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Abstract:  
It’s always an interesting topic for social scientists to learn how average income 
was related to other variables associated with the county’s economic, health and 
social well-being. To address this question, we used a county demographic 
information (CDI) for 440 of the most populous counties in the United State as 
our data. Methods including exploratory data analysis (EDA), All Subset and 
Stepwise Regression as well as ANOVA were applied to the CDI data to find 
the relationship between these socioeconomic variables and select the best 
model we need. Using these methods, we found that per capita income is best 
predicted from logged land area, Percent of population aged 18–34, logged 
number of active physicians, Percent high school graduates, Percent bachelor’s 
degrees, Percent below poverty level, Percent unemployment, region and the 
interactions between region and Percent high school graduates, Percent 
bachelor’s degrees, Percent below poverty level and Percent unemployment. 
Further researches about detecting high-order interactions and whether to 
include more states and county data should be done. 

 

1. Introduction 
Knowing what effects average income per person will be helpful for policy making and 
social science studies. We all know some variables such as education levels, 
unemployment rate are associated with average income per person of the population at 
an intuitive level. However, there are more variables we can use and themselves might 
be associates with each other. Therefore, it’s always an interesting topic for social 
scientists to learn how average income was related to other variables associated with 
the county’s economic, health and social well-beings. To answer the question, we break 
it to four small questions and they are as follows.  
 
1. Relationship between variables:  

Is there any pairwise relationships between those economic, health and social well-
beings associated variables that is quite surprising? If there is, can we explain in 
terms of their meanings? 
 

2. Crime rate and Region:  



Is it true that controlling all the other variables, average income per person should 
be related crime rate and this relationship vary by different regions like Northeast 
and South? Here should we use number of crimes or (number of 
crimes)/(population)? 

 
3. Predict Income: 

Can we find the best model to predict average income per person using selected 
variables? 

 
4. Whether missingness matters: 

Should we be worried about either the missing states or the missing counties? Why 
or why not? 

 

2. Data 
The data is taken from Kutner et al (2005). It provides selected county demographic 
information (CDI) for 440 of the most populous counties in the United States. Each line 
of the data set has an identification number with a county name and state abbreviation 
and provides information on 14 variables for a single county. Counties with missing 
data were deleted from the data set. The information generally pertains to the years 
1990 and 1992.  
We started by checking the definition of CDI data we will be using. Table 1 is the 
definition of variables. From Table 1, It is quite obvious that population and total person 
income are both directly related to average income per person and total population is 
likely to be related with variables like total population with age between 18 and 34. 
 
Table 1: Variable definitions for CDI data from Kutner et al. (2005). Original source: 
Geospatial and Statistical Data Center, University of Virginia. 
 

Variable 
Number 
 

Variable Name 
 

Description 
 

1 Identification number 1–440 
2 County County name 

3 State Two-letter state abbreviation 
4 Land area Land area (square miles) 
5 Total population Estimated 1990 population 
6 Percent of population aged 

18–34 
Percent of 1990 CDI population aged 18–
34 

7 Percent of population 65 or 
older 

Percent of 1990 CDI population aged 65 
or old 

8 Number of active 
physicians 

Number of professionally active 
nonfederal physicians during 1990 



9 Number of hospital beds 
 

Total number of beds, cribs, and bassinets 
during 1990 

10 Total serious crimes 
 

Total number of serious crimes in 1990, 
including murder, rape, robbery, 
aggravated assault, burglary, larceny-
theft, and motor vehicle theft, as reported 
by law enforcement agencies 

11 Percent high school 
graduates 
 

Percent of adult population (persons 25 
years old or older) who completed 12 or 
more years of school 

12 Percent bachelor’s degrees 
 

Percent of adult population (persons 25 
years old or older) with bachelor’s degree 

13 Percent below poverty level 
 

Percent of 1990 CDI population with 
income below poverty level 

14 Percent unemployment 
 

Percent of 1990 CDI population that is 
unemployed 

15 Per capita income 
 

Per-capita income (i.e. average income 
per person) of 1990 CDI population (in 
dollars) 

16 Total personal income 
 

Total personal income of 1990 CDI 
population (in millions of dollars) 

17  
 
Geographic region 
 

Geographic region classification used by 
the US Bureau of the Census, NE 
(northeast region of the US), NC (north-
central region of the US), S (southern 
region of the US), and W (Western region 
of the US) 

 
Then we would like to check the unique values of each variable. Table 2 is the unique 
values of each variable. From Table 2, It looks like ID is just the same as the row 
number for each row of the CDI data and therefore not useful for data analysis. Variable 
State has 48 values, which is also a lot and County is a categorical variable with nearly 
as many unique values (373) as rows in the CDI data frame (440). As mentioned before, 
each row represents single county, we will explore more on this afterwards. There is no 
missing data in CDI data. [See Technical Appendix, Page 4] 
 
Table 2: Unique values for each variable 



 
 
To explore the distribution of numeric variables, we made a summary table for all 
numeric variables and histograms for all numeric variables. Table 3 is the summary 
statistics of all numeric variables. From Table 3, there are several variables with Mean 
substantially larger than Median, indicating possible right skewed. Figure 1 is the 
histograms for all numeric variables and it further confirmed that there are several right 
skewed variables, which are land area, population, number of active physicians, number 
of hospital beds, total serious crimes, and total personal income, and maybe average 
income per person. These variables may need some log transformation before 
modelling. After applying log transformation to some skewed variables, the distribution 
of these variables looks more normal [See Technical Appendix, Page 3-4]. 
 
Table 3: Summary Statistics for numeric variables 



 
 
 

 

 



 

 
Figure 1: Histograms of all numeric variables  

 
As Table 2 indicates that maybe multiple observations per county are really single 
observations from counties with the same name in different states, to further investigate 
this, we made a table that combines county with state. Table 4 is a table that combines 
county with state. Table 2 and Table 4 show that if we combine county with state, we 
get 440 unique values, which means some counties in different states have the same 
name. We only have one observation per unique county and there aren’t multiple 
observations per county are really single observations from counties with the same 
name in different states. Therefore, county is not a useful 2 variable to include in models. 
 
Table 4: Combine County with State 



 
 
Table 5: Frequency table of region 

 
Besides from making a histogram of region, we also made a frequency table of region, 
which is table 5. We found that the majority of observations are in the Southern region, 
followed by the North-central region and northeast regions and finally the western 
region. 

 

4. Methods 
To learn how average income was related to other variables associated with the county’s 
economic, health and social well-being, there are four questions to answer. Our methods 
to answer these questions are as follows: 

 



1. Relationship between variables:  
To answer this question, we draw a correlation plot with different color indicating 
whether is positive or negative correlation and with different shades of a specific 
color indicating different values of correlation. The categorical variables were 
excluded here because their categories are too many and therefore hard to interpret. 

 
2. Crime rate and Region:  

For this question, after applying log transformation to per capita income and total 
serious crimes, we first created a model which regresses response variable per capita 
income solely on total serious crimes as our baseline model. Then we redid the 
regression process adding categorical variable region and then the interaction term 
between total serious crimes. We used AVONA and partial F test to test the whether 
the region and the interaction between total serious crimes we added is needed in 
the model.  
Then we replaced the logged total serious crimes with logged crime rate, which is 
calculated by applying log transformation to (total serious crime / total population). 
After that, we redid the previous process about testing whether to add region and 
the interaction between region and crimes rate in the model. After these two 
processes, we will have two models to compare and they are both selected by 
AVOVA and Partial F test. At this time, we selected the best model by comparing 
AIC and BIC of these two models because they are not nested models so ANOVA 
doesn’t work for this situation. For the final step, we used diagnostics plots of this 
best model to decide whether this is a good fit. 
 

3. Predict Income: 
As skewness of some variables is discovered as a potential problem in the 
histograms we draw before, we first log transformed number of active physicians, 
land area, number of hospital beds, and total serious crimes because they were all 
right skewed. As we mentioned some collinearity between variables and some 
meaningless variables as well as some categorical variables with too many unique 
values, we dropped total population, ID, total personal income, state and county in 
our modelling here. 
For modelling process, we first fitted a linear regression model that regressed per 
capita income on all the other variables left. Then we conducted Stepwise (using 
BIC), All Subsets Regression to select the best model without considering the 
interaction between numeric predictor variables and region. After selecting the best 
model without interactions, added-variables plots and marginal model plots were 
used to evaluate the performance of the model. Then we used ANOVA methods to 
decide which interaction terms between numeric variables to keep based on their 
significance. Finally, we evaluated the performance of the final best model by 
diagnostics plots.  
 
 

4. Whether missingness is important: 



Whether missingness of the states or counties matter will be analyzed by evaluating 
the missing states in the states that appear in the CDI data and by Table 4 which 
combine county with state. We would also consider the results of previous model 
fitting. 
 

5. Results 
1. Relationship between variables:  
To explore the relationship between these numeric variables, we made a correlation plot 
of them. Figure 2 is the correlation plot of numeric variables in CDI data. From this 
correlation plot, there are many variables that are highly correlated with others. Table 
6 is a table that selects some variables which have obvious correlation with others.   

 
Figure 2: The Correlation Plot of all numeric variables 

 
Table 6: Correlation of the variables 

Variables Obvious Correlation Correlation 

Total population Number of active physicians 
Number of hospital beds 

Total serious crimes 
Total personal income 

0.94 
0.92 
0.89 
0.99 

Percent of population aged 18–
36 

Percent of population 65 or older -0.62 



Number of hospital beds 
 

Total population 
Number of hospital beds 

Total serious crimes 
Total personal income 

0.92 
0.95 
0.86 
0.90 

Number of active physicians 
 

Total population 
Number of hospital beds 

Total serious crimes 
Total personal income 

0.94 
0.95 
0.82 
0.95 

Total serious crimes 
 

Number of active physicians 
Number of hospital beds 

Total population 
Total personal income 

0.82 
0.86 
0.89 
0.84 

Percent high school graduates Percent bachelor’s degrees 
Percent below poverty level 

Percent unemployment 

0.70 
-0.69 
-0.59 

Percent below poverty level 
 

Percent high school graduates 
Per capita income 

-0.69 
-0.60 

Per Capita Income Percent bachelor’s degrees 
Percent below poverty level 

Percent high school graduates 

0.70 
-0.60 
0.52 

 
From Table 6 and Figure 2, we found that: 

• Total personal income and Total population are highly correlated, which is not 
surprising. 

• Both of Total personal income and Total population are reasonably highly 
correlated with Total serious crimes, Number of hospital beds and Number of 
active physicians. 

• The three variables Total serious crimes, Number of hospital beds and Number 
of active physicians seem strongly correlated with one another. 

• Per Capita Income isn’t really highly correlated with anything, but the best 
possibilities seem to be Percent high school graduates, Percent bachelor’s 
degrees (positively correlated with Per Capita Income) and Percent below 
poverty level, Percent unemployment (negatively correlated with Per Capita 
Income); all four of these variables are moderately highly correlated with one 
another 

 
2. Crime rate and Region: 
To answer question 2, we created 6 models: regress per capita income on total serious 
crimes (Model 1, baseline model), regress per capita income on total crimes and region 
(Model 2), regress per capita income on total crimes and region with interaction 
between total serious crimes and region (Model 3), regress per capita income on crime 
rate (Model 4, baseline model), regress per capita income on crime rate and region 
(Model 5), regress per capita income on crime rate and region with interaction between 
crime rate and region (Model 6). 



Table 8 shows the AIC and BIC for these 6 models and Table 7 shows the p values for 
added terms of multiple ANOVA tests. AIC and BIC are model comparison criterion 
and the less the AIC and BIC are, the better the model. For ANOVA test, we use p 
value of partial F test to decide whether to add terms in the model, if the p value is very 
small, that means the term is statistically significant and should be added in the model. 
Here, “*” means interaction between the first variable and the second variables and “~” 
here means regressing the left variable on the right variables. [See Technical Appendix, 
Page 8]. 
 
Table 7: F Statistics for ANOVA test 
ANOVA baseline model Added term  P Value 
per capita income ~ crimes region 1.523e-13 
per capita income ~ crimes + region region*crimes 0.5266  
per capita income ~ crime rate region 3.263e-09 
per capita income ~ crime rate + region crime rate*region 0.893 

 
Table 7 indicates that either the interaction between total serious crimes and region or 
the interaction between crime rate and region are not necessary in the model as their 
coefficients are not statistically significant. However, region should be added in the 
model as a predictor variable. 
Table 8 shows the AIC and BIC of these models, as our final model should be chosen 
from Model 2 and Model 5, by comparing the AIC and BIC of these two models, our 
final best model to predict per capita income from crimes is the Model 2 as both AIC 
and BIC of Model 2 are smaller. 
 
Table 8: AIC and BIC for 6 models 
Model AIC BIC 
per capita income ~ crimes -169.9 -157.7 
per capita income ~ crimes + region -227.5 -203.0 
per capita income ~ crimes + region + crimes*region -223.8 -187.0 
per capita income ~ crime rate -122.8 -122.8 
per capita income ~ crime rate + region -172.1 -147.6 
per capita income ~ crime rate + region + crime rate*region -166.8 -130.0 

 
The interpretations of the final best model are, as follows: [See Technical Appendix, 
Page 9].  

• All across the US, for every 1% increase in per-capita crime, there is an 
associated 0.04% increase in per-capita income  

• The regional baseline salaries are: NC: $20,743.74, NE: $23,155.79, S: 
$19,341.34, and W: $20,332.99. All but the W region have baselines that are, 
according to the model, significantly different from the NC baseline.  

• Again, the level of salary varies with region, but not the way it varies with 
crime, according to the model. 

 



3. Predict Income: 
From Table 1, as per capita income is actually just total personal income/population, so 
we cannot use total personal income in our regression analysis, also for this reason, we 
should exclude total population in the fitted model. Besides, the ID, Country, State will 
be no helpful for prediction but only added complexity to the model so it will be better 
to exclude them in the regression analysis. 
For this question, we decided to first conduct variables selection without categorical 
variable. Testing which interaction terms to include in the model will be the final step. 
We first regressed logged per capita income on all the other variables except region 
(logged land area, logged number of physicians, logged number of hospital bed, logged 
total serious crimes, Percent of population aged 18–36, Percent of population 65 or 
older, Percent bachelor’s degrees, Percent below poverty level, Percent unemployment, 
Percent high school graduates) as our baseline model. Then we used All Subsets method 
to compare the BIC of each subset and selected the model that has the smallest BIC as 
our best model [See Technical Appendix, Page 10].  
To test whether the variable transformation and selection makes sense as well as 
whether model is a good fit, diagnostics plots, added-variable plots and marginal model 
plots were made to evaluate the model performance.  
For the diagnostics plots of our final model, the Residuals vs Fitted plot shows that 
there is not nonlinear pattern in the model but there are some outliers detected; the 
normal Q-Q plot shows that the residuals are normally distributed and the assumption 
that errors are normally distributed holds, but there are some points that deviated from 
the diagonal line a lot; the scale-location plot shows that the residuals are spread equally 
along the ranges of predictors and the residuals have constant variance; the residuals vs 
leverage plot shows that there are no influential points in the model [See Technical 
Appendix, Page 12].  
The Added-Variable plots show that the model won't need any transformation to the 
variables included in the model. The marginal model plots look very good – the blue 
data-based curves line up well with the red model-based curves. We don’t seem to be 
missing any important transformations, interactions, etc [See Technical Appendix, Page 
13-14]. 
Therefore, for this All Subsets method, the best one is the model that regresses logged 
per capita income on logged land area, logged number of physicians, Percent of 
population aged 18–36, Percent bachelor’s degrees, Percent below poverty level, 
Percent unemployment, Percent high school graduates. 
Except for All Subsets, we also used Stepwise Regression to do the variables regression 
and this time we also excluded categorical variable region. The best model selected by 
Stepwise Regression using BIC is the same as the best one selected by All Subsets. The 
best model selected by Stepwise Regression using AIC is slightly different. Compared 
to the previous best model, it has one more variable, which is Percent of population 65 
or older. To decide whether to include this variable in the model, an ANOVA test was 
conducted to address this problem. [See Technical Appendix, Page 14]. The result 
rejects the null hypothesis that Percent of population 65 or older is not needed in the 
model. We also checked the summary of the model [See Technical Appendix, Page 15]. 



Although the coefficient on Percent of population 65 or older is significantly different 
from zero, its effect on expected per-capita income appears to be quite small. 
Considering that our model should best reflects the social science and the meaning of 
the variables, we decided to exclude it from the model. 
The final step is to decide whether to include any interaction between the remaining 
numeric variables and the categorical variables region. We did same thing as we did for 
addressing question 2—we conducted multiple AVOVA tests to select interaction terms. 
Table 9 is the result of the ANOVA tests. The baseline model is the best model selected 
from All Subsets and Stepwise Regression. The column [Interaction Term] contains 
each interaction term we tested and its corresponding p value in column [P Value]. “*” 
here means interaction between the first variable and the second variables. The 
interactions here are all pairwise.   
 
Table 9: Multiple ANOVA Test Result 
Interaction Term  P Value 
logged land area*region 0.09528 
Percent of population aged 18–34*region 0.01744  
logged number of active physicians*region 0.02433 
Percent high school graduates *region 0.0002411  
Percent bachelor’s degrees *region 0.0001938  
Percent below poverty level *region 0.006056  
Percent unemployment *region 0.0002352  

 
Based on the Table 9, 6 out of 7 interaction terms have their p values less than 0.05. If 
the p value is very small, here we mean less than 0.05, it means this interaction is 
significantly different from zero. However, adding so many significant interaction 
terms will make our model hard to interpret. Therefore, we changed the significance 
level from 0.05 to 0.01 to do the interaction terms selection, by this way we are able to 
reduce the significant interaction terms to just 3, which are interaction between region 
and Percent high school graduates, Percent bachelor’s degrees, Percent below poverty 
level and Percent unemployment. 
 
Now the final model is the model as follows: 
Y-Response Variable: 
logged per capita income 
X-Predictor Variables:  
logged land area 
Percent of population aged 18–34 
logged number of active physicians 
Percent high school graduates 
Percent bachelor’s degrees 
Percent below poverty level 
Percent unemployment 
region 



Percent high school graduates*region (interaction) 
Percent bachelor’s degrees*region (interaction) 
Percent below poverty level*region (interaction) 
Percent unemployment*region (interaction) 
 
The interpretation of the coefficients of each predictor variables are as follows [See 
Technical Appendix, Page 18-19]: 

• For every 1% increase in a county’s land area, there is a 0.03% decrease in 
expected per-capita income.  

• For every 1% increase in the number of doctors in a county, the expected per-
capita income increases by about 0.06%.  

• For every 1% increase in the percent of the population aged 18–34, there is an 
expected 2% drop in per-capita income.  

• Percent high school graduates doesn’t have much effect, except in the South, 
where a one percentage point increase in has graduates induces an expected 2% 
decrease in per-capita income.  

• In the main effect for region, and in several of the interactions for region, the 
West shows up as deviating significantly from the North Central part of the US. 

 
We also checked whether this final model is a good fit using diagnostics plots [See 
Technical Appendix, Page 19]. For the diagnostics plot of our final model, the 
Residuals vs Fitted plot shows that there is not nonlinear pattern in the model but there 
are some outliers detected; the normal Q-Q plot shows that the residuals are normally 
distributed and the assumption that errors are normally distributed holds, but there are 
some points that deviated from the diagonal line a lot; the scale-location plot shows that 
the residuals are spread equally along the ranges of predictors and the residuals have 
constant variance; the residuals vs leverage plot shows that there are no influential 
points in the model. Hence, the final model is a good fit. 
 
4. Whether missingness matters 
After extracting the unique values of variable State, we found that state Alaska, Iowa, 
and Wyoming are missing states in our data. These states are perhaps less populous 
compared to other states. The modelling process before shows that there are a quite a 
lot variables associated with region and these interactions are useful when predict per 
capita income. It seems that the missing data matters because region plays a large part 
in our prediction and the model might not be applied to these states because of the 
missing data. 
Both “Baltimore MD” and “Baltimore City MD” are listed in Table 4, which makes me 
wonder these two data points are really independent. Therefore, if adding more county 
data, they may be highly relevant just like these two [See Technical Appendix, Page 
19-20]. 
 

6. Discussion  



The analysis shows some reasonable relationships between variables. For example, 
total population is related with number of doctors, total serious crimes and also total 
incomes. The higher total population is, the higher number of doctors, total crimes and 
also total incomes. Also, it makes sense that the higher percentage of high school 
graduates, the lower the percentage of population below poverty level and the 
percentage of unemployment. However, it is quite surprising that Per Capita Income 
isn’t really highly correlated with anything. 
Our analysis found that there is no need to include interactions in the model to predict 
per capita income use crimes/crime rate and region but it’s better to include the 
categorical variable region in our analysis. The results for question 2 answered the 
second question that if we ignore all other variables, per-capita income should be 
related to crime rate, and that this relationship may be different in different regions of 
the country (Northeast, Northcentral, South, and West).  
We tackled the problem about skewness by using log transformation and successfully 
found a model that is overall a good fit to predict per capita income using the variables 
in CDI data. For this analysis, we conjecture that the positive significant coefficient of 
land area in the model could be due to an urban-rural contrast because rural counties 
tend to be bigger than urban ones. We also think that the surprising negative coefficient 
of Percent of population aged 18–36 in the model might be due to percent 18–34 years 
old are not at peak earning capacity yet and so perhaps their lower incomes drag down 
the per-capita average. The positive coefficient of number of active physicians in the 
model makes sense as doctors are well-paid and could be big contributors to the per-
capita average income. It’s quite interesting that after adding interactions, the previous 
significant variable Percent high school graduates don’t have much effects. It might 
depend on whether college graduates are counted as a subset of has graduates rather 
than counting them separately, or it might have something to do with some unique 
feature of economics in the southern region of the US. Also, we only tested pairwise 
interactions but didn’t test whether there should be higher order interactions. It seems 
hard to test higher order interactions just use regression analysis so for further research, 
more methods may be applied to this dataset to do this.  
Throughout the model selection process, some tradeoffs were made when selecting 
interpretability. We didn’t include all the terms that will be considered statistically 
significant and we only did log transformation to some extremely skewed variables but 
left the other quite skewed variables untransformed. 
Missing states and counties seem to be a problem. Some variables may vary between 
states and counties, the distribution of these variables may be different in different states 
and counties. We also found that data points in our data might not be independent. 
There should be further research after collecting more missing data.  
Finally, the CDI data was collected 30 years ago, which means the model we built might 
not be quite useful nowadays. This is also a limitation. 
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Technical Appendix

Ziyan Xia

10/9/2021

Part A: Exploratory Data Analysis
cdi<-read.table("/Users/ceciliaxia/Desktop/cdi.dat")

Table 2: Unique values for each variable
apply(cdi,2,function(x) {length(unique(x))}) %>%
kbl(booktabs=T,col.names="unique values",caption=" ") %>%
kable_classic(full_width=F)

It looks like ID is just the same as the row number for each row of the CDI data and therefore not useful
for data analysis. Variable State has 48 values, which is also a lot and County is a categorical variable with
nearly as many unique values (373) as rows in the CDI data frame (440). As mentioned before, each row
represents single county, we will explore more on this afterwards.

Table 3: Summary Statistics for numeric variables
cdinumeric <- cdi[,-c(1,2,3,17)] ## get rid of id, county, state and (for now) region
apply(cdinumeric,2,function(x) c(summary(x),SD=sd(x))) %>% as.data.frame %>% t() %>%
round(digits=2) %>% kbl(booktabs=T,caption=" ") %>% kable_classic()

Table 3 is the summary statistics of all numeric variables. From Table 3, there are several variables with
Mean substantially larger than Median, indicating possible right skewed.

Figure 1: Histograms of all numeric variables
par(mfrow=c(2,4))
par(mfrow=c(2,4))
for (i in c(4:16)){

hist(cdi[,i],main=paste("histogram of",colnames(cdi)[i]),cex.main=0.8)
}
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Table 1:

unique values
id 440
county 373
state 48
land.area 384
pop 440
pop.18_34 149
pop.65_plus 137
doctors 360
hosp.beds 391
crimes 437
pct.hs.grad 223
pct.bach.deg 220
pct.below.pov 155
pct.unemp 97
per.cap.income 436
tot.income 428
region 4

Table 2:

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
land.area 15.0 451.25 656.50 1041.41 946.75 20062.0 1549.92
pop 100043.0 139027.25 217280.50 393010.92 436064.50 8863164.0 601987.02
pop.18_34 16.4 26.20 28.10 28.57 30.02 49.7 4.19
pop.65_plus 3.0 9.88 11.75 12.17 13.62 33.8 3.99
doctors 39.0 182.75 401.00 988.00 1036.00 23677.0 1789.75
hosp.beds 92.0 390.75 755.00 1458.63 1575.75 27700.0 2289.13
crimes 563.0 6219.50 11820.50 27111.62 26279.50 688936.0 58237.51
pct.hs.grad 46.6 73.88 77.70 77.56 82.40 92.9 7.02
pct.bach.deg 8.1 15.28 19.70 21.08 25.33 52.3 7.65
pct.below.pov 1.4 5.30 7.90 8.72 10.90 36.3 4.66
pct.unemp 2.2 5.10 6.20 6.60 7.50 21.3 2.34
per.cap.income 8899.0 16118.25 17759.00 18561.48 20270.00 37541.0 4059.19
tot.income 1141.0 2311.00 3857.00 7869.27 8654.25 184230.0 12884.32
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for (i in c(4,8,9,10,15)){
hist(log(cdi[,i]),main=paste("histogram of logged",colnames(cdi)[i]),cex.main=0.8)

}
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Figure 1 confirmed that there are several right skewed variables, which are land area, population, number of
active physicians, number of hospital beds, total serious crimes, and total personal income, and maybe average
income per person. These variables may need some log transformation before modeling. After applying log
transformation to some skewed variabels, the skeweness was fixed.

Detect NAs

Indicate where (in which variables) there is missing data (NA’s)
apply(cdi,2,function(x) any(is.na(x)) )

## id county state land.area pop
## FALSE FALSE FALSE FALSE FALSE
## pop.18_34 pop.65_plus doctors hosp.beds crimes
## FALSE FALSE FALSE FALSE FALSE
## pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income
## FALSE FALSE FALSE FALSE FALSE
## tot.income region
## FALSE FALSE

There do not appear to be any missing values in the data!

Table 4: Combine County with State
county.state <- with(cdi,paste(county,state))
tmp <- as.data.frame(matrix(sort(county.state),ncol=4))
names(tmp) <- paste("Counties",c("1-110","111-220","221-330","331-440"))
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tmp[1:30,] %>% kbl(booktabs=T,longtable=T,caption=" ") %>% kable_classic(full_width=F)

Table 3:

Counties 1-110 Counties 111-220 Counties 221-330 Counties 331-440
Ada ID Ector TX Lycoming PA Rockingham NH
Adams CO El_Dorado CA Macomb MI Rockland NY
Aiken SC El_Paso CO Macon IL Rowan NC
Alachua FL El_Paso TX Madison AL Rutherford TN
Alamance NC Elkhart IN Madison IL Sacramento CA
Alameda CA Erie NY Madison IN Saginaw MI
Albany NY Erie PA Mahoning OH Salt_Lake UT
Alexandria_City VA Escambia FL Manatee FL San_Bernardino CA
Allegheny PA Essex MA Marathon WI San_Diego CA
Allen IN Essex NJ Maricopa AZ San_Francisco CA
Allen OH Fairfax_County VA Marin CA San_Joaquin CA
Anderson SC Fairfield CT Marion FL San_Luis_Obispo CA
Androscoggin ME Fairfield OH Marion IN San_Mateo CA
Anne_Arundel MD Fayette KY Marion OR Sangamon IL
Arapahoe CO Fayette PA Martin FL Santa_Barbara CA
Arlington_County VA Florence SC Maui HI Santa_Clara CA
Atlantic NJ Forsyth NC McHenry IL Santa_Cruz CA
Baltimore MD Fort_Bend TX McLean IL Sarasota FL
Baltimore_City MD Franklin OH McLennan TX Saratoga NY
Barnstable MA Franklin PA Mecklenburg NC Sarpy NE
Bay FL Frederick MD Medina OH Schenectady NY
Bay MI Fresno CA Merced CA Schuylkill PA
Beaver PA Fulton GA Mercer NJ Sedgwick KS
Bell TX Galveston TX Mercer PA Seminole FL
Benton WA Gaston NC Merrimack NH Shasta CA
Bergen NJ Genesee MI Middlesex CT Shawnee KS
Berks PA Gloucester NJ Middlesex MA Sheboygan WI
Berkshire MA Greene MO Middlesex NJ Shelby TN
Bernalillo NM Greene OH Midland TX Smith TX
Berrien MI Greenville SC Milwaukee WI Snohomish WA

Table 4 show that if we combine county with state, we get 440 unique values, which means some counties
in different states have the same name. We only have one observation per unique county and there aren’t
multiple observations per county are really single observations from counties with the same name in different
states. Therefore, county is not a useful 2 variable to include in models.

Table 5: Frequency table of region
tmp <- rbind(with(cdi,table(region)))
row.names(tmp) <- "Freq"
tmp %>% kbl(booktabs=T,caption=" ") %>% kable_classic(full_width=F)

Besides from making a histogram of region, we also made a frequency table of region, which is table 5. We
found that the majority of observations are in the Southern region, followed by the North-central region and
northeast regions and finally the western region.

Part B:Relationship between variables
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Table 4:

NC NE S W
Freq 108 103 152 77

Figure 2: The Correlation Plot of all numeric variables
corrplot::corrplot(cor(cdi[,c(4:16)]))
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To explore the relationship between these numeric variables, we did a correlation plot of them. Figure 2 is
the correlation plot of numeric variables in CDI data. From this correlation plot, there are many variables
that are highly correlated with others. For example, the correlation between pop and doctors is really high,
which is not surprising. However, there is some surprising relationship in this plot and we will elaborate more
on this for results part.

Correlation between variables
cor(cdi[,c(4:16)])

## land.area pop pop.18_34 pop.65_plus doctors
## land.area 1.000000000 0.173083353 -0.05487812 0.005770871 0.078074657
## pop 0.173083353 1.000000000 0.07837212 -0.029037393 0.940248591
## pop.18_34 -0.054878125 0.078372117 1.00000000 -0.616309639 0.119699240
## pop.65_plus 0.005770871 -0.029037393 -0.61630964 1.000000000 -0.003128630
## doctors 0.078074657 0.940248591 0.11969924 -0.003128630 1.000000000
## hosp.beds 0.073047270 0.923738360 0.07453191 0.053278417 0.950464395
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## crimes 0.129475371 0.886331846 0.08994063 -0.035290324 0.820459477
## pct.hs.grad -0.098598111 -0.017426900 0.25058429 -0.268251758 -0.004248085
## pct.bach.deg -0.137237736 0.146813850 0.45609703 -0.339228765 0.236765466
## pct.below.pov 0.171343348 0.038019509 0.03397551 0.006578474 0.064136254
## pct.unemp 0.199209277 0.005351703 -0.27852706 0.236309411 -0.050516116
## per.cap.income -0.187715132 0.235610188 -0.03164843 0.018590706 0.316134625
## tot.income 0.127074261 0.986747626 0.07116151 -0.022733151 0.948110571
## hosp.beds crimes pct.hs.grad pct.bach.deg pct.below.pov
## land.area 0.073047270 0.12947537 -0.098598111 -0.13723774 0.171343348
## pop 0.923738360 0.88633185 -0.017426900 0.14681385 0.038019509
## pop.18_34 0.074531907 0.08994063 0.250584290 0.45609703 0.033975512
## pop.65_plus 0.053278417 -0.03529032 -0.268251758 -0.33922877 0.006578474
## doctors 0.950464395 0.82045948 -0.004248085 0.23676547 0.064136254
## hosp.beds 1.000000000 0.85684988 -0.111916382 0.10042653 0.172793840
## crimes 0.856849883 1.00000000 -0.106328401 0.07707652 0.164405659
## pct.hs.grad -0.111916382 -0.10632840 1.000000000 0.70778672 -0.691750483
## pct.bach.deg 0.100426534 0.07707652 0.707786723 1.00000000 -0.408423848
## pct.below.pov 0.172793840 0.16440566 -0.691750483 -0.40842385 1.000000000
## pct.unemp 0.007523992 0.04355675 -0.593595788 -0.54090691 0.436947236
## per.cap.income 0.194808180 0.11753914 0.522996133 0.69536186 -0.601725039
## tot.income 0.902061545 0.84309805 0.043355729 0.22223013 -0.038739339
## pct.unemp per.cap.income tot.income
## land.area 0.199209277 -0.18771513 0.12707426
## pop 0.005351703 0.23561019 0.98674763
## pop.18_34 -0.278527058 -0.03164843 0.07116151
## pop.65_plus 0.236309411 0.01859071 -0.02273315
## doctors -0.050516116 0.31613462 0.94811057
## hosp.beds 0.007523992 0.19480818 0.90206155
## crimes 0.043556752 0.11753914 0.84309805
## pct.hs.grad -0.593595788 0.52299613 0.04335573
## pct.bach.deg -0.540906913 0.69536186 0.22223013
## pct.below.pov 0.436947236 -0.60172504 -0.03873934
## pct.unemp 1.000000000 -0.32214439 -0.03387633
## per.cap.income -0.322144395 1.00000000 0.34768161
## tot.income -0.033876330 0.34768161 1.00000000

From the ouptut,

• Total personal income and Total population are highly correlated, which is not surprising. • Both of
Total personal income and Total population are reasonably highly correlated with Total serious crimes,
Number of hospital beds and Number of active physicians. • The three variables Total serious crimes,
Number of hospital beds and Number of active physicians seem strongly correlated with one another. • Per
Capita Income isn’t really highly correlated with anything, but the best possibilities seem to be Percent high
school graduates, Percent bachelor’s degrees (positively correlated with Per Capita Income) and Percent
below poverty level, Percent unemployment (negatively correlated with Per Capita Income); all four of these
variables are moderately highly correlated with one another

Part C:Crime rate and Region

As skewness of some variables is discovered as a potential problem in the histograms we draw before, we first
log transformed number of active physicians, land area, number of hospital beds, and total serious crimes
because they were all right skewed.
cdigood <- data.frame(cdinumeric,region=cdi$region)
cdigood$log.land.area<-log(cdigood$land.area)
cdigood$log.doctors<-log(cdigood$doctors)
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cdigood$log.hosp.beds<-log(cdigood$hosp.beds)
cdigood$log.crimes<-log(cdigood$crimes)
cdigood$log.per.cap.income<-log(cdigood$per.cap.income)

To answer question 2, we created 6 models: regress per capita income on total serious crimes (Model 1,
baseline model), regress per capita income on total crimes and region (Model 2), regress per capita income on
total crimes and region with interaction between total serious crimes and region (Model 3), regress per capita
income on crime rate (Model 4, baseline model), regress per capita income on crime rate and region (Model
5), regress per capita income on crime rate and region with interaction between crime rate and region (Model
6).
ancova.01 <- lm(log.per.cap.income ~ log.crimes,data=cdigood)
ancova.02 <- lm(log.per.cap.income ~ log.crimes + region,data=cdigood)
ancova.03 <- lm(log.per.cap.income ~ log.crimes * region,data=cdigood)
anova(ancova.01,ancova.02, ancova.03)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.crimes
## Model 2: log.per.cap.income ~ log.crimes + region
## Model 3: log.per.cap.income ~ log.crimes * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 17.271
## 2 435 14.949 3 2.32194 22.4823 1.523e-13 ***
## 3 432 14.872 3 0.07678 0.7434 0.5266
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
attach(cdigood)
per.cap.crime <- crimes/pop
log.per.cap.crimes <-log(per.cap.crime)
detach()
ancova.04 <- lm(log.per.cap.income ~ log.per.cap.crimes,data=cdigood)
ancova.05 <- lm(log.per.cap.income ~ log.per.cap.crimes + region,data=cdigood)
ancova.06 <- lm(log.per.cap.income ~ log.per.cap.crimes * region,data=cdigood)
anova(ancova.04,ancova.05, ancova.06)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.per.cap.crimes
## Model 2: log.per.cap.income ~ log.per.cap.crimes + region
## Model 3: log.per.cap.income ~ log.per.cap.crimes * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 18.697
## 2 435 16.952 3 1.74465 14.8407 3.263e-09 ***
## 3 432 16.928 3 0.02408 0.2048 0.893
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA test result indicates that either the interaction between total serious crimes and region or
the interaction between crime rate and region are not necessary in the model as their coefficients are not
statistically significant. However, region should be added in the model as a predictor variable.
data.frame(AIC=AIC(ancova.01,ancova.02,ancova.03,ancova.04,ancova.05,ancova.06),
BIC=BIC(ancova.01,ancova.02,ancova.03,ancova.04,ancova.05,ancova.06))[,-3] %>%
kbl(booktabs=T,col.names=c("df","AIC","BIC")) %>% kable_classic(full_width=F)
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df AIC BIC
ancova.01 3 -169.9466 -157.6863
ancova.02 6 -227.4746 -202.9539
ancova.03 9 -223.7402 -186.9593
ancova.04 3 -135.0340 -122.7737
ancova.05 6 -172.1347 -147.6140
ancova.06 9 -166.7601 -129.9792

This table shows the AIC and BIC of these models, as our final model should be chosen from Model 2 and
Model 5, by comparing the AIC and BIC of these two models, our final best model to predict per capita
income from crimes is the Model 2 as both AIC and BIC of Model 2 are smaller.

The final best model is ancova.02
summary(ancova.02)

##
## Call:
## lm(formula = log.per.cap.income ~ log.crimes + region, data = cdigood)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68757 -0.10557 -0.01422 0.08905 0.78946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.188431 0.079812 115.125 < 2e-16 ***
## log.crimes 0.066695 0.008421 7.920 2.00e-14 ***
## regionNE 0.104458 0.025531 4.091 5.11e-05 ***
## regionS -0.086983 0.023618 -3.683 0.00026 ***
## regionW -0.055280 0.028167 -1.963 0.05033 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1854 on 435 degrees of freedom
## Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
## F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

• All across the US, for every 1% increase in per-capita crime, there is an associated 0.04% increase in
per-capita income (so, slightly smaller effect, but still statistically significant; should that matter?). • The
regional baseline salaries are: NC: $20,743.74, NE: $23,155.79, S: is $19,341.34, and W: $20,332.99. All but
the W region have baselines that are, according to the model, significantly different from the NC baseline. •
Again, the level of salary varies with region, but not the way it varies with crime, according to the model.

Part D: Predict Income

As we mentioned some collinearity between variables and some meaningless variables as well as some categorical
variables with too many unique values, we dropped total population, ID, total personal income, state and
county in our modeling here.

The variables we used in the model
new<-cdigood[,c(3,4,8,9,10,11,14:19)]
names(new)

## [1] "pop.18_34" "pop.65_plus" "pct.hs.grad"
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## [4] "pct.bach.deg" "pct.below.pov" "pct.unemp"
## [7] "region" "log.land.area" "log.doctors"
## [10] "log.hosp.beds" "log.crimes" "log.per.cap.income"

As per capita income is actually just total personal income/population, so we cannot use total personal
income in our model, also for this reason, we should exclude total population in our model.

Also, the ID, Country, State will be no helpful for prediction but only added complexity to the model so I
exclude them.

Conduct variable selection using BIC in All Subsets

Plot the BIC over each model and extract the coefficients of the one with smallest BIC
plot(1:8,summary(all.subsets)$bic[1:8])
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summary(all.subsets)$bic[6:8]

## [1] -761.5908 -772.0715 -770.5990
coef(all.subsets,6:8)

## [[1]]
## (Intercept) pop.18_34 pct.bach.deg pct.below.pov pct.unemp
## 9.90343798 -0.01409166 0.01341559 -0.02138922 0.01290540
## log.land.area log.doctors
## -0.04021183 0.06286862
##
## [[2]]
## (Intercept) pop.18_34 pct.hs.grad pct.bach.deg pct.below.pov
## 10.222495041 -0.013900201 -0.004406396 0.015385301 -0.024278371
## pct.unemp log.land.area log.doctors
## 0.010603691 -0.035674062 0.060676872
##
## [[3]]
## (Intercept) pop.18_34 pop.65_plus pct.hs.grad pct.bach.deg
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## 10.315966592 -0.015348817 -0.002766377 -0.004657948 0.015214937
## pct.below.pov pct.unemp log.land.area log.doctors
## -0.024614405 0.010768825 -0.036493494 0.062605267

Name the best model as best1 and evaluate its performance by diagnostics plots.
best1<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp,data=new)
summary(best1)

##
## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp, data = new)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.34147 -0.04886 -0.00538 0.04818 0.26969
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2224950 0.0931210 109.776 < 2e-16 ***
## log.land.area -0.0356741 0.0047767 -7.468 4.53e-13 ***
## pop.18_34 -0.0139002 0.0011113 -12.508 < 2e-16 ***
## log.doctors 0.0606769 0.0040183 15.100 < 2e-16 ***
## pct.hs.grad -0.0044064 0.0010823 -4.071 5.56e-05 ***
## pct.bach.deg 0.0153853 0.0009246 16.641 < 2e-16 ***
## pct.below.pov -0.0242784 0.0012583 -19.294 < 2e-16 ***
## pct.unemp 0.0106037 0.0021771 4.871 1.56e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.082 on 432 degrees of freedom
## Multiple R-squared: 0.8452, Adjusted R-squared: 0.8427
## F-statistic: 336.9 on 7 and 432 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(best1)
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For
the diagnostics plot of our final model, the Residuals vs Fitted plot shows that there is not nonlinear pattern
in the model but there are some outliers detected; the normal Q-Q plot shows that the residuals are normally
distributed and the assumption that errors are normally distributed holds, but there are some points that
deviated from the diagonal line a lot; the scale-location plot shows that the residuals are spread equally along
the ranges of predictors and the residuals have constant variance; the residuals vs leverage plot shows that
there are no influential points in the model.

To test whether the variable transformation and selection makes sense as well as whether model is a good
fit, diagnostics plots, added-variable plots and marginal model plots were made to evaluate the model
performance.

evaluate its performance by marginal model plots
avPlots(best1)
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Added−Variable Plots

The Added-Variable plots show that the model won’t need any transformation to the variables included in
the model.

evaluate its performance by marginal model plots.
mmps(best1)
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Marginal Model Plots

The marginal model plots look very good – the blue data-based curves line up well with the red model-based
curves. We don’t seem to be missing any important transformations, interactions, etc.

Therefore, for this All Subsets method, the best one is to regress logged per capita income on logged land
area, logged number of physicians, Percent of population aged 18–36, Percent bachelor’s degrees, Percent
below poverty level, Percent unemployment, Percent high school graduates.

Except for All Subsets, we also used Stepwise Regression to do the variables regression and this time also
exclude categorical variable region.

Conduct variable selection using BIC in Stepwise Regression
stepwise.base <- lm(log.per.cap.income ~.-region,data=new)
step.result.01.bic <- stepAIC(stepwise.base,scope=list(lower = ~ 1, upper = ~ .),k=log(dim(new)[1]),trace=F)
anova(best1,step.result.01.bic)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ pop.18_34 + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + log.land.area + log.doctors
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 432 2.9051 0 0

The best model selected by Stepwise Regression using BIC is the same as the best one selected by All Subsets.

Conduct variable selection using AIC in Stepwise Regression
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step.result.01.aic <- stepAIC(stepwise.base,scope=list(lower = ~ 1, upper = ~ .),k=2,trace=F)

The best model selected by Stepwise Regression using AIC is slightly different.

Model Selection using ANOVA
anova(best1,step.result.01.aic)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ pop.18_34 + pop.65_plus + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + log.land.area +
## log.doctors
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 431 2.8748 1 0.030306 4.5437 0.03361 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Compared to the previous best model, it has one more variable, which is Percent of population 65 or older.
To decide whether to include this variable in the model, an ANOVA test was conducted to address this
problem. The result rejects the null hypothesis that Percent of population 65 or older is not needed in the
model. We also checked the summary of the model
summary(step.result.01.aic)

##
## Call:
## lm(formula = log.per.cap.income ~ pop.18_34 + pop.65_plus + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + log.land.area +
## log.doctors, data = new)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35756 -0.04551 -0.00543 0.04844 0.27399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.3159666 0.1025858 100.559 < 2e-16 ***
## pop.18_34 -0.0153488 0.0012988 -11.818 < 2e-16 ***
## pop.65_plus -0.0027664 0.0012978 -2.132 0.0336 *
## pct.hs.grad -0.0046579 0.0010843 -4.296 2.15e-05 ***
## pct.bach.deg 0.0152149 0.0009242 16.462 < 2e-16 ***
## pct.below.pov -0.0246144 0.0012631 -19.488 < 2e-16 ***
## pct.unemp 0.0107688 0.0021696 4.963 9.99e-07 ***
## log.land.area -0.0364935 0.0047728 -7.646 1.36e-13 ***
## log.doctors 0.0626053 0.0041029 15.259 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08167 on 431 degrees of freedom
## Multiple R-squared: 0.8468, Adjusted R-squared: 0.8439
## F-statistic: 297.7 on 8 and 431 DF, p-value: < 2.2e-16

Although the coefficient on Percent of population 65 or older is significantly different from zero, its effect on
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expected per-capita income appears to be quite small. Considering that our model should best reflects the
social science and the meaning of the variables, we decided to exclude it from the model.

The final step is to decide whether to include any interaction between the remaining numeric variables and the
categorical variables region. We did same thing as we did for addressing question 2 — we conducted multiple
AVOVA test for selection of interaction terms. We tested the interaction between the categorical variable
region and all the other continuous variables pair by pair and select every interaction whose coefficient is
statistically significant (here I mean the one whose p vale is with more than two stars in the summary)
fit_final<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp,data=new)

m1<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp+log.land.area*region,data=new)

m2<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp+pop.18_34*region ,data=new)

m3<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp+log.doctors*region ,data=new)

m4<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp++pct.hs.grad*region ,data=new)

m5<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp+pct.bach.deg*region ,data=new)

m6<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp+pct.below.pov*region,data=new)

m7<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp+pct.unemp*region ,data=new)

anova(fit_final,m1)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## log.land.area * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 426 2.8328 6 0.072284 1.8117 0.09528 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(fit_final,m2)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## pop.18_34 * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 426 2.8025 6 0.1026 2.5994 0.01744 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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anova(fit_final,m3)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## log.doctors * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 426 2.8082 6 0.096909 2.4502 0.02433 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(fit_final,m4)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## +pct.hs.grad * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 426 2.7350 6 0.17004 4.4142 0.0002411 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(fit_final,m5)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## pct.bach.deg * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 426 2.7318 6 0.17329 4.5039 0.0001938 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(fit_final,m6)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## pct.below.pov * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
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## 2 426 2.7850 6 0.12011 3.0621 0.006056 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(fit_final,m7)

## Analysis of Variance Table
##
## Model 1: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp
## Model 2: log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors +
## pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
## pct.unemp * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 426 2.7347 6 0.17041 4.4243 0.0002352 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6 out of 7 interaction terms have their p values less than 0.05. If the p value is very small, here we mean less
than 0.05, it means this interaction is significantly different from zero. However, adding so many significant
interaction terms will make our model hard to interpret. Therefore, we changed the significance level from
0.05 to 0.01 to do the interaction terms selection, by this way we are able to reduce the significant interaction
terms to just 3, which are interaction between region and Percent high school graduates, Percent bachelor’s
degrees, Percent below poverty level and Percent unemployment.
m_final<-lm(log.per.cap.income ~ log.land.area + pop.18_34 + log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp+pct.hs.grad*region+pct.bach.deg*region+pct.below.pov*region+pct.unemp*region,data=new)
summary(m_final)

##
## Call:
## lm(formula = log.per.cap.income ~ log.land.area + pop.18_34 +
## log.doctors + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp + pct.hs.grad * region + pct.bach.deg * region +
## pct.below.pov * region + pct.unemp * region, data = new)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.268015 -0.043459 -0.002511 0.039967 0.313939
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.125260 0.251582 40.246 < 2e-16 ***
## log.land.area -0.034569 0.005376 -6.430 3.50e-10 ***
## pop.18_34 -0.015404 0.001087 -14.170 < 2e-16 ***
## log.doctors 0.055342 0.004034 13.720 < 2e-16 ***
## pct.hs.grad -0.002503 0.003151 -0.794 0.427456
## pct.bach.deg 0.014208 0.002108 6.741 5.24e-11 ***
## pct.below.pov -0.023634 0.003351 -7.054 7.30e-12 ***
## pct.unemp 0.017787 0.004783 3.719 0.000228 ***
## regionNE 0.219429 0.302526 0.725 0.468661
## regionS -0.062648 0.276125 -0.227 0.820627
## regionW 1.629351 0.357633 4.556 6.86e-06 ***
## pct.hs.grad:regionNE -0.003640 0.003876 -0.939 0.348271
## pct.hs.grad:regionS 0.002014 0.003539 0.569 0.569690
## pct.hs.grad:regionW -0.018916 0.004204 -4.499 8.85e-06 ***
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## pct.bach.deg:regionNE 0.005905 0.002618 2.256 0.024611 *
## pct.bach.deg:regionS -0.001298 0.002321 -0.559 0.576352
## pct.bach.deg:regionW 0.006326 0.002620 2.415 0.016183 *
## pct.below.pov:regionNE -0.002435 0.004647 -0.524 0.600488
## pct.below.pov:regionS 0.007137 0.003686 1.937 0.053482 .
## pct.below.pov:regionW -0.015224 0.005169 -2.945 0.003407 **
## pct.unemp:regionNE -0.007967 0.007255 -1.098 0.272761
## pct.unemp:regionS -0.024668 0.006377 -3.868 0.000127 ***
## pct.unemp:regionW -0.019757 0.006603 -2.992 0.002935 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07545 on 417 degrees of freedom
## Multiple R-squared: 0.8735, Adjusted R-squared: 0.8668
## F-statistic: 130.9 on 22 and 417 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(m_final)
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For the diagnostics plot of our final model, the Residuals vs Fitted plot shows that there is not nonlinear
pattern in the model but there are some outliers detected; the normal Q-Q plot shows that the residuals
are normally distributed and the assumption that errors are normally distributed holds, but there are some
points that deviated from the diagonal line a lot; the scale-location plot shows that the residuals are spread
equally along the ranges of predictors and the residuals have constant variance; the residuals vs leverage plot
shows that there are no influential points in the model. Hence, the final model is a good fit.

Part E: Whether missingness matters

Alaska, Iowa, and Wyoming are the states that are missing and these are states that are perhaps less populous.

19



unique(cdi$state)

## [1] "CA" "IL" "TX" "NY" "AZ" "MI" "FL" "PA" "WA" "OH" "MA" "MN" "MO" "WI" "CT"
## [16] "HI" "TN" "NJ" "VA" "IN" "MD" "NV" "UT" "KY" "AL" "GA" "DC" "OK" "RI" "OR"
## [31] "NC" "LA" "NM" "CO" "DE" "NE" "KS" "AR" "NH" "SC" "MS" "ME" "WV" "ID" "VT"
## [46] "SD" "MT" "ND"
length(unique(cdi$state))

## [1] 48
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