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Monday is a holiday (Labor Day)

◼ No class, no office hours

◼ HW01 will be due Tuesday evening

◼ Since there are no office hours Monday, I will 
hold an extra office hour:

❑ Tuesday, 11:30am-12:30pm 

❑ 132E Baker Hall
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Reading, HW & TA Office Hours
◼ Reading:

❑ Sheather Ch’s 1-2 – for this week!

❑ Handouts in week02 folder in Canvas files area – for next week!

◼ I will not cover everything in the chapters

◼ You will need to read & try some things on your own!

◼ HW01 out later today; due next Tue at midnight
❑ Several “technical” exercises (math, R, data analysis, thinking)

❑ Normally HW due on Mondays, but this Monday is a holiday…

◼ TA (Lorenzo – lthomasel@andrew.cmu.edu) Office hours
❑ 8:45-9:45 Mondays

❑ 12-1 Thursdays

❑ Location TBA

❑ Let’s see if the Monday office hour works…



Outline
◼ The Linear Regression Model

❑ Lazy formulation

❑ Long formulation

❑ Matrix formulation

◼ Least Squares and Maximum Likelihood

◼ Distribution of Estimated Coefficients

◼ SST = SSreg + RSS, R2, Anova Table

◼ Confidence & Prediction Intervals for y’s

◼ Example….
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The Linear Regression Model
A lazy formulation

❑ y is the response variable, a.k.a. dependent variable

❑ = intercept;                     = coefficients/slopes/effects

❑ also have many equivalent names:

◼ predictors / Independent variables / Regressors / Covariates

❑ is “error” (better: random deviation from mean)

❑ Quick, easy hand-waving, emphasizes functional form

❑ Easy to replace abstract letters with meaningful words…
(kid.score) = (intcpt) + (coef1)(mom.hs) +

(coef2)(mom.iq) + (error)
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The Linear Regression Model
A longer, more accurate formulation

◼ , a column of 1’s (for the intercept!)

◼ n = number of “units” or “cases”; 

◼ k = p+1 = number of “predictors” or “covariates”

◼
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The Linear Regression Model
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A matrix formulation…

◼ Let Xi = (Xi0, …, Xip) and ¯ = (¯0, …, ¯p)
T; then

◼ If we also stack Y = (Y1, …,Yn)T, X = (X1
T, …, Xn

T)T, 
and ² = (²1, …²n)T, we can write

◼ Has all the information of the Long Formulation

◼ Lends itself to compact formulas & computation



Linear Regression Model: 
Mean + Error Distribution
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◼ In the model

It is usual to assume 

◼ We can write this as 

❑ Each yi ² (-1, 1) has some mean µi = E[yi|Xi]
❑ Each µi has some linear structure
❑ There is a statistical distribution N( *, ¾2) that describes unmodeled 

variation around µi = E[yi|Xi]



Aside: The Normal Distribution
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◼ Y ~ N(0,1) iff

◼ Y ~ N(¹,¾2) iff  
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Least Squares for Simple Linear 
Regression, From the Model
◼ Starting with the simple linear regression model

we see that the density for yi is
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Least Squares & Maximum Likelihood
◼ Independence allows us to write the likelihood as

◼ The log-likelihood is then
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Least Squares & Maximum Likelihood

◼ The MLE’s                     are found by maximizing

❑ MLE’s                minimize the residual sum of squares

for any positive      .

❑ The MLE        will then  just depend on the minimized 
RSS.
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Least Squares & Maximum Likelihood
◼ After a little calculus,

◼ It can be shown that      is biased:                       ;
instead we usually use the unbiased estimator1

(2 = k = p+1 = number of estimated coefs = df)
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1See e.g. Weissberg (2013) Applied Linear Regression.



Distribution of Estimated Coefficients
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1See e.g. Weissberg (2013) Applied Linear Regression.



Partitioning Sums of Squares…

◼ It’s easy to see that 

◼ If we square both sides and do a little algebra we 
get  SST = SSreg + RSS, where

❑

❑

❑

(why isn’t this obvious? – you will show it in HW01!)

◼ Moreover1 SSreg is independent of RSS, and

❑

❑
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1See e.g. Weissberg (2013) Applied Linear Regression.



From SST = SSreg + RSS, Anova Table

◼

❑ Also R2 = [Corr(X,y)]2 in the data (algebra!)

◼ When                         is true,

◼ The traditional Analysis of Variance table

will later be generalized to p>1 predictors X1 , …, Xp
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Distribution of
◼ Combining 

with a little algebra, we can show

◼ Therefore

17
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Confidence Interval for a point y* on 
the regression line

◼ Let X* be a new X value, and let y* be the new y 
value: 

◼ A CI for the point                                     
on the regression line is

where                                                                         , and t is 
an appropriate cutoff (around 2 for a 95% interval, e.g.)
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◼ Again let X* be a new value, and now consider 
predicting y* itself at that X*:

◼ Using the same sorts of calculations as before,

◼ So a prediction interval for y*pred would be

where

Prediction Interval for a new obs. y*
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Example…
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Summary
◼ The Linear Regression Model

❑ The Lazy, Long and Matrix Formulations

❑ Least Squares and Maximum Likelihood

❑ Distribution of Estimated Coefficients

❑ SST = SSreg + RSS, R2, Anova Table

❑ Confidence & Prediction Intervals for y’s

◼ HW01 out later today – due next Tues

◼ Read Ch 3 for next week

◼ TA Office hours?
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