <- lm(per.cap.income ~ crime_rate + region - 1, data = cdi)

summary(reg2)

reg2.2 <- lm(per.cap.income ~ crime_rate + region + crime_rate:region - 1, data = cdi)

summary(reg2.2)

The following section of code corresponds to Sections 4.3 and 5.3. It performs power transformations on the
variables, and then runs the variable selection models on the transformed data. The models are compared
and their coefficients displayed.
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ap_cdi <- apply(cdi[,-c(1,2,3,17)], 2, powerTransform)

## Warning in estimateTransform.default(X, Y, weights, family, ...): Convergence
## failure: return code = 52

ap_cdi <- lapply(ap_cdi, function(x){x$lambda}) %>% unlist()

names(ap_cdi) <- substr(names(ap_cdi), 1, (nchar(names(ap_cdi))-10))

ap_cdi <- data.frame(Variable = names(ap_cdi),
powerTransform = unname(ap_cdi))

ap_cdi <-ap_cdi[,-15]

cdi$land.area <- log(cdi$land.area)
cdi$pop <- cdi$popˆ(-1/2)
cdi$pop.18_34 <- cdi$pop.18_34ˆ(-1/3)
cdi$pop.65_plus <- log(cdi$pop.65_plus)
cdi$doctors <- log(cdi$doctors)
cdi$hosp.beds <- log(cdi$hosp.beds)
cdi$crimes <- log(cdi$crimes)
cdi$pct.hs.grad <- cdi$pct.hs.gradˆ3
cdi$pct.bach.deg <- log(cdi$pct.bach.deg)
cdi$pct.below.pov <- log(cdi$pct.below.pov)
cdi$pct.unemp <- log(cdi$pct.unemp)
cdi$tot.income <- cdi$tot.incomeˆ(-1/2)
cdi$crime_rate <- cdi$crime_rateˆ(1/3)

cdi_final <- cdi[, -c(1,2,3,15)]

reg3 <- lm(per.cap.income3~., data = cdi_final)

alias(reg3)

## Model :
## per.cap.income3 ~ land.area + pop + pop.18_34 + pop.65_plus +
## doctors + hosp.beds + crimes + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + tot.income + region + crime_rate

vif(reg3) #looks like we should remove pop and total income

## GVIF Df GVIF^(1/(2*Df))
## land.area 1.673307 1 1.293564
## pop 70.141295 1 8.375040
## pop.18_34 2.905496 1 1.704551
## pop.65_plus 2.977294 1 1.725484
## doctors 17.954510 1 4.237276
## hosp.beds 12.160895 1 3.487247
## crimes 51.549139 1 7.179773
## pct.hs.grad 4.992429 1 2.234374
## pct.bach.deg 6.870890 1 2.621238
## pct.below.pov 5.856157 1 2.419950
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## pct.unemp 2.200697 1 1.483475
## tot.income 55.888481 1 7.475860
## region 4.594342 3 1.289349
## crime_rate 13.606346 1 3.688678

cdi_final <- cdi_final %>% dplyr::select(-pop, - tot.income, -crimes)
# cdi_final <- cdi_final %>% dplyr::select(-pop, -tot.income)

reg3 <- lm(per.cap.income3~., data = cdi_final)

reg3_stepaic <- stepAIC(reg3, trace = FALSE)
coef(reg3_stepaic)

## (Intercept) land.area pop.18_34 pop.65_plus doctors
## 8.292009e+00 -3.453935e-02 2.533535e+00 4.688984e-02 4.914310e-02
## pct.hs.grad pct.bach.deg pct.below.pov pct.unemp regionNE
## -3.475534e-07 3.155843e-01 -2.403551e-01 6.291413e-02 -2.703603e-02
## regionS regionW crime_rate
## -5.326742e-02 -4.165263e-03 2.994169e-01

reg3_subsets <- regsubsets(per.cap.income3~. , data =cdi_final, really.big = T, nvmax = 10)
reg3_subsetsum <- summary(reg3_subsets)
coef_all_subsets <- coef(reg3_subsets, which.min(reg3_subsetsum$bic))

last <- ncol(cdi_final)
reg3_lasso <- cv.glmnet(data.matrix(cdi_final[,-last]),

cdi_final[,last],
alpha = 1)

lasso_coefs <- cbind(coef(reg3_lasso, s=reg3_lasso$lambda.min),
coef(reg3_lasso, s=reg3_lasso$lambda.1se))

coef_lasso <- as.matrix(coef(reg3_lasso, s=reg3_lasso$lambda.1se))
lasso_coef <- as.matrix(coef(reg3_lasso))[coef_lasso !=0]
coef_lasso <- rownames(coef_lasso)[coef_lasso !=0]
coef_lasso <- data.frame(Variable =coef_lasso,

LASSO = lasso_coef)
coefs_lasso <- c("per.cap.income3", coef_lasso$Variable[-1], "region")
cdi_lasoo <- cdi[,coefs_lasso]
reg3_lasso_coef <- lm(per.cap.income3~., data = cdi_lasoo)

cdi_coefs <- data.frame(Variable = names(reg3$coefficients),
Regression = unname(coef(reg3))) %>%

full_join(data.frame(Variable = names(coef(reg3_stepaic)),
StepAIC = unname(coef(reg3_stepaic)))) %>%

full_join(data.frame(Variable = names(coef_all_subsets),
All.subsets = unname(coef_all_subsets))) %>%

full_join(coef_lasso)

## Joining, by = "Variable"
## Joining, by = "Variable"
## Joining, by = "Variable"
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Table 3: Coefficients for all the regression models

Variable Regression StepAIC All.subsets LASSO
(Intercept) 8.2796428896 8.2920091903 8.1939523851 8.82406577
land.area -0.0350811881 -0.0345393452 -0.0351289003 -0.02702814
pop.18_34 2.5296098723 2.5335347541 3.1569371942 1.56335564
pop.65_plus 0.0444645424 0.0468898414 NA 0.04573100
doctors 0.0403910313 0.0491431016 0.0508781315 0.06118158
hosp.beds 0.0103636165 NA NA NA
pct.hs.grad -0.0000003493 -0.0000003476 -0.0000003308 NA
pct.bach.deg 0.3205310002 0.3155843119 0.3053851622 0.17673355
pct.below.pov -0.2434105672 -0.2403550928 -0.2309455770 -0.20128458
pct.unemp 0.0638065575 0.0629141347 0.0541136732 0.02082006
regionNE -0.0262517681 -0.0270360269 NA NA
regionS -0.0511571376 -0.0532674234 -0.0486149747 NA
regionW 0.0008576372 -0.0041652627 NA NA
crime_rate 0.2892592844 0.2994169182 0.3317425153 NA

The models for the stepwise and all subsets methods are compared in the following chunk of code.

#comparing the subsetaic and allsubsets

summary(reg3_stepaic)

##
## Call:
## lm(formula = per.cap.income3 ~ land.area + pop.18_34 + pop.65_plus +
## doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## region + crime_rate, data = cdi_final)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.308172 -0.045235 0.002948 0.045195 0.283228
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.292e+00 1.639e-01 50.602 < 2e-16 ***
## land.area -3.454e-02 5.530e-03 -6.246 1.02e-09 ***
## pop.18_34 2.534e+00 4.195e-01 6.039 3.37e-09 ***
## pop.65_plus 4.689e-02 2.037e-02 2.301 0.021852 *
## doctors 4.914e-02 5.179e-03 9.488 < 2e-16 ***
## pct.hs.grad -3.476e-07 7.145e-08 -4.864 1.62e-06 ***
## pct.bach.deg 3.156e-01 2.593e-02 12.171 < 2e-16 ***
## pct.below.pov -2.404e-01 1.281e-02 -18.760 < 2e-16 ***
## pct.unemp 6.291e-02 1.708e-02 3.684 0.000259 ***
## regionNE -2.704e-02 1.355e-02 -1.995 0.046640 *
## regionS -5.327e-02 1.231e-02 -4.326 1.89e-05 ***
## regionW -4.165e-03 1.458e-02 -0.286 0.775299
## crime_rate 2.994e-01 1.014e-01 2.953 0.003321 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
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## Residual standard error: 0.08273 on 427 degrees of freedom
## Multiple R-squared: 0.8442, Adjusted R-squared: 0.8399
## F-statistic: 192.9 on 12 and 427 DF, p-value: < 2.2e-16

aux <- names(coef_all_subsets)[-1]
aux <- aux[!startsWith(aux,"region")]
aux <- c(aux, "per.cap.income3", "region")
aux <- cdi_final[,aux]

reg3_all_subsets <- lm(per.cap.income3~., data=aux)
summary(reg3_all_subsets)

##
## Call:
## lm(formula = per.cap.income3 ~ ., data = aux)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.32708 -0.04415 0.00008 0.04476 0.28592
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.192e+00 1.588e-01 51.576 < 2e-16 ***
## land.area -3.521e-02 5.549e-03 -6.346 5.65e-10 ***
## pop.18_34 3.158e+00 3.217e-01 9.817 < 2e-16 ***
## doctors 5.172e-02 5.082e-03 10.178 < 2e-16 ***
## pct.hs.grad -3.662e-07 7.135e-08 -5.132 4.35e-07 ***
## pct.bach.deg 3.164e-01 2.606e-02 12.142 < 2e-16 ***
## pct.below.pov -2.351e-01 1.267e-02 -18.556 < 2e-16 ***
## pct.unemp 6.080e-02 1.714e-02 3.547 0.000432 ***
## crime_rate 2.937e-01 1.019e-01 2.883 0.004134 **
## regionNE -2.104e-02 1.336e-02 -1.574 0.116167
## regionS -5.649e-02 1.229e-02 -4.595 5.70e-06 ***
## regionW -7.021e-03 1.460e-02 -0.481 0.630875
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.08314 on 428 degrees of freedom
## Multiple R-squared: 0.8423, Adjusted R-squared: 0.8383
## F-statistic: 207.8 on 11 and 428 DF, p-value: < 2.2e-16

anova(reg3_stepaic, reg3_all_subsets)

## Analysis of Variance Table
##
## Model 1: per.cap.income3 ~ land.area + pop.18_34 + pop.65_plus + doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## region + crime_rate
## Model 2: per.cap.income3 ~ land.area + pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + crime_rate + region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 427 2.9224
## 2 428 2.9587 -1 -0.036248 5.2962 0.02185 *
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## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

After choosing the best model with variable selection, it was worth trying to see if interacting the selected
variables with region could potentially benefit the model. The mmplots show that some variables have room
for improvement in terms of their fitting, so a model with interactions will be tried to be fitted.

#mmplot(reg3_all_subsets, inc.legend = FALSE)

An all-interaction model proved to be a better fit than the model with no interactions, so in order to
develop a more understandable model, some interactions may be discarded to still get a good fit. The
summary suggests that the variables that have significant coefficient in their interactions with region are:
pct.hs.grad, pct.below.pov, and pct.unemp, so a model considering some, or all, of those could be
considered.

reg3_all_subsets_int <- lm(per.cap.income3~.*region, data=aux)

summary(reg3_all_subsets_int)

##
## Call:
## lm(formula = per.cap.income3 ~ . * region, data = aux)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.258821 -0.044358 -0.005134 0.042640 0.279721
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.975e+00 3.921e-01 20.341 < 2e-16 ***
## land.area -2.214e-02 1.554e-02 -1.425 0.154863
## pop.18_34 3.410e+00 8.025e-01 4.249 2.66e-05 ***
## doctors 5.124e-02 1.107e-02 4.627 4.99e-06 ***
## pct.hs.grad -3.698e-08 1.898e-07 -0.195 0.845601
## pct.bach.deg 2.350e-01 6.476e-02 3.629 0.000321 ***
## pct.below.pov -1.675e-01 2.750e-02 -6.089 2.65e-09 ***
## pct.unemp 9.795e-02 3.275e-02 2.991 0.002951 **
## crime_rate 8.842e-02 1.689e-01 0.524 0.600868
## regionNE -7.089e-01 5.876e-01 -1.206 0.228362
## regionS -1.870e-02 4.491e-01 -0.042 0.966808
## regionW 9.417e-01 5.723e-01 1.646 0.100644
## land.area:regionNE 6.010e-04 2.106e-02 0.029 0.977250
## land.area:regionS -2.055e-02 1.785e-02 -1.151 0.250289
## land.area:regionW -5.620e-03 1.871e-02 -0.300 0.764087
## pop.18_34:regionNE 1.336e+00 1.162e+00 1.150 0.250838
## pop.18_34:regionS 5.421e-01 9.270e-01 0.585 0.558979
## pop.18_34:regionW -1.320e+00 1.137e+00 -1.161 0.246338
## doctors:regionNE -4.180e-03 1.543e-02 -0.271 0.786600
## doctors:regionS -7.987e-03 1.408e-02 -0.567 0.570857
## doctors:regionW -7.561e-03 1.628e-02 -0.464 0.642648
## pct.hs.grad:regionNE -2.880e-07 2.591e-07 -1.111 0.267026
## pct.hs.grad:regionS -2.328e-07 2.223e-07 -1.047 0.295695
## pct.hs.grad:regionW -8.713e-07 2.447e-07 -3.561 0.000413 ***
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## pct.bach.deg:regionNE 1.469e-01 9.520e-02 1.543 0.123568
## pct.bach.deg:regionS 9.146e-02 7.652e-02 1.195 0.232702
## pct.bach.deg:regionW 1.253e-01 8.416e-02 1.489 0.137283
## pct.below.pov:regionNE -4.042e-02 3.862e-02 -1.047 0.295944
## pct.below.pov:regionS -4.532e-02 3.435e-02 -1.319 0.187832
## pct.below.pov:regionW -2.281e-01 4.799e-02 -4.754 2.78e-06 ***
## pct.unemp:regionNE -1.746e-02 5.342e-02 -0.327 0.743936
## pct.unemp:regionS -1.488e-01 4.623e-02 -3.219 0.001391 **
## pct.unemp:regionW -3.874e-02 4.835e-02 -0.801 0.423451
## crime_rate:regionNE 2.664e-01 2.546e-01 1.046 0.296005
## crime_rate:regionS 4.407e-01 2.517e-01 1.751 0.080709 .
## crime_rate:regionW 4.822e-01 4.164e-01 1.158 0.247538
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.07832 on 404 degrees of freedom
## Multiple R-squared: 0.8679, Adjusted R-squared: 0.8565
## F-statistic: 75.85 on 35 and 404 DF, p-value: < 2.2e-16

anova(reg3_all_subsets, reg3_all_subsets_int)

## Analysis of Variance Table
##
## Model 1: per.cap.income3 ~ land.area + pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + crime_rate + region
## Model 2: per.cap.income3 ~ (land.area + pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + crime_rate + region) *
## region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 428 2.9587
## 2 404 2.4780 24 0.48068 3.2653 6.29e-07 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Analyzing the model with interactions for the three variables and also the models discarding one of them,
it looks like the best model, compared to the base model with no interaction, includes interaction with all
three variables.

reg3_all_subsets_int <- lm(per.cap.income3~.+ pct.below.pov*region+pct.unemp*region, data=aux)

summary(reg3_all_subsets_int)

##
## Call:
## lm(formula = per.cap.income3 ~ . + pct.below.pov * region + pct.unemp *
## region, data = aux)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33018 -0.04524 -0.00243 0.04518 0.28445
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.945e+00 1.603e-01 49.552 < 2e-16 ***
## land.area -3.088e-02 5.554e-03 -5.561 4.78e-08 ***
## pop.18_34 3.382e+00 3.182e-01 10.629 < 2e-16 ***
## doctors 5.060e-02 4.977e-03 10.168 < 2e-16 ***
## pct.hs.grad -3.738e-07 7.255e-08 -5.152 3.96e-07 ***
## pct.bach.deg 3.219e-01 2.634e-02 12.218 < 2e-16 ***
## pct.below.pov -2.035e-01 2.004e-02 -10.157 < 2e-16 ***
## pct.unemp 1.049e-01 2.588e-02 4.054 5.99e-05 ***
## crime_rate 2.943e-01 9.907e-02 2.970 0.00314 **
## regionNE 1.047e-01 7.984e-02 1.311 0.19051
## regionS 2.692e-01 6.263e-02 4.299 2.13e-05 ***
## regionW 1.664e-01 6.808e-02 2.444 0.01495 *
## pct.below.pov:regionNE -3.068e-02 2.653e-02 -1.157 0.24812
## pct.below.pov:regionS -2.285e-02 2.287e-02 -0.999 0.31834
## pct.below.pov:regionW -9.979e-02 3.474e-02 -2.872 0.00428 **
## pct.unemp:regionNE -3.745e-02 4.765e-02 -0.786 0.43239
## pct.unemp:regionS -1.590e-01 3.572e-02 -4.450 1.10e-05 ***
## pct.unemp:regionW 1.373e-02 3.859e-02 0.356 0.72210
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.08035 on 422 degrees of freedom
## Multiple R-squared: 0.8548, Adjusted R-squared: 0.8489
## F-statistic: 146.1 on 17 and 422 DF, p-value: < 2.2e-16

anova(reg3_all_subsets, reg3_all_subsets_int)

## Analysis of Variance Table
##
## Model 1: per.cap.income3 ~ land.area + pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + crime_rate + region
## Model 2: per.cap.income3 ~ land.area + pop.18_34 + doctors + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + crime_rate + region +
## pct.below.pov * region + pct.unemp * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 428 2.9587
## 2 422 2.7243 6 0.23439 6.0513 4.322e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

#mmplot(reg3_all_subsets_int, inc.legend = FALSE)

par(mfrow = c(2,2))
plot(reg3_all_subsets_int, which = 1)
plot(reg3_all_subsets_int, which = 2)
plot(reg3_all_subsets_int, which = 3)
plot(reg3_all_subsets_int, which = 5)
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