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Abstract

We try to analyze the relation between demographic variables and per-capita
income for a select sample of counties. The data is obtained from Kutner et al. 2005
and has demographic data for 440 counties across 48 states. We perform some linear
model variable selection methods to define the set of variables that bests fits the
data. The resulting method is a good fit for predicting per-capita income, but may
be missing enough data for a robust prediction.
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1 Introduction

Using data from Kutner et al. 2005, we want to analyze the influence that demographic

variables have on the per-capita income of counties. We make some sense of the relations

between all the variables, test a theory that crimes and region make a good fit for predicting

per-capita income, and look for a model to predict per-capita income based on the rest of

the demographic variables.

The questions we want to answer are:

• Which variables seem to be related?

• Can crime or crime rate and region be a good set of predictors for per-capita income?

• How does a good fitting model for per-capita income looks based on a combination

of the variables from the data?

• Does having a small set of counties from the total number of counties in the US

matter for the model?

2 Data

The data was obtained from Kutner et al. 2005, it contains county demographic informa-

tion(CDI) for 440 counties accross the country for 1990-1992. The data includes geographic

information as well as numerical variables related to the population’s characteristics. Some

histograms are shown in Figure 1 to make sense of the distributions of each numerical

variable and determine for the further sections if transformations are needed for them.

The variables and their definitions, according to Kutner et al. 2005 are as follow:
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• id - Identification number, ranging from 1 to 440

• county - County name

• state - State name

• land.area - Land area (square miles)

• pop.18.34 - Percent of CDI aged 18 to 34

• pop.65.plus - Percent of CDI aged 65 or older

• doctors - Number of professionally active nonfederal physicians during 1990

• hosp.beds - Total number of beds, cribs, and bassinets during 1990

• crimes - Total number of serious crimes in 1990, including murder, rape, rob- bery,

aggravated assault, burglary, larceny-theft, and motor vehicle theft, as reported by

law enforcement agencies

• pct.hs.grad - Percent of adult population (persons 25 years old or older) who com-

pleted 12 or more years of school

• pct.bac.deg - Percent of adult population (persons 25 years old or older) with bach-

elor’s degree

• pct.below.pov - Percent of 1990 CDI population with income below poverty level

• pct.unemp - Percent of 1990 CDI population that is unemployed

• per.cap.income - Per-capita income of 1990 CDI population (in dollars)

• tot.income - Total personal income of 1990 CDI population (in millions of dollars)
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• region - Geographic region classification used by the US Bureau of the Cen- sus, NE

(northeast region of the US), NC (north-central region of the US), S (southern region

of the US), and W (Western region of the US)

Figure 1: Distributions of the numeric variables

Variable Unique Values NA Values

county 373 0.00

state 48 0.00

region 4 0.00

county/state 440 0.00

Table 1: Number of unique text variables and NA values
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Variable Min Mean Median Max NAs

crimes 563.00 27111.62 11820.50 688936.00 0

doctors 39.00 988.00 401.00 23677.00 0

hosp.beds 92.00 1458.63 755.00 27700.00 0

land.area 15.00 1041.41 656.50 20062.00 0

pct.bach.deg 8.10 21.08 19.70 52.30 0

pct.below.pov 1.40 8.72 7.90 36.30 0

pct.hs.grad 46.60 77.56 77.70 92.90 0

pct.unemp 2.20 6.60 6.20 21.30 0

per.cap.income 8899.00 18561.48 17759.00 37541.00 0

pop 100043.00 393010.92 217280.50 8863164.00 0

pop.18 34 16.40 28.57 28.10 49.70 0

pop.65 plus 3.00 12.17 11.75 33.80 0

tot.income 1141.00 7869.27 3857.00 184230.00 0

Table 2: Summary for the numeric variables

3 Methods

To answer the research questions, multiple statistical methods were used and tested.

The relation between the variables was analyzed with a correlation matrix between all

of the numeric variables. As a 13× 13 matrix may take too long to analyze and find rela-

tions, a correlation matrix was also used. This plot shows a divergent color scale for the

values of the matrix, which makes it easy to find which variables are highly correlated and

in which direction.
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To test the question of whether crimes (or crime rate) and region can explain per-capita

income, I used linear regression with and without interaction for both variables. The same

process was done for crime rate and region and their results were compared.

The selection of the model that best predicts per-capita income according to the needs

of the study used multiple statistical analyses and model selection methods. The first

thing was using the plots from Figure 1 as a reference to determine that some variables

need a transformation to work correctly in the linear model. Also, taking into account

the correlations plot, I did some variable selection based on the Variance Inflation Factor

(VIF) to help the regression work more accurately. As the remaining variables were still

not easy to interpret as a whole and the possibility that some of them were not relevant

for the model, I used model selection procedures that help to choose the variables that

make the best fit for the model. The procedures I used were: stepwise selection, testing all

subsets, and LASSO regression. Each procedure was run independently and their results

were compared to analyzed their similarities and then choose the model that made the

most sense based on them.

4 Results

First, to see how the variables relate between each other, I used a correlation matrix to

make a correlation plot. Figure 2 shows the relations between each combination of variables

in a two-color scale in a way that the intensity and color of the cell will tell the sign and

magnitude of the correlation.

We can see that some variables are highly correlated to population and total income.
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Figure 2: Correlation plot of the variables

These variables are: crimes, hospital beds, and doctors. Other set of variables that have

high correlations are the percentage of high school graduates, bachelors degree holders, per-

centage below poverty levels, and percentage of unemployment. These values could bring

collinearity problems to the linear models that use these variables and should be analyzed

to choose if any of them should be omitted.

To address the question whether crime(or crime rate) is related to per-capita income and

the relation is different across regions, I used a linear model with crime with and without

interaction with region. The model with interactions doesn’t seem to add new information

as their p-values are not statistically significant and the coefficients for the other variables

doesn’t change, as shown in Table 1. I would suggest to keep the model without interactions.
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I also calculated the model with crime rate with and without interaction with region.

First, it is important to notice that for both models, the crime rate variable is not sta-

tistically significant. Just as in the first model, adding interactions does not add relevant

information to the model since all of the interactions are not statistically significant.
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Without interactions With interactions

crimes 0.009∗∗ 0.014

(0.003) (0.008)

region: NC 18106.910∗∗∗ 18004.776∗∗∗

(378.438) (409.242)

region: NE 20392.947∗∗∗ 20578.242∗∗∗

(387.980) (401.869)

region: S 17246.353∗∗∗ 16948.446∗∗∗

(325.170) (383.090)

region: W 17964.083∗∗∗ 17948.240∗∗∗

(458.849) (488.476)

crimes × region: NE/NC -0.013

(0.010)

crimes × region: S/NC 0.006

(0.011)

crimes × region: W/NC -0.004

(0.009)

R-squared 0.959 0.959

N 440 440

Significance: ∗ ∗ ∗ : p < 0.001; ∗∗ : p < 0.01;

∗ : p < 0.05

Table 3: Influence of crimes and regions in per-capita income

I checked if the numerical variables, except ID, needed transformations. I decided that
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if a suggested power transformation was below 1/3, a log transformation would be used.

Most of the variables needed some kind of transformation according to the tests performed,

as shown in Appendix. Also, I omitted the variable county since it was of no use because

the id variable was already a unique identifier for each observation.

After that, I calculated a linear regression including all the variables from the dataset

and tried to use the Variance Inflation Factor to try to see if there was collinearity between

some of the variables. I found that apparently, **state** and **region** were colinear

and had to decide which to use so the VIF function would work. This made sense since

the summary for the original regression omitted all the region categories. I tried omitting

one variable at a time and found that omitting region has a higher R2, but looking at the

output of the regression, it would be hard to interpret all the coefficients for states since

not all them were statistically significant. I decided to keep region.

Having addressed the first problem due to collinearity, the VIF function shows that

population, crimes, and tot.income have a GV IV
1

2df above 5, which means they should be

removed. This should probably raise some flags for any social scientist: why would anyone

omit the two variables that are directly related to the response variable? It is possible to

argue that these two variables are already the ones that generate the response variable,

and using only them could give an almost perfect fit. This is a valid point that should

be addressed reminding that this would lead to overfitting and the model would not be

useful for further analysis of prediction. I chose to omit these variables to avoid potential

overfitting.

Finally, I ran the regressions for all possible models: all the variables, stepwise selection,
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all subsets and LASSO. A comparison of the coefficients for the models is available in the

Appendix. A first impression is that the three methods drop the hospital beds variable.

The all subsets model also drops the population 65 or older and the LASSO model the

percentage of high school graduates and region. Since the all subsets model is using one of

the regions, I assume all of them should be considered. I would consider discarding LASSO

for the sake of simplicity. It is now important to consider comparing the all subsets and

stepwise selection models. Using analysis of variance to compare the models, the all subsets

models is favored and ultimately selected. The summary statistics for this model are shown

in Table 3 and its diagnostics plots in the Appendix.

One of our questions was whether having just one small sample of the 3000 counties of

the US could be a problem for the model. Considering that according to the 1990 US Census

(Bureau 2000), there were almost 250 million people living in the US at that time, which

means roughly a 70% of the population is represented in the dataset. Now, looking at the

dataset, the minimum value for the counties’ population is 100,000. With this information,

we can calculate the average population of the remaining counties, which will be close to

30,000 people. Considering that the average county for the data has a population of almost

400,000, the data may not give a good model for low populated counties and the predictions

would not be expected to be accurate. On the other hand, the missing states are Iowa,

Arkansas and Wyoming, which are low populated states.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0578687923 0.002 28.28 0.00

land.area 0.0004356824 0.000 6.09 0.000

pop.18 34 -0.0392049187 0.004 -9.46 0.000

doctors -0.0006614169 0.000 -10.10 0.000

pct.hs.grad 0.0000000043 0.000 4.62 0.000

pct.bach.deg -0.0037636758 0.000 -11.21 0.000

pct.below.pov 0.0029677158 0.000 18.19 0.000

pct.unemp -0.0006668757 0.000 -3.02 0.002

crime rate -0.0041960885 0.001 -3.19 0.001

regionNE 0.0002694790 0.000 1.56 0.118

regionS 0.0007652065 0.000 4.83 0.000

regionW 0.0001450657 0.000 0.77 0.440

Table 4: Coefficient information for the selected model

5 Discussion

The data set contains two principal groups of variables: those related to population and

those related to labor and education. Because of this evident relations, it made sense that

there would exist some medium to high correlation between some of them. The first group

makes sense because they usually grow as population increases either because more popu-

lations means more need for hospital beds and doctor or because higher concentrations of

people increases the possibility of crimes. The second group makes sense too because of the

implications of education of labor and education in the outcome of a population’s income.
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The high correlations for these variables did create some problems of multicollinearity for

the regressions and must be taken into account for future works.

The relation between crimes and total income was evident from the correlations plot

and it would be expected that a linear model between them and regions will have a good fit.

Looking at both models, it is possible to determine that the model including number of

crimes is a more appropriate model since all its variables are statistically significant. This

model shows that the number of crimes and the region are good predictors for per-capita

income accounting for almost 96% of its variability. The difference between the two models

is that for the second, crimes is divided by total population which may be having some

influence on the dynamic between the variables as per-capita income is already divided by

total population. The diagnostic plots for the model including crimes are shown in the

Appendix. They may have some issues with some observations as the Q-Q plot has some

skewed values in the right tail and also some high influence points that have high lever-

age and are outliers for the standardized residuals. These two points are the Los Angeles

county in California and Kings county in New York, which are not surprising to have some

extreme values for both crime rate and per-capita income.

The model for predicting per-capita income needed some use of transformations to work

correctly and some variable selection based on variance inflation factors but the final re-

sults look to be fitting the data correctly. From the comparison between the models on the

Appendix, it can be seen that the three models are almost the same with just one variable

differing between them. Ultimately, the LASSO model was discarded for simplicity and

because it was omitting region. The analysis of variance showed that the all subsets model
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was a better fit than the stepwise selection, and from its summary it is possible to see that

all of the selected variables are significantly different from 0 except two of the regions. From

the diagnostic plots, there appear to be some observations that do not follow the normal

distribution in the right side of the Q-Q plot, but besides that the model looks like a good

fit: the residuals vs fitted plot doesn’t have a distinguishable pattern, the scale-location

plot looks like the variance is constant, and there are no high influence points on the data.

Considering the size of the sample of counties that are in the data, it could be worth

noting that the model may not work for predicting counties with low density of population

as there are no counties with these characteristics in the data. The missing states should

not be a problem for the model because they are not part of it.

For future research, it would be useful to find a sample of small counties in order to

make the model better and suitable for any kind of prediction.
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A results

Without interactions With interactions

crime rate 5773.202 4379.070

(7520.413) (15893.507)

region: NC 18006.045∗∗∗ 18077.294∗∗∗

(537.039) (895.208)

region: NE 20360.741∗∗∗ 20406.331∗∗∗

(493.620) (641.617)

region: S 17078.598∗∗∗ 17066.941∗∗∗

(618.848) (975.221)

region: W 17971.122∗∗∗ 17407.303∗∗∗

(637.921) (1770.432)

crimerate× region: NE/NC 288.387

(20184.661)

crimerate× region: S/NC 1558.919

(20556.112)

crimerate× region: W/NC 10655.542

(32322.408)

R-squared 0.958 0.958

N 440 440

Significance: ∗ ∗ ∗ : p < 0.001; ∗∗ : p < 0.01;

∗ : p < 0.05

Table 5: Influence of crimes and regions in per-capita income
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Variable powerTransform

1 land.area 0.00

2 pop -0.58

3 pop.18 34 -0.39

4 pop.65 plus -0.01

5 doctors -0.22

6 hosp.beds -0.15

7 crimes -0.13

8 pct.hs.grad 3.07

9 pct.bach.deg -0.03

10 pct.below.pov 0.18

11 pct.unemp -0.11

12 per.cap.income -0.37

13 tot.income -0.44

14 crime rate 0.38

15 per.cap.income3 1.11

Table 6: Suggested power transformations
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Variable Regression StepAIC All.subsets LASSO

1 (Intercept) 0.0566601482 0.0564247421 0.0576659074 0.0500578839

2 land.area 0.0004362029 0.0004258883 0.0004453434 0.0003436730

3 pop.18 34 -0.0300780792 -0.0301527936 -0.0390517356 -0.0188090642

4 pop.65 plus -0.0006339199 -0.0006800881 -0.0006558449

5 doctors -0.0004573955 -0.0006240007 -0.0006523899 -0.0007807830

6 hosp.beds -0.0001972827

7 pct.hs.grad 0.0000000040 0.0000000040 0.0000000038

8 pct.bach.deg -0.0038462755 -0.0037521099 -0.0036134548 -0.0021363354

9 pct.below.pov 0.0031025404 0.0030443762 0.0029215797 0.0025800139

10 pct.unemp -0.0007144710 -0.0006974828 -0.0005820122 -0.0002134638

11 regionNE 0.0003415626 0.0003564918

12 regionS 0.0006782244 0.0007183960 0.0006472652

13 regionW 0.0000080228 0.0001036392

14 crime rate -0.0040852207 -0.0042785823 -0.0045828114 -0.0001170040

Table 7: Comparison between variable selection models
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Figure 3: Diagnostic plots for the all subsets model
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B code

l ibrary ( dplyr )

l ibrary ( l e ap s )

l ibrary ( car )

l ibrary (MASS)

l ibrary ( glmnet )

l ibrary ( purrr )

l ibrary ( t i d y v e r s e )

l ibrary ( g g c o r r p l o t )

cd i <− read . table ( ”/Users/Ste fano 1/Documents/CMU/Applied Linear Models

/Pr o j e c t s/ cd i . dat” )

chars <− apply ( cd i [ , unlist ( lapply ( cdi , i s . character ) ) ] ,

2 , function ( x ) length (unique ( x ) ) )

chars na <− apply ( cd i [ , unlist ( lapply ( cdi , i s . character ) ) ] ,

2 , function ( x )sum( i s .na( x ) ) )

county . s t a t e s <− data . frame ( variable = ” county/ s t a t e ” ,

unique . va lue s = length (unique ( paste0 ( cd i$county ,

”−” , cd i$ s t a t e ) ) ) ,

na . va lue s = 0)
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chars df <− data . frame ( variable = names( chars ) ,

unique . va lue s = unname( chars ) ,

na . va lue s = unname( chars na ) ) %>%

bind rows ( county . s t a t e s )

sum nas <− function ( x ){sum( i s .na( x ) )}

num vars <− cd i %>%

s e l e c t i f ( negate ( i s . character ) ) %>%

pivot l onge r ( ! id ) %>%

dplyr : : s e l e c t (− id ) %>%

group by(name) %>%

summarise a l l ( l i s t (min = min ,

mean = mean,

median = median ,

max = max,

NAs = sum nas ) )

par ( mfrow = c ( 3 , 5 ) )

for ( i in names( cd i ) [ 2 : 1 7 ] ) {

i f ( i s . character ( cd i [ [ i ] ] ) ) { next}

hist ( cd i [ [ i ] ] , main = i , xlab = ”” )

}
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cor <− cor ( cd i [ , −c ( 2 , 3 , 1 7 ) ] )

g g c o r r p l o t ( cor , type = ” lower ” )

cd i$crime ra t e <− cd i$cr imes/ cd i$pop

powerTransform ( cd i$cr imes )

powerTransform ( cd i$per . cap . income )

powerTransform ( cd i$crime ra t e )

cd i$per . cap . income3 <− cd i$per . cap . incomeˆ(−1/3)

reg1 <− lm( per . cap . income ˜ cr imes + reg i on − 1 , data = cd i )

summary( reg1 )

reg1 . 2 <− lm( per . cap . income ˜ cr imes + reg i on + cr imes : r eg i on − 1 ,

data = cd i )

summary( reg1 . 2 )

par ( mfrow = c ( 2 , 2 ) )

plot ( reg1 , which = 1)

plot ( reg1 , which = 2)
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plot ( reg1 , which = 3)

plot ( reg1 , which = 5)

reg2 <− lm( per . cap . income ˜ crime ra t e + reg i on − 1 ,

data = cd i )

summary( reg2 )

reg2 . 2 <− lm( per . cap . income ˜ crime ra t e + reg i on + crime ra t e : r eg i on − 1 ,

data = cd i )

summary( reg2 . 2 )

ap cd i <− apply ( cd i [ ,−c ( 1 , 2 , 3 , 1 7 ) ] , 2 , powerTransform )

ap cd i <− lapply ( ap cdi , function ( x ){x$lambda }) %>% unlist ( )

names( ap cd i ) <− substr (names( ap cd i ) , 1 , (nchar (names( ap cd i ))−10))

ap cd i <− data . frame ( Var iab le = names( ap cd i ) ,

powerTransform = unname( ap cd i ) )

ap cd i <−ap cd i [ ,−15]

cd i$ land . area <− log ( cd i$ land . area )

cd i$pop <− cd i$popˆ(−1/2)
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cd i$pop .18 34 <− cd i$pop .18 34ˆ(−1/3)

cd i$pop .65 p lus <− log ( cd i$pop .65 p lus )

cd i$docto r s <− log ( cd i$docto r s )

cd i$hosp . beds <− log ( cd i$hosp . beds )

cd i$cr imes <− log ( cd i$cr imes )

cd i$pct . hs . grad <− cd i$pct . hs . grad ˆ3

cd i$pct . bach . deg <− log ( cd i$pct . bach . deg )

cd i$pct . below . pov <− log ( cd i$pct . below . pov )

cd i$pct . unemp <− log ( cd i$pct . unemp)

cd i$ to t . income <− cd i$ to t . incomeˆ(−1/2)

cd i$crime ra t e <− cd i$crime ra t e ˆ(1/3)

cd i f i n a l <− cd i [ , −c ( 1 , 2 , 3 , 1 5 ) ]

reg3 <− lm( per . cap . income3˜ . , data = cd i f i n a l )

a l ias ( reg3 )

v i f ( reg3 ) #look s l i k e we shou ld remove pop and t o t a l income

cd i f i n a l <− cd i f i n a l %>% dplyr : : s e l e c t (−pop , − to t . income , −cr imes )

# cdi f i n a l <− cd i f i n a l %>% dp ly r : : s e l e c t (−pop , −t o t . income )

reg3 <− lm( per . cap . income3˜ . , data = cd i f i n a l )

reg3 s t e p a i c <− stepAIC ( reg3 , trace = FALSE)
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coef ( reg3 s t e p a i c )

reg3 subse t s <− r e g s u b s e t s ( per . cap . income3˜ . ,

data =cd i f i n a l ,

r e a l l y . b ig = T,

nvmax = 10)

reg3 subsetsum <− summary( reg3 subse t s )

coef a l l subse t s <− coef ( reg3 subsets ,

which .min( reg3 subsetsum$b i c ) )

l a s t <− ncol ( cd i f i n a l )

reg3 l a s s o <− cv . glmnet (data .matrix ( cd i f i n a l [ ,− l a s t ] ) ,

cd i f i n a l [ , l a s t ] ,

alpha = 1)

l a s s o c o e f s <− cbind ( coef ( reg3 l a s so , s=reg3 l a s s o$lambda .min) ,

coef ( reg3 l a s so , s=reg3 l a s s o$lambda . 1 se ) )

coef l a s s o <− as .matrix ( coef ( reg3 l a s so , s=reg3 l a s s o$lambda . 1 se ) )

l a s s o coef <− as .matrix ( coef ( reg3 l a s s o ) ) [ coef l a s s o !=0 ]

coef l a s s o <− rownames( coef l a s s o ) [ coef l a s s o !=0 ]

coef l a s s o <− data . frame ( Var iab le =coef l a s so ,

LASSO = l a s s o coef )

cd i c o e f s <− data . frame ( Var iab le = names( reg3$coef f ic ients ) ,
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Regres s ion = unname( coef ( reg3 ) ) ) %>%

f u l l j o i n (data . frame ( Var iab le = names( coef ( reg3 s t e p a i c ) ) ,

StepAIC = unname( coef ( reg3 s t e p a i c ) ) ) ) %>%

f u l l j o i n (data . frame ( Var iab le = names( coef a l l subse t s ) ,

A l l . subse t s = unname( coef a l l subse t s ) ) ) %>%

f u l l j o i n ( coef l a s s o )

summary( reg3 s t e p a i c )

aux <− names( coef a l l subse t s ) [−1]

aux <− aux [ ! startsWith ( aux , ” r eg i on ” ) ]

aux <− c ( aux , ” per . cap . income3” , ” r eg i on ” )

aux <− cd i f i n a l [ , aux ]

reg3 a l l subse t s <− lm( per . cap . income3˜ . , data=aux )

summary( reg3 a l l subse t s )

anova( reg3 s t epa i c , reg3 a l l subse t s )

par ( mfrow = c ( 2 , 2 ) )

plot ( reg3 a l l subsets , which = 1)

plot ( reg3 a l l subsets , which = 2)

plot ( reg3 a l l subsets , which = 3)

plot ( reg3 a l l subsets , which = 5)
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