36-617: Applied Linear
Models

Regression Basics
Brian Junker

132E Baker Hall
brian@stat.cmu.edu

9/1/2021



‘ Monday is a holiday (Labor Day)

= No class, no office hours
= HWO1 will be due Tuesday evening

= Since there are no office hours Monday, | will
hold an extra office hour:
0 Tuesday, 11:30am-12:30pm
0 132E Baker Hall
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‘ Reading, HW & TA Office Hours

= Reading:
o Sheather Ch’s 1-2 — for this week!

o Handouts in week02 folder in Canvas files area — for next week!
= | will not cover everything in the chapters
= You will need to read & try some things on your own!

= HWO1 out later today; due next Tue at midnight

IH

o Several “technical” exercises (math, R, data analysis, thinking)

o Normally HW due on Mondays, but this Monday is a holiday...

s TA (Lorenzo — Ithomasel@andrew.cmu.edu) Office hours
o 8:45-9:45 Mondays
o 12-1 Thursdays
o Location TBA
0 Let’s see if the Monday office hour works...
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‘ Outline

m The Linear Regression Model
o Lazy formulation
o Long formulation
o Matrix formulation

m Least Squares and Maximum Likelihood
m Distribution of Estimated Coefficients

m SST =SSreg + RSS, R?, Anova Table

m Confidence & Prediction Intervals for y’s
= Example....
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‘ The Linear Regression Model

A lazy formulation
Yy = Po+ b1 X1+ PaXo+ -+ [p X, +€

0 yis the response variable, a.k.a. dependent variable
0 Bo=intercept; f31,..., 3, = coefficients/slopes/effects

o X1, Xo2,...,X, also have many equivalent names:

m predictors / Independent variables / Regressors / Covariates

o € is “error” (better: random deviation from mean)
o Quick, easy hand-waving, emphasizes functional form
o Easy to replace abstract letters with meaningful words...

(kid.score) = (intcpt) + (coefl) (mom.hs) +

(coef2) (mom.iqg) + (error)
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‘ The Linear Regression Model

A longer, more accurate formulation

y1 = PoXio+ 51X+ Bp X1y e
y2 = PoXoo+ 1 Xo1 + -+ BpXap + €
Yn — BOX’RO -+ Banl + o ﬁanp + €n

m X;p = 1, acolumn of 1’s (for the intercept!)
= n = number of “units” or “cases”;

m k=p+1=number of “predictors” or “covariates”
m Y = BoXiot+Li X+ +5pXpt+e, i=1,...n
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‘ The Linear Regression Model

A matrix formulation...
= Let X;= (X ..., X,) and 5 = (60, ., 3,)'; then
Y = Bono + 51 X1+ + BpXip + €
= X;0+¢

m If wealsostackY=(Y,..Y), X=(X7,..,X]T),
and € = (e, ...€,)", we can write

Y =X[F+¢€

m Has all the information of the Long Formulation

= Lends itself to compact formulas & computation
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Linear Regression Model:
Mean + Error Distribution

= In the model

Y; :XZ,B—I—EZ,’L: 1,...,TL
It is usual to assume ¢; < N(0,0%)
= We can write this as

Yi ey N(@i,az),izl,...,n
0 = X8 = PoXio+ - GBpXip

o Eachy; e (-o0, o0) has some mean 6; = E[y,| X]
o Each 6; has some linear structure

o There is a statistical distribution N( *, 02) that describes unmodeled
variation around 8, = E[y;|X;]
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‘ Aside: The Normal Distribution

1 )
Y~ N(0,1) iff f(y) = ——=e /7
o Y~ N(g,o?) iff ==~ N(0,1)
1 _w=m?

fy) = Vol
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Least Squares for Simple Linear
Regression, From the Model

m Starting with the simple linear regression model

Vi e N(b;,0%), i=1,...,n
0; = FEly|Xi] = Bo+ X,
we see that the density for y; is
1 C (y;—04)*
fyilXs) = e 207
2mO
1 . (y;—Bo—B1X4)>

e 202

\/ 2O
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‘ Least Squares & Maximum Likelihood

= Independence allows us to write the likelihood as

L(Bo, B1,0%) = || fwilX:i) =] : eXP{ 212( 50—51)()}

i1=1 =1 27{0_
1 " 1 —
( 271'0') exp( 5,2 z’:l(y% Bo — b1 z))

= The log-likelihood is then
log L(/B()v /617 02)

B n n 5 1 « 5
= —5log(2m) — Jlogo —2—2 — Bo — B1.Xi)
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‘ Least Squares & Maximum Likelihood
= The MLE’s BO, Bl, &2 are found by maximizing
IOgL(/B()v/BlaO-Q)
1

o n 5 )
= -5 log(2m) — 510807 — o i_l(y@' — Bo — b1 Xi)

n

o MLE’s BO, Bl minimize the residual sum of squares

T n

RSS=> (i —Bo— BiX)? = (i — )2 =Y &2

i=1 9 i=1 i=1
for any positiveo~.

o The MLE &2 will then just depend on the minimized
RSS.
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‘ Least Squares & Maximum Likelihood

m After a little calculus,

Bo = J— X
5, = 2. Xiyi —nXy > (Xi—X)(wi —y) _ SXY
L Y XX > (X - X)? SXX
5> = LRSS

n

= It can be shown that 6~is biased: E[6°]) # o?;
instead we usually use the unbiased estimator?

1
S? = RSS
n — 2

(2 =k = p+1 = number of estimated coefs = df)

9/1/2021 1See e.g. Weissberg (2013) Applied Linear Regression. |,



‘ Distribution of Estimated Coefficients

A SXY X;—X
o i = &xx = > (SXX)y@-, and hence

o B ~N (51, S&QX)
o fo~ N (/30702 (% T 5&))

e And therefore!

o Ty = 55 ~ tn2, SE(B1) = S\/1/SXX

2. —2
o To = §hhy ~ tu—a, SE(Bo) = S\/l/n+X /SXX

This gives rise to the usual confidence intervals and
hypothesis tests (more to come. . .)

9/1/2021 1See e.g. Weissberg (2013) Applied Linear Regression.
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Partitioning Sums of Squares...

s It's easy toseethat ¥i — ¥ = (yi — ;) + (§;: — )

= If we square both sides and do a little algebra we
get SST = SSreg + RSS, where
0 SST(=SYY)=3"_,(yi —9)°
1 SSreg =3 (9 —Y)*
0 RSS =30 (yi — i)
(why isn’t this obvious? — you will show it in HW01!)
s Moreover! SSreg is independent of RSS, and
a0 RSS/o? ~ x2_,
a0 When 81 =0, SSreg/c? ~ x?

9/1/2021 1See e.g. Weissberg (2013) Applied Linear Regression. -



‘ From SST = SSreg + RSS, Anova Table

SS RSS ,
= RQI = ng";g =1 — 557 = portion of
variation in y due to (or explained by) 3
a Also R? = [Corr(X,y)]? in the data (algebra!)

s When Hg: 81 =0 istrue, F = Rggﬁg/_g) ~ I 2

= The traditional Analysis of Variance table

Source of  Degrees of Sums of squares Mean square F
variation freedom (df) (SS) (MS)

- SSreg/1
Regression 1 SSreg SSreg/1 F = RSS/(g/—Q)
Residual n— 2 RSS RSS/(n —2)

Total n—1 SST

will later be generalized to p>1 predictors X, ..., X,
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‘ Distribution of ¥;

= Combining

Bo = 3—517
. —~ X; - X
br = o SXX Yi

with a little algebra, we can show
C a Ay XXX =X,
yz—/BO+/81Xz—Z|:n+ yj_j;hwyj

. SXX
71=1

m Therefore
Elyil = Bo+ 05X = Elyi| Xi]
o o1 X=X
Var[y;] = o [n + XX = hi0

w2
Ui~ N(50+51Xz'702 [%Jr Xi — X) ]) = N (Bo+ A1 Xs, hiio?)

SXX

9/1/2021
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‘ Confidence Interval for a point y* on
the regression line

m Let X* be a new X value, and let y* be the new y
value: y* = Bg + 51 X™ + €*

= AClforthe point Ey*| X" = By + 51 X*
on the regression line is

(9" —1-SEW"),y" +t-SEy"))

where §; = By + /1. X* and SE(§*) = vhy S, and tis
an appropriate cutoff (around 2 for a 95% interval, e.g.)
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‘ Prediction Interval for a new obs. y*

m Again let X* be a new value, and now consider
predicting y* itself at that X*:

Gprea = Bo + BLX* + €pred
= Using the same sorts of calculations as before,
Elgpred) = Elg°] = Bo+ /X"
Var (§5,0q) = Var(Bo+ B1X* + €prea) = (hii +1)0”
= So a prediction interval for y* ., would be

(y — - SE(ypred) yr+t- SE(ypred))

where SE(J7..4) = Vhii + 18
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‘ Example...

9/1/2021
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‘Summary

m The Linear Regression Model
0 The Lazy, Long and Matrix Formulations
0 Least Squares and Maximum Likelihood
o Distribution of Estimated Coefficients
a SST = SSreg + RSS, R?, Anova Table
o Confidence & Prediction Intervals for y’s

= HWO1 out later today — due next Tues
= Read Ch 3 for next week
= TA Office hours?

9/1/2021

21



