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1 Abstract 

In this paper, we address the questions regarding relationships between the variables in the sample and 

develop models to predict per capita income while noting limitations of the data in context.  We utilize 

County Demographic Information (CDI) data collected by Kutner et al. (2005), which includes 

information and measures on income, population, economic activity, as well as education, age and 

crime demographics across the most populous counties in the USA from 1990 and 1992. To examine our 

research questions of interest and build models, we employ exploratory data analysis (EDA), multiple 

linear regression, and variable selection to capture the relationships between the variables in the study. 

Based on the analysis, we find the best set of predictor variables with variable selection techniques to 

predict per capita income while still being reasonably explainable in the setting of the data, although 

some relationships, such as a positive association between income and crime and unemployment rate, 

are surprising. The limitations of the model generated and the data utilized in the study are also detailed 

and future directions to the analysis are considered to improve the study and validly generalize the 

results in a contemporary setting. 

2 Introduction 

The ability to predict the well-being of its citizens has often been the aim of policymakers and social 

scientists as they attempt to develop theories and enact programs related to human interactions. 

Attempts at improving quality of life are typically targeted at improving average income per person (per 

capita income), as classical economic reasoning dictates that more income leads to greater happiness 

for the individual and, by extension, the community. Developing models that capture the relationship 

between per capita income and other variables to provide accurate predictions would greatly assist both 

academics and policymakers, allowing them to tailor their activities toward improving metrics that will 

have a positive impact on the community.  

However, predicting this metric with reasonable accuracy has proven surprising challenging due to the 

unpredictability of human behavior and the interrelated complexities of economies even at the county 

level. Using data from Kutner et al. (2005), this paper attempts to provide a solution to this by utilizing 

multiple linear regression analysis to capture the relationship between per capita income and numerous 

other variables to build a prediction model for the outcome of interest. Through this, we hope detail 

important relationships between variables that are common among counties in the US and, as a result, 

clarify the impacts of these relationships on per capita income so policymakers can target these metrics 

when considering new initiatives and improve the general welfare of their citizens.  

In attempting to build this model, we will address the following research questions:  

1. Relationships between the variables: Which variables are related to each other, and which are 

not? Do these relationships align with are expectations, or are they surprising? 
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2. Crime and crime rate: How is crime related to per capita income in the US? Does this 

relationship depend on the region of the country? Is the relationship in crime data better 

captured by looking at the crime levels or the crime rate? 

3. What is the best model for predicting per capita income, accounting for the following criteria: 

o Best reflects the social science and the meaning of the variables? 

o Best satisfies modeling assumptions? 

o Is most clearly indicated by the data? 

o Can be explained to someone who is more interested in social, economic and health 

factors than in mathematics and statistics? 

4. Since the data sampled only represents a subset of all counties in the US (373 of 3000) and does 

not include certain states or locations (Alaska, Hawaii, and Washington D.C.), should we be 

worried about either the missing states or the missing counties? Why or why not? 

3 Data 

The data for this paper come from Kutner et al. (2005), which was originally collected by the Geospatial 

and Statistical Data Center at the University of Virginia. It provides county demographic information 

(CDI) for 440 of the most populous counties in the US, and counties with missing data were removed 

from the data set. The information generally pertains to the years 1990 and 1992, and for each county 

the following variables are measured: 

Variable definitions for CDI data from Kutner et al. (2005) 

Number  Name Description 

1 Identification Number 1-440 

2 County County name 

3 State Two-letter state abbreviation 

4 Land Area Land area (square miles) 

5 Total Population Estimated 1990 population 

6 Percentage of population aged 
18-34 

Percentage of 1990 CDI population aged 18-34 

7 Percentage of population 65 or 
older 

Percentage of 1990 CID population 65 or older 

8 Number of active physicians Number of professionally active nonfederal physicians 
during 1990 

9 Number of hospital beds Total number of beds, cribs, and bassinets during 1990 

10 Total serious crimes Total number of serious crimes in 1990, including 
murder, rape, robbery, aggravated assault, burglary, 
larceny-theft, and motor vehicle theft, as reported by 
law enforcement agencies 

11 Percent high school graduates Percent of adult population (persons 25 years old or 
older) who completed 12 or more years of school 

12 Percent bachelor’s degrees Percent of adult population (persons 25 years old or 
older) with bachelor’s degree 

13 Percent below poverty level Percent of 1990 CDI population with income below 
poverty level 

14 Percent unemployment Percent of 1990 CDI population that is unemployed 



15 Per capita income Per-capita income (i.e. average income per person) of 
1990 CDI population (in dollars) 

16 Total personal income Total personal income of 1990 CDI population (in 
millions of dollars) 

17 Geographic region Geographic region classification used by the US Bureau 
of the Census, NE (northeast region of the US), NC 
(north-central region of the US), S (southern region of 
the US), and W (Western region of the US) 

Original source: Geospatial and Statistical Data Center, University of Virginia. 

 

We examine the data for both the qualitative and quantitative variables. Table 1 (Appendix, pages 15-

16) and Figure 1 (Appendix, page 17) provide information on the distributions for the quantitative 

variables, illustrating that the following variables are noticeable right-skewed: Total Serious Crimes, 

Number of Active Physicians, Number of Hospital Beds, Land Area, Total Population, Per capita income, 

and Total personal income.  

 

The remaining quantitative variables are approximately normally distributed and will remain unchanged. 

Tables 2 and 3 (Appendix, pages 17-18) show that the categorical variables ID, County, and State have a 

considerable number of unique values associated with them, and since these levels add little to the 

analysis, they are ignored. Table 4 (Appendix, page 18) and Figure 2 (Appendix, page 19) show the 

information for the categorical variable Region. The greatest number of observations are located in the 

South region (152), while the least number of observations are classified in the West region (77).  

4 Methods 

In order to investigate the research questions of interest, we outline the approach of how each question 

will be addressed. We use methods outlined in the Sheather (2009) textbook for exploratory data 

analysis, regression modeling, and variable selection. 

Question 1: Relationships between the variables 

Before we examine the relationships between variables, we address our findings in the Data section 

about the distributions of some quantitative variables in the data. Specifically, since some of the 



quantitative variables (Total serious Crimes, Number of active physicians, Number of hospital beds, Land 

area, Total population, Per capita Income, and Total personal income) are right-skewed, we apply 

transformations to them to reduce skew and more closely resemble normal distributions. To investigate 

the relationship between the predictor variables and the response, we generate scatter plot and 

correlation matrices to examine both the visual and numerical strength of the relationships. We also 

examine the relationship between Region (categorical) and Per Capita Income using a side-by-side 

boxplot and corresponding five number summary. These graphics and tables will allow us to determine 

if there are any unexpected relationships in the data based on our intuition. The results will also guide 

our approach to the other research questions and help to appropriately model the data for predictions.  

Question 2: Crime and crime rate 

To determine if there is a relationship between per capita income and crime, we will create a linear 

regression model to predict per capita income using crime using the transformed variables obtained 

from Question 1. We will then include dummy variables for region in the model in two steps: first, only 

including the dummy variables with no interactions; second, including the dummy variables with 

interactions between the region and crime. These results will determine whether if the relationship 

between crime and per capita income depends on the region of the country.  

Similarly, we will repeat this process for crime rate, which will be formulated from the ratio of Number 

of Crimes to Total Population, as well as the transformed crime rate, based on the distribution of the 

variable. This will allow us to determine the impact of using crime versus crime rate, as well as which 

variable to use when building the model to best predict per capita income.   

Question 3: Best model for predicting per capita income 

Using the results from Questions 1 and 2, we build a regression model to predict Per Capita Income after 

applying transformations to the variables. We also exclude the Total Population and Total Income 

variables due to their functional relationship with per capita income, and temporarily exclude Region. 

This term will be included later to determine if it needs to be included in the model, whether as a main 

effects or interaction effects term. After examining the full additive linear model, we employ the 

following variable selection techniques on the data: all subsets regression, stepwise regression, and 

LASSO. With these we find the optimal subset of predictor variables to keep in the model, and utilize 

residual diagnostics, summary outputs, and information criteria (adjusted R2, AIC, and BIC) to determine 

the “best” model. By “best” model, we consider the criteria detailed in the research question and 

account for it as we consider more complicated transformations such as including interactions and 

higher-order terms to improve the predictive power of the model. 

Question 4: How to handle states and counties in the analysis  

To answer this question, we think about the context of the research problem. How the data was 

collected and what it represents is considered, and the potential shortcomings of the model and the 

data are addressed. Since the approach to this problem is more conceptual than analytical, our 

evaluation of the question is detailed in the Discussion. 

5 Results 

Question 1: Relationships between the variables 



The scatterplot and correlation coefficient matrices in Figures 3 and 4, respectively (Appendix, pages 20-

21) illustrate that there is evidence of some non-linear relationships between the predictor and 

response variables, specifically for the predictors Land area, Total population, Percentage of population 

aged 18-34, Percentage of population 65 or older, Number of physicians, Number of hospital beds, Total 

serious crimes, Percentage of population below poverty line, and Total personal income. However, since 

we previously identified that a few of the quantitative variables are right-skewed (Total serious Crimes, 

Number of active physicians, Number of hospital beds, Land area, Total population, Per capita Income, 

and Total personal income), log transformations are applied to each of the variables.  

 

As seen in Figure 5 (Appendix, page 22), these variables appear to resemble the normal distribution 

more closely after the transformations are applied (note that we will utilized the transformed versions 

of these variables as we proceed with answering both this question and the other research questions). 

We also examine how the relationships between the continuous random variables have changed.  

 

Figures 6 and 7 (Appendix, pages 23-24) display the scatter plot and correlation coefficient matrices for 

the continuous variables. After applying these transformations, we see that the relationships between 



Per capita income and the remainder of the variables more closely resemble linear associations. It 

should be noted that the correlation matrix also identifies strong linear relationships between the 

transformed predictor variables, specifically: Number of doctors and Number of hospital beds, Total 

serious crimes, Total population, and Total personal income; Number of hospital beds and Total serious 

crimes, Total population, and Total personal income; Total serious crimes and Total population and Total 

income, and Total population and Total income. These relationships will need to be accounted for when 

building a prediction model for Per capita income to answer Question 3 due to potential collinearity 

between the predictors. 

 

Table 5 and Figure 8 (Appendix, page 25) illustrate the relationship between the log transformed Per 

capita income and Region. While the IQRs of the boxplots overlap and suggest that Per capita income is 

relatively similar across regions, further investigation will be conducted during Question 3 to see if this 

relationship becomes useful for prediction after account for the other variables in the analysis. 

Question 2: Crime and crime rate 

We see that after applying log transformations to the noticeably skewed continuous variables in the 

data, their pairwise relationships between the transformed variables are also affected. There also does 

not appear to be a noteworthy difference in Per capita income after accounting for region; however, 

further investigation is warranted to determine whether accounting for other variables impacts this 

relationship. Specifically, we examine this relationship in the context of the association between Total 

serious crimes and Per capita income. 

Three models are fit to investigate how crime relates to per capita income. The first model regresses per 

capita income on crimes, while the next two models include a dummy variable for region: one model 

examining only the additive effects, and the other including both the additive and interaction affects 

between region and crime. Since these models are nested, we perform the nested F-test (Appendix, 

page 26) to determine the impact of including region; the results illustrate that the model that includes 

the additive effects is most appropriate for modeling per capita income. This suggests that both crime 

and region of the US are related to per capita income, but the relationship between income and crime 

does not depend on region. It should also be noted there is a positive linear relationship between crime 



and per capita income and that this relationship is statistically significant in the best model selected 

(Appendix, page 27).  

We perform a similar analysis to examine the relationship between crime and per capita income utilizing 

crime rate instead of crime. The log transformation is also applied to the Crime rate variable, so it more 

closely resembles the normal distribution as illustrated in Figure 9 (Appendix, page 28). The nested F-

test yields similar results when the crime rate variable is included in the model (Appendix, page 28); the 

model that includes the additive effects is most appropriate for modeling per capita income. The model 

also finds a positive, statistically significant linear relationship between per capita income and crime 

rate, although the affect is smaller and less significant in comparison to the model using the crimes 

variable. 

Since the results of the selected models are relatively similar regardless of whether we use crime or 

crime rate, we examine the residual diagnostic plots, AIC, BIC, and related outputs for these models. The 

results are presented in Figures 10 and 11 (Appendix, pages 30-31) and Table 6 (Appendix, page 32). 

While the model analyses suggest that the crime model slightly outperforms the crime rate model for 

predicting per capita income in these categories, since neither model performs exceptionally well, the 

crime rate variable is preferred due its interpretability in the context of the problem. This variable will 

remain in the analysis when modeling Per capita income for Question 3, though the model will be 

supplemented with the other predictor variables in order to improve the predictive power of the model. 

Question 3: Best model for predicting per capita income 

Using the results obtained from Questions 1 and 2, we include the transformed crime rate variable in 

lieu of Total serious crimes our analysis but exclude the Region variable when initially building the 

regression model. This will later be included after the model selection procedures have been applied. 

Since Total population and Total income can be used to deterministically model Per capita income, these 

are dropped from the model building process. 

Naively using the remaining continuous variables to model per capita income (Appendix, pages 33-34), 

we see that the coefficient estimates for Number of hospital beds and crime rate are not statistically 

significant, and Figure 12 illustrates that the regression model assumptions are not exactly satisfied. 

Multicollinearity is present among some of the predictors based on their VIF values as well, as we 

anticipated based on our results from Question 1. Since these issues are present in the full model (for 

continuous variables only), we utilize variable selection techniques to determine the optimal subset of 

the predictor variables needed to model per capita income. Using the following table, we explore 

regression models selected by the variable selection techniques: 

Variable definitions for model selection 

Symbol Variable Name Variable Description Notes 

y Per capita income Log transformation is applied 

x1 Percentage of population aged 18-34 N/A 

x2 Percentage of population 65 or older N/A 

x3 Percent bachelor’s degrees N/A 

x4 Percent below poverty level N/A 

x5 Percent unemployment N/A 

x6 Number of active physicians Log transformation is applied 



x7 Number of hospital beds Log transformation is applied 

x8 Land Area Log transformation is applied 

x9 Crime rate = Total serious crimes / 
Total population 

Log transformation is applied 

 

Utilizing all subsets regression, stepwise regression, and LASSO as variable selection techniques, we 

obtain the following two models and their corresponding outputs. The predictors obtained in Model 1 

were selected by all subsets regression, LASSO, and stepwise regression when specified for BIC, while 

the predictors for Model 2 were selected by stepwise regression when specified for AIC (Appendix, 

pages 35-39).   

𝑀𝑜𝑑𝑒𝑙 1: log(𝑦) =  𝛽0 + 𝛽1𝑥1 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6 log(𝑥6) + 𝛽8 log(𝑥8) + 𝜀 

 

𝑀𝑜𝑑𝑒𝑙 2: log(𝑦) =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6 log(𝑥6) + 𝛽8 log(𝑥8) + 𝜀 

 

Comparing the two models, we see that they are identical except that Model 2 includes the variable 

Percentage of population 65 or older while Model 1 does not. Examining the model analyses for each 

model, we find that the results are extremely similar for each model’s goodness of fit measures, 

statistical significance of beta coefficient estimates, diagnostic plots, VIF values, and marginal model 

plots (Appendix, pages 39-44). Therefore, we consider the effect of including interaction terms for the 

Region variable in both models before determining which model to use.  



 

The results of including the interaction terms are outlined in the Appendix on pages 45-51. The key 

results for model comparisons are summarized in Table 7 (Appendix, page 52). We see that despite the 

considerable number of terms added to both models when accounting for interactions across each of 

the levels of the Regions variable, there is little predictive power added to the model. Similarly, the 

residual diagnostic plots displayed in Figure 19 (Appendix, page 48) and Figure 20 (Appendix, page 51) 

show no discernable improvement in comparison with the residual plots for Models 1 and 2. These 

results suggest that including the terms does not help to better satisfy the regression model 

assumptions and do not improve the predictive power of the model tremendously despite the number 

of terms in each model more than doubling. Therefore, we ignore these models to avoid potentially 

overfitting the data and select between the models without the interaction terms. 

There is little difference in the more technical aspects of the Models 1 and 2 such as goodness of fit, 

satisfaction of the regression model assumptions, multicollinearity measures, and inclusion of the 

properly specified terms in the model. Therefore, based on the criteria outlined in Question 1, Model 1 

is selected since it is more parsimonious and provides similar predictive power in comparison to Model 

2.  

6 Discussion 

Question 1: Relationships between the variables 

We focus on the pairwise relationships in the untransformed data between Per capita income and the 

other continuous random variables illustrated in Figures 3 and 4. Since Total income and Total 

population are deterministically related to Per capita income, they are not considered. There is a strong 

positive linear association between Per capita income and education, as indicated by the scatterplots 

with Percent high school graduate and Percent bachelor’s degree. This aligns with our expectation of 

their relationship, as increased education is typically positively associated on average with more 

earnings, especially in a predominately service-based economy such as the United States. Similarly, 

there is a negative relationship between Per capita income and the indicators of lower economic 

activity, Percent below poverty level and Percent unemployed. This is also consistent with our 

expectation, as increases in unemployment imply less people are working and income is reduced, and 

therefore poverty is more likely to increase. 

Interestingly, there does not appear to be much of a pairwise relationship between Per capita income 

and the following variables: Land area, the population subset variables (Percentage of population aged 



18-34/65 and older), Number of physicians, Number of Hospital beds, and Total serious crimes. Land 

area would expect to be more negatively correlated with Per capita income since rural and suburban 

areas tend to be more spacious and have lower incomes than urban areas due to the relatively lower 

cost of living. We would also expect a negative relationship between Percentage of population aged 18-

34, since younger people have had less time to work and develop their skills and therefore usually have 

lower incomes compared to their middle-aged and senior counterparts. Percentage of population aged 

65 and older having no relationship is also surprising, since we’d expect that incomes would be lower for 

predominately senior communities since many people in that age range are retired and living on fixed 

incomes or government assistance (or both). Number of physicians and hospital beds is also surprising 

since we’d expect wealthier areas to have more doctors and medical resources since they are able to 

afford better healthcare compared to their less wealthy counterparts. Finally, Total serious crimes does 

not appear to have a clear relationship with Per capita income when we would expect this relationship 

to be negative since wealthy areas also tend to have fewer crimes. However, there are exceptions to this 

rule, as some high-income urban areas tend to have more crimes committed in comparison to their 

suburban and rural counterparts. 

Additionally, examining the pairwise relationships outside of Per capita income, we see a few 

associations of note. Specifically, population has a strong positive linear association with doctors, 

hospital beds, and crimes. This aligns with our intuition as larger populations require more medical 

personnel and resources, and a large population also provides more opportunities from individuals to 

commit crimes. There is a negative relationship between the population variables (18-34 versus 65 and 

older), which is reasonable since they are mutually exclusive subsets of the total population and are 

typically separated by at least one generation. With more senior citizens, there are less children born, 

and with more children born, they are much less likely to be born to senior citizens. There is also a 

strong relationship between educational attainment and economic indicators in the directions we would 

expect. Specifically, the percentage of high school graduates and bachelor’s degree holders is highly 

correlated since the former is a requirement for the latter. Both the measures are negatively correlated 

with unemployment and poverty rates, which aligns with our results for Per capita income: more 

educational attainment leads to higher average income and more employment opportunities. 

We also investigate these relationships after the log transformations are applied to the right skewed 

variables as illustrated in Figures 6 and 7. The log transformations clarify and validate our expectations 

for the relationships between Per capita income and the other continuous random variables. We see the 

positive relationships between Per capita income and educational attainment, and negative 

relationships for Per capita income and unemployment rate and poverty levels. We see that Per capita 

income is positively associated with medical resources (doctors and hospital beds) as expected, and is 

negatively correlated with land area. Interestingly the relationship between Per capita income and the 

population subsets is similar regardless of the transformation applied, and crimes appears to be weakly 

positively associated with Per capita income. However, this is likely due to not accounting for population 

size as previously stated, since some urban areas also tend to have relatively high crime rates. Figure 8 

also illustrates while Per capita income is slightly higher in the Northeast and West regions of the US, 

there is still some overlap with the IQRs and therefore the relationship would not be statistically 

significant. This result is consistent with our expectations given the higher cost of living and population 

density for the coastal regions of the US coupled with more metropolitan areas in comparison with the 

non-coastal areas of the country.  



The log transformations also align with expectation for the continuous variables outside of Per capita 

income. The negative relationship between the population subsets remains strong and linear, as well as 

the relationships between educational attainment and poverty measures, and population, medical 

resources, and crimes.  

In both instances, our intuition is more aligned with the transformed variables, so it is reasonable to use 

these transformations as we proceed through answering the remainder of the questions. However, 

there are some limitations to looking at just pairwise relationships between the variables. We saw in 

some instances that the relationships are likely due to not addressing confounding variables, such as in 

the case between crime and income or crime and medical resources. These variables are very likely both 

related to population, and without controlling for this we could potentially make inappropriate 

conclusions about the data. While this is a specific instance, it is very likely that controlling for these 

values could explain any non-sensical relationships between the data as we answer the remaining 

research questions. 

Question 2: Crime and crime rate 

Our analysis between crime and per capita income yields some surprising results; namely, that there is a 

positive, statistically significant relationship between these variables. For the selected model with the 

crime variable (Appendix, page 27), we see that a 1 percent increase in the number of Total serious 

crimes is associated with a 0.067 percent increase in Per capita income, and the interpretation does not 

depend on any region.  We also determined that this unusual relationship persisted when we utilized 

the transformed crime rate variable. For the model with the selected crime rate variable (Appendix, 

page 29), interpreting the model coefficient for crime rate suggests that a 1 percent increase in the 

crime rate is associated with a 0.04 percent increase in Per capita income. The result is not as 

statistically significant in comparison with the model with the crime variable, and the result also does 

not depend on region. These results run counter to our intuition about the expected relationship 

between crime and per capita income, as we would not expect any positive relationship between the 

two variables; we would expect this relationship to be negative since wealthy areas also tend to have 

fewer crimes. However, there are exceptions to this rule, as some high-income urban areas tend to have 

more crimes committed in comparison to other suburban and rural areas. It is important to note that 

neither model is adequate at satisfying the regression model assumptions or predicting per capita 

income. 

Since both models are not exceptionally useful, it would be more appropriate to utilize crime rate in the 

model due to its interpretability in the context of the data; that is, similar units are present for both per 

capita income and crime rate (i.e. crime per capita). Additionally, the lower significance level of the 

coefficient for crime rate more aligns with our expectation that there is not a positive linear relationship 

between the two variables. Since this model is not exceptionally useful in predicting per capita income 

and showing a relationship that is the opposite of our expectation, it is very likely that there are 

confounding variables that are driving this result. Specifically, we see from the correlation matrix from 

Figure 6 that population is strongly correlated with both the predictor and response variables in the 

model we selected. It is reasonable to assume that a larger population provides more opportunities 

from crime but also generates more income and wealth due to more economic activity.  

Question 3: Best model for predicting per capita income 



We find that Model 1 is the most appropriate prediction model for per capita income because it best 

satisfies the criteria outlined in Question 3. It is the most parsimonious of the models identified from the 

variable selection procedure while still providing similar predictive power compared to more 

complicated models, such as Model 2 or the hybrid of Models 1 and 2 that include interaction terms for 

region. However, we must also examine the more practical features of the model to determine its utility 

in the context of the social sciences. 

In addition to reasonably satisfying the more technical features of a good model, such as statistical 

significance for the coefficient estimates, goodness of fit, VIFs, residual diagnostic and marginal model 

plots, the practical features of the model also bolster the argument that it is the most appropriate for 

the data. Since the modeling assumptions are roughly satisfied for the model (with the exception of the 

Normal QQ plot in Figure 15 on page 41 in the Appendix), inference can also be conducted with 

reasonable certainty using the model to draw conclusions in the context of the data. Additionally, 

because the model is a first-order additive linear model, the coefficients are easily interpretable; this is 

even true for the transformed variables (doctors and land area) since the log transformation was applied 

to reduce skew. It therefore is useful for inference and interpretation in the context of the social 

sciences. We examine the coefficients of the model to see how the align with our intuition (Appendix, 

page 40). 

While the coefficients are mostly consistent with our expectations, some of the signs of the coefficient 

estimates are surprising in the context of the data. The signs of the coefficients for Percentage of 

population aged 18-34, Number of physicians, and Percentage of Bachelor’s degrees align with our 

expectations. A younger workforce has not had as much time to obtain the skills needed to earn higher 

wages and therefore would have lower incomes, while doctors are highly skilled positions that require 

extensive higher education and typically have higher incomes. Specifically, the coefficient on Percent 

bachelor’s degree suggests that, holding other variables in the model constant, a 1-unit increase in the 

percentage of people with bachelor’s degrees in the county is associated with a 0.015 percent increase 

in per capita income. The result is consistent with our expectation since it aligns with the story about 

how an educated workforce turns to earn higher incomes and contributes positively to per capita 

income. Surprisingly, this relationship is negative (but small) for Percent of high school graduates; 

holding everything else constant, a 1-unit increase in the percentage of people with high school degrees 

is associated with a 0.004 percent decrease in per capita income. A possible partial explanation for this 

could be the increase education requirements of the workforce in the US’s predominantly service 

economy, as it is more difficult to obtain such a position with just a high school diploma. It is also 

surprising to see that while estimates for Percentage below the poverty line (with a coefficient estimate 

of -0.024) and Land area (with a coefficient estimate of -0.036) are negative related, Percentage 

unemployment is positively associated per capita income. Holding everything else constant, a 1-unit 

increase in the percentage of people unemployed is associated with a 0.011 percentage increase in per 

capita income. One possible explanation for this is rural migration to urban and suburban counties, since 

the lack of opportunity in rural areas would force people to move into cities and therefore contribute to 

the unemployment rate in those areas.  

In summary, Model 1 was found to make the best tradeoff between reflecting the social science and 

meaning of the variables, satisfying the model assumptions, modeling the variation in the response 

variable, and simplicity in explaining the results of the model to a social scientist instead of someone 

focused on the more technical aspects of the model. The model is not without flaws, however, as lack of 



normality as indicated by residual diagnostic plots suggests that the ability for the model to generate 

valid prediction intervals is limited. It also sacrifices complexity for practicality and interpretability, as 

more complicated interactions were omitted from the model in order to avoid potential confusing in 

interpretation of the beta coefficient estimates. We are also not sure about the predictive capabilities of 

the model since all of the data was utilized to train the model; we would have to evaluate its predictive 

power on similar test data or cross-validate to determine whether the model is actually useful or 

possibly overfitting the data. A noteworthy consideration when utilizing the model is that the data are 

from approximately 30 years ago, and thus may provide little similarities on more modern data sets due 

to the rapid pace of economic development and technological innovation over the last three decades. It 

may also include more practically useful variables to help predict per capita income, such as whether the 

county is urban or not, the type of workforce in the county (STEM or otherwise), and budget resources 

for the local government. Training and testing the model on more updated data may help to improve its 

practical utility and predictive power in a more modern setting. 

Question 4: How to handle states and counties in the analysis  

To determine whether our analysis is generalizable to the omitted states and counties from the CDI data 

set, we take a closer look at the data. While the data utilized have some useful properties, there are 

several limitations to note that merit caution and further investigation when considering to apply the 

model to other counties. The data are sufficiently large (440 observations) such that it can be assumed 

that the Central Limit Theorem applies for our analysis. Additionally, since the sample is stratified across 

the 48 states in the continental US, we can be sure that we are not excluding those states as we analyze 

the subset of the population. These facts give us confidence in the model and any associated inferences 

that are made from the data. 

However, there are some important shortcomings that must be identified and scrutinized before 

considering applying the model to data outside of the sample. We are not aware of the study design 

employed by the authors to avoid potential sampling biases that might arise in the data. Also, as noted 

in the research question, the data does not include observations from Alaska, Hawaii, or Washington 

D.C. While we can be reasonably certain that data for Washington D.C. is similar to the sample due to its 

proximity to Virginia and Maryland, the same reasoning cannot be safely assumed for Alaska and Hawaii 

due to their isolation from the rest of the states. In fact, it would be safer to assume that they are not 

similar since their geography likely requires that their local economies and communities are driven by 

different aspects than the rest of the country. Additionally, the data was only collected from the most 

populous counties in the country roughly three decades prior to today, and the relationships that 

appear between the variables in these counties may not necessarily translate to other smaller counties. 

Specifically, it is more likely that urban areas are captured in this data since cities usually have higher 

population density in comparison with smaller suburban or rural counties. Applying the model 

generated from more urban data would probably not be exceptionally useful for these other types of 

communities. Also, it is unlikely that if the sample were taken today that the same counties would 

appear in the data due to structural changes in the economy over the last thirty years, especially in the 

workforce. As one of the largest working generations in American history approaches retirement age, 

these individuals may relocate to other parts of the country and thus shift the county demographics. All 

these considerations must be accounted for when attempting to apply this model in a contemporary 

setting. 



Addressing the shortcomings of the data and the model built using them is critical to providing a useful 

statistical tool for predictions. Future work that could be done to handle these limitations include 

collecting updated samples of the county demographic information and expanding the dataset to 

include a larger cross section of the counties in the country as well as from the states omitted. This 

would avoid potentially missing relationships between variables by not collecting data in the less 

populated counties. If this is impractical, some investigation would be needed to at least determine how 

representative the sample is relative to the counties omitted from the data, especially for Alaska and 

Hawaii. EDA would yield insights of how representative the data are for the remainder of the country. 

Repeating the analysis of the data with updated information and training and testing the data would 

greatly improve the quality of the model and account for any shifts in the relationships between the 

variables over time. Such an analysis would inform a discussion on how craft appropriate policies in 

more modern setting in order to improve per capita income and strengthen the validity of the 

predictions generated by the model in the context of this critical social science issue. 
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8 Technical Appendix

library(tidyverse)
library(arm)
library(car)
library(leaps)
library(kableExtra)
library(glmnet)
library(MASS)
library(psych)
library(corrplot)
library(reshape2)
setwd("C:/Users/Owner/CMU MSP Program/Fall 2021/36-617 - Applied Linear Models/Midterm Project")
cdi <- read.table("cdi.dat")
cdi_dat <- cdi[, -which(colnames(cdi) == "id")] %>%

mutate(region = as.factor(region)) # categorical variables

Data

Quantitative variables EDA

# checking if there are any NAs in the data
colSums(is.na(cdi))

## id county state land.area pop
## 0 0 0 0 0
## pop.18_34 pop.65_plus doctors hosp.beds crimes
## 0 0 0 0 0
## pct.hs.grad pct.bach.deg pct.below.pov pct.unemp per.cap.income
## 0 0 0 0 0
## tot.income region
## 0 0

# making dataframes for ease of analysis
cdi_cont <- cdi_dat[, !names(cdi_dat) %in% c("county", "state", "region")] %>%

relocate(per.cap.income)

q1 <- rep(0, ncol(cdi_cont))
q3 <- rep(0, ncol(cdi_cont))

for (i in seq(ncol(cdi_cont))) {
q1[i] <- quantile(cdi_cont[,i], 0.25)
q3[i] <- quantile(cdi_cont[,i], 0.75)

}



Table 1: Summary statistics for quantitative variables

n mean sd min max range q1 median q3
per.cap.income 440 18561.48 4059.19 8899.0 37541.0 28642.0 16118.25 17759.00 20270.00
land.area 440 1041.41 1549.92 15.0 20062.0 20047.0 451.25 656.50 946.75
pop 440 393010.92 601987.02 100043.0 8863164.0 8763121.0 139027.25 217280.50 436064.50
pop.18_34 440 28.57 4.19 16.4 49.7 33.3 26.20 28.10 30.02
pop.65_plus 440 12.17 3.99 3.0 33.8 30.8 9.88 11.75 13.62
doctors 440 988.00 1789.75 39.0 23677.0 23638.0 182.75 401.00 1036.00
hosp.beds 440 1458.63 2289.13 92.0 27700.0 27608.0 390.75 755.00 1575.75
crimes 440 27111.62 58237.51 563.0 688936.0 688373.0 6219.50 11820.50 26279.50
pct.hs.grad 440 77.56 7.02 46.6 92.9 46.3 73.88 77.70 82.40
pct.bach.deg 440 21.08 7.65 8.1 52.3 44.2 15.28 19.70 25.33
pct.below.pov 440 8.72 4.66 1.4 36.3 34.9 5.30 7.90 10.90
pct.unemp 440 6.60 2.34 2.2 21.3 19.1 5.10 6.20 7.50
tot.income 440 7869.27 12884.32 1141.0 184230.0 183089.0 2311.00 3857.00 8654.25

tab <- as.data.frame(describe(cdi_cont, skew = F))
tab <- tab[ ,-c(1, ncol(tab))]
tab$q1 <- q1
tab$median <- apply(cdi_cont, 2, median)
tab$q3 <- q3

round(tab,2) %>%
kbl(booktabs=T, caption = "Summary statistics for quantitative variables") %>%
kable_classic()

ggplot(gather(cdi_cont), aes(x = value)) +
geom_histogram() +
facet_wrap(~key, scales = 'free') +
labs(title = "Figure 1: Histograms of continuous variables for CDI data")

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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Figure 1: Histograms of continuous variables for CDI data

The histograms displayed in Figure 1 show that some variables have a noteworthy right-skew (crimes,
doctors, hosp.beds, land.area, pop, tot.income, per.cap.income), and transformations should be considered
on the data. We also verify that there are no NAs (missing data) in the data frame.

Categorical Variables EDA

county.state <- with(cdi, paste(county, state))
tmp <- as.data.frame(matrix(sort(county.state),ncol=4))
names(tmp) <- paste("Counties",c("1-110","111-220","221-330","331-440"))
tmp[1:5,] %>%

kbl(booktabs=T,longtable=T,caption="Unique counties with states") %>%
kable_classic(full_width=F)

Table 2: Unique counties with states

Counties 1-110 Counties 111-220 Counties 221-330 Counties 331-440
Ada ID Ector TX Lycoming PA Rockingham NH
Adams CO El_Dorado CA Macomb MI Rockland NY
Aiken SC El_Paso CO Macon IL Rowan NC
Alachua FL El_Paso TX Madison AL Rutherford TN
Alamance NC Elkhart IN Madison IL Sacramento CA



Table 3: Unique values in CDI data

unique values
id 440
county 373
state 48
land.area 384
pop 440
pop.18_34 149
pop.65_plus 137
doctors 360
hosp.beds 391
crimes 437
pct.hs.grad 223
pct.bach.deg 220
pct.below.pov 155
pct.unemp 97
per.cap.income 436
tot.income 428
region 4

Table 4: Frequency table of observations by region

Var1 Freq
NC 108
NE 103
S 152
W 77

apply(cdi,2,function(x) {length(unique(x))}) %>%
kbl(booktabs=T,col.names="unique values",caption="Unique values in CDI data") %>%
kable_classic(full_width=F)

table(cdi_dat$region) %>%
kbl(booktabs=T, caption = "Frequency table of observations by region") %>%
kable_classic()

ggplot(data = cdi_dat, mapping = aes(region)) +
geom_bar() +
labs(title = "Figure 2: Where the most populous US counties are located",

x = "Region of US")
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Figure 2: Where the most populous US counties are located

We see in Table 3 that id is just an index variable for the number of rows, and therefore it is dropped from
the analysis. Similarly, we see in Table 2 that there are numerous unique values for state (48) and county
(373). Therefore, they are not included as categorical variables since they have too many different levels to
justify remaining in the analysis. Table 4 and Figure 2 show the distribution of the region variable.

Results

Research Question 1

# results section - relationship between variables
pairs(cdi_cont, lower.panel = NULL,

main = "Figure 3: Scatterplot matrix for continuous random variables")
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Figure 3: Scatterplot matrix for continuous random variables

corrplot(cor(cdi_cont), color = T, type = "upper",
title = "Figure 4: Correlation matrix for continuous random variables",
mar=c(0,0,1,0), diag = F, method = "color")
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Figure 4: Correlation matrix for continuous random variables

# updated cdi data set for analysis
cdi_cont2 <- cdi_cont %>%

mutate(log_doctors = log(doctors),
log_hosp.beds = log(hosp.beds),
log_land.area = log(land.area),
log_crimes = log(crimes),
log_pop = log(pop),
log_inc = log(tot.income),
log_pci = log(per.cap.income)

) %>%
relocate(log_pci)

idx1 <- c("doctors", "hosp.beds", "land.area", "crimes", "pop",
"tot.income", "per.cap.income")

cdi_cont2 <- cdi_cont2[,!names(cdi_cont2) %in% idx1]

ggplot(gather(cdi_cont2), aes(x = value)) +
geom_histogram() +
facet_wrap(~key, scales = 'free') +
labs(title = "Figure 5: Histograms of transformed continuous variables")
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Figure 5: Histograms of transformed continuous variables

pairs(cdi_cont2, lower.panel = NULL,
main = "Figure 6: Scatterplot matrix for transformed continuous variables")
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Figure 6: Scatterplot matrix for transformed continuous variables

corrplot(cor(cdi_cont2), color = T, type = "upper",
title = "Figure 7: Correlation matrix for transformed continuous variables",
mar=c(0,0,1,0), diag = F, method = "color")
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Figure 7: Correlation matrix for transformed continuous variables

ggplot(data = cdi_dat, mapping = aes(x = region, y = log(per.cap.income))) +
geom_boxplot() +
labs(title = "Figure 8: Boxplot of log of Per Capita Income by Region",

x = "Region", y = "log of Per Capita Income")



Table 5: Five number summary of Per Capita Income by Region

region n min Q1 median Q3 max
NC 108 12597 16377.0 17817 19135.5 27378
NE 103 12704 17016.0 19785 23079.0 33330
S 152 8899 15118.5 17110 18933.5 31699
W 77 11379 15701.0 17268 20786.0 37541
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Figure 8: Boxplot of log of Per Capita Income by Region

cdi_dat %>%
group_by(region) %>%
summarise(n = n(),

min = fivenum(per.cap.income)[1],
Q1 = fivenum(per.cap.income)[2],
median = fivenum(per.cap.income)[3],
Q3 = fivenum(per.cap.income)[4],
max = fivenum(per.cap.income)[5]) %>%

kbl(booktabs=T, caption="Five number summary of Per Capita Income by Region") %>%
kable_classic(full_width=F)

Figures 3 shows that there is some evidence of non-linear relationships between response and the predictors,
specifically for the predictors land area, population, pop.18_34, pop.65_plus, doctors, hosp.beds, crimes,
pct.below.pov, and tot.income. There is also some evidence of linearity among the predictor variables as seen
in Figures 3 and 4. After applying transformations to the skewed distributions, we see that the transformed
variables now more closely resemble a Normal distribution as illustrated in Figure 5. Figure 6 shows that the



relationships between the predictor and response variables more closely resemble linear relationships after
the transformations are applied. It should be noted that after the transformation is applied, strong linear
relationships also appear between pairs of the predictors, as illustrated in Figure 7. This should be kept in
mind when generating models to predict per capita income.

Figure 8 and Table 5 show that the medians of per capita income by region are relatively similar, but it is
worth investigating whether region is useful in predicting the response variable, as well as its relationship
with the other predictor variables.

Research Question 2

# building a model to predict per-capita income from crime/region
cdi_analysis_1 <- cdi_dat[, !names(cdi_dat) %in% c("county", "state")] %>%

mutate(
log_doctors = log(doctors),
log_hosp.beds = log(hosp.beds),
log_land.area = log(land.area),
log_crimes = log(crimes),
log_pop = log(pop),
log_inc = log(tot.income),
log_pci = log(per.cap.income)

) %>%
relocate(log_pci)

lm.q2a <- lm(log_pci ~ log_crimes, data = cdi_analysis_1)
lm.q2b <- lm(log_pci ~ log_crimes + region, data = cdi_analysis_1)
lm.q2c <- lm(log_pci ~ log_crimes * region, data = cdi_analysis_1)
anova(lm.q2a, lm.q2b, lm.q2c)

## Analysis of Variance Table
##
## Model 1: log_pci ~ log_crimes
## Model 2: log_pci ~ log_crimes + region
## Model 3: log_pci ~ log_crimes * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 17.271
## 2 435 14.949 3 2.32194 22.4823 1.523e-13 ***
## 3 432 14.872 3 0.07678 0.7434 0.5266
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

summary(lm.q2b)

##
## Call:
## lm(formula = log_pci ~ log_crimes + region, data = cdi_analysis_1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.68757 -0.10557 -0.01422 0.08905 0.78946
##



## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.188431 0.079812 115.125 < 2e-16 ***
## log_crimes 0.066695 0.008421 7.920 2.00e-14 ***
## regionNE 0.104458 0.025531 4.091 5.11e-05 ***
## regionS -0.086983 0.023618 -3.683 0.00026 ***
## regionW -0.055280 0.028167 -1.963 0.05033 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1854 on 435 degrees of freedom
## Multiple R-squared: 0.2032, Adjusted R-squared: 0.1959
## F-statistic: 27.74 on 4 and 435 DF, p-value: < 2.2e-16

Since two of the models are nested versions of each other, we apply the nested F-test to determine whether
the relationship between per capita income and crime rate depends on different regions of the country.

The results of the nested F-test illustrate that including region in the additive ANCOVA model is appropriate
based on the p-value being less than 0.05, but the interaction terms are unnecessary due to the relatively
large p-value (greater than 0.05). The model also displays a statistically significant relationship between the
transformed crimes and per capita income variables, suggesting that there is a positive linear relationship
between the variables. This result is surprising, however, since it would be expected that higher crime rates
are not associated with wealthier areas. The result may be driven by omitted variables such as population,
which is likely correlated with both crime and income. It can be argued that population density in a county
implies more workers and higher income, but can also be associated with higher crime rates.

cdi_analysis_2 <- cdi_analysis_1 %>%
mutate(

crime_rate = crimes / pop,
log_crime_rate = log(crime_rate)

)

par(mfrow = c(1,2))
hist(cdi_analysis_2$crime_rate, main = "", xlab = "Crime Rate")
hist(cdi_analysis_2$log_crime_rate, main = "", xlab = "Log of Crime Rate")
mtext("Figure 9: Histograms of Crime Rate and Log of Crime Rate",

side=3, adj = 1, cex=1.2)
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Figure 9: Histograms of Crime Rate and Log of Crime Rate

par(mfrow = c(1,1))

lm.q2d <- lm(log_pci ~ log_crime_rate, data = cdi_analysis_2)
lm.q2e <- lm(log_pci ~ log_crime_rate + region, data = cdi_analysis_2)
lm.q2f <- lm(log_pci ~ log_crime_rate * region, data = cdi_analysis_2)
anova(lm.q2d, lm.q2e, lm.q2f)

## Analysis of Variance Table
##
## Model 1: log_pci ~ log_crime_rate
## Model 2: log_pci ~ log_crime_rate + region
## Model 3: log_pci ~ log_crime_rate * region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 438 18.697
## 2 435 16.952 3 1.74465 14.8407 3.263e-09 ***
## 3 432 16.928 3 0.02408 0.2048 0.893
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

summary(lm.q2e)

##
## Call:
## lm(formula = log_pci ~ log_crime_rate + region, data = cdi_analysis_2)



##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65832 -0.11431 -0.01548 0.10838 0.75657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.93628 0.06934 143.303 < 2e-16 ***
## log_crime_rate 0.04243 0.02148 1.975 0.04885 *
## regionNE 0.11457 0.02760 4.151 3.99e-05 ***
## regionS -0.07456 0.02624 -2.841 0.00471 **
## regionW -0.02426 0.03002 -0.808 0.41952
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.1974 on 435 degrees of freedom
## Multiple R-squared: 0.09645, Adjusted R-squared: 0.08814
## F-statistic: 11.61 on 4 and 435 DF, p-value: 5.776e-09

We also examine the crime rate variable created by taking the ratio of Number of Crimes to Total Popu-
lation. Figure 9 illustrates that Crime Rate is right skewed, but becomes approximately normal after the
log transformation is applied. Therefore, the log transformation of Crime Rate is used when building the
models.

Similar to the Crime variable case, since two of the models are nested versions of each other, we apply
the nested F-test to determine whether the relationship between per capita income and crime rate depends
on different regions of the country. The results of the nested F-test illustrate that including region in the
additive ANCOVA model is appropriate based on the p-value being less than 0.05, but the interaction terms
are unnecessary due to the relatively large p-value (greater than 0.05). The model also displays a statistically
significant relationship between the transformed crimes and per capita income variables, suggesting that there
is a positive linear relationship between the variables.

# comparing the best models
par(mfrow=c(2,2))
plot(lm.q2b)
mtext("Figure 10: Diagnostic Plots for Crime model",

side = 3, line = -2, outer = TRUE, cex = 1.5)
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Figure 10: Diagnostic Plots for Crime model

plot(lm.q2e)
mtext("Figure 11: Diagnostic Plots for Crime Rate model",

side = 3, line = -2, outer = TRUE, cex = 1.5)
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Figure 11: Diagnostic Plots for Crime Rate model

par(mfrow=c(1,1))

formula(lm.q2b)

## log_pci ~ log_crimes + region

round(coef(summary(lm.q2b)),2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.19 0.08 115.13 0.00
## log_crimes 0.07 0.01 7.92 0.00
## regionNE 0.10 0.03 4.09 0.00
## regionS -0.09 0.02 -3.68 0.00
## regionW -0.06 0.03 -1.96 0.05

formula(lm.q2e)

## log_pci ~ log_crime_rate + region

round(coef(summary(lm.q2e)),2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.94 0.07 143.30 0.00



Table 6: Comparing models including Crime and Crime Rate

df AIC BIC R2 adj.
lm.q2b 6 -227.4746 -202.9539 0.1959087
lm.q2e 6 -172.1347 -147.6140 0.0881411

## log_crime_rate 0.04 0.02 1.98 0.05
## regionNE 0.11 0.03 4.15 0.00
## regionS -0.07 0.03 -2.84 0.00
## regionW -0.02 0.03 -0.81 0.42

data.frame(AIC=AIC(lm.q2b,lm.q2e),
BIC=BIC(lm.q2b,lm.q2e),
R2 = c(summary(lm.q2b)$adj.r.squared, summary(lm.q2e)$adj.r.squared))[,-3] %>%

kbl(booktabs=T, caption = "Comparing models including Crime and Crime Rate",
col.names=c("df", "AIC","BIC","R2 adj.")) %>%

kable_classic(full_width=F)

Since we find that the additive model that includes Region is the best model when either the log transforma-
tion is applied to either Crimes or Crime Rate, we compare these two models by examining the diagnostic
plots, AIC, BIC, and regression outputs for each of these models.

Diagnostics:

For the Crime variable model, we investigate the residual diagnostics displayed in Figure 10. We see that
the residuals vs fitted value plot does not display a major vertical trend for the majority of the fitted
values and the data are centered at 0., although there are some points that deviate from the pattern of
the data. The Normal QQ plot suggests that the normality in error terms is violated due to the deviation
of the points from the linear relationship illustrated by the qqline (standardized residuals and theoretical
quantiles). It also identifies numerous potential outliers based on the values of the standardized residuals,
such as observations 128, 206, and 396. The Scale Location plot illustrates evidence of many outliers since
their square rooted absolute value standardized residuals are greater than 1.5, although the spread majority
of the data is relatively constant and centered between 0.5 and 1, suggesting that the constant error variance
assumption is not violated for the model. The residuals vs leverage plot does not identify any influential
point based on having a Cook’s distance value greater than 0.5, though there are some observations that are
high leverage (i.e. observation 6) or have a large standardized residual value (observation 206) that merit
further investigation to determine if they should remain in the analysis.

For the model with the crime rate variable included, we examine the residual diagnostics displayed in Figure
11. We see that the residuals are roughly centered at 0 and the variance is relatively constant for all values,
suggesting that the constant variance assumption is roughly satisfied; there are some points that deviate
from the pattern of the data. The Normal QQ plot suggests that the normality in error terms approximately
satisfied for the majority of the data, but there is some deviation in the tails as illustrated by the deviation
of the points from the linear relationship illustrated by the qqline (standardized residuals and theoretical
quantiles). It also identifies some potential outliers based on the values of the standardized residuals, such
as observations 128, 206, and 337. The scale location plot does not show any major vertical trends and that
the data is centered around 1, which confirms that the constant variance assumption is satisfied. However,
there are multiple observations with square rooted absolute value standardized residuals that are greater
than 1.5 that could be classified as outliers. The residuals vs. leverage plot shows no influential points based
on Cook’s distance, but a few observations are either highly leveraged (observation 6) or can be classified as
outliers (observation 206) based on its standardized residual value. These points should be investigated to
see if they should remain in the model.



We see from Table 6 that neither model explains more than 20% of the variation in the response variable,
although the Crime model explains roughly 10% more of the variation in the response variable and has
better measures for AIC and BIC. Additionally, the coefficients for both crime rate and crimes have signs
that are the opposite of what is expected. This is likely due to omitted variable bias from not controlling
for variables like population. However, the coefficient for the crime rate variable is only slightly statistically
significant (unlike for the crime variable), which more aligns with our intuition since it seems unreasonable
that counties with higher per capita income would also have higher crime rates. We would expect either no
relationship or a negative relationship between these variables.

In summary, both models provide a similar (but relatively weak) fit for the response variable, and have similar
diagnostic plots approximately showing that the regression model assumptions are satisfied. However, the
coefficient estimate for crime rate better aligns with our intuition about the relationship between crime and
response variable, and crime rate is on a similar scale as the response variable (per capita income). Therefore,
since neither variable explains the response variable exceptionally well after accounting for region, the crime
rate variable is the more appropriate variable to include in the analysis due to its interpretability. This
variable will be included in the model to predict per capita income, although other variables will also need
to be included to improve the predictive power of the model.

Research Question 3

# creating data frames to be used to select predictors for the final model
idx2 <- c("doctors", "hosp.beds", "land.area", "pop", "tot.income", "crimes",

"crime_rate", "log_inc", "log_pop", "per.cap.income", "log_crimes")

cdi_df1 <- cdi_analysis_2[,!names(cdi_analysis_2) %in% idx2]
cdi_df2 <- cdi_df1[,-which(colnames(cdi_df1) == "region")]

lm.q3a <- lm(log_pci ~ ., data = cdi_df2)
summary(lm.q3a)

##
## Call:
## lm(formula = log_pci ~ ., data = cdi_df2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35474 -0.04577 -0.00794 0.04585 0.26911
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.343656 0.113345 91.258 < 2e-16 ***
## pop.18_34 -0.015613 0.001308 -11.940 < 2e-16 ***
## pop.65_plus -0.003080 0.001328 -2.319 0.0209 *
## pct.hs.grad -0.004755 0.001085 -4.382 1.48e-05 ***
## pct.bach.deg 0.015793 0.001019 15.495 < 2e-16 ***
## pct.below.pov -0.025487 0.001380 -18.467 < 2e-16 ***
## pct.unemp 0.011229 0.002186 5.138 4.23e-07 ***
## log_doctors 0.047859 0.011243 4.257 2.55e-05 ***
## log_hosp.beds 0.014801 0.011908 1.243 0.2146
## log_land.area -0.035783 0.004791 -7.469 4.55e-13 ***
## log_crime_rate 0.010047 0.009792 1.026 0.3055
## ---



## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.0816 on 429 degrees of freedom
## Multiple R-squared: 0.8477, Adjusted R-squared: 0.8442
## F-statistic: 238.9 on 10 and 429 DF, p-value: < 2.2e-16

vif(lm.q3a)

## pop.18_34 pop.65_plus pct.hs.grad pct.bach.deg pct.below.pov
## 1.979952 1.853750 3.820223 4.013215 2.723069
## pct.unemp log_doctors log_hosp.beds log_land.area log_crime_rate
## 1.721429 10.906872 9.410985 1.149748 1.600834

par(mfrow=c(2,2))
plot(lm.q3a)
mtext("Figure 12: Diagnostic Plots for the full model",

side = 3, line = -2, outer = TRUE, cex = 1.5)
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Figure 12: Diagnostic Plots for the full model

par(mfrow=c(1,1))

Based on the results from research questions 1 and 2, we apply transformations to the Per Capital Income,
Doctors, Hospital Beds, Land Area, and Crime Rate variables. We also remove the Population and Total
Income variables due to their deterministic functional relationship with the response variable. The Region
variable is temporarily removed for variable selection purposes, and will be added back once a model has
been chosen using variable selection techniques.



Fitting all the variables in the multiple linear regression model, we see that some of the coefficients for
the predictor variables are not statistically significant, and their VIFs show that there is multicollinearity
present among the predictors. Figure 12 shows that while the model roughly satisfies the constant variance
assumption, there is evidence of deviation from the normal distribution in the tails based on the Normal QQ
plot. High leverage points and outliers are also present in the data.

The results suggests that the model roughly satisfies the regression model assumptions, but we will further
investigate subsets of predictors using variable selection to find the best subset that does not suffer from
multicollinearity and still satisfies the regression model assumptions.

Variable Selection Technique: All Subsets Regression

# variable selection
lm.q3a <- leaps::regsubsets(log_pci ~ ., data = cdi_df2, nvmax = 10)
tibble(x = 1:10, y = summary(lm.q3a)$bic) %>%

ggplot(aes(x = x, y = y)) +
geom_line() +
labs(x = "Number of predictors", y = "BIC",

title = "Figure 13: BIC values for All Subsets selection method") +
annotate("point", y = min(summary(lm.q3a)$bic), x = which.min(summary(lm.q3a)$bic), colour = "red", size = 3)
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Figure 13: BIC values for All Subsets selection method

# generating the best model
summary(lm.q3a)$which[which.min(summary(lm.q3a)$bic), ]



## (Intercept) pop.18_34 pop.65_plus pct.hs.grad pct.bach.deg
## TRUE TRUE FALSE TRUE TRUE
## pct.below.pov pct.unemp log_doctors log_hosp.beds log_land.area
## TRUE TRUE TRUE FALSE TRUE
## log_crime_rate
## FALSE

coef(lm.q3a, which.min(summary(lm.q3a)$bic))

## (Intercept) pop.18_34 pct.hs.grad pct.bach.deg pct.below.pov
## 10.222495041 -0.013900201 -0.004406396 0.015385301 -0.024278371
## pct.unemp log_doctors log_land.area
## 0.010603691 0.060676872 -0.035674062

# refitting the model to get the minimum standard errors
lm.q3a_fit <- lm(log_pci ~ . - pop.65_plus - log_hosp.beds - log_crime_rate, data = cdi_df2)
summary(lm.q3a_fit)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.222495041 0.0931210074 109.776465 1.127483e-317
## pop.18_34 -0.013900201 0.0011113007 -12.508046 7.514862e-31
## pct.hs.grad -0.004406396 0.0010822796 -4.071403 5.558448e-05
## pct.bach.deg 0.015385301 0.0009245509 16.640838 2.100590e-48
## pct.below.pov -0.024278371 0.0012583372 -19.294011 2.812246e-60
## pct.unemp 0.010603691 0.0021771148 4.870525 1.564524e-06
## log_doctors 0.060676872 0.0040183327 15.100012 1.133432e-41
## log_land.area -0.035674062 0.0047767371 -7.468291 4.533156e-13

From the All Subsets Regression variable selection technique, we see that following variables are selected:
pop.18_34, pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, log_doctors, and log_land.area.

Variable Selection Technique: Stepwise Regression (AIC and BIC)

lm.q3_base <- lm(log_pci ~ ., data = cdi_df2)
lm.q3b <- stepAIC(lm.q3_base, direction = "both", k = 2)

anova(lm.q3_base, lm.q3b)

## Analysis of Variance Table
##
## Model 1: log_pci ~ pop.18_34 + pop.65_plus + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + log_doctors + log_hosp.beds +
## log_land.area + log_crime_rate
## Model 2: log_pci ~ pop.18_34 + pop.65_plus + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + log_doctors + log_land.area
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 429 2.8566
## 2 431 2.8748 -2 -0.018169 1.3643 0.2567



names(coef(lm.q3b))

## [1] "(Intercept)" "pop.18_34" "pop.65_plus" "pct.hs.grad"
## [5] "pct.bach.deg" "pct.below.pov" "pct.unemp" "log_doctors"
## [9] "log_land.area"

summary(lm.q3b)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.315966592 0.1025857893 100.559411 2.359405e-301
## pop.18_34 -0.015348817 0.0012987646 -11.818014 4.136902e-28
## pop.65_plus -0.002766377 0.0012977992 -2.131591 3.360555e-02
## pct.hs.grad -0.004657948 0.0010843088 -4.295776 2.153275e-05
## pct.bach.deg 0.015214937 0.0009242442 16.462032 1.361311e-47
## pct.below.pov -0.024614405 0.0012630840 -19.487544 4.083797e-61
## pct.unemp 0.010768825 0.0021696234 4.963454 9.990989e-07
## log_doctors 0.062605267 0.0041029328 15.258663 2.438771e-42
## log_land.area -0.036493494 0.0047727720 -7.646184 1.360706e-13

From the Stepwise Regression AIC variable selection technique, we see that following variables are se-
lected: pop.18_34, pop.65_plus, pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, log_doctors, and
log_land.area.

lm.q3c <- stepAIC(lm.q3_base, direction = "both", k = log(dim(cdi_df2)[1]))

anova(lm.q3_base, lm.q3c)

## Analysis of Variance Table
##
## Model 1: log_pci ~ pop.18_34 + pop.65_plus + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + log_doctors + log_hosp.beds +
## log_land.area + log_crime_rate
## Model 2: log_pci ~ pop.18_34 + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp + log_doctors + log_land.area
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 429 2.8566
## 2 432 2.9051 -3 -0.048475 2.4267 0.065 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

names(coef(lm.q3c))

## [1] "(Intercept)" "pop.18_34" "pct.hs.grad" "pct.bach.deg"
## [5] "pct.below.pov" "pct.unemp" "log_doctors" "log_land.area"

summary(lm.q3c)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.222495041 0.0931210074 109.776465 1.127483e-317



## pop.18_34 -0.013900201 0.0011113007 -12.508046 7.514862e-31
## pct.hs.grad -0.004406396 0.0010822796 -4.071403 5.558448e-05
## pct.bach.deg 0.015385301 0.0009245509 16.640838 2.100590e-48
## pct.below.pov -0.024278371 0.0012583372 -19.294011 2.812246e-60
## pct.unemp 0.010603691 0.0021771148 4.870525 1.564524e-06
## log_doctors 0.060676872 0.0040183327 15.100012 1.133432e-41
## log_land.area -0.035674062 0.0047767371 -7.468291 4.533156e-13

From the Stepwise Regression BIC variable selection technique, we see that following variables are selected:
pop.18_34, pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, log_doctors, and log_land.area.

Variable Selection Technique: LASSO

cdi_mat <- as.matrix(cdi_df2[,-1])

# LASSO without cross-validation
lasso <- glmnet(cdi_mat, cdi_df2[,1], alpha=1)
Xnames <- dimnames(cdi_mat)[[2]]

plot(lasso,xvar="lambda", main = "Figure 14: LASSO Shrinkage plot")
abline(h=0,lty=2)
legend('bottomright',lty=1,col=1:length(Xnames),legend=Xnames,cex=0.5)
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Figure 14: LASSO Shrinkage plot
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# LASSO with cross-validation
set.seed(20)
lasso_cv <- glmnet::cv.glmnet(cdi_mat, cdi_df2[,1],alpha=1)

c(lambda.1se=lasso_cv$lambda.1se,lambda.min=lasso_cv$lambda.min)

## lambda.1se lambda.min
## 0.0044721426 0.0002278171

lasso_mat <- cbind(coef(lasso_cv,s=lasso_cv$lambda.min), coef(lasso_cv,s=lasso_cv$lambda.1se))
dimnames(lasso_mat)[[2]] <- c("lambda(minMSE)","lambda(minMSE+1se)")

lasso_mat

## 11 x 2 sparse Matrix of class "dgCMatrix"
## lambda(minMSE) lambda(minMSE+1se)
## (Intercept) 10.317582891 9.9409568402
## pop.18_34 -0.015401734 -0.0124830611
## pop.65_plus -0.002842193 .
## pct.hs.grad -0.004512574 -0.0007592586
## pct.bach.deg 0.015585598 0.0125356027
## pct.below.pov -0.025186168 -0.0208825185
## pct.unemp 0.011038990 0.0076826679
## log_doctors 0.049207126 0.0599889248
## log_hosp.beds 0.013309126 .
## log_land.area -0.035726978 -0.0338113848
## log_crime_rate 0.009115750 .

Figure 14 does not display an obvious place to cut off the shrinkage plot and select predictor variables,
so we utilize cross validation to select the appropriate lambda value for LASSO regression. From the
cross-validation LASSO regression (utilizing the minimum lambda value plus 1 standard error to avoid
capitalization on chance), we see that following variables are selected: pop.18_34, pct.hs.grad, pct.bach.deg,
pct.below.pov, pct.unemp, log_doctors, and log_land.area.

# final model comparisons

# assigning objects of interest to new names for consistency with the written analysis
model1 <- lm.q3a_fit
model2 <- lm.q3b

vif(model1)

## pop.18_34 pct.hs.grad pct.bach.deg pct.below.pov pct.unemp
## 1.416145 3.763103 3.269565 2.241555 1.691280
## log_doctors log_land.area
## 1.379671 1.131867

summary(model1)

##
## Call:



## lm(formula = log_pci ~ . - pop.65_plus - log_hosp.beds - log_crime_rate,
## data = cdi_df2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.34147 -0.04886 -0.00538 0.04818 0.26969
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2224950 0.0931210 109.776 < 2e-16 ***
## pop.18_34 -0.0139002 0.0011113 -12.508 < 2e-16 ***
## pct.hs.grad -0.0044064 0.0010823 -4.071 5.56e-05 ***
## pct.bach.deg 0.0153853 0.0009246 16.641 < 2e-16 ***
## pct.below.pov -0.0242784 0.0012583 -19.294 < 2e-16 ***
## pct.unemp 0.0106037 0.0021771 4.871 1.56e-06 ***
## log_doctors 0.0606769 0.0040183 15.100 < 2e-16 ***
## log_land.area -0.0356741 0.0047767 -7.468 4.53e-13 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.082 on 432 degrees of freedom
## Multiple R-squared: 0.8452, Adjusted R-squared: 0.8427
## F-statistic: 336.9 on 7 and 432 DF, p-value: < 2.2e-16

par(mfrow=c(2,2))
plot(lm.q3a_fit)
mtext("Figure 15: Diagnostic Plots for Model 1", side = 3, line = -2, outer = TRUE, cex = 1.1)
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Figure 15: Diagnostic Plots for Model 1

par(mfrow=c(1,1))
mmps(model1, main = "Figure 16: Marginal model plots for Model 1")
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Figure 16: Marginal model plots for Model 1

vif(model2)

## pop.18_34 pop.65_plus pct.hs.grad pct.bach.deg pct.below.pov
## 1.950084 1.767181 3.808211 3.294199 2.277025
## pct.unemp log_doctors log_land.area
## 1.693439 1.450175 1.139258

summary(model2)

##
## Call:
## lm(formula = log_pci ~ pop.18_34 + pop.65_plus + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + log_doctors +
## log_land.area, data = cdi_df2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35756 -0.04551 -0.00543 0.04844 0.27399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.3159666 0.1025858 100.559 < 2e-16 ***
## pop.18_34 -0.0153488 0.0012988 -11.818 < 2e-16 ***
## pop.65_plus -0.0027664 0.0012978 -2.132 0.0336 *
## pct.hs.grad -0.0046579 0.0010843 -4.296 2.15e-05 ***



## pct.bach.deg 0.0152149 0.0009242 16.462 < 2e-16 ***
## pct.below.pov -0.0246144 0.0012631 -19.488 < 2e-16 ***
## pct.unemp 0.0107688 0.0021696 4.963 9.99e-07 ***
## log_doctors 0.0626053 0.0041029 15.259 < 2e-16 ***
## log_land.area -0.0364935 0.0047728 -7.646 1.36e-13 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.08167 on 431 degrees of freedom
## Multiple R-squared: 0.8468, Adjusted R-squared: 0.8439
## F-statistic: 297.7 on 8 and 431 DF, p-value: < 2.2e-16

par(mfrow=c(2,2))
plot(model2)
mtext("Figure 17: Diagnostic Plots for Model 2", side = 3, line = -2, outer = TRUE, cex = 1.1)
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Figure 17: Diagnostic Plots for Model 2

par(mfrow=c(1,1))
mmps(model2, main = "Figure 18: Marginal model plots for Model 1")
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Figure 18: Marginal model plots for Model 1

Results of Variable Selection Methods Examining the output, we see that the All Subsets, Step-
wise BIC, and LASSO (using the model with lambda that is 1 standard error larger than the minimum
lambda value found) regression techniques select the same model using the predictor variables: pop.18_34,
pct.hs.grad, pct.bach.deg, pct.below.pov, pct.unemp, log_doctors, and log_land.area. This will be referred
to as Model 1. All of the coefficients in the model are statistically significant, the adjusted R2 is approx-
imately 84%, and the VIFs of the coefficients are all less than 5, implying multicollinearity is not present
within the predictors. Additionally, the diagnostic plots in Figure 15 are similar to the full model in that
the regression model assumptions are approximately satisfied with the exception of Normal QQ plot, since
the deviation from the QQ line implies the tails are slightly longer than those of the Normal Distribution.
The marginal model plots in Figure 16 also show that the appropriate form of the predictor variables are
included since the non-parametric data line and model line trend closely together for each of the predictor
variables and the fitted values.

We see similar results when we examining the selected Stepwise AIC model, finding that it includes identical
predictors from Model 1 along with the Percentage of population 65 or older. This will be referred to as
Model 2. Similar to model 1, all of the coefficients in the model are statistically significant, the adjusted R2

is approximately 84%, and the VIFs of the coefficients are all less than 5, implying multicollinearity is not
present within the predictors. The diagnostic plots in Figure 17 are consistent with the full model in that
the regression model assumptions are approximately satisfied with the exception of Normal QQ plot, since
the deviation from the QQ line implies the tails are slightly longer than those of the Normal Distribution.
The marginal model from Figure 18 plots illustrate that the appropriate form of the predictor variables are
specified in the model since since the non-parametric data line and model line trend closely together for each
of the predictor variables and the fitted values.

Since these models are close to identical and therefore have similar interpretations for the beta coefficients,
we consider interaction terms for both models before making our determination about which model to use.



# adding interaction terms for models 1 and 2
idx3 <- c("log_pci", "pop.18_34", "pct.hs.grad", "pct.bach.deg", "pct.below.pov",

"pct.unemp", "log_doctors", "log_land.area", "region")
cdi_region1 <- cdi_df1[, names(cdi_df1) %in% idx3]
model1_region <- lm(log_pci ~ .*region, data = cdi_region1)
summary(model1_region)

##
## Call:
## lm(formula = log_pci ~ . * region, data = cdi_region1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.250782 -0.042332 -0.002298 0.040559 0.313570
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.1244260 0.2826240 35.823 < 2e-16 ***
## pop.18_34 -0.0147940 0.0026043 -5.681 2.55e-08 ***
## pct.hs.grad -0.0024773 0.0034110 -0.726 0.468088
## pct.bach.deg 0.0140833 0.0029254 4.814 2.09e-06 ***
## pct.below.pov -0.0237085 0.0036234 -6.543 1.81e-10 ***
## pct.unemp 0.0180393 0.0048923 3.687 0.000257 ***
## regionNE 0.3243992 0.3577081 0.907 0.365004
## regionS -0.0345856 0.3131668 -0.110 0.912116
## regionW 1.5043946 0.4226868 3.559 0.000416 ***
## log_doctors 0.0544169 0.0093221 5.837 1.08e-08 ***
## log_land.area -0.0364187 0.0151355 -2.406 0.016564 *
## pop.18_34:regionNE -0.0024780 0.0036873 -0.672 0.501939
## pop.18_34:regionS -0.0008777 0.0030680 -0.286 0.774970
## pop.18_34:regionW 0.0014122 0.0040925 0.345 0.730220
## pct.hs.grad:regionNE -0.0037529 0.0044150 -0.850 0.395813
## pct.hs.grad:regionS 0.0021198 0.0037853 0.560 0.575790
## pct.hs.grad:regionW -0.0190188 0.0045881 -4.145 4.13e-05 ***
## pct.bach.deg:regionNE 0.0069429 0.0040312 1.722 0.085776 .
## pct.bach.deg:regionS -0.0015774 0.0032000 -0.493 0.622328
## pct.bach.deg:regionW 0.0071026 0.0036374 1.953 0.051541 .
## pct.below.pov:regionNE -0.0014134 0.0050896 -0.278 0.781381
## pct.below.pov:regionS 0.0072764 0.0040739 1.786 0.074827 .
## pct.below.pov:regionW -0.0161639 0.0054271 -2.978 0.003071 **
## pct.unemp:regionNE -0.0083596 0.0073758 -1.133 0.257720
## pct.unemp:regionS -0.0249396 0.0065867 -3.786 0.000176 ***
## pct.unemp:regionW -0.0201466 0.0067713 -2.975 0.003101 **
## regionNE:log_doctors -0.0046251 0.0132571 -0.349 0.727359
## regionS:log_doctors 0.0043337 0.0114401 0.379 0.705019
## regionW:log_doctors -0.0034863 0.0131576 -0.265 0.791173
## regionNE:log_land.area -0.0037179 0.0201435 -0.185 0.853656
## regionS:log_land.area -0.0047582 0.0174155 -0.273 0.784825
## regionW:log_land.area 0.0151234 0.0181871 0.832 0.406154
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.0759 on 408 degrees of freedom



## Multiple R-squared: 0.8747, Adjusted R-squared: 0.8652
## F-statistic: 91.91 on 31 and 408 DF, p-value: < 2.2e-16

# include interactions for pct.hs.grad, pct.below.pov, pct.unemp
model1_region_update <- update(model1_region, . ~ . -

region:log_land.area - region:pop.18_34 -
region:log_doctors - region:pct.bach.deg)

summary(model1_region_update)

##
## Call:
## lm(formula = log_pci ~ pop.18_34 + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + region + log_doctors + log_land.area +
## pct.hs.grad:region + pct.below.pov:region + pct.unemp:region,
## data = cdi_region1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.294186 -0.043597 -0.001583 0.037667 0.311609
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2421239 0.2176557 47.057 < 2e-16 ***
## pop.18_34 -0.0149347 0.0010897 -13.705 < 2e-16 ***
## pct.hs.grad -0.0043532 0.0024515 -1.776 0.076501 .
## pct.bach.deg 0.0156310 0.0009715 16.090 < 2e-16 ***
## pct.below.pov -0.0252029 0.0032612 -7.728 8.12e-14 ***
## pct.unemp 0.0197400 0.0046254 4.268 2.44e-05 ***
## regionNE -0.0520070 0.2707173 -0.192 0.847750
## regionS -0.0389718 0.2383516 -0.164 0.870199
## regionW 1.3910484 0.3408962 4.081 5.38e-05 ***
## log_doctors 0.0572284 0.0040082 14.278 < 2e-16 ***
## log_land.area -0.0381738 0.0053996 -7.070 6.51e-12 ***
## pct.hs.grad:regionNE 0.0017684 0.0029293 0.604 0.546374
## pct.hs.grad:regionS 0.0011525 0.0025618 0.450 0.653024
## pct.hs.grad:regionW -0.0141473 0.0035826 -3.949 9.20e-05 ***
## pct.below.pov:regionNE -0.0015170 0.0046143 -0.329 0.742493
## pct.below.pov:regionS 0.0070185 0.0035199 1.994 0.046808 *
## pct.below.pov:regionW -0.0137920 0.0051811 -2.662 0.008066 **
## pct.unemp:regionNE -0.0129841 0.0070423 -1.844 0.065929 .
## pct.unemp:regionS -0.0231138 0.0061365 -3.767 0.000189 ***
## pct.unemp:regionW -0.0217357 0.0065225 -3.332 0.000937 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.07692 on 420 degrees of freedom
## Multiple R-squared: 0.8675, Adjusted R-squared: 0.8615
## F-statistic: 144.8 on 19 and 420 DF, p-value: < 2.2e-16

anova(model1, model1_region_update)

## Analysis of Variance Table
##



## Model 1: log_pci ~ (pop.18_34 + pop.65_plus + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + log_doctors + log_hosp.beds +
## log_land.area + log_crime_rate) - pop.65_plus - log_hosp.beds -
## log_crime_rate
## Model 2: log_pci ~ pop.18_34 + pct.hs.grad + pct.bach.deg + pct.below.pov +
## pct.unemp + region + log_doctors + log_land.area + pct.hs.grad:region +
## pct.below.pov:region + pct.unemp:region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 432 2.9051
## 2 420 2.4853 12 0.41978 5.9117 1.555e-09 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

vif(model1_region_update)

## GVIF Df GVIF^(1/(2*Df))
## pop.18_34 1.547481e+00 1 1.243978
## pct.hs.grad 2.194177e+01 1 4.684205
## pct.bach.deg 4.102307e+00 1 2.025415
## pct.below.pov 1.710982e+01 1 4.136402
## pct.unemp 8.675528e+00 1 2.945425
## region 2.454546e+08 3 25.022374
## log_doctors 1.559981e+00 1 1.248992
## log_land.area 1.643605e+00 1 1.282032
## pct.hs.grad:region 8.506975e+07 3 20.971486
## pct.below.pov:region 5.278685e+03 3 4.172736
## pct.unemp:region 1.108865e+04 3 4.722222

par(mfrow=c(2,2))
plot(model2)
mtext("Figure 19: Diagnostic Plots for Model 1 (interactions included)",

side = 3, line = -2, outer = TRUE, cex = 1.1)
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Figure 19: Diagnostic Plots for Model 1 (interactions included)

par(mfrow=c(1,1))

idx4 <- c("log_pci", "pop.18_34", "pop.65_plus","pct.hs.grad", "pct.bach.deg",
"pct.below.pov", "pct.unemp", "log_doctors", "log_land.area", "region")

cdi_region2 <- cdi_df1[, names(cdi_df1) %in% idx4]
model2_region <- lm(log_pci ~ .*region, data = cdi_region2)
summary(model2_region)

##
## Call:
## lm(formula = log_pci ~ . * region, data = cdi_region2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.239497 -0.042518 -0.002899 0.038705 0.315955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.1550994 0.3077758 32.995 < 2e-16 ***
## pop.18_34 -0.0150740 0.0028317 -5.323 1.69e-07 ***
## pop.65_plus -0.0012483 0.0050165 -0.249 0.803614
## pct.hs.grad -0.0026649 0.0034861 -0.764 0.445055
## pct.bach.deg 0.0140191 0.0029305 4.784 2.41e-06 ***
## pct.below.pov -0.0233702 0.0038627 -6.050 3.30e-09 ***



## pct.unemp 0.0176067 0.0051819 3.398 0.000747 ***
## regionNE 0.4813749 0.3863061 1.246 0.213451
## regionS -0.0552517 0.3396107 -0.163 0.870843
## regionW 1.3969067 0.4575796 3.053 0.002417 **
## log_doctors 0.0548293 0.0094485 5.803 1.32e-08 ***
## log_land.area -0.0355230 0.0155258 -2.288 0.022654 *
## pop.18_34:regionNE -0.0060991 0.0042036 -1.451 0.147582
## pop.18_34:regionS -0.0008273 0.0034566 -0.239 0.810970
## pop.18_34:regionW 0.0030516 0.0048005 0.636 0.525342
## pop.65_plus:regionNE -0.0076628 0.0063347 -1.210 0.227119
## pop.65_plus:regionS 0.0009166 0.0052822 0.174 0.862326
## pop.65_plus:regionW 0.0037008 0.0064632 0.573 0.567239
## pct.hs.grad:regionNE -0.0033331 0.0044706 -0.746 0.456373
## pct.hs.grad:regionS 0.0023152 0.0038518 0.601 0.548134
## pct.hs.grad:regionW -0.0185423 0.0046646 -3.975 8.33e-05 ***
## pct.bach.deg:regionNE 0.0060237 0.0040533 1.486 0.138025
## pct.bach.deg:regionS -0.0015550 0.0032102 -0.484 0.628384
## pct.bach.deg:regionW 0.0069577 0.0036552 1.903 0.057687 .
## pct.below.pov:regionNE -0.0009949 0.0052677 -0.189 0.850294
## pct.below.pov:regionS 0.0068718 0.0042992 1.598 0.110736
## pct.below.pov:regionW -0.0167523 0.0055989 -2.992 0.002941 **
## pct.unemp:regionNE -0.0063048 0.0075950 -0.830 0.406962
## pct.unemp:regionS -0.0243492 0.0068439 -3.558 0.000418 ***
## pct.unemp:regionW -0.0192087 0.0070270 -2.734 0.006541 **
## regionNE:log_doctors 0.0001267 0.0135190 0.009 0.992526
## regionS:log_doctors 0.0042557 0.0116550 0.365 0.715198
## regionW:log_doctors -0.0046667 0.0132947 -0.351 0.725759
## regionNE:log_land.area -0.0050730 0.0204207 -0.248 0.803932
## regionS:log_land.area -0.0058664 0.0177783 -0.330 0.741589
## regionW:log_land.area 0.0136894 0.0185229 0.739 0.460306
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.07573 on 404 degrees of freedom
## Multiple R-squared: 0.8765, Adjusted R-squared: 0.8658
## F-statistic: 81.92 on 35 and 404 DF, p-value: < 2.2e-16

# include interactions for pct.hs.grad, pct.below.pov, pct.unemp
model2_region_update <- update(model2_region, . ~ . -

region:log_land.area - region:pop.18_34 -
region:log_doctors - region:pct.bach.deg)

summary(model2_region_update)

##
## Call:
## lm(formula = log_pci ~ pop.18_34 + pop.65_plus + pct.hs.grad +
## pct.bach.deg + pct.below.pov + pct.unemp + region + log_doctors +
## log_land.area + pop.65_plus:region + pct.hs.grad:region +
## pct.below.pov:region + pct.unemp:region, data = cdi_region2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.296590 -0.043466 -0.002885 0.037861 0.306999
##



## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2648646 0.2554925 40.177 < 2e-16 ***
## pop.18_34 -0.0154990 0.0012989 -11.932 < 2e-16 ***
## pop.65_plus -0.0010923 0.0044591 -0.245 0.806616
## pct.hs.grad -0.0042827 0.0026464 -1.618 0.106348
## pct.bach.deg 0.0154781 0.0009776 15.832 < 2e-16 ***
## pct.below.pov -0.0247649 0.0033948 -7.295 1.52e-12 ***
## pct.unemp 0.0191862 0.0047300 4.056 5.96e-05 ***
## regionNE 0.0688649 0.3090596 0.223 0.823784
## regionS -0.0757821 0.2761089 -0.274 0.783864
## regionW 1.3795407 0.3711718 3.717 0.000229 ***
## log_doctors 0.0579753 0.0041166 14.083 < 2e-16 ***
## log_land.area -0.0383115 0.0054021 -7.092 5.72e-12 ***
## pop.65_plus:regionNE -0.0053560 0.0052010 -1.030 0.303700
## pop.65_plus:regionS 0.0013909 0.0045027 0.309 0.757554
## pop.65_plus:regionW 0.0008047 0.0054499 0.148 0.882686
## pct.hs.grad:regionNE 0.0010360 0.0031422 0.330 0.741792
## pct.hs.grad:regionS 0.0014490 0.0027996 0.518 0.605020
## pct.hs.grad:regionW -0.0141288 0.0037424 -3.775 0.000183 ***
## pct.below.pov:regionNE -0.0016883 0.0046938 -0.360 0.719255
## pct.below.pov:regionS 0.0070531 0.0036916 1.911 0.056748 .
## pct.below.pov:regionW -0.0141419 0.0052507 -2.693 0.007360 **
## pct.unemp:regionNE -0.0111462 0.0071677 -1.555 0.120696
## pct.unemp:regionS -0.0235386 0.0063571 -3.703 0.000242 ***
## pct.unemp:regionW -0.0212297 0.0066069 -3.213 0.001414 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.07688 on 416 degrees of freedom
## Multiple R-squared: 0.8689, Adjusted R-squared: 0.8617
## F-statistic: 119.9 on 23 and 416 DF, p-value: < 2.2e-16

anova(model2, model2_region_update)

## Analysis of Variance Table
##
## Model 1: log_pci ~ pop.18_34 + pop.65_plus + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + log_doctors + log_land.area
## Model 2: log_pci ~ pop.18_34 + pop.65_plus + pct.hs.grad + pct.bach.deg +
## pct.below.pov + pct.unemp + region + log_doctors + log_land.area +
## pop.65_plus:region + pct.hs.grad:region + pct.below.pov:region +
## pct.unemp:region
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 431 2.8748
## 2 416 2.4591 15 0.41567 4.6878 2.311e-08 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

vif(model2_region_update)

## GVIF Df GVIF^(1/(2*Df))
## pop.18_34 2.200948e+00 1 1.483559



## pop.65_plus 2.353980e+01 1 4.851783
## pct.hs.grad 2.559501e+01 1 5.059151
## pct.bach.deg 4.158740e+00 1 2.039299
## pct.below.pov 1.855937e+01 1 4.308059
## pct.unemp 9.081772e+00 1 3.013598
## region 4.083716e+08 3 27.238044
## log_doctors 1.647251e+00 1 1.283453
## log_land.area 1.646810e+00 1 1.283281
## pop.65_plus:region 2.326687e+04 3 5.343055
## pct.hs.grad:region 1.096598e+08 3 21.878013
## pct.below.pov:region 6.011332e+03 3 4.264111
## pct.unemp:region 1.255322e+04 3 4.820875

par(mfrow=c(2,2))
plot(model2)
mtext("Figure 20: Diagnostic Plots for Model 2 (interactions included)",

side = 3, line = -2, outer = TRUE, cex = 1.1)
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Figure 20: Diagnostic Plots for Model 2 (interactions included)

par(mfrow=c(1,1))

Initially, we consider interaction terms for each of the continuous random variables for both Models 1 and
2. In both instances, the interactions with the region variable are kept in the model only if the interaction
term is statistically significant (at the 5% level) and useful for predicting per capita income. The results
illustrate that in both models, the interaction terms are significant for the following variables: Percent high
school graduates, Percent below poverty level, and Percent unemployment. We therefore only look at the
models that include these interactions.



Table 7: Comparison Table for Models 1 and 2 (including interactions)

df AIC BIC R2 adj.
model1 9 -942.2740 -905.4931 0.8427
model2 10 -944.8883 -904.0206 0.8439
model1_region_update 21 -986.9437 -901.1215 0.8615
model2_region_update 25 -983.6060 -881.4366 0.8617

For Model 1 with the interaction term included, we see that the nested F-test is highly significant, suggesting
that the interactions should remain in the model. The diagnostic plots in Figure 19 display that the regression
model assumptions are similarly satisfied for the diagnostic plots in comparison with the models that do
not include the interactions. While the VIFs for some of the coefficients are elevated, this is expected since
the interaction terms introduce some collinearity into the model due to the nature of the relationship of
interaction terms. This is acceptable, however, since the collinearities do not appear to cause noteworthy
changes in the t-statistics and p-values based on the summary output.

We see similar results in Model 2 with the interaction term included, as the nested F-test is highly significant,
suggesting that the interactions should remain in the model. While the VIFs for some of the coefficients
are elevated, this is expected since the interaction terms introduce some collinearity into the model due to
the nature of the relationship of interaction terms. This is acceptable, however, since the collinearities do
not appear to cause noteworthy changes in the t-statistics and p-values based on the summary output. The
diagnostic plots in Figure 20 also display that the regression model assumptions are similarly satisfied for
the diagnostic plots in comparison with the models that do not include the interactions.

# comparison table for Models 1 and 2
comparison <- cbind(

AIC = AIC(model1, model2, model1_region_update, model2_region_update),
BIC = BIC(model1, model2, model1_region_update, model2_region_update),
R2_adj = c(round(summary(model1)$adj.r.squared,4), round(summary(model2)$adj.r.squared,4), round(summary(model1_region_update)$adj.r.squared,4), round(summary(model2_region_update)$adj.r.squared,4)))

comparison <- comparison[,-3]
names(comparison) <- c("df","AIC","BIC", "R2 adj.")
comparison %>%

kbl(booktabs=T,
caption = "Comparison Table for Models 1 and 2 (including interactions)") %>%

kable_classic()

Selecting the model Table 7 displays the resulting adjusted R2, AIC, and BIC values for Models 1 and
2, both with and without including the statistically significant regional interaction terms. While the AIC
values improve for both models, the steeper penalty for adding coefficients from BIC illustrates that not
much information is added when we include the interaction terms for region. Additionally, we see that there
is only a marginal increase in the adjusted R2 (less than 2% for both models) despite the degrees for freedom
more than doubling for both Models 1 and 2. Given the criteria stated in the research question, we ignore
these models to avoid the risk of overfitting the model to the data and decide between the models that do
not include the interaction terms.

As previously stated, Models 1 and 2 are similar in many key aspects. The AIC, BIC, and adjusted R2 are ex-
tremely similar; each of the coefficients present in the model is statisitcally significant and properly specified
per the marginal model plots; the VIF values of the coefficients are low enough to suggest multicollinearity
is not present in the model; and the diagnostic plots suggest that the regression model assumptions are ap-
proximately satisfied (with the slight deviation in the Normal QQ plot). Selecting the appropriate prediction



model is therefore a decision made based on the more practical aspects of the model. Accounting for the
criteria in the specified in the research question, Model 1 is selected since it is the more parsimonious model
and provides virtually identical prediction power for the response variable.


