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Abstract

In this paper, we address that whether per-capital income is related to crimes
and region and find the best model predicting per-capital income. We use
the county demographic information (CDI) dataset to help us solve ques-
tions. We build regression models and compare the performance to decide
the best model. Our final model predicting per.capita.income contains coef-
ficients pop.18_34, pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, re-
gion, land.area, and doctors. In order to improve the analysis, we need to
research on other counties since the dataset only contains 1/9 total counties
in US.
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Introduction

Nowadays, social scientists are interested in determining per-capita income
to evaluate the life quality of the population. In this paper, we are discussing
how average income per person was related to other variables associated with
the county’s economic, health and social well-being from cdi.dat. We address
four research questions:

e Which variables seem to be related to other variables in the dataset?
Which are not? Are these relationships reasonable?

e Prove or Disprove a theory that per-capita income should be related to
crime rate, and that relationship may be different in different regions of
the country. Does it matter if you use number of crimes or (number of
crimes) /(population) in your analysis?

e Find the best model predicting per-capita income.

e There are 51 states and around 3000 counties in US, but 48 states and
440 counties are represented in the dataset. Should we be worried about
either the missing states or the missing counties? Why or why not?

Data

The cdi.dat is taken from Kutner et al. (2005). There are total 17 columns
and 440 rows. It provides county demographic information (CDI) for 440
most populous counties in the United States. Each line of the dataset provides
information for a single county. There are no missing values in this dataset.
The definition of each variable is given below:

1. id: Identification number 1-440
county: County name

state: Two-letter state abbreviation
land.area: Land area (square miles)

pop: Estimated 1990 CDI total population

A A

pop.18_34: Percent of 1990 CDI population aged 18-34
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7. pop.65_plus: Percent of 1990 CDI population aged 65 or old
8. doctors: Number of professionally active non-federal doctors during 1990
9. hosp.beds: Total number of beds, cribs, and bassinets during 1990

10. crimes: Total number of serious crimes in 1990, including murder, rape,
robbery, aggravated assault, burglary, larceny-theft, and motor vehicle
theft, as reported by law enforcement agencies

11. pct.hs.grad: Percent of adult population (persons 25 years old or older)
who completed 12 or more years of school

12. pct.bach.deg: Percent of adult population (persons 25 years old or older)
with bachelor’s degree

13. pct.below.pov: Percent of 1990 CDI population with income below poverty
level

14. pct.unemp: Percent of 1990 CDI population that is unemployed

15. per.cap.income: Per-capita income (i.e. average income per person) of
1990 CDI population (in dollars)

16. tot.income: Total personal income of 1990 CDI population (in millions
of dollars)

17. region: Geographic region classification used by the US Bureau of the
Census, NE (northeast region of the US), NC (north-central region of
the US), S (southern region of the US), and W (Western region of the
US)

Variables id and county are unique for each row, which means we can ignore
these two variables when doing data analysis. Below are the summary tables
for two category variables state and region:

AL AR AZ CA CO CT DC DE FL GA HI ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ
34 9 8 1 229 9 3 11714 4 3 91110 518 7 8 3 118 1 3 418
H OK OR PA RI SC SD TN TX UT VA VT WA WI Wv

ol
24 4 629 311 1 828 4 9 11011 1

=

L AR AZ
7 25
M NV NY
2 222

Table 1. Summary Table of State
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NC NE S W
108 103 152 77

Table 2. Summary Table of Geographic Region

Then, the summary of numerical variables are shown below.

land.area pop pop.18_34 pop.65_plus doctors hosp.beds crimes
Min. 15.000 100043.0 16.40000 3.00000 39.0000 92.000 563.00
1st Qu. 451.250 139027.2 26.20000 9.87500 182.7500 390.750 6219.50
Median 656.500 217280.5 28.10000 11.75000 401.0000 755.000 11820.50
Mean 1041.411 393010.9 28.56841 12.16977  987.9977 1458.627 27111.62
3rd Qu. 946.750 436064.5 30.02500 13.62500 1036.0000 1575.750 26279.50
Max . 20062.000 8863164.0 49.70000 33.80000 23677.0000 27700.000 638936.00

pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income tot.income

Min. 46.60000 8.10000 1.400000 2.200000 8899.00  1141.000
1st Qu. 73.87500 15.27500 5.300000 5.100000 16118.25  2311.000
Median 77.70000 19.70000 7.900000 6.200000 17759.00  3857.000
Mean 77.56068 21.08114 8.720682 6.596591 18561.48  7869.273
3rd Qu. 82.40000 25.32500 10.900000 7.500000 20270.00  8654.250
Max. 92.90000 52.30000 36.300000 21.300000 37541.00 184230.000

Table 3. Summary Table of Numerical Variables

Methods

In order to find the relationship between each variable, we plot the correlation
matrix on the variables. We build regression models on number of crimes
or (number of crimes)/(population) and use ANOVA and AIC to find the
best model to inspect whether per-capita income is related to crime rate and
region. We build all-subsets regression, stepwise AIC regression, and stepwise
BIC regression to find the best model to find the best model predicting per-
capita income. Finally, we apply EDA method on the region to compare
whether it follows our understanding.

Results

Relationship Between Variables

From the correlation matrix plot (Appendix Figure 1.), we can find that
pop is highly correlated with tot.income, doctors, hosp.beds, and crimes.
That is no surprise since more population result in more total incomes; more
population result in more people choosing to be doctors; more hospital beds
are needed for more population; and more crimes might occur due to the more
population. Also, three variables doctors, hosp.beds, and crimes are strongly
correlated with one another, which is reasonable because more hospitals beds

4



Zhuoheng Han

are needed if there exist more crimes and result in more doctors to take care.
per.cap.income is kind of highly correlated with pct.hs.grad, pct.bach.deg
(postively correlated) and pct.below.pov, pct.unemp (negatively correlated);
all four of these variables are moderately highly correlated with one another.
This is also reasonable since people with higher degree have more chance to
be employed and always earn more.

Analysis on Income and Crime in Different Region

Before building models, we need to transform the skewed data first. Since
logarithms clean up a lot of the skewing in the data, we use log-transform on
land.area, pop, doctors, hosp.beds, crimes, per.cap.income, and tot.income
variables. Then there are three models to think about.
Im(log.per.cap.income ~ log.crimes),

Im(log.per.cap.income ~ log.crimes + region), and

Im(log.per.cap.income ~ log.crimes * region)

Analysis of Variance Table

Model 1: log.per.cap.income ~ log.crimes

Model 2: log.per.cap.income ~ log.crimes + region

Model 3: log.per.cap.income ~ log.crimes * region
Res.Df RSS Df Sum of Sq F PrGF)

1 438 17.271

2 435 14.949 3 2.32194 22.4823 1.523e-13 ***

3 432 14.872 3 0.07678 0.7434 0.5266

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘** ©.05 ‘. 0.1 * * 1

Table 4. ANOVA on three models

From the ANOVA result, we can find that model Im(log.per.cap.income ~
log.crimes + region) is the best among those three models since its p-value
= 1.523e — 13 < 0.05.

In order to compare this with a model involving per-capita crime, we con-
struct a new variable log.per.cap.crimes, which is equal to log.crimes - log.pop.
Once again, there are three models to think about.

Im(log.per.cap.income ~ log.per.cap.crimes),

Im(log.per.cap.income ~ log.per.cap.crimes + region), and
Im(log.per.cap.income ~ log.per.cap.crimes * region).
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Analysis of Variance Table

Model 1: log.per.cap.income ~ log.per.cap.crimes

Model 2: log.per.cap.income ~ log.per.cap.crimes + region

Model 3: log.per.cap.income ~ log.per.cap.crimes * region
Res.Df RSS Df Sum of Sq F Pr(F)

1 438 18.697

2 435 16.952 3 1.74465 14.8407 3.263e-09 ***

3 432 16.928 3 0.02408 0.2048 0.893

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 * ’ 1

Table 5. ANOVA on three models

From the ANOVA result, we can find that model Im(log.per.cap.income ~
log.per.cap.crimes + region) is the best among those three models since its
p-value = 3.263e — 09 < 0.05.

To compare two winners, we use AIC because the two winners are not nested
models.

df AlIC

<dbl> <dbl>
g2model2 6 -227.4746
g2model5 6 -172.1347

Table 6. AIC between winner models

From the AIC result, it shows that Im(log.per.cap.income ~ log.crimes -+
region) is the best model since AIC value of this model is smaller. The level
of income varies with region in the US, but is not related to crime.

Best Model Predicting Income per Person

From the Data section, id and county variables are not useful so we decide
to drop these two variables. Also, we take log.pop and log.tot.income out of
consideration, since log.per.cap.income = log.tot.income - log.pop, which is a
deterministic function of those two variables. Lastly, state and region are two
category variables for the location, and region contains states geographically
so we decide to drop off state to avoid duplicate information.

First, we start with all-subsets regression. Based on the all-subsets plot
(Appendix Figure 2.), we can find that the best model is with coefficients
pop.18_34, pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, regionS, log.land.area,
and log.doctors.

Based on the rule of thumb: if any indicator for a categorical variable seems
important (e.g. a statistically significant coefficient), then keep the whole
categorical variable, so we will keep region in the final model. Below are the
summary statistics of the final model using all.subsets.
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Residuals:
Min 1Q  Median 3Q Max
-0.34826 -0.04849 -0.00645 0.04750 ©.27486

Coefficients:
Estimate Std. Error t value Pr(>ltl)

(Intercept) 10.2180917 0.1096968 93.149 < 2e-16 ***
pop.18_34 -0.0144814 0.0011360 -12.747 < 2e-16 ***
pct.hs.grad -0.0058161 0.0011869 -4.900 1.36e-06 ***
pct.bach.deg ©.0184292 0.0009227 19.972 < 2e-16 ***
pct.below.pov -0.0243067 0.0014123 -17.211 < 2e-16 ***
pct.unemp 0.0078320 0.0024038 3.279 0.00113 **
log.land.area -0.0362456 0.0054898 -6.602 1.20e-10 ***
log.hosp.beds 0.0367475 0.0084532 4.347 1.73e-05 ***
log.crimes 0.0239008 0.0079153 3.020 0.00268 **

regionNE 0.0033423 0.0125493 0.266 ©@.79011
regionS -0.0371140 0.0122431 -3.031 ©.00258 **
regionW -0.0041354 0.0152284 -0.272 ©0.78609

Signif. codes: 0@ ‘***’ @.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.08263 on 428 degrees of freedom

Multiple R-squared: 0.8442, Adjusted R-squared: 0.8402
F-statistic: 210.9 on 11 and 428 DF, p-value: < 2.2e-16

Table 7. Summary statistics for all-subsets regression model

We can find variables are statistically significant. In order to further decide
whether it is a good model, we apply VIF method to check the multicollinear-
ity and plot the diagnostic plots (Appendix Figure 3.)

GVIF Df GVIFAC1/(2*Df))
pop.18_34 1.457603 1 1.207313

pct.hs.grad 4.457431 1 2.111263
pct.bach.deg 3.207598 1 1.790977
pct.below.pov 2.781070 1 1.667654
pct.unemp 2.030788 1 1.425057
log.land.area 1.472492 1 1.213463
log.hosp.beds 4.625012 1 2.150584
log.crimes 4.717188 1 2.171909
region 3.078181 3 1.206097

Table 8. VIF for the all-subsets regression model

None of the VIF values seem excessively large, i.e., there is no multicollinear-
ity issue that need to be addressed.

From Residuals vs Fitted plot, residuals are randomly distributed around O.
From Q-Q plot, it suggests both the left and the right tails are a bit longer
than expected for the normal distribution. From the Scale-Location plot, it
has constant variance. From Residuals vs Leverage plot, there is no high
influential points that might influence the model performance.

Then, we consider stepwise regression using AIC and BIC. We can find that
the best model using BIC stepwise is with coefficients pop.18_34, pct.hs.grad,
pct.bach.deg, pct.below.pov, pct.unemp, log.land.area, and log.doctors. Be-
low are the summary statistics of the final model using BIC stepwise.
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Residuals:

Min 1Q

Median 3Q

-0.34147 -0.04886 -0.00538 0.04818

Coefficients:

Estimate
(Intercept) 10.2224950
pop.18_34 -0.0139002
pct.hs.grad  -0.0044064
pct.bach.deg  0.0153853
pct.below.pov -0.0242784
pct.unemp 0.0106037
log.land.area -0.0356741
log.doctors 0.0606769

Signif. codes:

Std. Error
0.0931210
0.0011113
0.0010823
0.0009246
0.0012583
0.0021771
0.0047767
0.0040183

Max
0.26969

t value Pr(>I1tl)
109.776 < 2e-16 ***
-12.508 < 2e-16 ***
-4.071 5.56e-05 ***
16.641 < 2e-16 ***
-19.294 < 2e-16 ***
4.871 1.56e-06 ***
-7.468 4.53e-13 ***
15.100 < 2e-16 ***

0 ¥**’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Residual standard error: 0.082 on 432 degrees of freedom

Multiple R-squared:

0.8452,

F-statistic: 336.9 on 7 and 432 DF,

Adjusted R-squared:

p-value: < 2.2e-16

v 9.1 <

0.8427

Table 9. Summary statistics for stepwise BIC model

We can find variables are statistically significant. In order to further decide
whether it is a good model, we apply VIF method to check the multicollinear-

ity and plot the diagnostic plots (Appendix Figure 4.)

pop.18_34
1.416145
log.doctors
1.379671

Table 10. VIF for stepwise BIC regression model

pct.hs.grad pct.bach.deg pct.below.pov

3.763103

3.269565

2.241555

pct.unemp log.land.area

1.691280

1.131867

None of the VIF values seem excessively large, i.e., there is no multicollinear-
ity issue that need to be addressed.
From Residuals vs Fitted plot, residuals are randomly distributed around
0. From Q-Q plot, it suggests the left tails are a bit longer than expected
for the normal distribution. From the Scale-Location plot, it has constant

variance. From Residuals vs Leverage plot, there is no high influential points
that might influence the model performance.
We can find that the best model using AIC stepwise is with coefficients
pop.18_34, pop.65_plus, pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp,
region, log.land.area, and log.doctors. Below are the summary statistics of
the final model using AIC stepwise.
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Residuals:
Min 1Q Median 3Q Max
-0.34849 -0.04695 -0.00502 0.04524 0.28624

Coefficients:
Estimate Std. Error t value Pr(>Itl)

(Intercept) 10.3851173 @.1105475 93.943 < 2e-16 ***
pop.18_34 -0.0153941 0.0013021 -11.822 < 2e-16 ***
pop.65_plus -0.0026499 0.0013137 -2.017 ©0.04430 *
pct.hs.grad -0.0055059 0.0011696 -4.707 3.39e-06 ***
pct.bach.deg 0.0159212 0.0009688 16.434 < 2e-16 ***
pct.below.pov -0.0238604 0.0013529 -17.637 < 2e-16 ***

pct.unemp 0.0090479 0.0023017 3.931 9.86e-05 ***
regionNE -0.0061091 0.0123398 -0.495 0.62080
regionS -0.0311704 ©0.0114050 -2.733 0.00654 **
regionW -0.0162724 0.0140361 -1.159 0.24697

log.land.area -0.0346133 0.0053943 -6.417 3.70e-10 ***
log.doctors 0.0608452 0.0041649 14.609 < 2e-16 ***

Signif. codes: 0@ ‘***’ @.001 ‘**’ 9.01 ‘*’ .05 ‘.’ 0.1 ¢’ 1
Residual standard error: 0.08115 on 428 degrees of freedom

Multiple R-squared: 0.8498, Adjusted R-squared: 0.8459
F-statistic: 220.1 on 11 and 428 DF, p-value: < 2.2e-16

Table 11. Summary statistics for stepwise AIC model

We can find variables are statistically significant. In order to further decide
whether it is a good model, we apply VIF method to check the multicollinear-
ity and plot the diagnostic plots (Appendix Figure 5.)

GVIF Df GVIFA(L/(2*DF))
pop.18_34 1.985228 1 1.408981

pop.65_plus  1.833837 1 1.354192
pct.hs.grad 4.487526 1 2.118378
pct.bach.deg 3.665534 1 1.914558
pct.below.pov 2.645670 1 1.626552
pct.unemp 1.930186 1 1.389311
region 2.364456 3 1.154220
log.land.area 1.473876 1 1.214033
log.doctors  1.513383 1 1.230196

Table 12. VIF for stepwise AIC regression model

None of the VIF values seem excessively large, i.e., there is no multicollinear-
ity issue that need to be addressed.

From Residuals vs Fitted plot, residuals are randomly distributed around O.
From Q-Q plot, it suggests both the left tails and right tails are a bit longer
than expected for the normal distribution. From the Scale-Location plot, it
has constant variance. From Residuals vs Leverage plot, there is no high
influential points that might influence the model performance.

In order to find the best model using these three methods, we use ANOVA
with full model. We find that the best model is all-subsets regression model
Im(log.per.cap.income ~ pop.18_34 + pct.hs.grad + pct.bach.deg + pct.below.pov
+ pct.unemp + region + log.land.area + log.doctors).
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Analysis of Variance Table

Model 1: log.per.cap.income ~ pop.18_34 + pop.65_plus + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp + region + log.land.area +
log.doctors + log.hosp.beds + log.crimes

Model 2: log.per.cap.income ~ pop.18_34 + pct.hs.grad + pct.bach.deg +
pct.below.pov + pct.unemp + log.land.area + log.hosp.beds +
log.crimes + region

Model 3: log.per.cap.income ~ pop.18_34 + pop.65_plus + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp + region + log.land.area +
log.doctors

Model 4: log.per.cap.income ~ pop.18_34 + pct.hs.grad + pct.bach.deg +

pct.below.pov + pct.unemp + log.land.area + log.doctors
Res.Df RSS Df Sum of Sq F Pr(>F)
426 2.8114
428 2.9222 -2 -0.110870 8.4000 Q.0002643 ***
428 2.8188 @ 0.103438

4 432 2.9051 -4 -0.086277 3.2683 0.0117397 *

w N

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 °.” 0.1 <’ 1

Table 13. ANOVA table

Analysis on Missing States and Counties

Based on these 440 counties, we would say if these counties can represent
the around 3000 counties in United States, then we do not need to worry
about the missing counties. However, since the counties are 440 of the most
populous counties in the United States, it is not randomly sampled, which
might cause the bias. In order to check the feasibility, we plot two boxplots
(Appendix Figure 6.&Figure 7.) which are per capital income in different
region and population in different regions. We can find that the median of
per capital income in NE region is the highest, which is reasonable since
northeastern US are economically developed area. the sum of population in
NE region is higher than that in NC region, which conflicts the fact that
NE region has the lowest region. Thus, we might worry about the missing
counties.

Discussion

According to the results, per.capita.income is not highly correlated with
other variables except income and pop. If we only keep per.capita.income,
crimes, and region, we can find that there is no strong relationship be-
tween per.capita.income and crimes, but per.capita.income varies in differ-
ent regions. Our final model predicting per.capita.income contains coeffi-
cients pop.18_34, pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, re-
gion, log.land.area, and log.doctors. Even though the performance of model
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is well, we still need to worry about the missing counties.

If we have no time limitation, we are going to use LASSO and Ridge regression
with cross-validation when analyzing the dataset. In this way, we might be
able to distinguish which model is the best model better, at least in terms of
prediction error. Also, one more weakness is that there are only 440 counties
in our dataset, which are 1/9 of all counties in US. It might be biased since
we use this dataset to build a model predicting the per capital income in
US. It would be an improvement if we spend more time researching on other
counties. Taking other counties into consideration will help us address the
issues much better, especially the last research question.

Reference

Kutner, M.H., Nachsheim, C.J., Neter, J. & Li, W. (2005) Applied Linear
Statistical Models, Fifth Edition. NY: McGraw- Hill/Irwin.

Appendix

Import the data and divide the dataset into category variables and numeric
variables.

cdi <~ read.table("~/Desktop/cdi.dat™
cdi_num <- cdi[,-c(1:3,17)]
cdi_cat <- cdi[,c(1:3,17)]

Check NA.

check_na = function(i){
n = sum(cdil[,i] == "NA")
n

¥
sapply(1:length(cdi), check_na)

Plot histograms of each numeric variables.
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par(mfrow = c(2,2))
hist(cdi_num$land.area, breaks = 100)
hist(cdi_num$pop, breaks = 100)
hist(cdi_num$pop.18_34)
hist(Ccdi_num$pop.65_plus)
hist(cdi_num$doctors, breaks = 100)
hist(cdi_num$hosp.beds, breaks = 100)
hist(cdi_num$crimes, breaks = 100)
hist(cdi_num$pct.hs.grad)
hist(cdi_num$pct.bach.deg)
hist(cdi_num$pct.below.pov)
hist(cdi_num$pct.unemp)
hist(cdi_num$per.cap.income)

hist(cdi_num$tot.income, breaks = 100)
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Histogram of cdi_num$pct.bach.deg Histogram of cdi_num$pct.below.pov
3
3 5
& 8 8 o
= g S
L I <4
w w
o [=)
T T T T 1 T T T T 1
10 20 30 40 50 0 10 20 30 40
cdi_num$pct.bach.deg cdi_num$pct.below.pov
Histogram of cdi_num$pct.unemp Histogram of cdi_num$per.cap.income
o B
S 0 > N
o - o
C C
El S o
g g g 2
o v [
o o
[ T T 1 [ T T T T T T 1
5 10 15 20 5000 15000 25000 35000
cdi_num$pct.unemp cdi_num$per.cap.income
Hist 3.
Histogram of cdi_num$tot.income
B
<
o
C
()
-]
g 8
(TR
o

I T T 1
0 50000 100000 150000

cdi_num$tot.income

Hist 4.

In order to find the relationships between each variable, we plot the correla-

tion matrix.

corrplot(cor(cdi_num), method = "number", tl.col="black")
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land.area
pop.65_plus
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Figure 1. Correlation Matrix

0.8

Log transform on land.area, pop, doctors, hosp.beds, crimes, per.cap.income,
and tot.income variables and rename the column name.

cdi_transform <- cdi
skewed.vars <- <¢(4,5,8,9,10,15,16)

for (i in skewed.vars){
cdi_transform[,i] <- log(cdi_transform[,i])

i}

newname = paste("log.", names(cdi_transform[skewed.vars]), sep = "")
cdi_transform[newname] = cdi_transform[,skewed.vars]
cdi_transform = cdi_transform[,-skewed.vars]

Then we build three models on crime number and region and three models
on crime number /population and region.

gq2modell <- lm(log.per.cap.income ~ log.crimes, data = cdi_transform)

gq2model2 <- 1m(log.per.cap.income ~ log.crimes + region, data = cdi_transform)
g2model3 <- lm(log.per.cap.income ~ log.crimes * region, data = cdi_transform)
anova(q2modell, g2model2, g2model3)

cdi_transform["log.per.cap.crimes"] <- cdi_transform$log.crimes - cdi_transform$log.pop
g2model4 <- 1m(log.per.cap.income ~ log.per.cap.crimes, data = cdi_transform)

g2model5 <- lm(log.per.cap.income ~ log.per.cap.crimes + region, data = cdi_transform)
gq2model6 <- lm(log.per.cap.income ~ log.per.cap.crimes * region, data = cdi_transform)
anova(qgZmodel4, gZmodel5, gZmodel6)

AIC(g2model2, g2model5)

sumﬁq;y(quodeIZ)

In order to find the best model, we first drop useless variables id, county,

14



Zhuoheng Han

log.tot.income, log.pop, and state.

cdi_final <- cdi_transform[, -which(names(cdi_transform) %in% c("id", "county", "state",
"log.pop", "log.tot.income", "log.per.cap.crimes"))]

Apply all-subsets regression

all.subsets <- regsubsets(log.per.cap.income ~ ., cdi_final, nvmax = 1@)
plot(all.subsets)
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Figure 2. All-subsets Plot
tmp <- cdi_final[,all.subsets.summary$which[best.model,][-1]]
tmp["log.per.cap.income"] <- cdi_final["log.per.cap.income™]
tmp["region"] <- cdi_final["region"]
all.subsets.model <- 1lm(log.per.cap.income ~ .,data = tmp)
summary(all.subsets.model)
vif(all.subsets.model)
par(mfrow=c(2,2))
plot(all.subsets.model)
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Figure 3. Diagnostic plots for All-subsets Regression Model
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Apply stepwise BIC

model .BIC <- stepAIC(1m(log.per.cap.income ~ .,data = cdi_final), direction = "both", k =
log(dim(cdi_final)[1]))
summary(model.BIC)

vi f(model .BIC)

par(mfrow=c(2,2))
plot(model.BIC)
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Figure 4. Diagnostic plots for Stepwise BIC Regression Model

Apply stepwise AIC

model .AIC <- stepAIC(Im(log.per.cap.income ~ .,data = cdi_final), direction = "both", k = 2)
summary(model.AIC)

vif(model.AIC)

par(mfrow=c(2,2))
plot(model .AIC)
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Figure 5. Diagnostic plots for Stepwise AIC Regression Model

full.model <- lm(log.per.cap.income ~ ., data = cdi_final)
anova(full.model, all.subsets.model, model.AIC, model.BIC)
boxplot(per.cap.income ~ region, data = cdi)

boxplot(pop ~ region, data = cdi)

cdi %%
group_by(region) %>%
summarise(median_per_cap_income = median(per.cap.income),
sum_pop = sum(pop))
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Figure 6. Boxplot of per Capital Income in Different region
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Figure 7. Boxplot of population in Different region

## # A tibble: 4 x 3
## region median_per_cap_income sum_pop

## <chr> <dbl> <int>

## 1 NC 17817 37386529

## 2 NE 19785 40770956

## 3 S 17110 50008592

## 4 W 17268 44758728
Table 1.
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