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Abstract

This study aims to answer several questions from social scientists related to the per capita income
of counties in the United States. The dataset used here comes from Kuter et al. (2005) in Applied Linear
Statistical Models, Fifth Edition and contains various statistics from the 440 largest counties in the United
States by population. Through the use of transformations, correlation plots, and various variable selection
methods, analysis was conducted to find multicollinearity among the variables, to find how total crimes
and crime rate impact per capita income separately, and to create a model predicting per capita income
using the variables present in the dataset. It was discovered that several of the variables were highly
correlated to each other, that total crimes was a better predictor for per capita income, and that a model
with seven of the thirteen variables can effectively predict per capita income. All in all, many of the
conclusions made in this study should be very useful and insightful but because of the small size of the
dataset and because the dataset excludes all of the smaller counties in the United States, further research is
needed.

Introduction

Every county in the United States is unique in their own way based on many different factors
such as their geography, their demographics, and their infrastructure. These factors combined help
determine if a county is “good” or “bad” to the general public and can further influence the county’s
appeal if people want to visit or live there. For this study, a county’s average income per capita will be the
variable used to determine a county’s overall quality of life, such as with better healthcare or education,
the higher the better. The given dataset for this study will be used to answer four questions: first to see if
any variables are related to each other, if the per capita income is related to crime rate in different regions
of the United States, what’s the best combination of variables that can be used to predict the average
income per capita for any given county, and if missing counties or states from the dataset makes a
difference in the study.

Data

The data for this study comes from Kuter et al. (2005) from Applied Linear Statistical Models,
Fifth Edition. The dataset contains information from the 440 most populous counties in the United States
in 1990, each with an id, name, state, region, 12 other continuous variables, and the county’s average
income per capita. Below are tables detailing the dataset:
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Table 1: Variable definitions for CDI data from Kuter et al.(2005). Original source: Geospatial and
Statistical Data Center, University of Virginia.

Variable Description (All in 1990)

id A given id for each county

county County name

state State the county is in

land.area County land area

pop County population

pop.18_34 Percent of county population between 18-34

pop.65_plus Percent of county population above 65

doctors Number of doctors in county

hosp.beds Number of hospital beds in county

crimes Number of serious crimes in county

pct.hs.grad Percent of county population that completed high
school

pct.bach.deg Percent of county population that got a bachelor’s
degree

pct.below.pov Percent of county population below poverty line

pct.unemp Percent of county population unemployed

per.cap.income County’s income per capita (Response variable)

tot.income County’s total income

region Region of the United States the county resides
(NC, NE, W, S)
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Table 2: Summary statistics for continuous variables

Table 3: Frequency table for the “region” variable

Table 4: Initial distributions of the continuous variables
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Methods

To start, histograms for every continuous variable were created to see the normality of each
variable’s distributions. In order for the analysis to run smoothly, each variable should be as normal as
possible. As such, any variable with a noticeable right skew was log transformed to pull outlier points
closer to the rest of the data.

For the first question regarding variables relating to other variables in the dataset, a correlation
plot was created to visualize and quickly identify any highly correlated variables. These pairs were noted
down as they have a high chance of being removed when the regression model was being created later on.

For the second question regarding crime and per capita income by region, multiple linear models
were created. A new variable called crime rate was created using crimes and dividing it by the population
amount. Six linear models were created, three using total crimes and three using crime rate. Within each
of those groups, the three models consisted of total crimes/crime rate on it’s own, total crimes/crime rate
and region with no interaction variable, and total crimes/crime rate with an interaction variable.
Afterwards, summary tables, AIC values, and residual plots were made to compare the models to see if
any model was particularly better than the rest.

To make the full regression model, three methods were used: VIF, all-subsets, stepwise
regression, and LASSO. The variables used in these methods are the transformed variables created at the
start of the study. Since per capita income is a continuous variable, most of the categorical variables and
the id column were removed from the model, this includes the county name, and the county state. Region
is the only categorical variable being considered because it only has four levels, each with a fair amount
of data for each level. Each variables’ variance inflation factor (VIF) was calculated, and any variable
with a VIF greater than 100 was removed from the model (more clarification on this can be found on page
16 after Table L in the Technical Appendix). Next, the three variable selection methods were completed,
first without interaction variables, then with region interactions afterwards. The variables that were
chosen from all three methods were compared to one another to see if a definitive model can be made.
Then a final summary table and residual plots will be created to check if all of the linear model
assumptions are satisfied.

To answer the fourth question, no analysis was conducted and discussion points were made in the
discussion section of this paper.

Results

In the preliminary analysis, several of the variables were found to be right skewed by outliers. As
such, those variables were log transformed, specifically: crimes, doctors, hosp.beds, land.area, pop,
tot.income, and per.cap.income to normalize the data. More information can be found in Tables A and B
on pages 9-10 in the Technical Appendix.

For the first question with the correlation plot below, there are apparent strong correlations
between pop, crimes, hosp.beds, doctors, and total income, moderately strong correlations between
per.cap.income, pct.bach.deg, and pct.hs.grad, and a strong negative correlation between pct.below.pov
and pct.hs.grad.
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Between the six linear models made for the second question, the models that contained total
crimes tended to have more significant terms than with crime rate, and the model containing region terms
with no interaction variables had the most significant terms with the highest R-squared value. Combining
these findings resulted in the model below:

Looking at the residual plots (page 15 in plot J in the Technical Appendix) for this particular
model shows that it is random enough with no high influence points, but is a bit heavy tailed.

In finding the best overall model for predicting per capita income, calculating the VIF for each of
the variables against per.cap.income resulted in pop and tot.income being removed from the model since
they had VIF values greater than 100. With the all-subsets method, the function gave the lowest BIC
value when seven variables were selected with no region terms: land.area, pop.18_34, doctors,
pct.hs.grad, pct.bach.deg, pct.below.pov, and pct.unemp. The linear model with these variables all resulted
in significant terms and the residual plots were mostly okay. Adding in interaction terms with region
resulted in some of the terms being significant meaning that region will likely be kept in the model.
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For the stepAIC method, eight variables were selected in the model with the lowest AIC value.
The variables were the same as the ones chosen in the all-subsets method except that pop.65_plus was
added in. Including the region interaction terms also resulted in a model similar to the subsets method.

Lastly, with the LASSO method, six variables were selected in the chosen model, the model one
standard error larger than the minimum lambda value. The chosen variables were also similar to the ones
from the all-subsets method except that pct.hs.grad was removed from the model. Similar to the stepAIC
method, adding the region interaction terms should result in a model similar to the subsets method.

The three methods above all resulted in similar models so the final model was chosen based on
the contextual meaning of the variables in relation to the research question. As such, the final model
chosen was from the all-subsets model with land.area, pop.18_34, doctors, pct.hs.grad, pct.bach.deg,
pct.below.pov, pct.unemp, and all of the region interaction terms. Their coefficients are listed below (The
full output with residual plots is in Table N on pages 17-19 in the Technical Appendix):

Discussion

The goal of this study was to answer four questions posed by the social scientists: Whether any of
the variables in the 1990 county dataset are correlated with one another, If per capita income for a
particular county can be better predicted using the total crimes, or the crime rate of the county, What the
best combination of variables is to calculate a county’s per capita income, and If the counties missing
from the dataset made a difference in how the final model was structured.
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From the correlation plot, it’s clear that several of the variables were highly correlated with each
other. The correlations typically came in groups of three and were all positively correlated with each
other, one group which had population, total income, and per capita income, and the other group
containing doctors, hospital beds, and crimes. The first group was correlated because per capita income
was calculated dividing total income by population, and the other group was likely correlated because
doctors and hospital beds are both related to the hospital environment and the serious crimes used in the
dataset often send victims to the hospital as well. On the opposite end, pct.below.pov, and pct.hs.grad had
a strong negative correlation with each other, likely meaning that someone who graduates high school has
a lower chance of being in poverty in the future, which could be a study all on its own.

In comparing total crimes to crime rate to predict per capita income of a county, total crimes
proved to be the better option. It doesn’t seem to be an intuitive answer though since every county has a
different population and usually proportions are used when that kind of variability exists. However, the
best model for this also contains the region variable, meaning that the region of the United States the
county resides in likely has a larger impact on per capita income, and total crimes is merely a good
supplement to it. This is something that can be further studied as there are only 440 counties in the dataset
used for this study and there are over 3000 counties in the United States. With the model given in the
results section above, this means that:

● For Total Crimes, for every 1% increase in total crimes, per capita income will also increase by
0.07%. As mentioned above, this is extremely counter-intuitive and should be studied further.

● With the region coefficients, counties in the northeast region of the United States have a higher
base per capita income followed by counties in the north-central region, western region, and the
southern region.

○ More information about the region coefficients can be found between Tables K and L on
page 16 in the Technical Appendix

When making the best model to predict per capita income, all three methods selected nearly the
same variables to be in the final model. The only differences lie in the all-subsets method adding in
pct.hs.grad, and the lasso method adding in pct.hs.grad and pop.65_plus in their models. Since the models
were so similar to each other, the best model should be chosen based on the meaning of the variables such
as the social, economic, and health factors and its implication. In that case the best model is likely the
model chosen by the all-subsets method with land.area, pop.18_34, doctors, pct.hs.grad, pct.bach.deg,
pct.below.pov, pct.unemp, and region interaction variables. From a social standpoint, each of these
variables have a defendable reason as to why they belong in the model: land.area can be used measure
population density which can give some insights on per capita income, pop.18_34 is the age range where
most people are earning income in their lives, the number of doctors can indicate the quality of care
someone can get in the county which could mean higher incomes, pct.hs.grad as mentioned earlier is
negatively correlated with pct.below.pov so the higher the percentage, the higher the income, pct.bach.deg
is similar to pct.hs.grad, and pct.unemp will reduce per capita income the higher it is and vice versa.
Pop.65_plus from the LASSO method wasn’t included in this model since people older than 65 are
usually retired and aren’t working. For the regional variables, since some of the interaction terms were
shown to be significant, this means that the variable coefficients for a certain county will be slightly
different from another depending on which region the county is located in. To summarize, the list below
gives more interpretations about each variable:
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● A 1% increase in a county’s land area will result in a -0.036% change in per capita income
● A 1% increase in a county’s population aged 18-34 will result in a -0.0148% change in per capita

income
● A 1% increase in the number of doctors in a county will result in a 0.054% change in per capita

income
● This pattern continues for the remaining four continuous variables on per capita income: -0.002%

for high school graduates,  0.014% for bachelors degrees, -0.024% for the percentage of
population in poverty, 0.018% for the percentage of population unemployed.

● The regional and interaction variables show that a county in the western region of the United
States automatically increases its per capita income by 1.5%, however, a 1% increase in the
county’s population living poverty will result in a -0.016% change in per.capita income, and a 1%
increase in the county’s unemployment population will result in a -0.02% change in per.capita
income.

○ These conclusions can also be made for the other variables in the other regions but they
aren’t as significant as the western region counties.

○ More information on the interaction variables can be found in the description of Table N
on pages 17-19 in the Technical Appendix.

As for the question about missing counties in the dataset, it should be a bit worrying that they
weren’t considered in the model because the 440 counties used in this study are the 440 largest counties in
the United States. These counties are likely not representative of the smaller counties with smaller
populations, different age distributions, fewer medical resources, and fewer educational resources and
instead might actually be outliers when compared to the 2500+ other counties not included in the dataset.
This is definitely something that should be further researched, first by seeing if the subsets model from
above can predict per capita income for a small county, then by refitting the model to see how smaller
counties influence the selected variables and their coefficients.
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Table A: Untransformed Data

pop.65_plus tot.income

pct.unemp per.cap.income pop pop.18_34

land.area pct.bach.deg pct.below.pov pct.hs.grad

crimes doctors hosp.beds id

10 20 30 0 50000100000150000

5 10 15 20 10000 20000 30000 0 250000050000007500000 20 30 40 50

0 5000100001500020000 10 20 30 40 50 0 10 20 30 50 60 70 80 90

0e+002e+054e+056e+05 0 5000100001500020000250000 10000 20000 0 100 200 300 400
0

100
200

0
100
200

0
100
200

0
100
200

value

co
un
t

In these set of histograms, many of the variables are very right skewed such as crimes, doctors,
hosp.beds, land.area, pop, per.cap.income, and tot.income. These will all be log transformed to
normalize the data and bring the outliers closer to the rest of the data.
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Table B: Transformed Data
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After transforming the data, all of the variables look much normal now. Some variables such as
pop and tot.income still look a bit skewed to the right but it’s an improvement and the data will
be used like this for analysis.
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Plot C: Correlation Plot

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1lan
d.a
rea

pc
t.b
elo
w.p
ov

pc
t.u
ne
mp

pe
r.c
ap
.in
co
me

pc
t.h
s.g
rad

pc
t.b
ac
h.d
eg

po
p.1
8_
34

do
cto
rs

ho
sp
.be
ds

cri
me
s

po
p

tot
.in
co
me

pop.65_plus

land.area

pct.below.pov

pct.unemp

per.cap.income

pct.hs.grad

pct.bach.deg

pop.18_34

doctors

hosp.beds

crimes

pop

In this correlation plot, the larger and more red or blue a circle is, the higher the correlation is
between two variables. Here, doctors, hosp.beds, crimes, pop, tot.income are all highly positively
correlated with each other. Similarly, pct.hs.grad and pct.below.pov are highly negatively
correlated with each other. These highly correlated variables will be noted when conducting
analysis.

Table D: Total crimes with region interaction variables
#>

#> Call:

#> lm(formula = per.cap.income ~ crimes * region, data = x3)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.68552 -0.10418 -0.01444 0.08302 0.79755

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 9.33677 0.14579 64.044 < 2e-16 ***

#> crimes 0.05064 0.01566 3.233 0.00132 **

#> regionNE -0.18407 0.21515 -0.856 0.39272

#> regionS -0.19717 0.21211 -0.930 0.35312

#> regionW -0.31439 0.24465 -1.285 0.19947

#> crimes:regionNE 0.03122 0.02311 1.351 0.17749
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#> crimes:regionS 0.01211 0.02228 0.544 0.58696

#> crimes:regionW 0.02727 0.02523 1.081 0.28028

#> ---

#> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

#>

#> Residual standard error: 0.1855 on 432 degrees of freedom

#> Multiple R-squared: 0.2073, Adjusted R-squared: 0.1945

#> F-statistic: 16.14 on 7 and 432 DF, p-value: < 2.2e-16

This model has total crimes, regions and their interaction variables. Here, only crimes is significant
and the adjusted R-squared is very low so this is not a good model.

Table E: Total crimes with region, no interaction variables
#>

#> Call:

#> lm(formula = per.cap.income ~ crimes + region, data = x3)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.68757 -0.10557 -0.01422 0.08905 0.78946

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 9.188431 0.079812 115.125 < 2e-16 ***

#> crimes 0.066695 0.008421 7.920 2.00e-14 ***

#> regionNE 0.104458 0.025531 4.091 5.11e-05 ***

#> regionS -0.086983 0.023618 -3.683 0.00026 ***

#> regionW -0.055280 0.028167 -1.963 0.05033 .

#> ---

#> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

#>

#> Residual standard error: 0.1854 on 435 degrees of freedom

#> Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959

#> F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

With no interaction variables, total crimes and every region factor except for regionW is significant.
The p-value for regionW is also very close to 0.05, so this is the best model so far.

Table F: Total crimes only
#>

#> Call:

#> lm(formula = per.cap.income ~ crimes, data = x3)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.75042 -0.11569 -0.02976 0.09597 0.74498

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 9.295146 0.083764 110.97 < 2e-16 ***

#> crimes 0.053858 0.008758 6.15 1.75e-09 ***

#> ---
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#> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

#>

#> Residual standard error: 0.1986 on 438 degrees of freedom

#> Multiple R-squared: 0.07948, Adjusted R-squared: 0.07738

#> F-statistic: 37.82 on 1 and 438 DF, p-value: 1.752e-09

With only total crimes, this output shows that it is significant to the model but the adjusted
R-squared value has dropped to 0.07. Not a good model compared Table E.

Table G: Crime rate and region with interaction variables
#>

#> Call:

#> lm(formula = per.cap.income ~ crimerate * region, data = x3)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.65410 -0.11829 -0.01708 0.10399 0.76628

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 9.91177 0.10503 94.367 <2e-16 ***

#> crimerate 0.03454 0.03327 1.038 0.300

#> regionNE 0.21007 0.17165 1.224 0.222

#> regionS -0.10137 0.16072 -0.631 0.529

#> regionW 0.07689 0.26753 0.287 0.774

#> crimerate:regionNE 0.02924 0.05232 0.559 0.577

#> crimerate:regionS -0.01104 0.05554 -0.199 0.843

#> crimerate:regionW 0.03495 0.09268 0.377 0.706

#> ---

#> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

#>

#> Residual standard error: 0.198 on 432 degrees of freedom

#> Multiple R-squared: 0.09773, Adjusted R-squared: 0.08311

#> F-statistic: 6.685 on 7 and 432 DF, p-value: 1.575e-07

Switching to crimerate, making a model with crimerate, the regions, and their interaction variables
results in no significant predictors. Not a good model.

Table H: Crime rate and region, no interaction variables
#>

#> Call:

#> lm(formula = per.cap.income ~ crimerate + region, data = x3)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.65832 -0.11431 -0.01548 0.10838 0.75657

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 9.93628 0.06934 143.303 < 2e-16 ***

#> crimerate 0.04243 0.02148 1.975 0.04885 *

#> regionNE 0.11457 0.02760 4.151 3.99e-05 ***
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#> regionS -0.07456 0.02624 -2.841 0.00471 **

#> regionW -0.02426 0.03002 -0.808 0.41952

#> ---

#> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

#>

#> Residual standard error: 0.1974 on 435 degrees of freedom

#> Multiple R-squared: 0.09645, Adjusted R-squared: 0.08814

#> F-statistic: 11.61 on 4 and 435 DF, p-value: 5.776e-09

Without the interaction terms, most of the predictors become significant aside from regionW once
again, an okay model but not nearly as good as the model in Table E.

Table I: Crime rate only
#>

#> Call:

#> lm(formula = per.cap.income ~ crimerate, data = x3)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.7058 -0.1242 -0.0221 0.1066 0.7210

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 9.73510 0.05908 164.765 <2e-16 ***

#> crimerate -0.02417 0.01959 -1.233 0.218

#> ---

#> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

#>

#> Residual standard error: 0.2066 on 438 degrees of freedom

#> Multiple R-squared: 0.003461, Adjusted R-squared: 0.001186

#> F-statistic: 1.521 on 1 and 438 DF, p-value: 0.2181

Having crimerate only results in it being insignificant, bad model.
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Plot J: Residual plots for best model (Table E)
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Comparing the summaries of the six models, the second model (Table E) with total crimes and
regions with no interaction had the best summary with almost all of the variables being significant
or close to significant and having the highest adjusted R-squared value. Looking at the residual
plots for this model shows that the data is roughly random, roughly normal but a bit heavy-tailed,
spread out a good amount, and has no bad influence points.

Table K: AIC and BIC
#> df AIC

#> y 9 -223.7402

#> y2 6 -227.4746

#> y3 3 -169.9466

#> y4 9 -166.7601

#> y5 6 -172.1347

#> y6 3 -135.0340

#> df BIC

#> y 9 -186.9593

#> y2 6 -202.9539

#> y3 3 -157.6863

#> y4 9 -129.9792

#> y5 6 -147.6140

#> y6 3 -122.7737

Looking at the AIC and BIC values, the second model has the lowest values, as such this is the
best model to predict per.capita.income.
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About the interaction variables
The region variables are binary variables, meaning a value of 1 should be used for counties located
in a particular region and 0 otherwise. What this means is that without considering crimes, a
county’s base per capita income can be determined by summing the intercept with the coe�cients
and raising e to that power. For example, for western counties, the per capita income can be found
by adding the intercept, 9.188, to the coe�cient, -0.055, resulting in 9.133 and then calculating
eˆ9.133 = $9255.75 per capita. For north-central counties, only the intercept is considered so
eˆ9.188 = $9779.07 per capita.

Table L: VIF values
#> land.area pop pop.18_34 pop.65_plus doctors

#> 1.348568 101.081007 2.723926 2.187009 17.278105

#> hosp.beds crimes pct.hs.grad pct.bach.deg pct.below.pov

#> 9.713256 7.433688 4.014452 6.288770 5.440728

#> pct.unemp tot.income

#> 1.957833 125.495194

Normally, variables with a VIF greater than 10 would be removed from the model. However, from
a contextual standpoint, doctors seems to be a good fit for the model since they have high salaries
and could raise per capita income. So for this study, to keep the doctors variable in the model,
the VIF limit was raised to 100 so that only pop and tot.income are removed.

Table M: Subsets method no interaction variables
#> [1] -257.5260 -502.4302 -572.5538 -682.8532 -732.1894 -761.5908 -772.0715

#> [8] -770.5990 -766.2235 -760.4131

#> (Intercept) land.area pop.18_34 doctors pct.hs.grad

#> 10.222495041 -0.035674062 -0.013900201 0.060676872 -0.004406396

#> pct.bach.deg pct.below.pov pct.unemp

#> 0.015385301 -0.024278371 0.010603691

#>

#> Call:

#> lm(formula = per.cap.income ~ land.area + pop.18_34 + doctors +

#> pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp, data = x4)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.34147 -0.04886 -0.00538 0.04818 0.26969

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 10.2224950 0.0931210 109.776 < 2e-16 ***

#> land.area -0.0356741 0.0047767 -7.468 4.53e-13 ***

#> pop.18_34 -0.0139002 0.0011113 -12.508 < 2e-16 ***

#> doctors 0.0606769 0.0040183 15.100 < 2e-16 ***

#> pct.hs.grad -0.0044064 0.0010823 -4.071 5.56e-05 ***

#> pct.bach.deg 0.0153853 0.0009246 16.641 < 2e-16 ***

#> pct.below.pov -0.0242784 0.0012583 -19.294 < 2e-16 ***

#> pct.unemp 0.0106037 0.0021771 4.871 1.56e-06 ***

#> ---
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#> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

#>

#> Residual standard error: 0.082 on 432 degrees of freedom

#> Multiple R-squared: 0.8452, Adjusted R-squared: 0.8427

#> F-statistic: 336.9 on 7 and 432 DF, p-value: < 2.2e-16
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Best model occurs with seven terms as seen witht the BIC, those variables are land.area, pop.18_34,
doctors, pct.hs.grad, pct.bach.deg, pct.below.pov, and pct.unemp. All are significant and their
residual plots look fine.

Table N: Region interaction variables added onto subsets model in
Table M
#>

#> Call:

#> lm(formula = per.cap.income ~ (land.area + pop.18_34 + doctors +

#> pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp) *

#> region, data = x5)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.250782 -0.042332 -0.002298 0.040559 0.313570

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 10.1244260 0.2826240 35.823 < 2e-16 ***

#> land.area -0.0364187 0.0151355 -2.406 0.016564 *

#> pop.18_34 -0.0147940 0.0026043 -5.681 2.55e-08 ***

#> doctors 0.0544169 0.0093221 5.837 1.08e-08 ***
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#> pct.hs.grad -0.0024773 0.0034110 -0.726 0.468088

#> pct.bach.deg 0.0140833 0.0029254 4.814 2.09e-06 ***

#> pct.below.pov -0.0237085 0.0036234 -6.543 1.81e-10 ***

#> pct.unemp 0.0180393 0.0048923 3.687 0.000257 ***

#> regionNE 0.3243992 0.3577081 0.907 0.365004

#> regionS -0.0345856 0.3131668 -0.110 0.912116

#> regionW 1.5043946 0.4226868 3.559 0.000416 ***

#> land.area:regionNE -0.0037179 0.0201435 -0.185 0.853656

#> land.area:regionS -0.0047582 0.0174155 -0.273 0.784825

#> land.area:regionW 0.0151234 0.0181871 0.832 0.406154

#> pop.18_34:regionNE -0.0024780 0.0036873 -0.672 0.501939

#> pop.18_34:regionS -0.0008777 0.0030680 -0.286 0.774970

#> pop.18_34:regionW 0.0014122 0.0040925 0.345 0.730220

#> doctors:regionNE -0.0046251 0.0132571 -0.349 0.727359

#> doctors:regionS 0.0043337 0.0114401 0.379 0.705019

#> doctors:regionW -0.0034863 0.0131576 -0.265 0.791173

#> pct.hs.grad:regionNE -0.0037529 0.0044150 -0.850 0.395813

#> pct.hs.grad:regionS 0.0021198 0.0037853 0.560 0.575790

#> pct.hs.grad:regionW -0.0190188 0.0045881 -4.145 4.13e-05 ***

#> pct.bach.deg:regionNE 0.0069429 0.0040312 1.722 0.085776 .

#> pct.bach.deg:regionS -0.0015774 0.0032000 -0.493 0.622328

#> pct.bach.deg:regionW 0.0071026 0.0036374 1.953 0.051541 .

#> pct.below.pov:regionNE -0.0014134 0.0050896 -0.278 0.781381

#> pct.below.pov:regionS 0.0072764 0.0040739 1.786 0.074827 .

#> pct.below.pov:regionW -0.0161639 0.0054271 -2.978 0.003071 **

#> pct.unemp:regionNE -0.0083596 0.0073758 -1.133 0.257720

#> pct.unemp:regionS -0.0249396 0.0065867 -3.786 0.000176 ***

#> pct.unemp:regionW -0.0201466 0.0067713 -2.975 0.003101 **

#> ---

#> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

#>

#> Residual standard error: 0.0759 on 408 degrees of freedom

#> Multiple R-squared: 0.8747, Adjusted R-squared: 0.8652

#> F-statistic: 91.91 on 31 and 408 DF, p-value: < 2.2e-16
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Adding in the region interaction results in some significance in the model so all of the interaction
terms will be added to the model.

Residual plots are good here, very random with no bad influence points

The region and interaction variables are binary variables meaning that a value of 1 will be used
for counties located in a certain region and 0 otherwise. Similarly named and chosen variables
will be added together to adjust the coe�cients to account for region.

Table O: StepAIC with no interaction variables
#>

#> Call:

#> lm(formula = per.cap.income ~ land.area + pop.18_34 + pop.65_plus +

#> doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp,

#> data = x4)

#>

#> Coefficients:

#> (Intercept) land.area pop.18_34 pop.65_plus doctors

#> 10.315967 -0.036493 -0.015349 -0.002766 0.062605

#> pct.hs.grad pct.bach.deg pct.below.pov pct.unemp

#> -0.004658 0.015215 -0.024614 0.010769

StepAIC gives a model with eight predictors: land.area, pop.18_34, pop.65_plus, doctors,
pct.hs.grad, pct.bach.deg, pct.below.pov, and pct.unemp. This is the same as the allsubsets
method except for the addition of pop.65_plus.

Table P: StepAIC with region interaction variables
#>
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#> Call:

#> lm(formula = per.cap.income ~ land.area + pop.18_34 + doctors +

#> crimes + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +

#> region + doctors:region + crimes:region + pct.hs.grad:region +

#> pct.bach.deg:region + pct.below.pov:region + pct.unemp:region,

#> data = x5)

#>

#> Coefficients:

#> (Intercept) land.area pop.18_34

#> 10.1212121 -0.0324537 -0.0153759

#> doctors crimes pct.hs.grad

#> 0.0412157 0.0131113 -0.0031715

#> pct.bach.deg pct.below.pov pct.unemp

#> 0.0149138 -0.0233414 0.0160990

#> regionNE regionS regionW

#> 0.0005355 -0.0904471 1.8843762

#> doctors:regionNE doctors:regionS doctors:regionW

#> -0.0249320 0.0161981 0.0664384

#> crimes:regionNE crimes:regionS crimes:regionW

#> 0.0287435 -0.0113999 -0.0704979

#> pct.hs.grad:regionNE pct.hs.grad:regionS pct.hs.grad:regionW

#> -0.0020914 0.0026168 -0.0184737

#> pct.bach.deg:regionNE pct.bach.deg:regionS pct.bach.deg:regionW

#> 0.0057137 -0.0021509 0.0045162

#> pct.below.pov:regionNE pct.below.pov:regionS pct.below.pov:regionW

#> -0.0034259 0.0066183 -0.0150228

#> pct.unemp:regionNE pct.unemp:regionS pct.unemp:regionW

#> -0.0070316 -0.0231696 -0.0174992

Adding in the region interaction variables, results in the same eight predictors with all of the
interaction terms after them, some with pretty high coe�cients.

Table Q: LASSO method
#> lambda.1se lambda.min

#> 0.0064883132 0.0005775994

#> 11 x 1 sparse Matrix of class "dgCMatrix"

#> 1

#> (Intercept) 9.878369962

#> land.area -0.032063002

#> pop.18_34 -0.011810866

#> pop.65_plus .

#> doctors 0.059230219

#> hosp.beds .

#> crimes .

#> pct.hs.grad .

#> pct.bach.deg 0.011645778

#> pct.below.pov -0.019928341

#> pct.unemp 0.005894554

Variable selection using LASSO chooses six predictors: land.area, pop.18_34, doctors, pct.bach.deg,
pct.below.pov, and pct.unemp. Predictors are the same as allsubsets method except pct.hs.grad
is missing.

20



Code Appendix

knitr::opts_chunk$set(comment = "#>", tidy.opts = list(width.cutoff = 70),

tidy = TRUE)

set.seed(1645)

library(tidyverse)

library(car)

library(leaps)

library(MASS)

library(glmnet)

library(kableExtra)

setwd("~/Documents/College/Semester 9/Applied Linear Modeling/ALM HW6")

x <- read.table("cdi.dat")

cdinumeric <- x[, -c(1, 2, 3, 17)] ## get rid of id, county, state and (for now) region
apply(cdinumeric, 2, function(x) c(summary(x), SD = sd(x))) %>%

as.data.frame %>%
t() %>%
round(digits = 2) %>%
kbl(booktabs = T, caption = " ") %>%
kable_classic()

tmp <- rbind(with(x, table(region)))

row.names(tmp) <- "Freq"

knitr::kable(tmp)

ggplot(gather(x[, c(1, 4:16)]), aes(value)) + geom_histogram(bins = 25) +
facet_wrap(~key, scales = "free_x")

x2 <- x[4:16]

x2[, 7] <- log(x2[, 7])

x2[, 5] <- log(x2[, 5])

x2[, 6] <- log(x2[, 6])

x2[, 1] <- log(x2[, 1])

x2[, 2] <- log(x2[, 2])

x2[, 13] <- log(x2[, 13])

x2[, 12] <- log(x2[, 12])

ggplot(gather(x2), aes(value)) + geom_histogram(bins = 25) + facet_wrap(~key,

scales = "free_x")

corx <- cor(x2, method = "pearson")

corrplot::corrplot(corx, type = "upper", order = "hclust", tl.col = "black",

tl.srt = 45, diag = F, tl.cex = 0.5)

x3 <- x %>%
mutate(crimerate = crimes/pop)

x3 <- x3[, 4:18]

x3[, 7] <- log(x3[, 7])

x3[, 5] <- log(x3[, 5])

x3[, 6] <- log(x3[, 6])

x3[, 1] <- log(x3[, 1])

x3[, 2] <- log(x3[, 2])

x3[, 13] <- log(x3[, 13])

x3[, 12] <- log(x3[, 12])

x3[, 15] <- log(x3[, 15])

y <- lm(per.cap.income ~ crimes * region, data = x3)

y2 <- lm(per.cap.income ~ crimes + region, data = x3)

y3 <- lm(per.cap.income ~ crimes, data = x3)
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y4 <- lm(per.cap.income ~ crimerate * region, data = x3)

y5 <- lm(per.cap.income ~ crimerate + region, data = x3)

y6 <- lm(per.cap.income ~ crimerate, data = x3)

summary(y)

summary(y2)

summary(y3)

summary(y4)

summary(y5)

summary(y6)

par(mfrow = c(2, 2))

plot(y2)

AIC(y, y2, y3, y4, y5, y6)

BIC(y, y2, y3, y4, y5, y6)

all <- lm(per.cap.income ~ ., data = x2)

vif(all)

x4 <- x3[, -c(2, 13, 14, 15)]

superset <- regsubsets(per.cap.income ~ ., data = x4, nvmax = 11)

s <- summary(superset)

s$bic # Best model at 7
coef(superset, 7)

summary(lm(per.cap.income ~ land.area + pop.18_34 + doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp, data = x4))

par(mfrow = c(2, 2))

plot(lm(per.cap.income ~ land.area + pop.18_34 + doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp, data = x4))

x5 <- x3[, -c(2, 13, 15)]

summary(lm(per.cap.income ~ (land.area + pop.18_34 + doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp) * region, data = x5))

par(mfrow = c(2, 2))

plot(lm(per.cap.income ~ (land.area + pop.18_34 + doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp) * region, data = x5))

aic2 <- stepAIC(lm(per.cap.income ~ ., data = x4), direction = "both",

k = 2, trace = 0)

aic2

aic3 <- stepAIC(lm(per.cap.income ~ . * region, data = x5), direction = "both",

k = 2, trace = 0)

aic3

set <- cv.glmnet(as.matrix(x4[, -11]), as.matrix(x4[, 11]))

c(lambda.1se = set$lambda.1se, lambda.min = set$lambda.min)

coef(set, s = set$lambda.1se)
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