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Abstract

With over 3,000 counties spread across 51 states, including the District of Columbia, the
United States has a very diverse population with a combination of social and economic factors
that affect it. We are interested in finding the best model to predict average income per capita and
the relationships between these factors based on 14 different characteristics. The data for this
study has been collected for 440 of the most populous counties in the United States from the
years 1990 and 1992 and is provided by the Geospatial and Statistical Data Center located at the
University of Virginia. We performed general EDA and variable transformations in order to use
regression methods such as Partial F-Tests, AIC/BIC, residual plots, VIF’s, all subsets
regression, stepwise regression, and lasso regression with cross validation. We discovered that
many of the variables share associations and there are a few collinearity issues. Across the
United States for every 1% increase in per-capita crime, there is a 0.04% increase in per-capita
income and baseline per-capita income differs significantly by region, except for the in the West.
We were able to fit a model predicting per capita income with high predictive power while
accounting for interpretability using both main effects and interactions. Overall, the findings are
descriptive in describing how a county’s economic health and social well-being can affect
average income per capita.

1 Introduction

A county is described as a governmental unit in the United States that is bigger than a
city but smaller than a state. With over 3,000 counties spread across 51 states, including the
District of Columbia, the United States has a very diverse population with a combination of
social and economics factors that affect it. Social scientists are interested in looking at historical
data to learn how average income per capita is associated with a county’s economic health and
social well-being based on factors such as population, land area, crime, education, and many
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other determinants. In addition to answering the main question posed above, we hope to also

address the following concerns:
1. Which variables seem to be related to which other variables in the data? Are these

2 Data

relationships expected and can these findings be explained in terms of the
meanings of the variables?

If we ignore all other variables, what is the relationship between per-capita

income and crime rate and how is it affected by different regions of the country?

Why or why not?

Should we be worried about either the missing states or the missing counties?

The data for this study has been collected for 440 of the most populous counties in the
United States from the years 1990 and 1992. It is provided by the Geospatial and Statistical Data
Center located at the University of Virginia. Each line of the data set has an identification
number attached to a county and state abbreviation followed by information on 14 different
characteristics, all described in table 1. Counties with missing data were deleted from the data set
prior to this study.

Variable
Number Variable Name Description
1 Identification number 1-440
2 County County name
3 State Two-letter state abbreviation
4 Land area Land area (square miles)
5 Total population Estimated 1990 population
6 Percent of population Percentof 1990 CDI population aged 18-34
aged 18-34
7 Percent of population 65 Percent of 1990 CDI population aged 65 or old
or older
8 Number of active physi- Number of professionally active nonfederal physicians during 1990
cians
9 Number of hospital beds  Total number of beds, cribs, and bassinets during 1990
10 Total serious crimes Total number of serious crimes in 1990, including murder, rape, rob-
bery, aggravated assault, burglary, larceny-theft, and motor vehicle
theft, as reported by law enforcement agencies
11 Percent high school grad-  Percent of adult population (persons 25 years old or older) who com-
uates pleted 12 or more years of school
12 Percent bachelor's de- Percent of adult population (persons 25 years old or older) with bach-
grees elor's degree
13 Percent below poverty Percentof 1990 CDI population with income below poverty level
level
14  Percent unemployment Percent of 1990 CDI population that is unemployed
15 Per capita income Per-capita income (i.e. average income per person) of 1990 CDI pop-
ulation (in dollars)
16 Total personal income Total personal income of 1990 CDI population (in millions of dollars)
17 Geographic region Geographic region classification used by the US Bureau of the Cen-

sus, NE (northeast region of the US), NC (north-central region of the
US), S (southern region of the US), and W (Western region of the US)




Table 1: Variable definitions for CDI data from Kutner et al. (2005).

To create an ideal dataset for future modeling a few variables were immediately removed.
ID was removed due to its replication of the row numbers. State and county were removed
because they both contained too many unique values to be useful categorically, leaving region as
the sole categorical variable (Appendix 1). Majority of the counties are located in the Southern
region with 152 and the least in the Western region with 77 counties. The full distribution of
region can be seen in table 2.

In addition to the variables in table 1, we created a new variable called per-capita crime
from total crime and total population. Both per-capita income and per-capita crime are measured
in thousands. Per-capita income has a mean of approximately $18,560 and a standard deviation
of $4,060. Per-capita crime has a mean of approximately 57,290 and a standard deviation of
27,330. A table of summary statistics for all continuous variables can be found under Appendix
1.

Figure 1 displays distributions for all continuous variables in the dataset. A substantial
amount of the variables have a prominent right skew which will be discussed later in the study.
Figure 2 displays the associations between all of the continuous variables and the primary
response variable, per-capita income. Due to the skewed distributions of some of the variables
there are plots showing non linear associations which will also be assessed later in the study.

region Freq.

NC 108
NE 103
S 152
W 7

Table 2: Frequency distribution of Region
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Figure 2: Relationship between per.cap.income and continuous variables

3 Methods

All statistical modeling and visualizations were made using the R language and
environment for statistical computing (R Core Team, 2017).

Before beginning to answer any of the concerns of the social scientists, we first decided
to transform variables that were skewed, keeping interpretability in mind, in hopes of creating
better distributions and providing accurate model results. After transformations, we wanted to
characterize the associations between variables. To do this we created a heat map correlation
matrix to check for high correlations among the predictors and raise awareness to any problems
of multicollinearity.



Next we considered two regression models. For the first model, predicting per-capita
income based on crime rate and region, we assessed for a model that was best in terms of
interpretability and predictive power. We looked at differences between additive models and
interaction models using Partial F-Tests, AIC/BIC, and checking model assumptions with
residual plots. Details on the model selection can be found under Appendix 3. For the second
model, we wanted to find the best combination of variables to predict per-capita income. To do
this we used a collection of variable selection techniques such as checking VIF’s for collinearity
problems, all subsets regression, stepwise regression, and lasso regression with cross validation.
Details on the model selection can be found under Appendix 3.

To complete the analysis we considered the possible implication of the missing states and
counties in the dataset.

4 Results

Based on the histograms (Figure 1) and scatter plots (Figure 2) we decided to transform
the variables crimes, tot.income, land.area, doctors, hosp.beds, per.cap.crime, and per.cap.income
with log transformations. Other variables like pct.unemp, pce.below.pov, and pop could have
also used transformations, however to adhere to the integrity of interpretability we only
considered those that improved with a log transformation. The distribution of the newly
transformed variables can be seen in figure 3 and the scatter plots in figure 4. The predictors now
show clear linear associations and can safely be used in modeling with the main response
variable, log.per.cap.income. The log transformed variables will be used throughout the duration
of the modeling.
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Figure 3: Distributions of transformed continuous variables
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Figure 4: Relationship between log.per.cap.income and transformed continuous variables

The heat map correlation matrix, seen in figure 5, shows some interesting associations
between variables. Many of the associations are to be expected and can be explained in terms of
the variable descriptions. The log.doctors variable has some strong positive associations with
log.crime, log.tot.income, and log.hosp.beds. Doctors probably have a high income thus
influencing the total income, the amount of hospital beds is related to the number of doctors
there are to attend to them, and doctors are treating criminals and their victims when needed. The
log.hosp.beds variable shares the same strong positive associations with log.crimes,
log.tot.income, and log.doctors. The variable log.tot.income has other strong positive
correlations with pop and log.crimes.

In terms of collinearity issues, there is strong association between log.crimes and
log.per.cap.crime. This is expected due to the fact that crimes was used to calculate
per.cap.crime. There is also a strong positive correlation between pct.bach.deg and pct.hs.grad
since those who have graduated highschool are included in those who have bachelor degrees. We
assume these collinearities will be addressed in the variable selection methods. The main
response variable log.per.cap.income has some moderate associations which means there is hope
that good models can be made with it. The strongest of these being pct.hs.grad, pct.bach.deg, and
pct.below.pov.
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Figure 5: Heat map correlation matrix of variables.

There are two main factors we wanted to consider when trying to find a model to predict
per.cap.income based on crime and region. One, is the additive or the interaction model preferred
and two, is per.cap.crime a better predictor than crimes. As a reminder, log transformations were
done previously to crimes, per.cap.crime, and per.cap.income and will be used in the models. We
fit a total of 6 linear models seen in table 3; 3 with log.crimes and 3 with log.per.cap.crime
including each null model. The residual plots for all models are acceptable meaning the models
meet assumption requirements and we can continue on to using partial f tests to compare. All
regression outputs and residual plots can be found under Appendix 3.

Name Model
null log.per.cap.income ~ log.crimes
null.1 log.per.cap.income ~ log.per.cap.crime

Im.1 log.per.cap.income ~ log.crimes + region




Im.2 log.per.cap.income ~ log.per.cap.crime + region

Im.3 log.per.cap.income ~ log.crimes*region

Im.4 log.per.cap.income ~ log.per.cap.crime*region

Table 3: Models predicting log.per.cap.income.

We performed two f tests; one for the models with log.crimes and one for the models with
log.per.cap.crime. Both tests preferred the additive model over the interaction model. These
outputs can be found under Appendix 3. To compare the two additive models we used AIC and
BIC estimations. Both AIC and BIC estimations prefer the model using log.crimes as shown in
table 4. Since interpretability is one of the most important things to keep in mind, we decided to
pick the model using log.per.cap.crime over the model using log.crimes despite the results of the
AIC and BIC estimates. This way both the response and the predictor are in the same units and
have the same transformation.

df AIC BIC

Ilm.1 6 -227.4746 -202.9539
Im.2 6 -172.1347 -147.6140

Table 4: AIC and BIC estimations for additive models

As stated before the residual plots satisty modeling assumptions coupled with the
enhanced interpretability we are confident on choosing Im.2 (table 3) as the final and best model.
The regression output is shown in table 5. Across the United States for every 1% increase in
per-capita crime, there is an 0.04% increase in per-capita income. Baseline per-capita incomes
differ by region with North Central (NC) being $15,490, North East (NE) being $17,290, South
(S) being $14,440, and West (W) being $15,180. All regions, except for the W, have baseline
incomes that are significantly different from the NC baseline. According to the model, income
level varies by region but not in the way it varies with crime.

Variable Coefficient Estimate P-Value
Intercept 2.74 <2e-16 ***
log.per.cap.crime 0.04 0.05 *
regionNE 0.11 3.99¢-5 ***




regionS -0.07 0.005 **

regionW -0.02 0.42

Table 4: Regression output for model Im.2 (final model).

To begin finding the best model to predict log.per.cap.income based on all predictors, we
first decided to remove pop, log.tot.income, and log.crimes from the dataset. Pop and
log.tot.income were used in the calculation of log.per.cap.income thus removing them was
necessary. We used the VIF calculations (Appendix 3) to check our logic and see if any other
variables should be removed due to collinearity. Both log.per.cap.crime and log.crimes had high
VIF’s, as log.crimes was used in the calculation of log.per.cap.crime, but log.per.cap.crime was
significantly lower and it is in the same units as the response, thus we kept it over log.crimes.
None of the variable selection methods are particularly good at working with categorical
variables, so region was left out of the original variable selection but will be added back later.

We chose all subsets regression as the primary variable selection method because it
considers all possible combinations of models. Using BIC generated by the all subsets
regression, we determined the best model was model 7 with the lowest BIC of -772.0715. Table
5 shows the variables in model 7. The complete all subsets output can be found in the technical
appendix under Appendix 3. To check the validity of the model we refit it in a standard linear
regression to show the residual plots. The residual plots show that the model is valid as it meets
modeling assumptions. The regression output and residual plots can be found under Appendix 3.
Lastly, to confirm this base model we looked at the marginal model plots to check for any
missing interactions and transformations. The plots, shown in the technical appendix (Appendix
3), also upholds the validity of our model.

Model 7

pop.18 34

pct.hs.grad

pct.bach.deg

pct.below.pov

pct.unemp

log.land.area

log.doctors

Table 5: Variables in the best model selected by all subsets regression.



Since we have a good starting model, we wanted to introduce region. To do so we fit a
model with region interacting with all of the variables in model 7. The regression output and
residual plots can be found under Appendix 3. From the output we dropped log.land.area:region,
pop.18 34:region, and log.doctors:region because none of the interactions were significant. The
AIC and BIC estimates (Appendix 3) that were calculated for each model showed that both

prefer the model with interactions, thus that is the final model.

Variable Coefficient Estimate P-Value
Intercept 3.22 <2e-16 ***
pop.18 34 -0.02 <2e-16 ***
pct.hs.grad -0.003 0.43
pct.bach.deg 0.01 5.24e-11 ***
pct.below.pov -0.02 7.30e-12 ***
pct.unemp 0.02 0.0002 ***
log.land.area -0.03 3.50e-10 ***
log.doctors 0.06 <2e-16 ***
regionNE 0.22 0.47

regionS -0.06 0.82
regionW 1.63 6.86e-06 ***
pct.hs.grad:regionNE -0.004 0.35
pct.hs.grad:regionS 0.002 0.57
pct.hs.grad:regionW -0.02 8.85e-06 ***
pct.bach.deg:regionNE 0.006 0.02 *
pct.bach.deg:regionS -0.001 0.58
pct.bach.deg:regionW 0.006 0.02 *
pct.below.pov:regionNE -0.002 0.60
pct.below.pov:regionS 0.007 0.05.
pct.below.pov:regionW -0.015 0.003 **




pct.unemp:regionNE -0.008 0.27

pct.unemp:regionS -0.02 0.0001 ***

pct.unemp:regionW -0.02 0.003 **

Table 6: Regression output for final model from all subsets with interaction with region.

Next we repeated the same process with stepwise regression, starting without region and
adding it in later. The BIC model is the exact same as the all subsets model which helps us
confirm that the all subsets model is valid. The AIC model added pct.65 plus however, we know
when we add the region interaction the number of terms increases thus BIC may be a better
indicator since it is primarily used for larger models. The stepwise BIC model with the region
interaction produces the exact same model as well, again helping us confirm our final model. As
a last check, we performed lasso regression with cross validation and the 1se lambda. This
variable selection technique also found the same base model as the all subsets and would likely
find the same interaction model with region. The full outputs for both the stepwise regression
and the lasso regression can be seen in the technical appendix under Appendix 3.

Now that we have confirmed a final model we can begin to interpret the outputs in table
6. For the sake of focusing on the most important factors, we will only interpret the significant
variables. For every 1 percentage point increase in the percent of the population between 18 and
34, per capita income decreases by 1.98%. This is most likely due to the fact that younger
people make less money. For every 1 percentage point increase in the percent of the population
that has a bachelor's degree, per capita income increases by 1%. This can most likely be
attributed to the fact that more education can lead to higher income. For every 1 percentage point
increase in the percent of the population that is below the poverty rate, per capita income
decreases by 1.98%. For every 1 percentage point increase in the percent of the population that is
unemployed, per capita income increases by 2.02%. This is an interesting finding as we may
have expected the opposite. A possible explanation is that government assistance for people in
poverty is resulting in the increase. For every 1% increase in land area, there is a 0.03% decrease
in per-capita income. For every 1% increase in the amount of doctors, there is a 0.06% increase
in per-capita income. This is attributed to the high income of doctors compared to the general
population. The baseline per capita income for the West is $5,100. The West is also the only
region with a significant difference from the North Central region in each interaction. This could
be due to the low sample size for the Western region, thus each observation is weighted more
heavily. The North East region has a significant difference in income from the North Central
region in terms of the percentage of those with bachelor's degrees. The Southern region has a
significant difference in income from the North Central region in terms of the percentage of
people that are unemployed. Using a larger confidence interval the same applies to those below
the poverty line. There are probably a lot of lurking variables that are influencing these results
thus we can not directly characterize these differences.



A general rule of thumb when assessing whether a sample is large enough to be
generalized to the population is if the sample size is at least 10% of the population. In our case,
there are 373 counties present in the dataset out of a total of 3,000 counties in the US. Following
the general rule, we can say that our findings are generalizable and we should not worry greatly
about the missing states and counties. The only concern is that we do not know if the sample was
randomly selected or if all 3,000 counties were sampled but these 373 were the only ones that
remained. Also there are 48 out of 51 (including Washington D.C. as a state) represented which
is way more than 10%. Lastly, in all of our modeling we used region as a location classifier
instead of county or state. All the regions are represented in the dataset, thus missing data is not a
big concern.

S Discussion

In this study, we were examining four main concerns related to average income per capita
and its association with a county’s economic health and social well-being. First, we wanted to
characterize the relationships of all the variables in the dataset independently and explain them in
terms of the variable descriptions. We determined that many of the associations are to be
expected and can be explained in terms of the variable descriptions. Due to the similarity of the
variables and possible collinearities doctors and hospital beds share some of the same strong
correlations. Total income and per-capita crime both had high correlations to some variables due
to them being used in the calculations of other variables. The education variables, pct.bach.deg
and pct.hs.grad, had high correlations since those who have graduated highschool are included in
those who have bachelor degrees. Per capita income made a great response variable because of
its moderate associations with the majority of the variables.

Second, we wanted to see the relationship between per-capita income and crime rate and
how it is affected by different regions of the country. Instead of using the raw crime rate variable
we created the per capita crime variable so that both the response and the predictor were
measured in the same units. We found that across the United States for every 1% increase in
per-capita crime, there is a 0.04% increase in per-capita income and baseline per-capita income
differs significantly by region, except for the West. Overall, income level varies by region but
not in the way it varies with crime.

Third, we decided to not worry too much about the missingness of counties and states in
the dataset. More than 10% of states and counties are represented meaning the sample can be
generalizable to the population. We also used region as our main variable to describe location
and all regions were represented in the dataset.

Lastly, the most important concern we addressed was to find the best combination of
variables to predict per-capita income. Using all subsets as our primary variable selection
method and checking with other selection methods, we were able to fit a model with high
predictive power while accounting for interpretability. The final model determined that possibly
due to the younger population making less money, for every 1 percentage point increase in the
percent of the population between 18 and 34, per capita income decreases by 1.98%. It also



found that for every 1 percentage point increase in the percent of the population that has a
bachelor's degree, per capita income increases by 1%. This can most likely be attributed to the
fact that more education usually leads to higher income. A 1 unit percent increase of the
population that is below the poverty rate decreases per capita income by 1.98%. For every 1
percentage point increase in the percent of the population that is unemployed, per capita income
increases by 2.02%. This is an interesting finding as we may have expected the opposite. A
possible explanation is that government assistance for people in poverty is actually resulting in
an increase in average income. For every 1% increase in land area, there is a 0.03% decrease in
per-capita income. For every 1% increase in the amount of doctors, there is a 0.06% increase in
per-capita income. This is most likely attributed to the high income of doctors compared to the
general population. Possibly due to the low sample size, the West is the only region with a
significant difference from the North Central region in each interaction. The North East region
has a significant difference in income from the North Central region in terms of the percentage of
those with bachelor's degrees. The Southern region has a significant difference in income from
the North Central region in terms of the percentage of people that are unemployed. Generally,
there are probably lurking variables that are influencing these results contributing to these
differences.

We wanted to be more accurate in our interpretations of the region interactions however,
we would like the social scientists to be able to understand the findings. We left them at broad
generalizations that are still useful and hope in the future we can explore them more thoroughly.
Had time permitted we would have also liked to explore interactions between the continuous
variables. This may have led to an even more accurate model with higher predictive power. We
also would have considered a way to work with the state variable as our main categorical
location variable instead of region. Using state would provide even more distinct results on how
per capita income is affected given the different factors measured in the data.

Overall, all findings are descriptive and fairly accurate in describing how a county’s
economic health and social well-being can affect average income per capita.
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Appendix 1. Initial Data/Library Imports & Exploration

Loaded packages needed for the analyses along with the initial data set.

library (gtsummary)
library(readr)
library(tidyverse)

## -- Attaching packages —-———————————————-——————————————————-——- tidyverse 1.3.1 —-

## v ggplot2

3 v dplyr
## v tibble 3.

1

0

3.5

1.4 v stringr
.1.3 v forcats
3.4

O = =
o> O
= O N

# v tidyr
## v purrr

## -- Conflicts ———-—-———————————————————m tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()

library(dplyr)
library(leaps)
library (MASS)



#i#
## Attaching package: ’MASS’

## The following object is masked from ’package:dplyr’:
#i#
## select

## The following object is masked from ’package:gtsummary’:
##
## select

library(car)

## Loading required package: carData

##
## Attaching package: ’car’

## The following object is masked from ’package:dplyr’:
##
#it recode

## The following object is masked from ’package:purrr’:
#it
## some

library(glmnet)

## Loading required package: Matrix

##
## Attaching package: ’Matrix’

## The following objects are masked from ’package:tidyr’:
##
## expand, pack, unpack

## Loaded glmnet 4.1-2

library (kableExtra)

##
## Attaching package: ’kableExtra’

## The following object is masked from ’package:dplyr’:
#it
#it group_rows



library(GGally)

## Registered S3 method overwritten by ’GGally’:
##  method from
## +.gg  ggplot2

library(grid)
library(gridExtra)

##
## Attaching package: ’gridExtra’

## The following object is masked from ’package:dplyr’:
##
#i# combine

library(ggplotify)
library(reshape2)

##
## Attaching package: ’reshape2’

## The following object is masked from ’package:tidyr’:
##
## smiths

library(ggplot2)
library(arm)

## Loading required package: 1lme4

##
## arm (Version 1.11-2, built: 2020-7-27)

## Working directory is /Users/alanawillis/Desktop/Fall_21/Applied Linear Models

##
## Attaching package: ’arm’

## The following object is masked from ’package:car’:

##
## logit
library(corrplot)

## corrplot 0.90 loaded

##
## Attaching package: ’corrplot’



Table 1: Summary of Continuous Variables

Min. 1st Qu. Median Mean 3rd Qu. Max. SD
land.area 15.0 451.25 656.50 1041.41 946.75 20062.00 1549.92
pop 100043.0 139027.25 217280.50 393010.92 436064.50 8863164.00 601987.02
pop.18_ 34 16.4 26.20 28.10 28.57 30.02 49.70 4.19
pop.65_ plus 3.0 9.88 11.75 12.17 13.62 33.80 3.99
doctors 39.0 182.75 401.00 988.00 1036.00 23677.00 1789.75
hosp.beds 92.0 390.75 755.00 1458.63 1575.75 27700.00 2289.13
crimes 563.0 6219.50  11820.50  27111.62  26279.50  688936.00  58237.51
pct.hs.grad 46.6 73.88 77.70 77.56 82.40 92.90 7.02
pct.bach.deg 8.1 15.28 19.70 21.08 25.33 52.30 7.65
pct.below.pov 1.4 5.30 7.90 8.72 10.90 36.30 4.66
pct.unemp 2.2 5.10 6.20 6.60 7.50 21.30 2.34
per.cap.income 8.9 16.12 17.76 18.56 20.27 37.54 4.06
tot.income 1141.0 2311.00 3857.00 7869.27 8654.25  184230.00  12884.32
per.cap.crime 4.6 38.10 52.43 57.29 72.60 295.99 27.33

## The following object is masked from ’package:arm’:
##
## corrplot

cdi <- read.table("cdi.dat")

Started by creating a data set with only the continuous variables to be used to created the table of summary
statistics.

Created table of unique values of each variable. This is mostly to see which categorical variable will be best
to include in the modeling later in the analyses.

Created table of summary statistics for continuous variables and a frequency table for the best categorical
variable, region.

cdinumeric <- cdil,-c(1,2,3,17)] %>%
mutate ( (cdi$crimes/cdi$pop)*1000, per.cap.income/1000)

apply(cdinumeric,2,function(x) c(summary(x),SD=sd(x))) %»>%
as.data.frame %>/
tO »>h
round ( 2) %>
kbl ( T, "Summary of Continuous Variables") %>%
kable_minimal ()

apply(cdi,2,function(x) {length(unique(x))}) %>%
kbl ( T, "unique values", "Unique Values") Y%>%kable_minimal (

F)



Table 2: Unique Values

unique values

id 440
county 373
state 48
land.area 384
pop 440
pop.18_34 149
pop.65_ plus 137
doctors 360
hosp.beds 391
crimes 437
pct.hs.grad 223
pct.bach.deg 220
pct.below.pov 155
pct.unemp 97
per.cap.income 436
tot.income 428
region 4

Table 3: Frequency of Region

region Freq.

NC 108
NE 103
S 152
W 7

cdi_region <- cdi %>%
dplyr: :select(region) %>%
group_by (region) %>%
summarise ( n())

cdi_region %>%
kbl ( T, "Frequency of Region", 11 %>%
kable_minimal ()

Created per.cap.crime variable and mutated per.cap.income so that they are measured in the same units.

Visualized variables to see if any transformations were needed using histograms and scatter plots.

cdinumeric <- cdil,-c(1,2,3,17)] %>%
mutate( (cdi$crimes/cdi$pop) *1000, per.cap.income/1000)

ggplot(gather (cdinumeric), aes(value))+
geom_histogram( 30) +



facet_wrap(~key, scales ='free_x')+
theme_minimal ()
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cdinumeric.reg <-data.frame(cdinumeric,region=cdi$region)

scatter.builder <-function(df,yvar="per.cap.income") {
result <- NULL
y.index <- grep(yvar,names(df))
for (xvar in names(df) [-y.index]) {
d <- data.frame(xx=df[,xvar],yy=df[,y.index])
if (mode (df [,xvar])=="numeric") {
p <- ggplot(d,aes(x=xx,y=yy)) +
geom_point () +
ggtitle("") +
xlab(xvar) +
ylab(yvar)
}
else {
p <- ggplot(d,aes(x=xx,y=yy)) +
geom_boxplot (notch=F) +
ggtitle("") +
xlab(xvar) +
ylab(yvar)
}
result <- c(result,list(p))
}

return(result)



}

save <- grid.arrange( scatter.builder(cdinumeric))
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Appendix 2. Transformations and Correlations

Created a new data set with transformed variables and displayed the new histograms.

cdilogs <- cdinumeric %>%
mutate ( log(crimes),
log(tot.income),
log(land.area),
log(doctors),
log(hosp.beds),
log(per.cap.crime),
log(per.cap.income)) %>
dplyr::select(-c(crimes, tot.income, land.area, doctors, hosp.beds,per.cap.crime, per.cap.income))

cdilogs.reg <- data.frame(cdilogs, cdi$region)

ggplot (gather(cdilogs), aes(value))+
geom_histogram( 30) +
facet_wrap(~key, 'free_x')+
theme_minimal ()
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grid.arrange(grobs=scatter.builder(cdilogs))
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Created a heat map correlation matrix to check for high correlations among the predictors and raise awareness
to any problems of multicollinearity.

m <- cor(cdilogs)
msave <- corrplot(m,
c("number"),
FALSE,
0.6,
.7,
"black",
colorRampPalette(c("black","gray","red")) (100))



(]
o E
o . £ 8
- o 3 £ o T G £
v 2 38 8 £ a2 9o g8 £ 0o & g g
S 5 &2 88 2% s 2§ §
© 8 3 8 3 253558 85 8
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1
pop 0.67| 0.72 0.65| 0.63
pop.18_34 -0.62 0.46 0.28 0.8
pop.65_plus -0.62 ~0.27-0.34
0.6
pct.hs.grad -0.27 0.71-0.69-0.59 0.55
pct.bach.deg 0.46-0.34 0.71 ~0.41-0.54 0.41{-0.21, 0.45 0.68 0.4
pct.below.pov -0.69-0.41 0.44 0.421-0.65 0.2
pct.unemp ~0.28 ~0.59-0.54 0.44 ~0.35
0
log.crimes | 0.67 0.86 0.85/0.83/0.73
log.tot.income | 0.72 0.41 0.86 0.91/ 0.81 0.60 0.2
log.land.area -0.21 ~0.31
0.4
log.doctors | 0.65 0.45 0.85/ 0.91 0.90| 0.42| 0.51
0.6
log.hosp.beds | 0.63 0.83/0.81 0.90 0.46
log.per.cap.crime 0.42 0.73 0.42|0.46 0.8
log.per.cap.income 0.55| 0.68-0.65-0.35 0.60(-0.31, 0.51
-1

Appendix 3. Variable Selection and Regression Analysis

Per Capita Income ~ Per Capita Crime and Region

The first modeling was done to predict per-capita income based on crime rate and region.

We fit a total of 6 linear models seen in table 3; 3 with log.crimes and 3 with log.per.cap.crime including each
null model. The best model was assesed using Partial F-Tests, AIC/BIC, and checking model assumptions
with residual plots.

null <- 1lm(log.per.cap.income ~ log.crimes, cdilogs.reg)
par( c(2,2))
plot(null)
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null.2 <- 1lm(log.per.cap.income ~ log.per.cap.crime,
par(
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1m.

1 <- 1m(log.per.cap.income ~ log.crimes + region,

summary (1m. 1)

##
## Call:
## Im(formula = log.per.cap.income ~ log.crimes + region, data = cdilogs.reg)
##
## Residuals:
## Min 1Q  Median 3Q Max
## -0.68757 -0.10557 -0.01422 0.08905 0.78946
#i#
## Coefficients:
#it Estimate Std. Error t value Pr(>[tl)
## (Intercept) 2.280676 0.079812 28.575 < 2e-16 *x**
## log.crimes  0.066695 0.008421  7.920 2.00e-14 x*x**
## regionlNE 0.104458 0.025531 4.091 5.11e-05 *xx*
## regionS -0.086983 0.023618 -3.683 0.00026 **x*
## regionW -0.055280 0.028167 -1.963 0.05033 .
##H -
## Signif. codes: O ’*%x’ 0.001 ’*x> 0.01 ’%” 0.05 ’.” 0.1 7 > 1
#i#
## Residual standard error: 0.1854 on 435 degrees of freedom
## Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
## F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16
par ( c(2,2))
plot(lm.1)
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Im.2 <- 1lm(log.per.cap.income ~ log.per.cap.crime + region, cdilogs.reg)
summary (1m.2)

##

## Call:

## 1m(formula = log.per.cap.income ~ log.per.cap.crime + region,
#Hit data = cdilogs.reg)

#i#

## Residuals:

## Min 1Q Median 3Q Max

## -0.65832 -0.11431 -0.01548 0.10838 0.75657

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.73543 0.08386 32.617 < 2e-16 *x*
## log.per.cap.crime 0.04243 0.02148 1.975 0.04885 =*

## regionNE 0.11457 0.02760 4.151 3.99e-05 **x
## regionS -0.07456 0.02624 -2.841 0.00471 *x*

## regionW -0.02426 0.03002 -0.808 0.41952

# -

## Signif. codes: O ’**x’ 0.001 ’*x’ 0.01 ’x’ 0.05 >.” 0.1’ ’ 1
##

## Residual standard error: 0.1974 on 435 degrees of freedom

## Multiple R-squared: 0.09645, Adjusted R-squared: 0.08814

## F-statistic: 11.61 on 4 and 435 DF, p-value: 5.776e-09

par ( c(2,2))
plot(lm.2)
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Im.3 <- 1lm(log.per.cap.income ~ log.crimes*region, cdilogs.reg)
summary (1m.3)

##

## Call:

## lm(formula = log.per.cap.income ~ log.crimes * region, data = cdilogs.reg)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.68552 -0.10418 -0.01444 0.08302 0.79755

#i#

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 2.42902 0.14579 16.661 < 2e-16 *xx
## log.crimes 0.05064 0.01566  3.233 0.00132 *x
## regionNE -0.18407 0.21515 -0.856 0.39272

## regionS -0.19717 0.21211 -0.930 0.35312

## regionW -0.31439 0.24465 -1.285 0.19947

## log.crimes:regionNE 0.03122 0.02311 1.351 0.17749

## log.crimes:regionS  0.01211 0.02228 0.544 0.58696

## log.crimes:regionW 0.02727 0.02523 1.081 0.28028

# ——-

## Signif. codes: O ’**x> 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1 7 > 1
##

## Residual standard error: 0.1855 on 432 degrees of freedom
## Multiple R-squared: 0.2073, Adjusted R-squared: 0.1945
## F-statistic: 16.14 on 7 and 432 DF, p-value: < 2.2e-16

par( c(2,2))
plot(1m.3)
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4 <- 1m(log.per.cap.income ~ log.per.cap.crime*region, cdilogs.reg)

summary (1m.4)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

Im(formula =
data =

Residuals:

Min 1Q
-0.65410 -0.11829
Coefficients:
(Intercept)
log.per.cap.crime
regionNE
regionS
regionW
log.per.cap.crime
log.per.cap.crime
log.per.cap.crime
Signif. codes: O

Residual standard

Multiple R-squared:
6.685 on 7 and 432 DF,

F-statistic:

log.per.cap.income ~ log.per.cap.crime * region,
cdilogs.reg)

Median 3Q Max
-0.01708 0.10399 0.76628
Estimate Std. Error t value Pr(>[tl)
2.765458 0.127953 21.613 <2e-16 **xx*
0.034535 0.033270 1.038 0.300
0.008122  0.194080 0.042 0.967
-0.025139  0.226872 -0.111 0.912
-0.164523 0.375669 -0.438 0.662
:regionNE 0.029236  0.052324  0.559 0.577
:regionS -0.011035 0.055544 -0.199 0.843
:regionW  0.034948 0.092675 0.377 0.706
7kkk’ 0.001 %%’ 0.01 ’x’ 0.05 ’.” 0.1’ 7 1
error: 0.198 on 432 degrees of freedom
0.09773, Adjusted R-squared: 0.08311

p-value: 1.575e-07
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par ( c(2,2))

plot(1m.4)
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anova(null.2, 1m.2, 1m.4)

## Analysis of Variance Table

#i#

## Model 1: log.per.cap.income ~ log.per.cap.crime

## Model 2: log.per.cap.income ~ log.per.cap.crime + region
## Model 3: log.per.cap.income ~ log.per.cap.crime * region

##  Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 438 18.697

## 2 435 16.952 3 1.74465 14.8407 3.263e-09 *x**

## 3 432 16.928 3  0.02408 0.2048 0.893

## ——-

## Signif. codes: O ’*%x’ 0.001 ’**’ 0.01 ’x> 0.05 ’.” 0.1 > > 1

anova(null, 1m.1, 1m.3)

## Analysis of Variance Table

##

## Model 1: log.per.cap.income ~ log.crimes

## Model 2: log.per.cap.income ~ log.crimes + region
## Model 3: log.per.cap.income ~ log.crimes * region
##  Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 438 17.271

## 2 435 14.949 3  2.32194 22.4823 1.523e-13 *xx
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df AIC BIC

Im.1 6 -227.4746 -202.9539
lm.2 6 -172.1347 -147.6140

## 3 432 14.872 3 0.07678 0.7434 0.5266
## ——
## Signif. codes: O ’*%x’ 0.001 ’**x> 0.01 ’%’ 0.05 ’.” 0.1 > > 1

data.frame( AIC(1m.1,1m.2), BIC(1m.1,1m.2)) [,-31 %>%
kbl ( T, c("df","AIC","BIC")) %>%
kable_minimal ( F)

Per Capita Income ~ All Predictors

Created new data sets, one without region and one with region to be used in the different varaible selection
techniques.

We also removed pop, log.tot.income, and log.crimes from the dataset. Pop and log.tot.income were used
in the calculation of log.per.cap.income thus removing them was necessary. We used the VIF calculation to
check our logic and see if any other variables should be removed due to collinearity.

cdilogs.mod <- cdilogs %>%
dplyr::select(-c(log.crimes, log.tot.income, pop))

cdilogs.mod.reg <-data.frame(cdilogs.mod, cdi$region)

vif <- as.data.frame(vif(lm(log.per.cap.income ~ ., cdilogs)))
vif

#it vif (lm(log.per.cap.income ~ ., data = cdilogs))
## pop 2.506851
## pop.18_34 2.745454
## pop.65_plus 2.187081
## pct.hs.grad 4.050146
## pct.bach.deg 6.295664
## pct.below.pov 5.442001
## pct.unemp 1.967483
## log.crimes 187.000319
## log.tot.income 125.673001
## log.land.area 1.372039
## log.doctors 17.324503
## log.hosp.beds 9.716302
## log.per.cap.crime 41.543524

All Subsets

Performed an all subsets regression on all the predictors (not including region). Then used BIC to pick the
best model.

Once the best model was chosen we refit it in a standard linear regression to show the residual plots to check
the validity of the model.
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As a last check we looked at the marginal model plots to catch any possible missing interactions or trans-
formations.

all.subs <- regsubsets(log.per.cap.income ~ ., cdilogs.mod, 10)
outputs <- summary(all.subs)
outputs$adjr2

## [1] 0.4570147 0.6923589 0.7406912 0.8005025 0.8237080 0.8369929 0.8426532
## [8] 0.8439334 0.8441776 0.8441968

outputs$bic

## [1] -257.5260 -502.4302 -572.5538 -682.8532 -732.1894 -761.5908 -772.0715
## [8] -770.5990 -766.2235 -761.2151

plot(all.subs)
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log.hosp.beds —

0g.per.cap.crime —

coef(all.subs, 7)

#i# (Intercept) pop.18_34 pct.hs.grad pct.bach.deg pct.below.pov
##  3.314739762 -0.013900201 -0.004406396 0.015385301 -0.024278371
## pct.unemp log.land.area  log.doctors
##  0.010603691 -0.035674062 0.060676872

best.allsubs <- 1m(log.per.cap.income ~ pct.hs.grad + pct.bach.deg+ pct.below.pov+ pct.unemp+ log.land.
summary (best.allsubs)

##
## Call:
## Im(formula = log.per.cap.income ~ pct.hs.grad + pct.bach.deg +
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## pct.below.pov + pct.unemp + log.land.area + log.doctors,

## data = cdilogs.mod)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.31559 -0.05702 -0.00446 0.05381 0.34933

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 3.002583 0.104586 28.709 < 2e-16 ***

## pct.hs.grad -0.004979 0.001261 -3.950 9.12e-05 *x*x

## pct.bach.deg 0.011336 0.001010 11.228 < 2e-16 *x*x

## pct.below.pov -0.028776 0.001406 -20.470 < 2e-16 ***

## pct.unemp 0.013421 0.002524  5.317 1.70e-07 ***

## log.land.area -0.031293 0.005554 -5.635 3.16e-08 *x*x

## log.doctors 0.066681  0.004651 14.337 < 2e-16 ***

##H ——

## Signif. codes: O ’*%x’ 0.001 ’**’ 0.01 ’x> 0.05 ’.” 0.1 > > 1
##

## Residual standard error: 0.0956 on 433 degrees of freedom
## Multiple R-squared: 0.7891, Adjusted R-squared: 0.7862
## F-statistic: 270 on 6 and 433 DF, p-value: < 2.2e-16

plot(best.allsubs)
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Standardized residuals
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Residuals vs Leverage
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Fitted values

Here we performed a linear regression using the best model found previously and added in region as an
interaction term.

From the output we dropped log.land.area:region, pop.18_ 34:region, and log.doctors:region because none of
the interactions were significant.
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Lastly we calculated the AIC and BIC for the base model and the model with the interactions.
allsubscdi <- cdilogs.mod.reg %>%

dplyr::select(c(pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, log.land.area, log.doctors, reg

all.subs.reg <- lm(log.per.cap.income ~ .*region, allsubscdi)
summary (all.subs.reg)

##

## Call:

## 1m(formula = log.per.cap.income ~ . * region, data = allsubscdi)
#i#

## Residuals:

it Min 1Q Median 3Q Max

## -0.30870 -0.05222 -0.00779 0.04812 0.38824

#i#

## Coefficients:

#it Estimate Std. Error t value Pr(>[tl)

## (Intercept) 2.660788 .318735  8.348 1.06e-15 **x*
## pct.hs.grad 0.001377 .004019  0.343 0.732091

## pct.bach.deg 0.004575 .002884 1.586 0.113481

## pct.below.pov -0.030093 .004141 -7.267 1.86e-12 **x
## pct.unemp 0.021790 .005827  3.739 0.000211 **x*
## log.land.area -0.049229 .017992 -2.736 0.006484 *x*
## log.doctors 0.075264 .010301  7.306 1.44e-12 **xx
## regionNE 0.321322 .400946  0.801 0.423357

## regionS 0.278106 .3566333  0.780 0.435564

## regionW 1.718705 .484734  3.546 0.000437 **x
## pct.hs.grad:regionNE  -0.004202 .005208 -0.807 0.420172

## pct.hs.grad:regionS -0.006188 .004442 -1.393 0.164385

## pct.hs.grad:regionW -0.021368 .005438 -3.929 9.99e-05 **x*

## pct.bach.deg:regionNE 0.007756
## pct.bach.deg:regionS 0.006104
## pct.bach.deg:regionW 0.013758
## pct.below.pov:regionNE -0.001940

.004116 1.884
.003271 1.866
.003797  3.624
.005834 -0.332

.060201 .
.062689 .
.000327 *xx
.739694

## pct.below.pov:regionS  0.005392 .004594 1.174 0.241126
## pct.below.pov:regionW -0.011175 .006370 -1.754 0.080144 .
## pct.unemp:regionNE -0.012784 .008830 -1.448 0.148437
## pct.unemp:regionS -0.016194 .007723 -2.097 0.036618 *
## pct.unemp:regionW -0.023618 .008101 -2.916 0.003745 *x*

.023994 -0.038
.020654  1.202
.021694  1.257

.969333
.229973
.209329

## log.land.area:regionNE -0.000923
## log.land.area:regionS  0.024831
## log.land.area:regionW  0.027277

O O O O O OO O OO O OOOO0OOOO0OO0OO0OO0OOOOO0OOoO oo
O OO OO OO OO ODODODODODODWOOOOOFHrH OO OO

## log.doctors:regionNE -0.007492 .014961 -0.501 0.616822
## log.doctors:regionS -0.006312 .012964 -0.487 0.626599
## log.doctors:regionW -0.036409 .014798 -2.460 0.014289 =*
## -—-

## Signif. codes: O ’**x’ 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1 > > 1
##

## Residual standard error: 0.09124 on 412 degrees of freedom
## Multiple R-squared: 0.8172, Adjusted R-squared: 0.8052
## F-statistic: 68.22 on 27 and 412 DF, p-value: < 2.2e-16
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bestreg.allsubs <- update(all.subs.reg,. ~ . - region:log.land.area -region:pop.18_34 - region:log.doct
summary (bestreg.allsubs)

##

## Call:

## Im(formula = log.per.cap.income ~ pct.hs.grad + pct.bach.deg +

## pct.below.pov + pct.unemp + log.land.area + log.doctors +

## region + pct.hs.grad:region + pct.bach.deg:region + pct.below.pov:region +
#Hit pct.unemp:region, data = allsubscdi)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.31312 -0.05090 -0.00701 0.04855 0.38446

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 2.7322450 0.3030020 9.017 < 2e-16 *x*x
## pct.hs.grad -0.0006368 0.0038273 -0.166 0.867935

## pct.bach.deg 0.0066250 0.0024782  2.673 0.007805 *x*
## pct.below.pov -0.0289166 0.0040482 -7.143 4.08e-12 *x*x
## pct.unemp 0.0212730 0.0058071  3.663 0.000281 **x
## log.land.area -0.0321779 0.0065327 -4.926 1.21e-06 ***
## log.doctors 0.0642046 0.0048446 13.253 < 2e-16 ***
## regionNE 0.2726560 0.3677538 0.741 0.458862

## regionS 0.2696895 0.3344733 0.806 0.420522

## regionW 1.3193081 0.4339614  3.040 0.002513 x*x
## pct.hs.grad:regionNE -0.0042558 0.0047117 -0.903 0.366927

## pct.hs.grad:regionS -0.0040689 0.0042706 -0.953 0.341256

## pct.hs.grad:regionW -0.0161196 0.0051053 -3.157 0.001707 *x*
## pct.bach.deg:regionNE 0.0078019 0.0031785 2.455 0.014512 *
## pct.bach.deg:regionS 0.0041325 0.0027834 1.485 0.138386

## pct.bach.deg:regionW 0.0086859 0.0031788  2.732 0.006554 *x*
## pct.below.pov:regionNE -0.0023178 0.0056493 -0.410 0.681805

## pct.below.pov:regionS  0.0045764 0.0044753 1.023 0.307098

## pct.below.pov:regionW -0.0091066 0.0062621 -1.454 0.146632

## pct.unemp:regionNE -0.0127592 0.0088101 -1.448 0.148299

## pct.unemp:regionS -0.0153619 0.0077114 -1.992 0.047010 =*
## pct.unemp:regionW -0.0199812 0.0080274 -2.489 0.013194 *
## ——-

## Signif. codes: O ’**%x’ 0.001 ’**x> 0.01 ’%’ 0.05 ’.” 0.1 > > 1

##

## Residual standard error: 0.09172 on 418 degrees of freedom
## Multiple R-squared: 0.8126, Adjusted R-squared: 0.8032
## F-statistic: 86.3 on 21 and 418 DF, p-value: < 2.2e-16

plot(bestreg.allsubs)
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JIStandardized residuals|
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df AIC BIC

best.allsubs 8 -808.2839 -T75.5897
bestreg.allsubs 23 -830.2400 -736.2441

Stepwise

Next we repeated the same process with stepwise regression, starting without region and adding it in later.
We did both an AIC and BIC model to compare the results to the all subsets model.

stepwise_AIC <- stepAIC(1m(log.per.cap.income ~ ., cdilogs.mod), "both",k=2, FALSE
summary (stepwise_AIC)

#it

## Call:

## 1lm(formula = log.per.cap.income ~ pop.18_34 + pop.65_plus + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + log.land.area +
## log.doctors, data = cdilogs.mod)

#it

## Residuals:

#i# Min 1Q Median 3Q Max

## -0.35756 -0.04551 -0.00543 0.04844 0.27399

#i#

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) 3.4082113 0.1025858 33.223 < 2e-16 **¥x

## pop.18_34 -0.0153488 0.0012988 -11.818 < 2e-16 ***

## pop.65_plus -0.0027664 0.0012978 -2.132 0.0336 *

## pct.hs.grad -0.0046579 0.0010843 -4.296 2.15e-05 ***

## pct.bach.deg 0.0152149 0.0009242 16.462 < 2e-16 ***

## pct.below.pov -0.0246144 0.0012631 -19.488 < 2e-16 ***

## pct.unemp 0.0107688 0.0021696  4.963 9.99e-07 **¥x

## log.land.area -0.0364935 0.0047728 -7.646 1.36e-13 ***

## log.doctors 0.0626053 0.0041029 15.259 < 2e-16 ***

## ---

## Signif. codes: O ’***x’ 0.001 ’**x’ 0.01 ’x’ 0.05 ’.” 0.1’ * 1
#i#

## Residual standard error: 0.08167 on 431 degrees of freedom
## Multiple R-squared: 0.8468, Adjusted R-squared: 0.8439
## F-statistic: 297.7 on 8 and 431 DF, p-value: < 2.2e-16

stepwise_BIC <- stepAIC(1m(log.per.cap.income ~ ., cdilogs.mod), "both",k=log(nrow(cdilogs
summary (stepwise_BIC)

#i#

## Call:

## 1m(formula = log.per.cap.income ~ pop.18_34 + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + log.land.area + log.doctors,

#Hit data = cdilogs.mod)

#i#

## Residuals:

## Min 1Q Median 3Q Max
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

-0.34147 -0.04886 -0.00538 0.04818

Estimate Std. Error

Coefficients:

(Intercept) 3.
pop.18_34 -0.
pct.hs.grad -0.
pct.bach.deg 0.
pct.below.pov -0.
pct.unemp 0.
log.land.area -O0.
log.doctors 0.
Signif. codes: O

3147398
0139002
0044064
0153853
0242784
0106037
0356741
0606769

0.
.0011113
.0010823
.0009246
.0012583
.0021771
.0047767
.0040183

O O O O O oo

0931210

Pkxxk? (0.001 xx?

0

0.26969

t value Pr(>ltl)
< 2e-16
< 2e-16

5.56e-05
< 2e-16
< 2e-16

1.56e-06
4.53e-13
< 2e-16

35.596
-12.508
-4.071
16.641
-19.294
4.871
-7.468
15.100

.01 %’

0.05

) )

* % %
* k%
k%%
k%%
k% %
* % %
* k%
* k%

0.1 >

Residual standard error: 0.082 on 432 degrees of freedom
0.8427

Multiple R-squared:

F-statistic: 336.9 on 7 and 432 DF,

0.8452, Adjusted R-squared:

p-value: < 2.2e-16

stepwisereg_AIC <- stepAIC(1lm(log.per.cap.income ~ .*region,
summary (stepwisereg_AIC)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

Im(formula = log.per.cap.income ~ pct.hs.grad + pct.bach.deg +

pct.below.pov + pct.unemp + log.land.area + log.doctors +

region + pct.hs.grad:region + pct.bach.deg:region + pct.below.pov:region +

pct.unemp:region + log.doctors:region, data = allsubscdi)
Residuals:

Min 1Q Median 3Q Max
-0.30870 -0.05143 -0.00880 0.04925 0.38721
Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) 2.6169464 0.3162672 8.274 1.78e-15 **x
pct.hs.grad 0.0005046 0.0039373 0.128 0.898084
pct.bach.deg 0.0048970 0.0028700 1.706 0.088704 .
pct.below.pov -0.0300625 0.0041432 -7.256 1.98e-12 *xx
pct.unemp 0.0209967 0.0057832  3.631 0.000318 **x*
log.land.area -0.0312781 0.0065154 -4.801 2.21e-06 x*x*x
log.doctors 0.0750128 0.0103045 7.280 1.69e-12 **x
regionNE 0.3403227 0.3982715 0.854 0.393321
regionS 0.3613728 0.3496537 1.034 0.301964
regionW 1.8283250 0.4763204  3.838 0.000143 **x*
pct.hs.grad:regionNE -0.0050473 0.0049370 -1.022 0.307215
pct.hs.grad:regionS -0.0052400 0.0043633 -1.201 0.230467
pct.hs.grad:regionW -0.0203938 0.0053744 -3.795 0.000170 x*x*x*
pct.bach.deg:regionNE  0.0089349 0.0039266 2.275 0.023387 =*
pct.bach.deg:regionS 0.0055619 0.0032415 1.716 0.086937 .
pct.bach.deg:regionW 0.0127607 0.0036991  3.450 0.000619 ***
pct.below.pov:regionNE -0.0015959 0.0058296 -0.274 0.784405
pct.below.pov:regionS  0.0054667 0.0045948 1.190 0.234820
pct.below.pov:regionW -0.0107409 0.0063541 -1.690 0.091705 .
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##
##
##
##
##
##
##
##
##
##
##
##

stepwisereg_BIC <- stepAIC(1lm(log.per.cap.income ~ .*region,

pct.unemp:regionNE -0.0121377 0.0088015 -1.379 0.168625
pct.unemp:regionS -0.0151578 0.0076783 -1.974 0.049033 =*
pct.unemp:regionW -0.0228089 0.0080709 -2.826 0.004940 *x*
log.doctors:regionNE -0.0063761 0.0149549 -0.426 0.670071
log.doctors:regionS -0.0059443 0.0129673 -0.458 0.646900
log.doctors:regionW -0.0352067 0.0147637 -2.385 0.017543 *
Signif. codes: O ’***’ 0.001 ’**’ 0.01 ’x’ 0.05 ’.” 0.1’ 7 1
Residual standard error: 0.09129 on 415 degrees of freedom

Multiple R-squared: 0.8157, Adjusted R-squared: 0.805
F-statistic: 76.52 on 24 and 415 DF, p-value: < 2.2e-16

summary (stepwisereg_BIC)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = log.per.cap.income ~ pct.hs.grad + pct.bach.deg +

pct.below.pov + pct.unemp + log.land.area + log.doctors +

region + pct.bach.deg:region, data = allsubscdi)
Residuals:

Min 1Q Median 3Q Max
-0.33309 -0.05200 -0.00590 0.04898 0.35443
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.170626 0.119109 26.619 < 2e-16 ***
pct.hs.grad -0.006084 0.001345 -4.525 7.84e-06 *xx
pct.bach.deg 0.008093 0.001465 5.525 5.74e-08 *xx
pct.below.pov -0.027787  0.001496 -18.575 < 2e-16 **x
pct.unemp 0.010820 0.002706  3.999 7.50e-05 **x
log.land.area -0.028486 0.006395 -4.454 1.08e-05 **x*
log.doctors 0.064023 0.004634 13.815 < 2e-16 **x
regionNE -0.180452 0.039225 -4.600 5.57e-06 *xx*
regionS -0.099337 0.034709 -2.862 0.00442 *x*
regionW -0.119614  0.047127 -2.538 0.01150 =*
pct.bach.deg:regionNE 0.008450 0.001778 4.752 2.76e-06 ***
pct.bach.deg:regionS 0.003516 0.001557  2.2568 0.02442 *
pct.bach.deg:regionW 0.005557 0.001987 2.797 0.00539 *x*
Signif. codes: O ’**x’ 0.001 ’**x’ 0.01 ’%’ 0.05 >.” 0.1’ ’ 1
Residual standard error: 0.09308 on 427 degrees of freedom

Multiple R-squared: 0.8028, Adjusted R-squared: 0.7973
F-statistic: 144.9 on 12 and 427 DF, p-value: < 2.2e-16

Lasso

As a last check, we performed lasso regression with cross validation and the 1se lambda.
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y <- cdilogs.mod$log.per.cap.income
x <- data.matrix(cdilogs.mod[,-11])

lasso.cdi <- cv.glmnet(x,y, 1)
plot(lasso.cdi)
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c( lasso.cdi$lambda. 1se, lasso.cdi$lambda.min)

## lambda. 1se lambda.min
## 0.0094134316 0.0008379979

cbind(coef (lasso.cdi),coef(lasso.cdi,s=lasso.cdi$lambda.1se),coef(lasso.cdi,s=1lasso.cdi$lambda.min))

## 11 x 3 sparse Matrix of class "dgCMatrix"

## sl sl sl
## (Intercept) 2.959121800 2.959121800 3.299856539
## pop.18_34 -0.010777113 -0.010777113 -0.014863142
## pop.65_plus . . -0.002225481
## pct.hs.grad . . -0.003950077
## pct.bach.deg 0.010843351 0.010843351 0.015103087
## pct.below.pov -0.019273623 -0.019273623 -0.024464019
## pct.unemp 0.002733261 0.002733261 0.010499721
## log.land.area -0.028388957 -0.028388957 -0.035461355
## log.doctors 0.057616865 0.057616865 0.052026942
## log.hosp.beds 0.010027064
## log.per.cap.crime 0.006802218
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bestmodel.lasso <- glmnet(x,y, 1, lasso.cdi$lambda.1se)
coef (bestmodel.lasso)

## 11 x 1 sparse Matrix of class "dgCMatrix"

## s0
## (Intercept) 2.958937225
## pop.18_34 -0.010766676

## pop.65_plus
## pct.hs.grad .
## pct.bach.deg 0.010835039

## pct.below.pov -0.019278288
## pct.unemp 0.002730723
## log.land.area -0.028387892
## log.doctors 0.057635089

## log.hosp.beds
## log.per.cap.crime
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