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Abstract: 

 
 The motivation of this study is to discover how average income per person is related to 

other variables associated with county’s economic, health and regions with a finalized statistical 

model. County demographic information (CDI) data for 440 of the most populous counties in the 

United States was obtained to conduct the research. Using multi linear regression, stepwise 

selections, LASSO and ANOVA tests, I compared and justified the models I obtained to get my 

final effective model. Based on my results, there happen to be clear linear relationships between 

average income per person and unemployment rates, degrees earned and other factors. These 

findings might need further adjustments because of possible associations, collinearity between 

predictors and lacking data from other states also affects the performance of final model. 

 

Introduction: 

 
 How much money can people living in the U.S. expect to earn across different counties 

and states? There’s is no simple answer to this question because there are many possible factors 

that potentially affect per capita income. To study for the possible factors that might affect per 

capita income, statistical models and methods are used to analyze data from various counties in 

the U.S. In addition, the study addresses the following problems: 

1. Are there any relationships between each pair of variables? What are the possible reasons 

that they are related? 

2. What does the crime and region from the data say about a theory that, if we ignore all 

other variables, per-capita income should be related to crime rate, and that this 

relationship may be different in different regions of the country (Northeast, North-central, 

South, and West)? How about crime rate per capita? 

3. What is the best model predicting per-capita income from the other variables? Among all 

models, which one is most clearly indicated by the data and most of interest in terms of 

social sciences? 

4. What is the impact of missing counties and states in the data when evaluating the model’s 

performance and the precision of our conclusion? 

 

With the utilization of statistical methods and CDI dataset, the following sections would 

address these problems in detail. 

 

Data: 

  
The CDI data we used in the study is taken from Kutneret al. (2005)1: It provides 

selected county demographic information (CDI) for 440 of the most populous counties in the 

United States. Each line of the data set has an identification number with a county name and state 



abbreviation and provides information on 14 variables for a single county. Counties with missing 

data were deleted from the data set. The information generally pertains to the years 1990 and 

1992. The definitions of the variables are given in the following table: 

 

 

 
Table 1: Variable definitions for CDI data  

Based on the output above, we generate a table of continuous variables, also as a 

description of important statistical values. Their minimum values, maximum values, median, 

mean, sd(standard deviation), 1st and 3rd quantile are displayed in the summary table.  

 

Table2: Description of important statistical values for continuous variables 



 
Table 3: Descriptive statistics for categorial variable region 

 

There are several variables with Mean substantially larger than Median (land.area, pop, 

doctors, hosp.beds, crimes, per.cap.income, and total.income), indicating possible right-skewing 

in their distribution. There are no variables with Mean substantially smaller than Median. In the 

table specially developed for the frequency of region variable, we also see some pattern. For the 

region variable (see technical appendix page2) it might be of some interest that the most counties 

are in the South (region ‘S’) and the least are in the west (region ‘W’). The low number of 

counties in the West could be indicative of a lack of sampling in the West, or it could be that 

counties are just larger (in land area) in the West, so there are fewer counties to sample from. 

Similarly, the high number of counties in the South could be indicative of over-sampling, or 

perhap the South simply has a lot of counties that cover only small land areas. 

From the frequency tables, we have further insight of the three categorial variables. It is 

apparent that there is not many duplicates or identical values in county names and the frequency 

of each name has a common range of 1 to 3, which stands for large variation regarding county 

locations. The frequency table of states has higher frequencies for each state's names, and even 

higher frequency for the four regions because there are only four regions in the dataset. 

In addition to the numerical values, there are categorial variables included in this dataset.  

 

 
Table4: Unique values of each variable 

 



State has 48 values which is normally plenty enough to affect the model we plan to 

develop in this study, but it is hard to investigate on the features of each state. Therefore, it might 

not be included in the models. County is a categorical variable with nearly as many unique 

values (373) as rows in the cdidata data frame (440). A little more exploration shows that if I 

combine county with state, I get 440 unique values: some counties in different states have the 

same name.  

I want to do some further data analysis by capturing univariate distributions using 

histograms as follow: 

 

 
Plot 1: Histograms on each variable 

 
 Based on the univariate table which is also known as histogram, It looks like the variables 

that will really need attention (because they are severely right-skewed) are land.area, pop, 

doctors, hosp.beds, crimes, tot.income, and maybe per.cap.income. 



 

 
Plot 2: Scatterplot of each variable 

 

The scatterplot also provides us with valuable information of this set of data. The best 

possibilities for predicting per.cap.income are the same variables we identified from the 

correlation matrix: pct.hs.grad, pct.bach.deg,pct.below.pov, and pct.unemp. The last plot shows 

how per.cap.income varies across the four regions of the country. There is a lot of overlap in the 

boxplots, but the Northeast and the West seem to be doing a little better than the North Central 

and South regions. 

After these initial investigations on the dataset, we are about to perform statistical 

methods to find our desired model and answer the rest of our research questions. 

 

 

Methods: 
  

To examine the first research question, I chose to do a visualization of correlation plot 

between each pair of variables from the dataset. The aim of developing a correlation plot is to 

check the potential correlation and collinearity that might appear between the predictors. 

To address the second research question regarding the relationship between per capita 

income and crimes along with regions, the first method I used was log-transforming the two 



numerical variables that do not look normal in the above histograms to get a better fit. After this, 

I fitted three linear regression models with interaction terms being in one of them. 

 Anova test was used to figure out whether the model with interaction terms would have a 

better performance over other models. The AIC value was also compared in each two of the 

models. 

 To answer the third research question, log-transformation was again used on the variables 

that needed to be transformed. I performed stepwise backward selection comparing the AIC and 

BIC values of all subsets. LASSO method was also used to further justify our final chosen 

model. Looking at the diagnostic plots and the marginal variable plots generated by above 

methods, the results are listed as follow. 

 

Results: 

 
 The results generated by the above methods are listed in this section.  

 

 
Plot 3: Correlation plot between variables 

 

We can make the following conclusions from the correlation matrix mentioned in the first 

method:  

• tot.income and pop are highly correlated (no surprise there)  

• both are reasonably highly correlated with crimes, hosp.beds and doctors  

• the three variables crimes, hosp.beds and doctors seem strongly correlated with one 

another 

• per.cap.income isn’t really highly correlated with anything, but the best possibilities 

seem to be pct.hs.grad, pct.bach.deg (postively correlated with per.cap.income) and 

pct.below.pov, pct.unemp (negatively correlated with per.cap.income); all four of these variables 

are moderately highly correlated with one another 

After performing log transformations, we have more normalized data which would help 

us in fitting the data. 



Fitting the six models (three with the original crimes value, three with the per capita 

crime ratio), we find that both the second model with log crimes/per capita crimes value and 

region has the best performance. (see appendix page 15-18) The second model has better 

performance than model 1 with a significant p-value. 

 

 
Table5: ANOVA result for percapita income w. crime+region models 

 

 
Table6: ANOVA result for percapita income w. per capita crime+region models 

 

 On the other hand, to further compare model2 and same model with per capita crimes, 

based on the AIC and BIC value, the second model with original crimes data as predictor has 

better performance with both smaller AIC and BIC values (see technical appendix page 18). 

We can interpret the model as follows: 

• All across the US, for every 1% increase in crimes, we expect a 0.07% increase in per-

capita income, om average (this increase is statistically significant, but is it practically 

significant?).  

• Different regions of the country have different baseline per-capita incomes however: In 

the NC region, the baseline salary is exp(9.19) = $9,798.65. In the NE it is exp(9.19+0.010) = 

$10,829.18, and so forth, so in the S it is $8,955.29, and in the W it is $9,228.02. All these region 

baselines are, according to the model, significantly different from the NC baseline.  

• according to the model, the level of salary varies with region in the US, but the way it is 

related to crime does not. 

 



 
Plot 4: Model diagnostic plots 

 

 The diagnostic plots (see technical appendix page 19) also indicate that the second model 

has the best performance compared with other models. 

 To examine the third research question, after performing necessary log transformations, 

we fit the model first using all subsets and look at the complete model’s BIC values while 

selecting the predictors with lowest BIC values to compose a best model (see technical appendix 

page 20).  

 
Table7: Coefficients of our final model 



 

 According to the model summary, all p values are significant. After this, we also look at 

diagnostic plots and marginal model plots to justify our choice (see tech appendix page 21). 

 

  
Plot5: Marginal model plots of final model 

 

 The marginal plots and diagnostic plots look very good. The VIF table also proved the 

model is a good fit. To investigate the importance of region, we take region as a factor in our 

model and perform the above selection (see tech appendix page 20-22). 

 Here are our findings on the final model: 

• For every 1% increase in a county’s land area, there is a 0.03% decrease in expected 

per-capita income. 27 (We might conjecture that this could be due to an urban-rural contrast: 

rural counties tend to be bigger than urban ones).  

• For every 1% increase in the number of doctors in a county, the expected per-capita 

income increases by about 0.06%. That makes sense; doctors are well-paid and could be big 

contributors to the per-capita average income.  

• For every 1 percentage point increase in the percent of the population aged 18–34, there 

is an expected 2% drop in per-capita income. (We might conjecture that this is because 18–34-

year-olds are not at peak earning capacity yet and so perhaps their lower incomes drags down the 

per-capita average).  

• percent of the population that are high school graduates doesn’t have much effect, 

except in the South, where a one percentage point increase in graduates induces an expected 2% 

decrease in per-capita income. It might depend on whether college graduates are counted as a 

subset of hs graduates rather than counting them separately, or it might have something to do 

with some unique feature of economics in the southern region of the US. 

 • In the main effect for region, and in several of the interactions for region, the West 

shows up as deviating significantly from the North Central part of the US. 

 



In BIC-based model, there are two interactions that appear to be statistically significant, 

but their practical effect is almost zero on per-capita income. The story is similar in the AIC 

model, which has many more interaction terms, but only two with an effect as large as 0.01. 

Although both interactions models produced big jumps in AIC and BIC (much bigger than 10!), 

the improvement in R2 and R2 adj is small, for all the terms that have been added to the models. 

For these reasons I might be willing to discuss these interactions with the social scientist, but I 

am disinclined to include them in a final model. If I stick with the model found by all-subsets 

and stepAIC with a BIC penalty, then my conclusions about adding interactions with region will 

also be the same, and I will once again be led to all.subsets.01.final.with.some.region, which has 

some interesting and mostly-interpretable structure. 

Stepwise selection and LASSO are much the same as above method: we fit a complete 

model first and then use stepAIC or BIC selection to take out unnecessary variables (see 

technical appendix 22-24) while making ANOVA comparisons. 

The final model returned was basically the same as first selection. Depending on which 

lambda value we use, the LASSO model would have different variables (see technical appendix 

24-26). 

 

 
Plot6: LASSO visualization 

 

Discussion: 

 
The first research question targets the possible correlation in CDI data, and we see that 

there is solid reason to concern about collinearity. Observations suggest that we may run into 

multi-collinearity problems when we start fitting models, but we could still make acceptable 

models after performing some transformations and adjustments to predictors. 

To answer the second question: are there potential relationships between per capita 

income and crime rates/regions, our final model would be the modelb1, with response variable 

with crime and region. First, we look at the model summaries, modelb1 has an adjusted r-squared 

value of 0.09288. The second modelb2 which takes interaction term into consideration does not 

return any significant p-values in those interactions, which implies non-significance of these 

interaction terms. The adjusted r-squared value is 0.09543 which is a little bit higher than 

modelb1.If we look at the diagnostic plots for the two models, we see that the residual plots have 

a random pattern. The normal QQ plot looked fine with most points lying on the normal 



regression line. There is slight downward pattern in the scale-location plot which indicates 

violation in constant variance. Three points stand out in leverage points which might be outliers. 

When we transform the crimes per capita as predictor, there is not so much difference than 

model b1 and b2 because the adjusted r-squared value did not improve. This might be caused by 

the reason that crime does not do much contribution to response variable. If we look at the 

diagnostic plots for the two models, we see that the residual plots have a random pattern. The 

normal QQ plot looked fine with most points lying on the normal regression line. There are 

slight downward pattern in the scale-location plot which indicates violation in constant variance. 

Three points stand out in leverage points which might be outliers.   

 We construct ANOVA table to compare model b1 and b2, model b3 and b4. Both test 

generate insignificant p-values which failed to reject the null hypothesis that the compared 

models has no difference in performance. There is no preference towards model containing 

interaction term over model without interaction. Therefore, we tend to choose model that is not 

overfitting, and the adjusted r-squared value is higher in model1 compared to model3.   

 As a conclusion, we chose modelb1 as our final model. The final model indicates that 

crime_per_capita has no difference than crimes itself, and neither crimes nor crime_per_capita 

does not contribute to the per capita income too much. Per one unit of crime per capita would 

result in 5773.2 increase in per capita income but the predictor is still not significant.In modelb1, 

the interpretation for coefficient is: With every unit of increase in regionNE, there is expected to 

be 2286 increase in per capita income. With every unit of increase in regionS, there is expected 

to be -860.6 increase in per capita income. With every unit of increase in regionW, there is 

expected to be -142.8 increase in per capita income. With every unit of increase in crimes, there 

is expected to be 8915 increases in per capita income. If all predictors happen to be zero, per 

capita income will be 1811.   

To answer the third question of choosing an appropriate final model with per capita 

income as the response variable, we look at the above results generated by stepwise selection. 

Based on AIC selection, our final model contains seven predictors regarding the prediction of log 

per capita income. The added variable plots also indicate the importance of adding new variable 

in terms of choosing these predictors to compose the final model.   

Based on the interaction terms check, we found out that there are three interaction terms 

that matter. Therefore, in the final model, we decided to take two of these interaction variables 

into consideration. 

Here are a few of the model’s pluses and minuses, and some tradeoffs:  

• Pluses:  

– The model is parsimonious, and most of the estimated coefficients have the expected 

sign.  

– The model is confirmed by stepwise and lasso procedures.  

– Those procedures also found more complex models with somewhat better fit, but 

improvements in fit seemed small compared to the added complexity of the model.  

– All of the variables are either in their original scale, or the have been replaced with their 

logarithm. This facilitates explaining the models to anyone who is interested in and 

knowledgeable about the social science & economics but less knowledgeable about technical 

matters.  

• Minuses:  



– The coefficient on pct.unemp seems to go the wrong way, and the coefficient 

on ’pct.hs.grad‘ is quite small, statistically and practically (it remains in the model because there 

is a noticable interaction that it participates in).  

– The residual diagnostic plots are just OK.  The fact that stepwise regression found some 

well-fitting models with interactions between continuous variables suggests exploring those 

more complex models in the future. 

 – I did not explore the state variable. Some of the relationship between these 

demographic variables and per capita income might be explainable in terms of varying economic 

policy from one state to the next. (If one includes state in the model, one could take out region 

because the two are perfectly collinear (states are entirely nested within regions). 

Finally, it would be very useful to have additional data to compare some of the models 

we found. We are using reasonable methods for variable selection, but since it is all within-

sample (our entire data set is our training sample), there is ample room for overfitting noise in 

the data. Some of our inferences about which variables to leave in or take out may be based on 

overly optimistic standard error estimates. 

 In our chosen final model (as an answer to question 3), we have apparent tradeoff that, 

after adding the interaction variables, not all the variables in the model appeared to be important 

(having a p-value larger than 0.05). However, based on the statistical meaning of the model and 

social meaning of model, I still decided to include these two interaction variables because the 

interaction terms made each single predictor more significant. This could be proven based on the 

summary statistics, with most significant terms having p-value approaching zero and a high 

adjusted r-squared value of 0.8415 which is 84.15% variation explained. Also, our final model 

has lowest AIC value. If we look at the diagnostic plots for the two models, we see that the 

residual plots have a random pattern which is good. The normal QQ plot looked fine with most 

points lying on the normal regression line. There are no downward or upward pattern in the 

scale-location plot which indicates no violation in constant variance. There are also no obvious 

outliers in our final model.   

In social terms of meaning, our final model indicates that there is an apparent positive 

linear relationship between per capita income and per capita unemployment, one unit of 

unemployment could cause exp (0.106094) unit of change in per capita income. Also, other 

estimation coefficient would mean the same thing when talking about positive relationship (per 

capita bachelor’s degree, doctors, population 65_plus, and the interaction term of per capita 

unemployment with region S). The negative linear relationship between per capita income and 

per capita below poverty, population aged between 18 and 34 and land area could be identified 

as follow: one unit increase of per capita below poverty level could cause exp (0.1971) increase 

in per capita income.   

The study still needs adjustments because there are still some apparent flaws that 

revealed by the current methods. First, we only performed log transformation which might not be 

enough for the study to be universal. Box-cox transformations and ridge models could be fitted 

to this study and see the difference. In addition, we intentionally excluded the states and county 

variables when fitting the model. There could be some interactions between them and other 

predictors that potentially affect the result. Finally, the limited data size prevents us from 

exploring further possible associations and relationships between our response variable and the 

predictor. 

As to address the final problem in this study, we know that there are only 48 states 

presented in the dataset and only 373 out of 3000 counties represented in the dataset.  Based on 



what we found in above methods, we could tell that the missing interactions and correlations 

could be a huge problem in investigating per capita income. Based on the published article of 

Association of Household Income with Life Expectancy and Cause-Specific Mortality in 

Norway (2005-2015), we see that there are also other important factors missing along with 

regional data. Therefore, it is reasonable to worry about the missing data and the impact brought 

to our final model decision. A possible way of solving this problem is to expand our dataset 

while gathering more data from reliable sources to perform above statistical analysis. 
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Data:

#Summary table:
summary(cdi)

## id county state land.area
## Min. : 1.0 Length:440 Length:440 Min. : 15.0
## 1st Qu.:110.8 Class :character Class :character 1st Qu.: 451.2
## Median :220.5 Mode :character Mode :character Median : 656.5
## Mean :220.5 Mean : 1041.4
## 3rd Qu.:330.2 3rd Qu.: 946.8
## Max. :440.0 Max. :20062.0
## pop pop.18_34 pop.65_plus doctors
## Min. : 100043 Min. :16.40 Min. : 3.000 Min. : 39.0
## 1st Qu.: 139027 1st Qu.:26.20 1st Qu.: 9.875 1st Qu.: 182.8
## Median : 217280 Median :28.10 Median :11.750 Median : 401.0
## Mean : 393011 Mean :28.57 Mean :12.170 Mean : 988.0
## 3rd Qu.: 436064 3rd Qu.:30.02 3rd Qu.:13.625 3rd Qu.: 1036.0
## Max. :8863164 Max. :49.70 Max. :33.800 Max. :23677.0
## hosp.beds crimes pct.hs.grad pct.bach.deg
## Min. : 92.0 Min. : 563 Min. :46.60 Min. : 8.10
## 1st Qu.: 390.8 1st Qu.: 6220 1st Qu.:73.88 1st Qu.:15.28
## Median : 755.0 Median : 11820 Median :77.70 Median :19.70
## Mean : 1458.6 Mean : 27112 Mean :77.56 Mean :21.08
## 3rd Qu.: 1575.8 3rd Qu.: 26280 3rd Qu.:82.40 3rd Qu.:25.32
## Max. :27700.0 Max. :688936 Max. :92.90 Max. :52.30
## pct.below.pov pct.unemp per.cap.income tot.income
## Min. : 1.400 Min. : 2.200 Min. : 8899 Min. : 1141
## 1st Qu.: 5.300 1st Qu.: 5.100 1st Qu.:16118 1st Qu.: 2311
## Median : 7.900 Median : 6.200 Median :17759 Median : 3857
## Mean : 8.721 Mean : 6.597 Mean :18561 Mean : 7869
## 3rd Qu.:10.900 3rd Qu.: 7.500 3rd Qu.:20270 3rd Qu.: 8654
## Max. :36.300 Max. :21.300 Max. :37541 Max. :184230
## region
## Length:440
## Class :character
## Mode :character
##
##
##
#Calculating the sd value of each predictor:
sd(cdi$id)

1



Table 1:

id county state land.area pop pop.18_34 pop.65_plus doctors hosp.beds crimes
1 Los_Angeles CA 4060 8863164 32.1 9.7 23677 27700 688936
2 Cook IL 946 5105067 29.2 12.4 15153 21550 436936
3 Harris TX 1729 2818199 31.3 7.1 7553 12449 253526
4 San_Diego CA 4205 2498016 33.5 10.9 5905 6179 173821
5 Orange CA 790 2410556 32.6 9.2 6062 6369 144524
6 Kings NY 71 2300664 28.3 12.4 4861 8942 680966

Table 2:

id pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income tot.income region
1 70.0 22.3 11.6 8.0 20786 184230 W
2 73.4 22.8 11.1 7.2 21729 110928 NC
3 74.9 25.4 12.5 5.7 19517 55003 S
4 81.9 25.3 8.1 6.1 19588 48931 W
5 81.2 27.8 5.2 4.8 24400 58818 W
6 63.7 16.6 19.5 9.5 16803 38658 NE

sd(cdi$land.area)
sd(cdi$pop)
sd(cdi$pop.18_34)
sd(cdi$pop.65_plus)
sd(cdi$doctors)
sd(cdi$hosp.beds)
sd(cdi$crimes)
sd(cdi$pct.hs.grad)
sd(cdi$pct.bach.deg)
sd(cdi$pct.below.pov)
sd(cdi$pct.unemp)
sd(cdi$per.cap.income)
sd(cdi$tot.income)

#Further data summary:
head(cdi[,1:10]) %>% kbl(booktabs=T,caption=" ") %>% kable_classic()

head(cdi[,c(1,11:17)]) %>% kbl(booktabs=T,caption=" ") %>% kable_classic()

#Check unique values:
apply(cdi,2,function(x) {length(unique(x))}) %>%
kbl(booktabs=T,col.names="unique values",caption=" ") %>%
kable_classic(full_width=F)

#Table for categorial variable region:
tmp <- rbind(with(cdi,table(region)))
row.names(tmp) <- "Freq"
tmp %>% kbl(booktabs=T,caption=" ") %>% kable_classic(full_width=F)

#Getting the frequency table:
count(cdi,'county')
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Table 3:

unique values
id 440
county 373
state 48
land.area 384
pop 440
pop.18_34 149
pop.65_plus 137
doctors 360
hosp.beds 391
crimes 437
pct.hs.grad 223
pct.bach.deg 220
pct.below.pov 155
pct.unemp 97
per.cap.income 436
tot.income 428
region 4

Table 4:

NC NE S W
Freq 108 103 152 77

3



#Check for NA values(There's none according to the outcome):
apply(cdi,2,function(x) any(is.na(x)) )

## id county state land.area pop
## FALSE FALSE FALSE FALSE FALSE
## pop.18_34 pop.65_plus doctors hosp.beds crimes
## FALSE FALSE FALSE FALSE FALSE
## pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income
## FALSE FALSE FALSE FALSE FALSE
## tot.income region
## FALSE FALSE
#Plots for the data:
attach(cdi)
pairs(tot.income ~per.cap.income+pct.unemp+pct.below.pov+pct.bach.deg+pct.hs.grad+crimes+hosp.beds+doctors+pop.65_plus+pop.18_34+pop+land.area)
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boxplot(cdi[,4:16])
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#Check the normalities:
par(mfrow = c(2,5))
hist(cdi$tot.income)
hist(cdi$per.cap.income)
hist(cdi$pct.unemp)
hist(cdi$pct.below.pov)
hist(cdi$pct.bach.deg)
hist(cdi$pct.hs.grad)
hist(cdi$crimes)
hist(cdi$hosp.beds)
hist(cdi$doctors)
hist(cdi$pop.65_plus)
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cdinumeric <- cdi[,-c(1,2,3,17)]
cdigood <- data.frame(cdinumeric,region=cdi$region)
scatter.builder <- function(df,yvar="per.cap.income") {
result <- NULL
y.index <- grep(yvar,names(df))
for (xvar in names(df)[-y.index]) {
d <- data.frame(xx=df[,xvar],yy=df[,y.index])
if(mode(df[,xvar])=="numeric") {
p <- ggplot(d,aes(x=xx,y=yy)) + geom_point() +
ggtitle("") + xlab(xvar) + ylab(yvar)

} else {
p <- ggplot(d,aes(x=xx,y=yy)) + geom_boxplot(notch=F) +
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ggtitle("") + xlab(xvar) + ylab(yvar)
}

result <- c(result,list(p))
}

return(result)
}
grid.arrange(grobs=scatter.builder(cdigood))
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Methods and Results:

#Correlation plot:
cdinumeric <- cdi[,-c(1,2,3,17)]
corgraph <- function(df) {
cormat <- cor(df)
melted_cormat <- melt(cormat) ## need library(reshape2) for this...
ggplot(data = melted_cormat, aes(x=Var1, y=Var2, fill=value)) +
geom_tile() +
theme(axis.text.x = element_text(angle = 45,vjust=0.9,hjust=1)) +
scale_fill_gradient2(low="red",mid="white",high="blue")
}
corgraph(cdinumeric)
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Research Question 1:
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#Trasform the data to make it look normal:
cdilogs <- cdigood
skewed.vars <- c("land.area", "pop", "doctors", "hosp.beds", "crimes", "tot.income","per.cap.income")
for (tmp in skewed.vars) {
loc <- grep(paste("ˆ",tmp,"$",sep=""),names(cdilogs))
cdilogs[,loc] <- log(cdilogs[,loc])
names(cdilogs)[loc] <- paste("log.",names(cdilogs)[loc],sep="")

}

hist.builder <- function(df) {
result <- NULL
for (var in names(df)) {
d <- data.frame(dd=df[,var])
if(mode(df[,var])=="numeric") {
p <- ggplot(d,aes(x=dd)) + geom_histogram() +
ggtitle(var) + xlab("")

} else {
p <- ggplot(d,aes(x=dd)) + geom_bar() +
ggtitle(var) + xlab("")

}
result <- c(result,list(p))

}
return(result)

}
grid.arrange(grobs=hist.builder(cdilogs))
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Research Question 2:
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corgraph(cdilogs[,-grep("region",names(cdilogs))])
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#Three models that are compared using ANOVA
modelb0 <- lm(log.per.cap.income ~ log.crimes,data=cdilogs)
modelb1 <- lm(log.per.cap.income ~ log.crimes + region,data=cdilogs)
modelb2 <- lm(log.per.cap.income ~ log.crimes * region,data=cdilogs)
anova(modelb0,modelb1,modelb2)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.crimes
## Model 2: log.per.cap.income ~ log.crimes + region
## Model 3: log.per.cap.income ~ log.crimes * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 17.271
## 2 435 14.949 3 2.32194 22.4823 1.523e-13 ***
## 3 432 14.872 3 0.07678 0.7434 0.5266
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelb00 <- lm(log.per.cap.income ~ log.per.cap.crimes,data=cdilogs)
modelb3 <- lm(log.per.cap.income ~ log.per.cap.crimes + region,data=cdilogs)
modelb4 <- lm(log.per.cap.income ~ log.per.cap.crimes * region,data=cdilogs)
anova(modelb00,modelb3,modelb4)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.per.cap.crimes
## Model 2: log.per.cap.income ~ log.per.cap.crimes + region
## Model 3: log.per.cap.income ~ log.per.cap.crimes * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 18.697
## 2 435 16.952 3 1.74465 14.8407 3.263e-09 ***
## 3 432 16.928 3 0.02408 0.2048 0.893
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Choose best model
AIC(modelb1,modelb3)

## df AIC
## modelb1 6 -227.4746
## modelb3 6 -172.1347
BIC(modelb1,modelb3)

## df BIC
## modelb1 6 -202.9539
## modelb3 6 -147.6140
round(coef(summary(modelb1)),2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.19 0.08 115.13 0.00
## log.crimes 0.07 0.01 7.92 0.00
## regionNE 0.10 0.03 4.09 0.00
## regionS -0.09 0.02 -3.68 0.00
## regionW -0.06 0.03 -1.96 0.05
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#Diagnostic plots:
oldmar <- par()$mar
par(mfrow=c(6,4))
par(mar=c(2,2,2,2))
invisible(lapply(list(modelb0,modelb1,modelb2,modelb00,modelb3,modelb4),
function(x) plot(x,cex.main=0.5)))
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omit <- c(grep("log.pop",names(cdilogs)),grep("log.tot.income",names(cdilogs)))
cdilogred <- cdilogs[,-omit]
cdilogred.cont <- cdilogred[,-grep("region",names(cdilogred))]
names(cdilogred.cont)

Research Question 3:

## [1] "log.land.area" "pop.18_34" "pop.65_plus"
## [4] "log.doctors" "log.hosp.beds" "log.crimes"
## [7] "pct.hs.grad" "pct.bach.deg" "pct.below.pov"
## [10] "pct.unemp" "log.per.cap.income"
all.subsets.01 <- regsubsets(per.cap.income ~.,data=cdilogred.cont,nvmax=10)
all.subsets.01.summary <- summary(all.subsets.01)
print(best.model <- which.min(all.subsets.01.summary$bic))

## [1] 7
coef(all.subsets.01,best.model)
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## (Intercept) pop.18_34 log.hosp.beds pct.hs.grad
## -170945.50317 -28.67957 -217.47742 -29.89116
## pct.bach.deg pct.below.pov pct.unemp log.per.cap.income
## 61.99245 53.58504 40.46374 19584.61600
tmp <- cdilogred.cont[,all.subsets.01.summary$which[best.model,][-1]]
all.subsets.01.final.model <- lm(log.per.cap.income ~ .,data=tmp)
summary(all.subsets.01.final.model)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.048956045 0.1015621774 98.943881 2.087901e-299
## pop.18_34 -0.013464995 0.0011914046 -11.301781 3.942244e-26
## log.hosp.beds 0.061713255 0.0045254164 13.637033 1.760463e-35
## pct.hs.grad -0.006519522 0.0011306497 -5.766173 1.543887e-08
## pct.bach.deg 0.019347874 0.0009060899 21.353150 1.242875e-69
## pct.below.pov -0.026977105 0.0013448835 -20.059065 9.001190e-64
## pct.unemp 0.009230576 0.0023171894 3.983522 7.964658e-05
vif(all.subsets.01.final.model)

## pop.18_34 log.hosp.beds pct.hs.grad pct.bach.deg pct.below.pov
## 1.406245 1.162743 3.548307 2.713120 2.212191
## pct.unemp
## 1.655289
par(mfrow=c(2,2))
plot(all.subsets.01.final.model)
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mmps(all.subsets.01.final.model)
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tmp <- cbind(tmp,region=cdilogred$region)
all.subsets.01.final.with.region <- lm(log.per.cap.income ~ .*region,data=tmp)
all.subsets.01.final.with.some.region <-update(all.subsets.01.final.with.region,
. ~ . - region:log.land.area -region:pop.18_34 - region:log.doctors)
summary(all.subsets.01.final.with.some.region)

##
## Call:
## lm(formula = log.per.cap.income ~ pop.18_34 + log.hosp.beds +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## region + log.hosp.beds:region + pct.hs.grad:region + pct.bach.deg:region +
## pct.below.pov:region + pct.unemp:region, data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.22996 -0.04697 -0.00359 0.04498 0.32685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.120027 0.285330 35.468 < 2e-16 ***
## pop.18_34 -0.015138 0.001198 -12.635 < 2e-16 ***
## log.hosp.beds 0.050030 0.010067 4.970 9.81e-07 ***
## pct.hs.grad -0.006270 0.003446 -1.819 0.069565 .
## pct.bach.deg 0.018593 0.002388 7.786 5.58e-14 ***
## pct.below.pov -0.024982 0.003874 -6.448 3.16e-10 ***
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## pct.unemp 0.017158 0.005156 3.328 0.000953 ***
## regionNE 0.133176 0.358821 0.371 0.710716
## regionS -0.332535 0.314030 -1.059 0.290249
## regionW 1.482059 0.422614 3.507 0.000503 ***
## log.hosp.beds:regionNE 0.007687 0.014259 0.539 0.590094
## log.hosp.beds:regionS 0.005009 0.012307 0.407 0.684217
## log.hosp.beds:regionW -0.002427 0.013981 -0.174 0.862266
## pct.hs.grad:regionNE -0.003748 0.004330 -0.865 0.387313
## pct.hs.grad:regionS 0.005332 0.003866 1.379 0.168608
## pct.hs.grad:regionW -0.016794 0.004711 -3.565 0.000406 ***
## pct.bach.deg:regionNE 0.007382 0.003117 2.369 0.018308 *
## pct.bach.deg:regionS -0.002528 0.002677 -0.944 0.345531
## pct.bach.deg:regionW 0.006398 0.003035 2.108 0.035625 *
## pct.below.pov:regionNE -0.001302 0.005338 -0.244 0.807446
## pct.below.pov:regionS 0.006831 0.004242 1.610 0.108120
## pct.below.pov:regionW -0.018081 0.005713 -3.165 0.001665 **
## pct.unemp:regionNE -0.007742 0.007853 -0.986 0.324727
## pct.unemp:regionS -0.024036 0.006884 -3.491 0.000532 ***
## pct.unemp:regionW -0.019897 0.007191 -2.767 0.005911 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08141 on 415 degrees of freedom
## Multiple R-squared: 0.8534, Adjusted R-squared: 0.8449
## F-statistic: 100.6 on 24 and 415 DF, p-value: < 2.2e-16
#Stepwise regression:
stepwise.base <- lm(log.per.cap.income ~ .,data=cdilogred.cont)
## try to duplicate all-subsets with BIC
step.result.01.bic <- stepAIC(stepwise.base,
scope=list(lower = ~ 1, upper = ~ .),
k=log(dim(cdilogred.cont)[1]),
trace=F)
anova(all.subsets.01.final.model,step.result.01.bic)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ pop.18_34 + log.hosp.beds + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 433 3.3703
## 2 432 2.9051 1 0.46518 69.176 1.187e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
step.result.01.aic <- stepAIC(stepwise.base,
scope=list(lower = ~ 1, upper = ~ .),
k=2,
trace=F)
anova(all.subsets.01.final.model,step.result.01.aic)

## Analysis of Variance Table
##
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## Model 1: log.per.cap.income ~ pop.18_34 + log.hosp.beds + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + pop.65_plus +
## log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 433 3.3703
## 2 431 2.8748 2 0.49549 37.143 1.31e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Check if interaction term is important
step.result.02.bic <- stepAIC(stepwise.base,scope=list(lower = ~ 1, upper = ~ .ˆ2),k=log(dim(cdilogred.cont)[1]), trace=F)
step.result.02.aic <- stepAIC(stepwise.base,scope=list(lower = ~ 1, upper = ~ .ˆ2),k=2, trace=F)
comparison <- cbind(
AIC(all.subsets.01.final.model,step.result.01.aic,step.result.01.bic,
step.result.02.aic,step.result.02.bic),
BIC(all.subsets.01.final.model,step.result.01.aic,step.result.01.bic,
step.result.02.aic,step.result.02.bic))
comparison <- comparison[,-3]
names(comparison) <- c("df","AIC","BIC")
comparison %>% kbl(booktabs=T) %>% kable_classic()

df AIC BIC
all.subsets.01.final.model 8 -878.9204 -846.2262
step.result.01.aic 10 -944.8883 -904.0206
step.result.01.bic 9 -942.2740 -905.4931
step.result.02.aic 27 -1064.7253 -954.3824
step.result.02.bic 12 -1020.6026 -971.5613

#Lasso:
loc <- grep("log.per.cap.income",names(cdilogred.cont))
y <- cdilogred.cont[,loc]
X <- apply(as.matrix(cdilogred.cont[,-loc]),2,function(x) rescale(x,"full"))
Xnames <- dimnames(X)[[2]]
lasso.result <- glmnet(X,y)
plot(lasso.result,xvar="lambda",xlim=c(-9,0))
abline(h=0,lty=2)
legend('bottomright',lty=1,col=1:length(Xnames),legend=Xnames,cex=0.75)
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cv.lasso.result <- cv.glmnet(X,y)
plot(cv.lasso.result)
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c(lambda.1se=cv.lasso.result$lambda.1se,lambda.min=cv.lasso.result$lambda.min)

## lambda.1se lambda.min
## 0.0078151963 0.0005775994
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tmp <- cbind(coef(cv.lasso.result,s=cv.lasso.result$lambda.min),
coef(cv.lasso.result,s=cv.lasso.result$lambda.1se)
)
dimnames(tmp)[[2]] <- c("lambda(minMSE)","lambda(minMSE+1se)")
tmp

## 11 x 2 sparse Matrix of class "dgCMatrix"
## lambda(minMSE) lambda(minMSE+1se)
## (Intercept) 9.80695459 9.80695459
## log.land.area -0.06225867 -0.05299404
## pop.18_34 -0.12592460 -0.09508877
## pop.65_plus -0.02018055 .
## log.doctors 0.11878438 0.13382474
## log.hosp.beds 0.02367462 .
## log.crimes . .
## pct.hs.grad -0.05845813 .
## pct.bach.deg 0.23405039 0.17274100
## pct.below.pov -0.22720022 -0.18282023
## pct.unemp 0.04952110 0.02085727
#Our final model could be with region interaction factors:
summary(all.subsets.01.final.with.some.region)

##
## Call:
## lm(formula = log.per.cap.income ~ pop.18_34 + log.hosp.beds +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## region + log.hosp.beds:region + pct.hs.grad:region + pct.bach.deg:region +
## pct.below.pov:region + pct.unemp:region, data = tmp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.22996 -0.04697 -0.00359 0.04498 0.32685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.120027 0.285330 35.468 < 2e-16 ***
## pop.18_34 -0.015138 0.001198 -12.635 < 2e-16 ***
## log.hosp.beds 0.050030 0.010067 4.970 9.81e-07 ***
## pct.hs.grad -0.006270 0.003446 -1.819 0.069565 .
## pct.bach.deg 0.018593 0.002388 7.786 5.58e-14 ***
## pct.below.pov -0.024982 0.003874 -6.448 3.16e-10 ***
## pct.unemp 0.017158 0.005156 3.328 0.000953 ***
## regionNE 0.133176 0.358821 0.371 0.710716
## regionS -0.332535 0.314030 -1.059 0.290249
## regionW 1.482059 0.422614 3.507 0.000503 ***
## log.hosp.beds:regionNE 0.007687 0.014259 0.539 0.590094
## log.hosp.beds:regionS 0.005009 0.012307 0.407 0.684217
## log.hosp.beds:regionW -0.002427 0.013981 -0.174 0.862266
## pct.hs.grad:regionNE -0.003748 0.004330 -0.865 0.387313
## pct.hs.grad:regionS 0.005332 0.003866 1.379 0.168608
## pct.hs.grad:regionW -0.016794 0.004711 -3.565 0.000406 ***
## pct.bach.deg:regionNE 0.007382 0.003117 2.369 0.018308 *
## pct.bach.deg:regionS -0.002528 0.002677 -0.944 0.345531
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## pct.bach.deg:regionW 0.006398 0.003035 2.108 0.035625 *
## pct.below.pov:regionNE -0.001302 0.005338 -0.244 0.807446
## pct.below.pov:regionS 0.006831 0.004242 1.610 0.108120
## pct.below.pov:regionW -0.018081 0.005713 -3.165 0.001665 **
## pct.unemp:regionNE -0.007742 0.007853 -0.986 0.324727
## pct.unemp:regionS -0.024036 0.006884 -3.491 0.000532 ***
## pct.unemp:regionW -0.019897 0.007191 -2.767 0.005911 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08141 on 415 degrees of freedom
## Multiple R-squared: 0.8534, Adjusted R-squared: 0.8449
## F-statistic: 100.6 on 24 and 415 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(all.subsets.01.final.with.some.region)
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