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Predicting Per Capita Income by County
Abstract

This study aims to answer several questions from social scientists related to the per capita income
of counties in the United States. The dataset used here comes from Kuter et al. (2005) in Applied Linear
Statistical Models, Fifth Edition and contains various stats from the 440 largest counties in the United
States. Through the use of transformations, correlation plots, and various variable selection methods, a
model was created to predict per capita income using seven of the thirteen variables present in the dataset,
as well as finding collinearity among the variables, and how crimes and crime rate affect per capita
income separately. All in all, the model is good but because of the small size of the dataset and because
the dataset excludes all of the smaller counties in the United States, further research is needed.

Introduction

Every county in the United States faces different economic, health, and social well-being
situations based on many different factors such as their geography, their demographics, and their
infrastructure. These factors combined help determine if a country is “good” or “bad” to the general
public and can further influence the county’s appeal if people want to visit or settle there. For this study, a
county’s average income per capita will be the variable used to determine a county’s overall quality of
life, the higher the better. The given dataset for this study will be used to answer four questions: first to
see if any variables are related to each other, if the per capita income is related to crime rate in different
regions of the United States, what’s the best combination of variables that can be used to predict the
average income per capita for any given county, and if missing counties or states from the dataset makes a
difference in the study.

Data

The data for this study comes from Kuter et al. (2005) from Applied Linear Statistical Models,
Fifth Edition. The dataset contains information from the 440 most populous counties in the United States
in 1990, each with an id, name, state, region, 12 other continuous variables, and the county’s average
income per capita. Below is a table detailing each variable:

Variable Description (All in 1990)
id A given id for each county
county County name

state State the county is in




land.area County land area

pop County population

pop.18 34 Percent of county population between 18-34

pop.65 plus Percent of county population above 65

doctors Number of doctors in county

hosp.beds Number of hospital beds in county

crimes Number of serious crimes in county

pct.hs.grad Percent of county population that completed high
school

pct.bach.deg Percent of county population that got a bachelor’s
degree

pct.below.pov Percent of county population below poverty line

pct.unemp Percent of county population unemployed

per.cap.income County’s income per capita (Response variable)

tot.income County’s total income

region Region of the United States the county resides
(NC,NE, W, S)

Preliminary statistics:

Continuous Variables:




Min. 1st Qu. Median Mean 3rd Qu. Max. SD

land.area 15.0 451.25 656.50 1041.41 946.75 20062.0 1549.92
pop 100043.0  139027.25  217280.50  393010.92  436064.50  8863164.0  601987.02
pop.18_34 16.4 26.20 28.10 28.57 30.02 49.7 4.19
pop.65_plus 3.0 9.88 11.75 1217 13.62 33.8 3.99
doctors 39.0 182.75 401.00 988.00 1036.00 23677.0 1789.75
hosp.beds 92.0 390.75 755.00 1458.63 1575.75 27700.0 2289.13
crimes 563.0 6219.50 11820.50 27111.62 26279.50 688936.0 58237.51
pct.hs.grad 46.6 73.88 77.70 77.56 82.40 92.9 7.02
pct.bach.deg 8.1 15.28 19.70 21.08 25.33 52.3 7.65
pct.below.pov 1.4 5.30 7.90 8.72 10.90 36.3 4.66
pct.unemp 2.2 5.10 6.20 6.60 7.50 21.3 2.34
per.cap.income 8899.0 16118.25 17759.00 18561.48 20270.00 37541.0 4059.19
tot.income 1141.0 2311.00 3857.00 7869.27 8654.25 184230.0 12884.32

Categorical Variables:

NC NE S W
Freq 108 103 152 77

Methods

To start, histograms for every continuous variable were created to see the normality of each
variable’s distributions. In order for the analysis to run smoothly, each variable should be as normal as
possible. As such, any variable with a noticeable skew was log transformed to pull outlier points closer to
the rest of the data

For the first question regarding variables relating to other variables in the dataset, a correlation
plot was created to visualize and quickly identify any highly correlated variables. These pairs were noted
down as they have a high chance of being removed when the regression model was being created later on.

For the second question regarding crime and per capita income by region, multiple linear models
were created. A new variable called crime rate was created using crimes and dividing it by the population
amount. Six linear models were created, three using total crimes and three using crime rate. Within each
of those groups, the three models consisted of crimes/crime rate on it’s own, crimes/crime rate and region
with no interaction variable, and crimes/crime rate with an interaction variable. Afterwards, summary
tables, AIC values, and residual plots were made to compare the models to see if any model was
particularly better than the rest.



To make the full regression model, three methods were used: VIF, all subsets, stepwise
regression, and LASSO. The variables used in these methods are the transformed variables created at the
start of the study. Since per capita income is a continuous variable, most of the categorical variables and
the id column were removed from the model, this includes the county name, and the county state. Region
is the only categorical variable being considered because it only has four levels, each with a fair amount
of data for each level. Each variables’ variance inflation factor (VIF) was calculated, and any variable
with a VIF greater than 10 was removed from the model. Next, the three variable selection methods were
completed, first without interaction variables, then with region interactions afterwards. The variables that
were chosen from all three methods were compared to one another to see if a definitive model can be
made. Then a final summary table and residual plots will be created to check if all of the linear model
assumptions are satisfied.

To answer the fourth question, no analysis was conducted and discussion points were made in the
discussion section of this paper.

Results

Starting with the distributions of some of the variables, the histograms created in table A revealed
several of the variables being right skewed by outliers. As such, those variables were log transformed,
specifically: crimes, doctors, hosp.beds, land.area, pop, tot.income, and per.cap.income (Table B).

With the correlation plot in table C, there are apparent strong correlations between pop, crimes,
hosp.beds, doctors, total income, moderately strong correlations between per.cap.income, pct.bach.deg,
and pct.hs.grad, and a strong negative correlation between pct.below.pov and pct.hs.grad.

Between the six linear models made for the second question in tables D,E,F,G,H,and I, the models
that contained total crimes tended to have more significant terms than with crime rate, and the model
containing region terms with no interaction variables had the most significant terms with the highest
R-squared value. Looking at the residual plots in table J for this particular model shows that it is random
enough with no high influence points, but is a bit heavy tailed.

After calculating the VIF for each of the variables against per.cap.income, pop and tot.income
were removed from the model since they had VIF greater than 100 (Table K). With the subsets methods,
seven variables were selected with no region terms: land.area, pop.18 34, doctors, pct.hs.grad,
pct.bach.deg, pct.below.pov, and pct.unemp (Table L). The linear model with these variables all resulted
in significant terms and the residual plots were mostly ok. Adding in interaction terms with region
resulted in some of the terms being significant meaning that region will likely be kept in the model (Table
M).

For the stepAIC method, eight variables were selected in the best model (Table N). The variables
were the same as the ones chosen in the subsets method except that pop.65_plus was added in. Including
the region interaction terms also resulted in a model similar to the subsets method (Table O).

Lastly, with the LASSO method, six variables were selected in the best model (Table P). The
variables were also similar to the ones from the subsets method except that pct.hs.grad was removed from
the model. Similar to the stepAIC method, adding the region interaction terms should result in a model
similar to the subsets method.

Discussion



The goal of this study was to answer four questions posed by the social scientists: Whether any of
the variables in the 1990 county dataset are correlated with one another, If per capita income for a
particular county can be better predicted using the total crimes, or the crime rate of the county, What the
best combination of variables is to calculate a county’s per capita income, and If the counties missing
from the dataset made a difference in how the final model was structured.

From the correlation plot, it’s clear that several of the variables were highly correlated with each
other. The correlations typically came in groups of three and were all positively correlated with each
other, one group which had population, total income, and per capita income, and the other group
containing doctors, hospital beds, and crimes. The first group was correlated because per capita income
was calculated dividing total income by population, and the other group was correlated because doctors
and hospital beds are both related to the hospital environment and the serious crimes used in the dataset
often send victims to the hospital as well. On the opposite end, pct.below.pov, and pct.hs.grad had a
strong negative correlation with each other, likely meaning that someone who graduates high school has a
lower chance of being in poverty in the future, which could be a study all on its own.

In comparing fotal crimes to crime rate to predict per capita income of a county, total crimes
proved to be the better option. It doesn’t seem to be an intuitive answer though since every county has a
different population and usually proportions are used when that kind of variability exists. However, the
best model for this also contains the region variable, meaning that the region of the United States the
county resides in likely has a larger impact on per capita income, and total crimes is merely a good
supplement to it. This is something that can be further studied as there are only 440 counties in the dataset
used for this study and there are over 3000 counties in the United States.

When making the best model to predict per capita income, all three methods selected nearly the
same variables to be in the final model. The only differences lie in the subsets method adding in
pct.hs.grad, and the lasso method adding in pct.hs.grad and pop.65_plus in their models. Since the models
were so similar to each other, the best model should be chosen based on the meaning of the variables such
as the social, economic, and health factors and its implication. In that case the best model is likely the
model chosen by the subsets method with land.area, pop.18 34, doctors, pct.hs.grad, pct.bach.deg,
pct.below.pov, pct.unemp, and region interaction variables. From a social standpoint, each of these
variables have a defendable reason as to why they belong in the model: land.area can measure population
density which can affect per capita income, pop.18 34 is the age range where most people are earning
income in their lives, the number of doctors can indicate the quality of care someone can get in the county
which could mean higher incomes, pct.hs.grad as mentioned earlier is negatively correlated with
pct.below.pov so the higher the percentage, the higher the income, pct.bach.deg is similar to pct.hs.grad,
pct.unemp will reduce per capita income the higher it is. Pop.65 plus from the LASSO method wasn’t
included in this model since people older than 65 are usually retired and aren’t working.

As for the question about missing counties in the dataset, it should be a bit worrying that they
weren’t considered in the model because the 440 counties used in this study are the 440 largest counties in
the United States. These counties are likely not representative of the smaller counties with smaller
populations, different age distributions, fewer medical resources, and fewer educational resources and
instead might actually be outliers when compared to the 2500+ other counties not included in the dataset.
This is definitely something that should be further researched, first by seeing if the subsets model from
above can predict per capita income for a particular county, then by refitting the model to see how smaller
counties influence the selected variables and their coefficients.
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Table A: Untransformed Data
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Table B: Transformed Data
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Table C: Correlation Plot
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Table D: Total crimes with region interaction variables

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Call:
lm(formula = per.cap.income ~
Residuals:

Min 1Q Median
-0.685562 -0.10418 -0.01444 O.
Coefficients:

Estimate Std.
(Intercept) 9.33677 0
crimes 0.05064 0
regionNE -0.18407 0
regionS -0.19717 0
regionW -0.31439 0
crimes:regionNE 0.03122 0
crimes:regionS 0.01211 0
crimes:regionW  0.02727 0
Signif. codes: O '*x*xx' 0.001

crimes * region, data = x3)

3Q
08302

Max
0.79755

Error t value Pr(>|tl)

.14579
.01566
.21515
.21211
.24465
.02311
.02228
.02523

Uk !

64.

0.01

044

.233
.856
.930
.285
.351
.544
.081

l*l

<

O O O O O oo

0.0

2e-16 *xxx

.00132 *x*
.39272
.356312
.19947
.17749
.58696
.28028

5'.'0.1 " "1

Residual standard error: 0.1855 on 432 degrees of freedom



#> Multiple R-squared: 0.2073, Adjusted R-squared: 0.1945
#> F-statistic: 16.14 on 7 and 432 DF, p-value: < 2.2e-16

Table E: Total crimes with region, no interaction variables

#>

#> Call:

#> lm(formula = per.cap.income ~ crimes + region, data = x3)
#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.68757 -0.10557 -0.01422 0.08905 0.78946

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|tl)

#> (Intercept) 9.188431 0.079812 115.125 < 2e-16 *x*x

#> crimes 0.066695 0.008421  7.920 2.00e-14 *xx

#> regionNE 0.104458 0.025531  4.091 5.11e-05 *xx

#> regionS -0.086983  0.023618 -3.683 0.00026 ***

#> regionW -0.055280  0.028167 -1.963 0.05033 .

#> ———

#> Signif. codes: O '#*%x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Residual standard error: 0.1854 on 435 degrees of freedom
#> Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
#> F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

Table F: Total crimes only

#>

#> Call:

#> Im(formula = per.cap.income ~ crimes, data = x3)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.75042 -0.11569 -0.02976 0.09597 0.74498

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 9.295146 0.083764 110.97 < 2e-16 *xx

#> crimes 0.053858 0.008758 6.15 1.75e-09 *x**

#> ———

#> Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Residual standard error: 0.1986 on 438 degrees of freedom

#> Multiple R-squared: 0.07948, Adjusted R-squared: 0.07738

#> F-statistic: 37.82 on 1 and 438 DF, p-value: 1.752e-09

Table G: Crime rate and region with interaction variables

#>
#> Call:



#> Im(formula = per.cap.income ~ crimerate * region, data = x3)
#>
#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.65410 -0.11829 -0.01708 0.10399 0.76628

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|tl)

#> (Intercept) 9.91177 0.10503 94.367 <2e-16 **x
#> crimerate 0.03454 0.03327 1.038 0.300

#> regionNE 0.21007 0.17165 1.224 0.222

#> regionS -0.10137 0.16072 -0.631 0.529

#> regionW 0.07689 0.26753  0.287 0.774

#> crimerate:regionNE 0.02924 0.05232  0.559 0.577

#> crimerate:regionS -0.01104 0.05554 -0.199 0.843

#> crimerate:regionW  0.03495 0.09268 0.377 0.706

#> ———

#> Signif. codes: O '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Residual standard error: 0.198 on 432 degrees of freedom

#> Multiple R-squared: 0.09773, Adjusted R-squared: 0.08311

#> F-statistic: 6.685 on 7 and 432 DF, p-value: 1.575e-07

Table H: Crime rate and region, no interaction variables

#>
#> Call:
#> Ilm(formula = per.cap.income ~ crimerate + region, data = x3)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.65832 -0.11431 -0.01548 0.10838 0.75657
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>ltl)
#> (Intercept) 9.93628 0.06934 143.303 < 2e-16 **x
#> crimerate 0.04243 0.02148 1.975 0.04885 *
#> regionNE 0.11457 0.02760 4.151 3.99e-05 *x**
0
0

#> regionS -0.07456 .02624 -2.841 0.00471 *x*

#> regionW -0.02426 .03002 -0.808 0.41952

#> ——-

#> Signif. codes: O 'x*x' 0.001 '*x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#>

#> Residual standard error: 0.1974 on 435 degrees of freedom

#> Multiple R-squared: 0.09645, Adjusted R-squared: 0.08814

#> F-statistic: 11.61 on 4 and 435 DF, p-value: 5.776e-09

Table I: Crime rate only

#>

#> Call:

#> Im(formula = per.cap.income ~ crimerate, data = x3)
#>



#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Residuals:

Min 1Q Median 3Q Max
-0.7058 -0.1242 -0.0221 0.1066 0.7210
Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 9.73510 0.05908 164.765 <2e-16 *x*xx*
crimerate -0.02417 0.01959 -1.233 0.218
Signif. codes: O '*x*x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 '

Residual standard error: 0.2066 on 438 degrees of freedom
Multiple R-squared: 0.003461,
F-statistic:

1.521 on 1 and 438 DF,

Adjusted

R-squared: 0.0011

p-value: 0.2181

1

86

Table J: Residual plots for best model (From table E)
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JIStandardized residuals|

-0.5 0.5

00 1.0 20

Residuals vs Fitted

96 9.7 98 99 10.0

Fitted values

Scale-Location

96 9.7 98 99 10.0

Fitted values

Table K: VIF values

#>
#>
#>
#>
#>
#>

land.area
1.348568
hosp.beds
9.713256
pct.unemp
1.957833

pop
101.081007
crimes
7.433688
tot.income
125.495194

pop.18_34
2.723926
pct.hs.grad
4.014452
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Table L: Subsets method no interaction variables

#>
#>

#>
#>
#>
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

[1] -257.5260 -502.4302 -572.5538 -682.8532 -732.1894 -761.5908 -772.0715
[8] -770.5990 -766.2235 -760.4131
(Intercept) land.area pop.18_34 doctors pct.hs.grad
10.222495041 -0.035674062 -0.013900201 0.060676872 -0.004406396
pct.bach.deg pct.below.pov pct.unemp
0.015385301 -0.024278371  0.010603691
Call:
Im(formula = per.cap.income ~ land.area + pop.18_34 + doctors +

pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp, data = x4)
Residuals:
Min 1Q Median 3Q Max
-0.34147 -0.04886 -0.00538 0.04818 0.26969
Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) 10.2224950 0.0931210 109.776 < 2e-16 **x*

land.area -0.0356741 0.0047767 -7.468 4.53e-13 **x*
pop.18_34 -0.0139002 0.0011113 -12.508 < 2e-16 ***
doctors 0.0606769 0.0040183 15.100 < 2e-16 **¥x*
pct.hs.grad -0.0044064 0.0010823 -4.071 5.56e-05 x*x*x
pct.bach.deg 0.0153853 0.0009246 16.641 < 2e-16 *x**
pct.below.pov -0.0242784 0.0012583 -19.294 < 2e-16 **x*
pct.unemp 0.0106037 0.0021771  4.871 1.56e-06 **x*
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.082 on 432 degrees of freedom

Multiple R-squared: 0.8452, Adjusted R-squared: 0.8427
F-statistic: 336.9 on 7 and 432 DF, p-value: < 2.2e-16
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Table M: Region interaction variables added onto subsets model in
Table L

#>

#> Call:

#> Im(formula = per.cap.income ~ (land.area + pop.18_34 + doctors +
#> pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp) *

#> region, data = x5)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -0.250782 -0.042332 -0.002298 0.040559 0.313570

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|tl)

#> (Intercept) 10.1244260 0.2826240 35.823 < 2e-16 ***
#> land.area -0.0364187 0.0151355 -2.406 0.016564 *
#> pop.18_34 -0.0147940 0.0026043 -5.681 2.55e-08 *xx
#> doctors 0.0544169 0.0093221  5.837 1.08e-08 ***
#> pct.hs.grad -0.0024773 0.0034110 -0.726 0.468088

#> pct.bach.deg 0.0140833 0.0029254 4.814 2.09e-06 **x
#> pct.below.pov -0.0237085 0.0036234 -6.543 1.81e-10 *x*x
#> pct.unemp 0.0180393 0.0048923  3.687 0.000257 **x
#> regionNE 0.3243992 0.3577081  0.907 0.365004

#> regionS -0.0345856 0.3131668 -0.110 0.912116

#> regionW 1.5043946 0.4226868 3.559 0.000416 **x
#> land.area:regionNE -0.0037179 0.0201435 -0.185 0.853656

#> land.area:regionS -0.0047582 0.0174155 -0.273 0.784825



#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

land.area:regionW 0.0151234
pop.18_34:regionNE -0.0024780
pop.18_34:regionS -0.0008777
pop.18_34:regionW 0.0014122
doctors:regionNE -0.0046251
doctors:regionS 0.0043337
doctors:regionW -0.0034863
pct.hs.grad:regionNE  -0.0037529
pct.hs.grad:regionS 0.0021198
pct.hs.grad:regionW -0.0190188
pct.bach.deg:regionNE  0.0069429
pct.bach.deg:regionS -0.0015774
pct.bach.deg:regionW 0.0071026
pct.below.pov:regionNE -0.0014134
pct.below.pov:regionS 0.0072764
pct.below.pov:regionW -0.0161639
pct.unemp:regionNE -0.0083596
pct.unemp:regionS -0.0249396
pct.unemp:regionW -0.0201466
Signif. codes: O '**x' 0.001 '*x'

.0181871
.0036873
.0030680
.0040925
.0132571
.0114401
.0131576
.0044150
.0037853
.0045881
.0040312
.0032000
.0036374
.0050896
.0040739
.0064271
.0073758
.0065867
.0067713

O O O OO OO ODODOOOOO0OOOOoOOoOo

0.01 'x' 0.

0.832
-0.672
-0.286

0.345
-0.349

0.379
-0.265
-0.850

0.560
-4.145

1.722
-0.493

1.953
-0.278

1.786
-2.978
-1.133
-3.786
-2.975

05 '.!

O O OO OO OOOIODOOOOOOOoOOo

.406154
.501939
.T74970
.730220
.727359
.705019
.791173
.395813
.575790
.13e-05 ***
.085776 .
.622328
.051541
.781381
.074827 .
.003071 **
.257720
.000176 **x*
.003101 *=*

Residual standard error: 0.0759 on 408 degrees of freedom

Multiple R-squared:
F-statistic: 91.91 on 31 and 408 DF,

0.8747, Adjusted R-squared:

0.8652
p-value: < 2.2e-16

Table N: StepAIC with no interaction variables

per.cap.income ~ land.area + pop.18_34 + pop.65_plus +
doctors + pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp,

Call:
lm(formula =
data = x4)
Coefficients:
(Intercept) land.area
10.315967 -0.036493
pct.hs.grad pct.bach.deg pct
-0.004658 0.015215

pop.18_34
-0.015349

.below.pov

-0.024614

pop.65_plus doctors

-0.002766 0.062605
pct.unemp
0.010769

Table O: StepAIC with region interaction variables

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Call:
Im(formula =

crimes +
region +
pct.bach

per.cap.income ~ land.area + pop.18_34 + doctors +
pct.hs.grad + pct.bach.deg + pct.below.pov + pct.unemp +
doctors:region + crimes:region + pct.hs.grad:region +
.deg:region + pct.below.pov:region + pct.unemp:region,
data = xb)

Coefficients:

(

Intercept)
10.1212121

land.area
-0.0324537

pop.18_34
-0.0153759



#> doctors crimes pct.hs.grad

#> 0.0412157 0.0131113 -0.0031715
#> pct.bach.deg pct.below.pov pct.unemp
#> 0.0149138 -0.0233414 0.0160990
#> regionNE regionS regionW
#> 0.0005355 -0.0904471 1.8843762
#> doctors:regionNE doctors:regionS doctors:regionW
#> -0.0249320 0.0161981 0.0664384
#> crimes:regionNE crimes:regionS crimes:regionW
#> 0.0287435 -0.0113999 -0.0704979
#> pct.hs.grad:regionNE pct.hs.grad:regionS pct.hs.grad:regionW
#> -0.0020914 0.0026168 -0.0184737
#> pct.bach.deg:regionNE pct.bach.deg:regionS pct.bach.deg:regionW
#> 0.0057137 -0.0021509 0.0045162
#> pct.below.pov:regionNE pct.below.pov:regionS pct.below.pov:regionW
#> -0.0034259 0.0066183 -0.0150228
#> pct.unemp:regionNE pct.unemp:regionS pct.unemp:regionW
#> -0.0070316 -0.0231696 -0.0174992

Table P: LASSO method

#> lambda. 1se lambda.min
#> 0.0064883132 0.0005775994

#> 11 x 1 sparse Matrix of class "dgCMatrix"

#> 1
#> (Intercept) 9.878369962
#> land.area -0.032063002
#> pop.18_34 -0.011810866
#> pop.65_plus .

#> doctors 0.059230219

#> hosp.beds

#> crimes

#> pct.hs.grad .

#> pct.bach.deg 0.011645778
#> pct.below.pov -0.019928341
#> pct.unemp 0.005894554

Code Appendix

knitr::opts_chunk$set (comment = "#>", tidy.opts = list(width.cutoff = 70),
tidy = TRUE)

set.seed(1645)

library(tidyverse)

library(car)

library(leaps)

library(MASS)

library(glmnet)

library(kableExtra)

setwd ("~/Documents/College/Semester 9/Applied Linear Modeling/ALM HW6")

X <- read.table("cdi.dat")

cdinumeric <- x[, -c(1, 2, 3, 17)] ## get rid of id, county, state and (for now) region

apply(cdinumeric, 2, function(x) c(summary(x), SD = sd(x))) %>%
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as.data.frame %>/

tO) %%
round(digits = 2) %>%
kbl (booktabs = T, caption =" ") %>%

kable_classic()

tmp <- rbind(with(x, table(region)))

row.names (tmp) <- "Freq"

knitr: :kable (tmp)

ggplot(gather(x[, c(1, 4:16)]), aes(value)) + geom_histogram(bins = 25) +
facet_wrap(~key, scales = "free_x") # Reference (1) below

x2 <- x[4:16]

x2[, 7] <- log(x2[, 71)

x2[, 5] <- log(x2[, 51)

x2[, 6] <- log(x2[, 61)

x2[, 11 <- log(x2[, 11)

x2[, 2] <- log(x2[, 21)

x2[, 13] <- log(x2[, 131)

x2[, 12] <- log(x2[, 12])

ggplot(gather(x2), aes(value)) + geom_histogram(bins = 25) + facet_wrap(~key,
scales = "free x")

corx <- cor(x2, method = "pearson")

corrplot::corrplot(corx, type = "upper", order = "hclust", tl.col = "black",
tl.srt = 45, diag = F, tl.cex = 0.5)

x3 <= x W%
mutate(crimerate = crimes/pop)

x3 <- x3[, 4:18]

x3[, 7] <- log(x3[, 71)

x3[, 5] <- log(x3[, 51)

x3[, 6] <- log(x3[, 61)

x3[, 1] <- log(x3[, 11)

x3[, 2] <- log(x3[, 21)

x3[, 13] <- log(x3[, 131)

x3[, 12] <- log(x3[, 12]1)

x3[, 15] <- log(x3[, 151)

y <- lm(per.cap.income ~ crimes * region, data = x3)

y2 <- 1m(per.cap.income ~ crimes + region, data = x3)

y3 <- 1m(per.cap.income ~ crimes, data = x3)

y4 <- 1m(per.cap.income ~ crimerate * region, data = x3)
y5 <- lm(per.cap.income ~ crimerate + region, data = x3)
y6 <- 1lm(per.cap.income ~ crimerate, data = x3)
summary (y)

summary (y2)

summary (y3)

summary (y4)

summary (y5)

summary (y6)

par (mfrow = c(2, 2))

plot(y2)

all <- lm(per.cap.income ~ ., data = x2)

vif (all)

x4 <- x3[, -c(2, 13, 14, 15)]

superset <- regsubsets(per.cap.income ~ ., data = x4, nvmax = 11)
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s <- summary (superset)

s$bic # Best model at 7

coef (superset, 7)

summary (lm(per.cap.income ~ land.area + pop.18_34 + doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp, data = x4))

par(mfrow = c(2, 2))

plot(1lm(per.cap.income ~ land.area + pop.18_34 + doctors + pct.hs.grad +
pct.bach.deg + pct.below.pov + pct.unemp, data = x4))

x5 <- x3[, -c(2, 13, 15)]

summary (lm(per.cap.income ~ (land.area + pop.18_34 + doctors + pct.hs.grad +

pct.bach.deg + pct.below.pov + pct.unemp) * region, data = x5))

aic2 <- stepAIC(1lm(per.cap.income ~ ., data = x4), direction = "both",
k = 2, trace = 0)

aic2

aic3 <- stepAIC(lm(per.cap.income ~ . * region, data = x5), direction = "both",
k = 2, trace = 0)

aic3

set <- cv.glmnet(as.matrix(x4[, -11]), as.matrix(x4[, 11]))
c(lambda.lse = set$lambda.lse, lambda.min = set$lambda.min)
coef(set, s = set$lambda.lse)
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